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ABSTRACT. If G ~ V4 @ V3 is a direct sum of vector spaces, we may associate to any linear

endomorphism f of G a 2 X 2 matrix <§11 ;12 >, where f;;: Vj — V; are linear maps. We
21 J22

generalize this to the case where G is an arbitrary group extension, determine the functional
equations satisfied by the f;; and how such matrices multiply. We extend these results to
the case where G carries a locally compact polish topology, and apply them to calculate the
continuous endomorphisms and automorphisms of Hy, the 2n+1-dimensional real Heisenberg
group.

I. DISCRETE GROUPS

Suppose we have a short exact sequence
1-N5G6GLHE-1

of groups, together with a cross-section s: H — G for j, 1.e., jos = 1y, and a projection
t: G — N along s, i.e., toi =1y, tos=e, (10t)(s0j) = 1g, where for fi,fo: X — G, fifs

stands for the pointwise product (fif2)(z) = (fi(z))(f2(z)).We write this in diagrammatic
form as follows:

i J
1o N2G@Ga2H-—-1.

t s

s defines a 2—cocycle o

o(ys,y2) = t(s(y1)s(y2)(s(y1y2)) ") or s(y1)s(y2) = i(o(y1,y2))s(v1y2) -

We also have a function ¢: H x N — N defined as ¢(y,z) = t(s()i(z)(s(y))~!), which
we write z¥ for short. ¢ does not quite give an operation of H on N, but misses by the
2—cocycle o.
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Lemma 1.1. Fory; € Hyz € N, we have

So(y1790(y2,23)) = (So(yly%m))o'(yl,yz) ,

where, for z1,z2 € N, 27> = zomiTy .

Proof.

#(s(y1) (608) (s(y2)i(z)s(y2) "M)s(y1) ™) = #(s(y1)s(y2)i(@) (s(y2)) " (s(z1)) ™)
— t(i(o (g1, ¥2))s (w1 y2)i(2) (s(v1v2)) " (i (w1, ¥2))) ™)
= U(yl,yz)t(S(ylyz)i(w)(S(ylyz))_l)(o(yl,yz))_l )

since £ is a homomorphism when restricted to i(IV).

Lemma 1.2. Fory; € H,
U(ylay2)g(y192’y3) = (U(y27y3))y10(y1,y2y3) .

Proof.
This is well known. See, e.g., [B].
Lemma 1.3. For g; € G,

t(g192) = t(g1)[t(g2))" " (3 (g1), 3 (92)) -

Proof.

t(g1g2) = t((10t)(s0)(g1)(iot)(s07)(g2))
= #(i(t(g1))s(7(92))i(t(92))s(3 (92)))
= #(i(t(g1))s(3 (91))i(t(92))(s(3 (91))) " s(5(91))s(3 (g2))
— #(i(t(91))(5 (91))i(#(92))(s(i(91))) il (3 (91):(92)))s(i (92))s(5(92))
= 1(g1)t(s(5(91))i(t(92))(s(3 (92))) o (i(91):3(g2)) ,
= #(g1)[t(92)" ) 0 (4 (91), 1 (92))

Now for f: G@ — G an endomorphism, define the coordinates fij for 1 <4,5 < 2of f as
follows:

fi1 =tofoi: N = N
for =jofoi: N — H
fis =tofos: H = N
fos =jofos: H — H .

Then
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Theorem 1.1. The f;; satisfy the following functional equations:

(1.1)

fri(zimg) = f11(€C1)[f11(aiz)]f“(ml)d(le(m), f21(z2))
(1.2)

far(ziz2) = fo1(21)far(22)

(1.3) Fi2(v1ya) = falo(yr,v2) ™) Fr2 (y1)[Fr2(v2)1 722D 0 (fa2 (91), Fa2(v2))

o(f21(o(y1,¥2) ™), Faa(y1) a2 (v2))
(1.4) Faz(vryz) = far(o(yr,y2) ™ 1) faa (y1) faz (v2)

farlo(y,y2) ™)

Proof.

fr1(zres) = (to foi)(zras) =t ((foi)(z1)(foi)(22))
= (tofoi)(e1) [(tof 0i)(22)]V°T V™) o((jo f o) (1), (Fofoi)(z2))
= fi1(21)[f11(22)]F22 VD o (f21(21), fa1(22))
far(z1za) = (Gofoi)(wiea) = (jofoi)(m1)(jofoi)(z2) = far(w1)far(e2)
Fi2(yrys) = (tofos)(yrya) = (tof)(i(o(yr,y2) )5 (y1)s(y2))
= t((foi)(o(yr,y2) " )(fos)(y1)(fos)(yz))
= (tofoi)(o(yr,u2) 1) [H((Fos)(yn)(F os) (w2 )]0 2T ™D
o((jofoi)(o(yr,v2) 1), 3((Fos)(wr)(Fos5)(2)))
= f11(0(y1,y2)_1)'

[(tofOS)(yl)[(tof03)(y2)](j°f°8)(y1)U((jofos)(yl)a (Fofos)(y2))
o(f21(o(y1,92) ™), faz (v1) f22 (y2))

= fua(o(y1,92)™") [flz(yl)[fm(yz 1722090 o fa3 (1), fzz(yz))]

o(fa1(o(y1,v2) 1) fa2 (y1) F22(y2))
Faz(yrys) = (Gofos)(wrya) = (Fof)(i(o(yr, y2) ™ )s(y1)s(v2))
= (jofoi)(o(y1,y2) " H)(Fofos)(y1)(Fofos)(y2)
= fa1((o(y1,92)) ") fa2 (y1) f22 (v2)

]fm(a(yuyz)_l)

Far(o(yiw2) ™)

Theorem 1.2.
f = (iofirot)(sofarot)(10f1205)(s0 f22 07)

Proof.

For fi: G — N, fo: G — H, define

f1 = to(sofa)(iofi)(so f2) 7"
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Then

f = (iot)(sog)ofo(iot)(soj)
= (iot)(soj)o(foiot)(fosoy)
 [Giot)o(foiot)(Ffoso)li(sos)o(foiot)(fosod)]
[zo(tofozot)(tofoso])”fowta'(]ofozot jofosoj)l[so(jofotot)(jofosoy)
— [io(tofoiot)(to(sojo foiot)(iotofosog)(sojofoiot)” Da(jofoiot,jofosog)]-
[(ioo(jofotot,jofosos)” Y(sojofoiot)(sojofosoj)]
= (i0to foiot)(sojo foiot)(iotofosoj)(sojofoiot)” L.
(zo )(]ofozot,]ofoso])(zoa)(]ofozot,]ofosog)
(sojofotot)(sojofosoy)

= (10 f110t)(s0 far0t)(io frz05)(s0 faz07)

Theorem 1.3. If we define f as in theorem 1.2, where the fi; satisfy the functional equa-
tions in theorem 1.1, then f is an endomorphism of G.

Before we prove this, it behooves us to separate our task into two parts. First suppose
that we have an endomorphism f: G — G. Then define the two maps f; = foi: N — G
and f» = fos: H — G. f1 is a homomorphism and f; satisfies

Lemma 1.4.

(1.5) Fo(ry2) = fi(o(y1,92) ") fa(y) fo(ye) -

Proof.

F2(y1y2) = (fos)(yryz) = f(i{a(y yy2) " )s(y1)s(y2))
= (foi)(o(y1,y2) " )(Fos)(y1)(Fos)(yz)
= fi(o(y1,y2) ") faly1) f2(y2)

Lemma 1.5. f = (fiot)(f205).
Proof.

f = foliot)(soj) = (foiot)(fosoi) = (frot)(f204)
Conversely,

Lemma 1.6. If we define f = (fi0t)(f203), where fi is a homomorphism and fo satisfies
(1.5), then f is an endomorphism of G.

Proof.
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flg192) = (frot)(g192)(f205)(9192)
=h (f(gl)[t(QZ)]j(gl)U(j(gl),j(92))> f2(3(91)7(9(2)))

= (frot)(g1) f1 (t(s(5(g1))ilt(92))s(3(91)) ™)) (froo)(i(g1),3(g2))-

F1(o(ilg1), 5(g2)) 1) F2(5(91)) f2 (5 (g2))

(f10t)(g1) F(s(5(9))i(t(g2))5(i (92)) 1) f1 (o (i(g1), 5(92))) f1 (o (3 (91); 3(92)) 1) f2(5(91)) 2 (3 (92))
(F10)(g1)(f205)(g1)(f10t)(92)(f205)(g2)

= f(g1)f(g2)

nH

Next, suppose we have a homomorphism fi: N — G and we define fi; =tofi: N - N
and fo1 = jofi: N — H. Then fi1, fo1 satisfy equations (1.1),(1.2) respectively and

Lemma 1.7. f; = (10 f11)(s0f21)
Proof.

£ = (iot)(sog)ofi = (ioto fi)(sojofr) = (o fir)(so fa1)

Conversely,

Lemma 1.8. If we define fi = (i0f11)(s0f21), where fi1, fa1 satisfy (1.1),(1.2), then fy is
a homomorphism.

Proof.

f1(331w2) = (iofll)(m1w2)(80f21)(w1932)
=1 (fll(731)[fll(332)]f21(m1)0'(f21(331)af21(w2))> 8(f21(z1) for(z2))

= i(f11($1))3(f21 (ml))i(fll(ﬂﬂz))s(le(ml))_1i(‘7(f21(f'31)7 for(z2)))-
i(o(fr1(z1), fr1(22)) 7 )s(far(e1))s( 1 (22))

= (10 f11)(m1)(s0 far )(@1)(30 fr1 ) (w2 )(50 fa1 )(w2)

= fi(z1)fi(z2)

Now suppose we have a map f»: H — G satisfying (1.5), and we define

f12 :t0f21 H - N
faza =jofa: H— H .
Then fi2, f22 satisfy equations (1.3),(1.4) and
Lemma 1.9. f2 = (iof12)(sof22)
Proof.

Similar to the proof of lemma 1.7.
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Lemma 1.10. If we define fo = (i0f12)(s0f22), where fi2, foa satisfy equations (1.3),(1.4),
then fy satisfies (1.5)

Proof.

f2(y1y2) = (ioflz)(SOfZZ)(ylyz) = (ioflz)(ihyz)(sofzz)(ylyz)

=i( fr1(o(y1,92)" ") [flz(y1)[f12(yz)]f“(yl)a(fzz(yl), faz(y2))
o(far(o(yr,v2) ™), faz (1) Fa2 (y2)) ) s(fa1 (o(y1, y2) ™ 1) o2 (y1) a2 (v2))
= (io f11)(o(y1,v2) ) (s0 fa1 ) (o, 12) ™ (Fra (@) e (922D (fr2 (1), foa(v2))) -

((sofa)(oy1,v2) ™) " ilo(far (o (y1,y2) ™), Faz(v1) faz (v2))):
(o (fa1 (0(y1, y2) L), Faz (1) Faz (v2))) " s (21 (o (yr, y2) ™)) s (Faz (y1) f22 (y2))
= fi(o(y1,92) ") (G0 12 ) (w1 ) (s fa2 ) (1) (i0 f12 ) (ya) ((s0 faz ) (92)) ™ -
(i00)(f22 (v1), F22(y2)) ((i00)(F22 (y1), F22(¥2))) ~* (50 f22)(ya) (50 f22) (v2)
= f1(o(y1,92) 1) f2 (v1) f2 (y2)

fz1(0(y1,y2)—1)

We may combine lemmas 1.4 — 1.10 to prove theorem 1.3, since theorem 1.2 says that
f=(frot)(fa0]).

Now let us associate the 2 x 2 matrix (

fll f12

far far
f of G. We may let the above matrix operate on the set N X H as

(5 52 ()= (k)

If we have two endomorphisms f, g of G, how do we compute the matrix of fog?

) of functions f;; to an endomorphism

far Jfa2 921 g22
of G respectively, then the matriz of fog is

Theorem 1.4. If fu f12> and (gll g12> are the matrices of endomorphisms f,g

(firog11) [f1209211721°91 o(fa1 0911, f220921)  (f110912) [f12 0g22]721°912 ¢(fa1 0912, f220922) )
(f210911)(f220921) (fa10912)(f22 0922)

Proof.

(fog)11 =tofogoi=tofo(iot)(soj)ogos
—=to(foiotogoi)(fosojogor)
= (tofoiotogoi)[tofosojogoi]jofowtogoid(jofoiotogoi,jofosojogoi)
= (f110911)[f120921]7*°7" o (fa1 011, f210921) -
The expressions for (fog)a1,(fog)i2,(fog)22 are calculated similarly.

One of the simplest special cases of theorem 1.4 is when we have a central extension
and N is equal to the center of G. In this case an endomorphism f of G has an upper
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fll f12

fa2 )’
identity element of H. Then the matrix of fog is just

triangular matrix where e stands for the constant map f21 equal to e, the

(1.7) (fll ogin (fu 0912)(f120922)) _

€ faz0g22

Note also that fi1,fss are endomorphisms of N, H respectively and fi» satisfies the
functional equation

(1.8) Fra(yryz) frz2(y1) " frz(y2) ™ = o(fa2 (1), Faz(w2)) fra (o (y1,92))

In words, fi1, f2o are endomorphisms of N, H respectively, chosen in such a way that the
2—cocycle a(fzg(yl),f22(y2))f11(0(y1,y2))”’1 is trivial from H to N and fi» is any one of
these trivializing 1—cochains. These equations appear in [W], and are crucial in calculating
the outer automorphism of the generalized Heisenberg groups.

If we assume that @ is a semidirect product, then the equations reduce to those of [H],
except that the fourth and fifth equations of [H] follow from the first four, and the last is
just the obvious condition for an endomorphism to be an automorphism.

2. ToroLOGICAL GROUPS

There are many theories of extensions of topological groups, e.g., see [C],ID],[Ma},[Mo],
[Ms]. We shall use the theory presented in [D] for locally compact separable metrizable
groups, also known as polish locally compact groups. N is then a closed subgroup of G, i
is a homeomorphism into and j a continuous open map. s,t are then borel functions, as is
the 2—cocycle o of the extension. The f;; are borel functions, and fy; is continuous, since
it is a homomorphism. The algebra used in the proofs of the previous lemmas and theorems
respects the borel character of the maps involved, so they remain valid in the context of
polish locally compact groups.

As an application of the results above, we determine the monoid of continuous endo-
morphisms and the group of continuous automorphisms of the real 2n + 1—dimensional
Heisenberg group H,. H, is thought of as a central extension of IR by IR*" by means of
a nondegenerate bilinear IR—valued skew form o on IR2", used as a 2—cocycle. By [K] we
may assume o continuous. IR is then the center of H,, and for f a continuous endomor-
phism of H,, each of the f;; are continuous, since we can take s, to be continuous. Since
IR,IR?" are abelian, we write their group operations additively. fi1, fo2 are continuous
endomorphisms of IR, IR?" respectively and fi» satisfies the additive version of (1.8), viz.

(3.9) Fra(y1 +vy2) — fra(y1) — fr2(y2) = o(faz(y1), f22(y2)) — fr1(o(y1,92)) -

But notice this says that

o(faz(y1)s foa(y2)) — fr1(o(y1,92))

is a trivial IR—valued 2—cocycle on IR?", and by [K], such a 2—cocycle must be zero, since
it is skew. Thus fi2 is a borel homomorphism from IR2™ to IR, and thus continuous.
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Theorem 2.1. The endomorphism monoid of H, consists of two disjoint pieces. One, a
closed ideal. consisting of endomorphisms of the form (g f(l)z), fi2 being an IR—linear

form on R2™, and the composition of any two of these being the zero endomorphism. This
ideal is isomorphic to IR*™ with the zero multiplication. Two, a subgroup of automorphisms

of the form

A |A|f12

0 772 /|Alf2 ,
where X # 0, fi2 18 an IR—linear form on IR2" and f}, is a symplectic automorphism of
R2" with respect to the skew form o, and o(7(z),7(y)) = —o(z,y). The automorphism
group is a semidirect product of the normal subgroup of inner automorphisms of the form

(1]R fi2

and isomorphic to IR®™ with the group of outer automorphisms. These
O 1m2n g

are of the form (3 R S/D‘—Iféz), and isomorphic to Zy x IR x Sp(n,IR), and thus

has two connected components. It is the open dense subgroup of invertible elements of the
endomorphism monoid. The endomorphism monoid is homeomorphic to IR?"1 x Sp(n,IR)
and is connected.

Proof.

Suppose that fi; = 0. Then the nondegeneracy of o forces fs» = 0 also, and the
endomorphisms of this form are the first monoid described above.
Next, if fi1 # 0, write A = fi;. Then

o(faz(y1), f22(y2)) = Ao(y1,92) ,

which says that if A > 0 then f», is some scalar multiple VA f4, of a symplectic automorphism
fio of IR?™ with respect to the nondegenerate skew form o. If A < 0, then by following
f22 by any automorphism 7 of IR2" which replaces o by —o, say by choosing a symplectic
basis z;,y; for s and letting 7(z;) = yi, 7(y:) = @i, 70 fa2 replaces s by a positive multiple
) of itself. We may then write 70 foo = V' Af},, where fi, is a symplectic map for s, as
before. Since 72 = 1gzn, we have that the group of the fas is isomorphic to Z x Sp(n).
Multiplication of the matrices associated to the various automorphisms and endomorphisms,
according to the scheme (1.6), yields the remaining statements of the theorem. This same
cohomological equation (3.9) was obtained by [W] in calculating the automorphism group
of the Heisenberg group, though he did not associate such with a matrix.

Of course, when we defined the Heisenberg group, we could just as well have used the
general definition in [W], and our calculations will yield a determination of the outer auto-
morphism group of this generalized Heisenberg group, if we use the result in [K] that any
measurable 2-cocyle on A with values in the circle group T is cohomologous to a continuous
antisymmetric 2-cocycle as long as A?, the set of squares of elements of A is dense in A. This
is certainly true for local fields and if we avoid characteristic two, also for global function
fields.

The difficulty, in general, in explicitly solving the obvious equations distinguishing the
automorphisms from the endomorphisms, lies in the fact that, even in the case of a direct
product of abelian groups, the elements in the associated matrix do not commute. Consider
the problem, for example, in trying obtain a closed form for the inverse of an n x n matrix
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of real numbers which has been divided into four blocks, reflecting the decomposition of
IR” into the direct product of two subspaces, in terms of the four matrices constituting the
blocks.

After this paper had been written, I became aware of the paper of Hsu [H], in which
similar techniques are introduced for the case of a semidirect product of groups. In that
paper, the automorphism group of a holomorph of a perfect group is computed.
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