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ABSTRACT. If

1—>N1—1‘L>G1j—1>H1~—>1

1= Ny 2@y 22 Hy — 1

are short exact sequences of groups, then we associate to each homomorphism Gy ER Gz a2x2
matrix of functions, and recover f from this matrix. We also investigate the dependence of the
matrix on the cross-sections s; of j;, ¢ = 1,2. Matrix multiplication is defined and interpreted
in terms of homomorphism composition. Formulas are also given for coordinate change. All
the formulas reduce to the standard ones in case G, Gy are vector spaces and f a linear map.

I. INTRODUCTION

If we have a direct sum 4; @ A, of abelian groups, its endomorphisms f are known to

be described by 2 x 2 matrices fu fio , where f;;: V; — V; are homomorphisms for
for fa2 7

1 < 4,5 < 2. For example, see [W].
It is possible to do the same thing if we only have an extension

1—>Ni>Gi>H——>1

of groups. This can be quite useful if we want to study, e.g., the automorphisms of a
group. In case N is characteristic, we may describe the automorphisms as upper triangular
matrices, with a particularly simple law of multiplication.

It is rather surprising that such a technique has apparently never been carried out in the
generality treated here. It is true that the functional equations satisfied by the entries in
the matrix are quite imposing, and are probably impossible to solve in general. However,
before we can begin to conceptualize what is involved in computing homomorphisms between
groups which have been coordinatized by means of normal subgroups and quotient groups,
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it certainly behooves us to at least write down the appropriate equations. This we have
done, and shown how to begin to solve them in the simplest nonabelian cases in [D1],[D2].

This technique can obviously applied in the case of lie and associative algebras, for deriva-
tions as well as for homomorphisms. These will be the objects of study in forthcoming
papers.

2. GrouP EXTENSION COORDINATES

Suppose we have an extension of groups given by a short exact sequence
(2.1) 1-N5G5LHH 1.

Suppose also that we are given a section s: H — G of j,ie., jos = 1m, which has been
normalized so that s(e) = e, and a projection t: G — N along s, i.e., toi = 1y, tos = e,
where e is the constant map equal to e everywhere. All of this may be illustrated by a
diagram

i J
1-N=2G&ZH-—-1.

k4 s

Lemma 2.1.

(2.3) 1g = (tot)(s0j) .

Proof.

This is just a restatement of the fact that, in our situation, every element g € G can be
written uniquely in the form i(z)s(y) for z € N,y € H.

Definition 2.1. Forz € N,y € H, let

(2.4) o(y,z) =2¥ = t(s(y)i(:c)s(y)—l) .

This almost gives an operation of H on N, whose failure to be so is measured by a
function ¢: H x H — N.

Definition 2.2. For y;,ys € H define

(2.5) a(y1,y2) = t(s(y1)s(v2)) -

Lemma 2.2. o also satisfies

s(y1)s(y2) = W(o(y1,92))s(y192) -

Proof.
Apply ¢t to both sides.
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Lemma2.3. o is called the 2-cocycle associated to s and satisfies

(2.6) o(y1,92)o(y1y2,y3) = (o(yz,93)) " o(y1,92v3)

for y; € H.
Proof.

This is well known. See, e.g., [B].
Lemma 2.4. Fory; € H,z € N, we have

(2.7) o(y1,0(y2,2)) = (p(y1y2,2))7 1)

where, for 1,5 € N, 7% = m2w1m2'1.

Proof.

#(s(y1) (6 0 £)(s(y2)i(e)s(y2) ~1)s(y1) 1) = t(s(y1)s(y2)il@)(s(y2)) " (s(v1)) )
= t(i(o(y1,v2))s(v1y2)i(2) (s(y1v2)) T (i(o(v1,¥2))) ")
= o(y1,y2)t(s(v1v2)i(@) (s(y1y2)) ") (o (w1, v2)) ",

since t is a homomorphism when restricted to i(N).

We also need
Lemma 2.5. For g1,92 € G,

(2.8) #(g192) = t(g1)[t(g2))" M (5 (g1),3(g2)) -
Proof.
t(g192) = t((i 0 t)(s 0 j)(g1)(i 0 t)(s 0 7)(92))
= t(i(t(g91))5(7 (91))i(t(g2))s(3(92)))
= 1(i(t(g91))s(5(91))i(t(92))(s(3(91))) " (3 (92))s(5 (g2))
= 1(i(t(g1))5(5 (91))i(t(g2))(s(3 (91))) "i( (i (91),5(g2)))s(5(g1))s(3(92))

= t(g1)t(s(5(g1))i(t(g2))(5(5(91))) " )o(i(91),3(g2)) »
= 1(g1)[t(g2)19V o (5(91), 4 (g2)) -

Now suppose that another section s’ of j is given, and another projection t' along s'.
Then define

Definition 2.3.
Ay) =t((s's™)(®)) ,
where, for f,9: X — G, (fa)(z) = f()g(x), and f*(2) = (f(2))~", and use f) for the

functional inverse of f.
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Definition 2.4. We define
o'(y1,52) = (s (1)s' (1)) and (2¥) =#(s'(v)i(=)s'(¥) ") -

1

Lemma 2.6. o(y™,y)! =a(y,y™").

Proof.

Apply Lemma 2.3 for y1,v2,93 = 4,9 ', ¥-

Lemma 2.7.
(2.8) ™) = [aP e Vatila™)ile)] -

Proof.

Use Lemma 2.5 applied to g1,92 = ¢~ ', 9, get
Hog™) = g™ [HeY U V(g™ )(9))]

and solve for #(g71).
Corollary 2.1.

(2.9) tos ! = [a(jos_l,jos)]_l .
Proof.

Apply both sides to y € H.

Lemma 2.8.

(2.10) , A =1tos .
Proof.
Ay) =t(s'(v)s' (v) ")
= 1(s'(9)) [t(s(y) ™) o((Gos ) (), (Gos) " (w))
= (tos")(¥) [o(y ) ] oy, y™")
= (tos)(y) [e(y™ L y) ] o(y™, )"
— (tos')(y)
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Lemma 2.9.

(2.11) s' =(i0))s
(2.12) t' =t(Xoz) ™t or Xoj = (¢')7
Proof.

Apply 2 to both sides of A = tos's™! for the first equation. For the second equation,

t = to(iot")(s' o)
= (toiot") [tos’oj]jOiOtl o(joiot’,jos'of)
= t'[Aoj]%c(e,j) = t'(Aoj)

The next theorem indicates how the 2-cocycle and “action” transform upon changing
from s to s'.

Theorem 2.1.

(2.13) o' (y1,92) = M) My2) o (y1,92)M(3192) ™
(2.14) () = My)=" My) ™
Proof.

o (y1,92) = (5 (31)8' (v2)) = t(A0) 7 (5" (1) (32))
= 1" () 115 (@2))] VP (G0 ) (), (505 )(32)) (Ao ) T (s ()" (32)
= My M @2)]" o (g1, y2) My, y2)
i((@¥)) = i(t' (s (v)il=)s' () ™))
= (10 A)(y)s(m)i(z)s(y) "  (1oX) " (y)
= (5oN)(y)i(z?)(ioN) " (y)
= iA@' Ay) ™)

Definition 2.5. If g is an eztension as above, the N- and H-coordinates of g € G are
t(g),7(g) respectively. We usually write them as a column matriz (;((‘Z)))
3. HOMOMORPHISM MATRICES

Now suppose we have two group extensions G,G' of N,N' with quotients H,H', to-
gether with the attendant sections s, s’ and projections ¢, t' along s,s', and a homomorphism

f: G — G'. Then we make
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Definition 3.1. Define the coordinates fi; or matriz entries (fc: ﬁz) of f: G1 — G

as follows:
fll :t’OfOi: N — N’
fr =j'ofoi: N — H'
fia =t'ofos: H— N'
fzzzj/ofOSIH—’H’

Since the proofs of the next several theorems are minor modifications of the proofs of the
corresponding theorems in [D1], we omit them.

Theorem 3.1. The fij, 1 <1,j <2 satisfy the following functional equations:

(3.1) fir(@ims) =fua(er) [ (22 ' (a1 (21), for(22))
(3.2) for(z122) =fo1(z1) fo1(z2)
Fiz(v1y2) =fi1(o(yi,y2) ")

[flz(y1)[f1z(yz)]f”(yl)al(fzz(yl)a f22(y2))

(3-3) U'(f21(0(y17’!/2)~1)7fzz(yl)f22(3/2))
(3.4) f22(y1y2) =fa1(o(v1, yz)_l)fzz (y1)f22(y2) »

] Fa1(o(yr,y2)™h)

where the primes have been omitted from (ccy)' where the intention is unambiguous.

Theorem 3.2.
f = (tofrrot)(s o farot)(d "0 f1207)(s' 0 f2207) .

Theorem 3.3. If we define f as in Theorem 3.3, where the fi; satisfy the equations (3.1)—
(3.4), then f is a homomorphism from G1 to Gs.

Write the matrix we have associated to f and the coordinates

fll f12
fZl f22

for g1,g2 in G1, G5 respectively as < , and we may define a product of this

Ci,
matrix and the column of coordinates as

)ove
(1), G0, = (sbiliciod).,
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Theorem 3.4. If G RN J, G3, where each G 15 a group extension, with accompanying
sections s;, projections t; and cocycles o;, for i =1,2,3, then if to (f,Cs,C3) is associated
the matriz (fll f12> , and to (g,C1,C2) 1s associated g 912 , then to

far fa2 C3,Cs 921 922 / ¢, o,
(fog,C1,C3) ts associated the matriz

(f110911) [fa2 0g21)721°91 63 (fa1 0911, faz0g21) (fr10912) [fi2 0g22]721°912 03 (f21 0912, f220922)
(fa10g911)(f220921) (fa10912)(f22 0922) oy C

where the ©¥° appearing for ©3 € N3, ys € Hs s actually (z3%),.
Proof.

(fog)i1 =tzofogoi =tzofo(izots)(s2052)0g02
=t o(foigotyogoi)(foszojzogoi)
=(tzofoizotaogoi) [tzofosgojs ogoi]j3°f°i2°t2°g°i o3(jao foizotyogoi, jaofosz 02 0go1)
=(f110011) [f1209211721°91 03(f21 0911, f220921)
(fog)a1 =jzofogoi = jaofo(izota)(szojz)ogor
=(jaofoizoty ogoi)(jg,ofoszojzogoi)
=(f210911)(f22 °921)
(fog)1a —tzofogos =tzofo(ia oty)(s2052)0g0s
=tz o(foigotyogos)(foszojzogos)
=(tzofoigotyogos)[tzofoszojs ogos]j3°f°i2°t2°g°s o3(jaofoizotaogos, jsofosyojaogos)
=(f110012) [f120922]721°912 03(fa1 0912, f220922)
(fog)az =jzofogos = jzofo(izota)(sz0jz)ogos
=(jzofoigotzogos)(jaofoszoje 0gos)
=(fa10912)(f22 °922)

These formulas clearly reduce to the classical formulas in case the G; are abelian groups

which are direct sums N; ® H;. If we now let G; = G, N; = N, H; = H for 1 <1 <4,

!
choose bases €1 = Cy = <t. (g)) , Oy =C5 = (t(g)) , and the maps
i(9) /e, i(9) ) ¢,

cle,alglea,
then we have

for 2

!
to the coordinates C' = (t, (g)) written in terms of the matriz (fll f12> of f with

respect to the coordinates C' = (t(g)) 18
C

! !
Corollary 3.1. For the data described above, the matriz (fll f12> of f with respect
cl,C'

(36) (f21()‘of21)_1 (f11 O)\) [flz]fmo}\ O'(fgl OA,fz2)(>\_1O(f21OA)f22)) .
fa1 (fo1 o) f2z cr,c!
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Proof.

In order to illustrate the techniques of calculation, we give two proofs. First, from theorem

(fh f:(z) :(1N )\_1) (fll fl2) <1N A)
fél féZ cr,c’ € ]-H c,c f21 f22 c,C € 1H C”,C’,

-1
where (15 >i ) is the matrix of 1g with respect to C,C’. To see this, write t' =
H c,c'

#(Aoj)~!. Then ) o
(). () - () = ().,

First compute the product

(1N Aﬁl) (fu flz) _(f11(>\_10f21) f12(>\—10f22))
e lm )oo for o Jfo2 c,c‘ far f22 C’C,7

Iy A

and multiply this on the right by ( e 1 ) , obtaining
H /oo

(fll(k_lole)ﬂ'(le,e) [fll(A_l szl)OA] ([f12(>\"1 szz)] fmo}\), o'(far0, fzz))
Ja1 (f21 0>\)f22 foliel

I I .
We must now express (z?)' in terms of ¥ and ¢' in terms of o, via A. Thus we have

([flz(A'10f21)} fno}\)l = (Ao fa10A) [fiz(A " 0 fa1)] Tt (Ao fa10))

and
' (F210M, faz) = (Mo far 0X) (Ao f22) o (for oA, f22)(A o(fa10A) faz) -
Since f;, is the only term involving (z¥)", o', we only have to compute
fis =(f110A) (AT o faroA) (Ao fa10]) [f12)7% [)‘_lofm]fzm (Ao fa10))-
(Ao f210X) [Xo faz] ™ o(far o), faz)(A ™ 0 (fa10X) fa2)
=(f110}) [flz]fm)\ o(fa10X, f22)(A " o(far0N) foz) -

For the second proof, we may calculate the f;; directly as follows:
! =t'ofoi =1(Xoj) tofoi

—(tofoi)(Aojofoi) ™t = far(Aofar) ™"

for =jofoi=fu

fi, =t'ofos = t(Aoj) tofo(ioA)s
:(tofo(io)\)s)()\ojofo(ioA)s)_l
—[to(foio))(fos)] [No(jofoioN)(jofos)|
—(tofoioN)[to fos)* T} o(jofoiod,jofos) (Ao(fa10M) fa2) "
=(f1100) [f12] 0(fa1 0], faz) (Ao (far oN)faz)

fay =jofos’ =jofo(iod)s
:(jofoiok)(jofos) = (f210A) fa2
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If we are used to dealing with the special case of vector spaces, we might be inclined to
1y
)\——1
not satisfy the right functional equation. Equation (3.3) reduces to

interpret 16 ) as an automorphism of G. But this will not work, because A7 does
H

(3.7) Fiz2(y1y2) = 0~ (w1, 92) fr2(y1) [f1z(y2)]f22(y1) o(y1,92)

and the equation satisfied by A~! is

(3-8) A*l(ylyz) = ‘7_1(311,?!2) P‘_l(yﬁ]yl >\~1(y1)01(y1’y2) .

It seems as if the choosing of a different section s’ should somehow generate an automor-
phism of G, but this does not seem to be the case. On the other hand, if A\: H — N is a
function satisfying

Ay1,y2) = 0y, y2)AMy1) M2)]"* o(y1,92)

which we might call a self-equivalence of o, then the matrix (1;\\7 16H) will give an au-
c,c
1n e
A1 H
o' defining the same extension form a group isomorphic to the group of self-equivalences
of o, and this is effected by a A joining o to o'. Thus all the X’s form a groupoid under
pointwise product, acting on the set of 2-cocycles associated to the extension. '

tomorphism of G with inverse ( > . The set of self equivalences of any 2-cocycle
c,c

4. Tur ENDOMORPHISM MONOID

Now we come to a curious phenomenon. As is well known, the inner automorphisms of
a group form a normal subgroup of the group of all its automorphisms. Since N is normal,
and is fixed setwise by all inner automorphisms of @, we see that the matrices of each of
the inner automorphisms are all upper triangular, i.e.,

fir fi2
e fa
with respect to any basis, with the multiplication

(fu f12> <g11 f12) _ (f110911 (f110912)(f120922)> _

€ f22 € g22 € fzz 0g22

Now in the case of G a direct sum of vector spaces, there are no inner automorphisms,
so the upper triangular matrices do not represent inner automorphisms. Of course, since
we have not mentioned topology, we see that the linear maps of finite-dimensional vector
spaces over IR are just the continuous homomorphisms of the associated topological group.

Note also
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fll f12
f21 .f22

an automorphism iff there is an endomorphism g with matriz (gll 912) satisfying

Theorem 3.5. A matriz ( ) associated to an endomorphism f of G represents

g21  g22
(f11 f12> (911 912> _ <1N € )
fa1 fa2 g21 9§22 e lg

Proof.

Clear.
Tn equational terms this says that we must find four functions g;; satisfying (3.1)——(3.4),
which, in addition satisfy the following set of equations

(f11 0911) [flz 0921]f210912 U(le 04g11, f22 0921) =1n

fa10912

(3.10)

( ) (fia 0912) [f12 0g22] =€
(3-12) (f21 0911)(f22 0921) =€
(3.13) (f210912)(f220922) =1 .

It is not likely that the g;; can be solved for explicitly in terms of the f;; in general.
In particular cases it s possible to solve for them, and the matrix representation is quite a
convenient form in which to multiply automorphisms. In the case of the direct sum of abelian
groups, it is possible to use the newly-created theory of noncommutative determinants in

[GR] to solve them.

4. CONCLUSION

It is possible to extend all the results of this paper both to locally compact polish groups
and to lie and associative algebras. In [D1], the endomorphism monoid of the real Heisenberg
group is determined. Its automorphism group was determined in [W] without using the
matrices associated to their elements.

Theoretically, if there is a normal tower N1 << N3 <l -++ <I Ny < G of subgroups of a group
G, it is possible to associate (k+1)x (k1) matrices of functions with an endomorphism of G,
in the manner done here, using iterated extensions, cocycles, projections, and sections. In the
two by two case, we obtain a generalization of the theory of noncommutative determinants
of [GR], which is the subject of a forthcoming paper. It will also be the object of future
research to extend the techniques introduced here and apply them to the case of local fields
and adeles.

After this paper had been written, I became aware of the paper of Hsu [H], in which
similar techniques are introduced for the case of a semidirect product of groups. In that
paper, the automorphism group of a holomorph of a perfect group is computed.
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