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A new method is proposed for calculating the measurable, continuous, or dif-
ferentiable cohomology of a group extension, which involves deriving functional
equations for the restrictions of cocycles to certain well-behaved subsets of its
domain and showing that the cocycle can be written as a certain sum of such
restrictions. This technique is capable of determining how the quotients of the filtra-
tion given by the spectral sequence fit together, and is applied to the case of the
Heisenberg group H, to yield extremely explicit cocycle representatives, culmi-
nating in a stability theorem regarding multilinearizability of cocycles. One of the
main tools for doing this is the derivation of a formula for trivializing the product
of two alternating multilinear functions, one of which is the nondegenerate bilinear
one defining the Heisenberg group, which has interesting connections with Hodge
theory. € 1994 Academic Press, Inc.

I. INTRODUCTION

This is the first in a series of three projected papers. The second will treat
Lie algebras and the third associative algebras.

Whenever the subject of cohomology of group extensions arises, it
almost automatically invokes the concept of a spectral sequence in
response, and the two are uniformly conceived of as inseparable. This was
not always so. Just as FEilenberg and Maclane were entering into a
longlasting and fruitful collaboration on a series of papers, and before even
the first of this series saw print, an algorithmically inclined Ph.D. student
of MacLane’s at Harvard, Roger Lyndon, was working on a dissertation
which he completed on May 18, 1946 [Ln!].

The subject of Lyndon’s thesis was the problem of computing the
cohomology groups H"(G, A), when G was given as an extension

> N— s Ge==H-1.

Lyndon was only able to completely solve this problem for G the direct

product of the finitely generated abelian groups H and N operating trivially

on the coefficient group Z of integers. This part of the thesis was published
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in [Ln2], but the most important part of his thesis was not, and further-
more, all indications are that it was never assimilated by anyone in the
mathematical community. It fact, it evidences at least a misunderstanding
of the purpose and thrust of his thesis to append his name to the
Hochschild-Serre spectral sequence, even though a particular application
of the much stronger methods of Lyndon yields the main result of spectral
sequences.

After Leray in [Lel, Le2] published his theory of spectral sequences for
approximating the computation of the cohomology of a fiber space in
terms of the cohomology of the base and fiber, Hochschild and Serre saw
that it could similarly be applied to computing an approximation to the
cohomology of a group extension and published their results in [HS].
Now, although the titles of [Lnl] and [HS] are almost identical, and
although some of the results are quite close, the two approaches are radi-
cally different. The difference in the two approaches is this: the spectral
sequence has as its aim the computation of a set of successive quotient
groups associated to a filtration of H"(G, A), which turn out to be sub-
quotients of the terms EJ of the spectral sequence, and is not capable of
approaching the problem of how these quotients fit together to form
H"(G, A). On the other hand, Lyndon had begun to develop an apparatus
for completely computing this group. There were a few more loose ends to
tie up, and for H*(G, 4) this was done by Mackey in [Mal]. He used an
approach involving the solution of a set of functional equations, which
originally stimulated my interest in the problem as a graduate student.
At that time, I extended Mackey’s approach to H?*(G, A) for general
extensions and then to H3(G, 4), but never published the results because
it was not clear to me that the approach had much interest or merit, due
to the ostensible intransigency of the functional equations involved.

Returning to this problem a few years ago, I found that I was able to
solve Mackey'’s functional equations and was then able to untangle the pro-
cedure for the higher groups. Immediately after doing this, I read Lyndon’s
original unpublished thesis [Lnl], a copy of which was kindly sent to me
by MacLane, and then I discovered that my approach had been partially
anticipated by Lyndon some 46 years previously. There is a significant dif-
ference in our approaches and I feel that mine is easier to understand. Also,
1 supply a previously missing link in order to carry through Lyndon’s
approach to its logical conclusion: the explicit construction of a set of func-
tional equations for low dimensions, the proof of the effective calculability
of such a construction for any dimension, and finally, the solving of this set
of equations for the cohomology groups H™(H,, R) of the Heisenberg
groups H,.

Kleppner in [Kl] showed that, for almost all locally compact abelian
groups, every measurable 2-cocycle with values in T, the circle group, was
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cohomologous to an alternating bilinear function. In [Dul] I showed that,
for all locally compact abelian groups, every measurable n-cocycle with
values in the reals R was cohomologous to an alternating multilinear func-
tion. Four years ago, Moskowitz in [ Mos ] claimed to have shown that for
a certain class of nonabelian groups which included the (2n+ 1)-dimen-
sional Heisenberg group H, every continuous 2-cocycle on H, with values
in R or T was cohomologous to an alternating bilinear function. There was
an error in this paper, so I set about discovering just what the true story
was, [Du2] being the result of this.

This paper tells an interesting story with regard to the cohomology of
the Heisenberg group H,,. For fixed m there is what I call the cohomologi-
cal multilinearizability stability theorem, which says that H™(H,, R), the
measurable cohomology, is computable with alternating multilinear func-
tions as soon as n>m and otherwise is computable with polynomial
cocycles which are sums of terms of degree two in one variable and linear
in all the others, and these suffice. I should also be able to eventually
describe explicitly what sort of polynomial cocycles suffice to compute the
cohomology for a general n step nilpotent group, either continuous or
discrete.

The computations in this paper may be conceived of as effecting the con-
struction of a particularly apposite and efficient resolution for computing
the cohomology of a group extension.

II. THE LYNDON RESOLUTION

We have an extension of groups

1+ N— Ge==H-1,

where s is a cross section for j and a: H x H — N is the 2-cocycle associated
to s. We also suppose that H operates on N via s as f(y)s)=
s(y) x(s(y)) =00

We also have an action of ¢: G — Aut(A4) of G on the abelian group A.
Following [McL], we define nonhomogeneous n-cochains C"(G, 4),
coboundary operators 8,: C"— C"*!, cocycles Z", coboundaries B” and
cohomology groups H"=Z"/B". We also assume that our cochains are
normalized, ie., o(g,, .., g,)=0if g,=¢ for some 1 <ign.

A starting point for defining the spectral sequences associated to a group
extension is to first define the double complex C“/(G, 4) as

CH(G, A)={f H' x N’ - 4}
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The most important theorem in Lyndon’s thesis is that H”(G, A) may be
computed using cocycles which are determined by their values on the sets
(s(H)) x N/, i+ j=n. The exact nature of this dependence can be proved
to be computable and is computed in this paper for n=4.

THEOREM 2.1. If ae€ C"(G, A) then o is cohomologous to a cochain &
which vanishes on all sets of the form X, x --- x X, where each X, is either
s(HYor Nand X, x --- x X, is not of the form s(H)' x N’.

Proof. If1e{1,2}" leto,=co(¢;x -~ x8,), where &;=1i or s according
as i(j)=1 or 2. Further, let 1 have the form stated in the theorem. Then
define

%(xxs(}’:), sy anls(yn—l))'___a(gl’ At gn)s

where g;=x, or s(yqj) for some 1< p;, g;,<n, and such that if i < j then
P;<gq;, and finally so that g, =either x,_, or s(y,_,), and also that every
1 <j<n—1 is represented.

LEMMA 2.1. There is exactly one l<k<n so that g.=x, and
gk+l=s(qu”)andpk=qk+l

Proof. Equivalent to having the form stated above is that some 1 must
be followed by a 2. The pigeonhole principle gives the remainder of the
lemma, if we think of how we define y;,. Consider having to take n steps
starting from a sequence of stepping stones alternately labelled 1 and 2,
starting with 1, and suppose that there are 2(n— 1) stepping stones
altogether. A further restriction is given by the sequence : which is of length
n. It is clear that we must step on precisely one pair of a 1 followed by a
2, since we may not skip entirely any pair 1, 2.

LEMMA 2.2. Only one term in (6y,)(g, ..., &,) is nonzero when we write
out each term in terms of @, and this one nonzero term is (—1)* 6,, where
k is as in Lemma 2.1.

Proof. 1t is clear that all terms other than that referred to have the
requisite x; or s(y,), and hence will have an e in the place of ¢ in terms of
which it is expressed.

LEMMA 2.3. If we order the 1 lexically, where 1 <2, then by defining, in
succession,

o'=0+ (=1 8(y,),
6" =g + ( -1 )k.2 5(ylz), vy 0'(2"_"‘ 1)y _ 0-(2"_n—2) + (__ 1 )k,zn_,,_, 5(;,[2’17"_1)’
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we have 3(y,)(&1, .., 8,)=0 if (&1, .., &) is a sequence associated to a 1,
where j<i, and the association is that determined in the beginning of the
proof of Theorem 2.1.

Proof. Every term in 6(y, )(g,, .., &,) will have an e in it when
expressed in terms of o if the (g, .., g,) is associated to a 1, with j<i. The
theorem is proved by chaining together the string of cohomologies to
obtain ¢ ~"— 1) which satisfies the conditions in the theorem for 4.

THEOREM 2.2. o€ C" is cohomologous to a G for which &(g, ..., g,)=0
whenever the sequence (g,, .., g,) ends in a sequence (g, ..., &,) where
k<n—2 and g;=either an x; or an s(y,) for k < j<n, and there is at least
one x; in this sequence which is followed by an s(y,).

Proof. If 1€{1,2,x} write 6,=0¢°(g;x --- x¢,), where ¢,=1i, s, 1,
according to whether 1(j)=1, 2, x. Then order the : lexically, assuming
1 <2 < x. Define

yx(xls(yl)’ ey Xy |S(ynr l)) = U(gl’ ey gn)s

where g;= x,, s(y;) or x;s(y;) according to whether 1(j)=1, 2, or x. We are
concerned here with those 1 which start off with a string of x’s, and are then
followed by a string of 1’s and 2’s in which at least one 1 is followed by a
2. Reasoning similarly to the proofs of lemmas 2.1, 2.2, and 2.3, we arrive
at a ¢ satisfying the theorem.

DEfFINITION. A cochain o€ C” is called Lyndon if it satisfies the condi-
tions of Theorem 2.2 for a.

THEOREM 2.3. If 6€C" is a Lyndon cocycle then it can be written as a
sum of n-cocycles t,, where 1€ {1,2}" and 1 consists of a string of 2’s
Jollowed by a string of 1’s for some cochains 1.

Proof. The proof is preceded by several lemmas.

We introduce the following string rewriting system: for 1€ {1, 2, x}", if
there is no x in 1, we do not rewrite it; otherwise replace the rightmost x
by 1|2 and use the n-cocycle identity to rewrite 1 as follows:

k—2
1= 3 (=1 (a0 gy %y 1,2, 0 s ey @)
j=1

A0y s Oy b 200 1y B g2y e Oyy)
n
i+k+1
+ Y (-1y (s s O 1y 1,2, By gy ey 00 gy ey Xy
j=k+2

Next replace o;a;, 1, % 1, 20, according to the rule: x1, 1x, 2x, x2,
22, 12, 21 all go to x and 11 goes to 1. Finally, because of Theorem 2.2,
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we assume that the part of the string : past the rightmost x consists of a
string of the form 2°1%, and if any term in the sum above has its tail end
after its rightmost x not of the form 2°1%, we simply delete the term. The
following properties of this rewrite system are clear.

(1) In any rewrite 1t -3 f, no term S has more x’s than 1.

(2) In any rewrite 1 — 3. B, if § has the same number of x’s as 1, then
if an x in 1 moves to the left past a 2, the 2 does not change. If an x moves
to the right past a string 2¢1, the string 2“1 becomes 12°.

(3) No x of 1 can move to the left past a 1.
LemMMa 24. Using the rewrite rules as stated above, every 1 can be
rewritten as a sum of terms with no x’s.

Proof. Because of the way that the x’s move past strings involving 2’s,
no cycling is possible, and so the rewrite system eventually eliminates all
the x’s by rightmost derivation.

Returning to the proof of the theorem, we have only to apply our
rewrite system to the string (x, .., x), which represents the n-cocycle
O-(xls(yl)ﬁ it xns(yn))'

THEOREM 2.4. If an n-cocycle o is determined, then it vanishes on any set
of the form G*x X'x G™, where the last X is N, 123, and in X'~!, some
X =N is followed by an X = s(H).

Proof. This follows by a simple application of the rewrite rules.

As an example of the reduction procedure described above, we show how
this is actually carried out for n=35 by reducing (x, x, x, x, x).

(% x,x,1]2)=(x, x, x, 0, 1)+ (x, x, x, x, 2)

(%, x, 112, 1})>(x,x,x,1, x)+ (x, x, x,2, 1)

(x, x, x’ 1 I 2’2)——-)(x’ x’ x’ l)x)+(x9x’ x’ 2’ 2)

(o, x,x, 1,1[2)>(x,x,x,1, 1)
(X, 12,2, 1) (x,x,2,2,)+(x,x,1,x,1)-(x, x,1,2, x)
(x, X, 1 l 2a 2’ Z)ﬂ(xs X, 2a 23 2)+ (x’ X, 1’ X, 2)—(xa X, 15 2’ x)

(x,x,1]2,,1)-(x,x,2,1,1)+(x,x,1,x,1)
(x,112,2,2,1)=(x,2,2,2,1)+(x,1,x,2,1)—(x,1,2, x, 1)
(x,x, 1,12, 1)>(x,x,1,1,x)
(x,x,1,2,1)12)>(x,x,1,x,1)
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(,112,2,2,2)>(x,2,2,2,2)+(x, 1, x,2,2)
(x, x, 1,112,2)=(x,x, 1,1, x)
(xx,1,2,112)>(x,x,1,x,2)

(112,21, 1)> (62,21, )+(x, 1,x, 1,1)—(x, 1,2,x 1)
(112,222, 1)>(2,2,2,2, )+ (1,x, 2,2, 1)— (1,2, x,2, 1)
(x,1,1]12,2,1)>(x,1,1,x1)
(x, 1,212, 1)=(x,1,x21)
(x,x L1, 1]2)>(x,x1,1,1)
(112,2,2,2,2)-(2,2,2,2,2)+(1,x2,2,2)—(1,2,x,2,2)
(x,1,1]2,2,2)>(x, 1,1, x2)

(112,2,2,1,)-(2,2,2,,DH)+(1,x,2,1,1)—(1,2,x,1, 1)
(x, L1[2,,1)->(x,1,1,x1)

(,112,2,2,1)~(1,1,x,2, 1)
(1,2,112,2,1)->(1,x,2,2, 1)

(x,112,,,1)=(x,2,1,, )+ (x,1,x,1,1)
(1,112,2,2,2)-(1,1,x,2,2)
(1,2,112,2,2)-(1,x,2,2,2)

(x, ,1,1]2,2)>(x, 1,1, 1,x)

(1,112,2,1,1)->(1,1,x,1, 1)
(1,2,112,,1)=>(1,x,2,1,1)
(x, ,1,1]12,1)=>(x,1,1,1,x)
(1,1,112,2,1)->»(1,1,1,x, 1)
(112,2,,,1)-(2,2,,, H)+(L,x,1,1,1)—(1,2,x,1,1)
(1,1,112,2,2)—-(1,1,1, x,2)
(x,1,1,1,1)2)=(x,1,1,1,1)

(L,1,112,1,1)~>(1,1,1,x,1)
(LLL1[2,1)—(1,1,1,1,x)
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(L1211, 1)=(1,1,1]21,1)
(1,1,1,1]2,2)-(1,1,1,1, x)
(1 |2’ 1$ 1’ 1,1)"’(1,x, ]’ 191)—(152’x9 1)1)

(1, 19 1’ 171 |2)—’(], 1’ 17 1,1)
(L,112,1,1,1)-(,1,x,1,1)

THEOREM 2.5. Each of the t,’s in Theorem 2.3 appears in at least two
functional equations except T, and T a.

Proof. Suppose 1 = 2°1°, where neither a nor b are zero. Then apply the
reduction process to both sides of each of the following two equations:

(2,252,212, ., 1)=(2,.,2,1]|2,1,.., 1)
(2,2,.,2,1)1,..,)=Y B,

where there are (a— 1) 2’s on the left side of the first equation before 2 | 2
and b I's after it, and the same on the right-hand side with respect to 1 | 2.
In the second equation, there are a 2’s to the left of 1|1, and (a—1) I's
to its right, and the right-hand side is merely the expansion of the left
according to the cocycle identity.

THEOREM 2.6. .. is just an n-cocycle by restriction, and o ,. satisfies a
Sfunctional equation obtained by reducing both sides of (2,..,2,212)=Y 8,,
where the right-hand side is obtained by applying the cocycle identity.

Proof. Calculational.
THEOREM 2.7. If we have a collection of t,’s satisfying the functional
equations according to Theorems 2.4 and 2.5, then if we add them according

to Theorem 2.3, we obtain an n-cocycle on G, and every n-cocycle on G is
obtained in this way.

Proof. All the above rewrite rules are reversible.
DermNiTION.  If o satisfies the conclusions of Theorem 2.3, then o is
called determined.

THEOREM 2.8. If 0 and do are both Lyndon, then o is determined.

Proof. Instead of the usual initial application of the rewrite rule using
the cocyle identity, we use a modified version where we add in a string
corresponding to do, which, being a Lyndon cocycle, is determined.
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THEOREM 2.9. If a determined n-cocycle o is a coboundary, it is the
coboundary of a determined (n — 1)-cochain.

Proof. Suppose g =0b. Then b is cohomologous to a Lyndon (n—1)-
cochain b. But then we may apply the previous theorem to 5 and db =g,
and obtain that 4 is a determined (n — 1)-cochain.

Thus the problem of computing H"(G, A) has been significantly reduced
to computing with Lyndon cochains, and we make the

DerFNITION.  The resolution of A using determined cochains is called the
Lyndon resolution of A corresponding to the given group extension.

We thus see that we may compute H"(G, A) with cochains which are
determined by their restrictions to sets of the form (s(H)) x N”, which does
not follow from the theory of spectral sequences. Furthermore, these
restrictions satisfy certain functional equations which may be solved in
simple cases and we build up a knowledge of how to solve these equations
in successively more complicated situations. Let us now investigate how
these functional equations fashion themselves in the lowest dimensions.

II. FuncTiONAL EQUATIONS

If we want to describe H'(G, A), utilizing the fact that G is an extension
as earlier, it is easy enough to see that l-cocycles, ie., crossed
homomorphisms from G to A4, are determined, since o(xs(y))=
x(a(s(¥)))+a(x), 6, =021 is just a crossed homomorphism from N to A,
and o, satisfies the functional equation

a(yy, y2)(0x(y; y2))+o(a(yy, ¥2)) = 02(32)" 4+ 62(0)).

If we assume that N operates trivially on A, this just says that a,(«(y,, ¥,))
is a trivial 2-cocycle on H and is the coboundary of the 1-cochain o,.
From spectral sequence theory, we have an exact sequence 1 - E}%—
HY G, A)>EY"' > EZ2° and if we write E}° as H'(H, A") we see the
reason for assuming trivial action of N on 4. Also, writing ES' as
H'(N, A)", we see that the only members of H'(N, 4)¥ in which we are
interested are those which yield trivial 2-cocycles in E>°= H*(H, A"). A
function o, as above actually gives us a cross section for the map
HY(G, A)— (H'(N, A)"),, where the right-hand side is the image of
H'Y(G, A)—> H'(N, A)".

Moving along to H*(G, A), we remark that first Mackey in [Mal] and
then Tahara in [Ta] had each derived similar sets of functional equations
for the case of a semidirect product. Mackey solved these equations for the
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case N=H =R and Tahara for H=2,,, N=1Z,, two finite cyclic groups.
In [Du2] T derived the functional equations for H? for the case of a
general group extension, solving them in the case of the Heisenberg group
H,. In [Du3] I derived the equations for H* and again solved them in the
case of the Heisenberg groups H,,.

THEOREM 3.1. The functional equations for H* are as listed below. We
assume for convenience that G operates trivially on A. We write
J=s(y) x(s(y)) " and ¥ F = (xP)* Also, i-j=a(y;, y;), (11), ..., (ni1) =
o(x S(¥1); s Xp5(y)), and (), =a,( ).

(1) (2,3,4,5),0—(12,3,4,5),6+(1,23,4,5),4— (1,2, 34, 5),s
+(1,2,3,45)4—(1,2,3,4)4=0
(2a) (2,1,2,3),p—(12, 1,2, 3),5+ (1, 13,22, 3%),,5
+(1,2,2,3) 22— (1, 2, 12, 3) 22
+(1,2,1,23) 0= (1,2, 1, 2) 22
=(i’ 2’ lii’ 212’ 311)14_(11-5’ i .2’ 2]2, 312)14
+(1022121.3,31) .- (112,212,372 1.2),,
(2b) (1,2,3,4),5—(1,12,3,4),5+ (1, 1,23,4),,5
—(1,1,2,34),2 + (1, 1,2, 3),5
=(15,20, 314" 4—(1,2,3,4)4
(3a) (2,3, 1,2)0—(12,3,1, )02+ (1,23, 1, 2) 22— (1, 2, 1, 2) 202
—[(1,2,3, 1), —(1,2,3,12)55,+ (1,2, 3, 1),3,]
+(1,123,223 3.3),0— (1,123, 2.3, 2%,
+(1,2-3,13,25),,;
=((2-3),1-23,1'2,212%) ,—((2-3), 11°3,1.23,21%),
+(1123,(2-3)1,1.23,2™3),,
H(1123 2023 1.3 12.3) - (11720, 1.2,2723,12.3),
+(li'i'3,i~ 133
—(-3, 2.3
+(1-2,
(3b) (1,2,2,3)p—(1,2,12, 322+ (1, 2, 1, 23) 522 — (1, 2, 1, 2) 22
—[(2,1,2,3),0— (12, 1,2, 3),5+ (1, 1%, 2%, 3%),5]
=(i _2’ lii’ 212, 3?2)14_(11-2’ Tj, 212, 3i2)1‘
+(li.i’ 2i-§’ j ‘j’ 311)14_“142, 21-5, 31-2’ I -2)14

2. 3’ 1123, 2123)14
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(4a) [(2,3,3,1), —(12,3,4 1), + (1, 23,3, 1)y,
—(1,2,34, 1), +(1-2,3,34,1%),,]
+[0-2,3,1°%3.8) .- (1,2,3-4, 13%),,,5]
+ (1, 1734 23,33 .4),,— (1,23, 129,33 .9),,,

+(1,2.3,23.3, 123"‘)21:
3.3.4

—[(2-3)% 1! ,
—(1i234 3.3 123, 123.4),4]
+(11234(3.4),(2-3
—((3- 312 11234 3.
+((3- 81231

~ (-T2 2-34),

',i 234),4
—((2-3)L 1124, (23.8)1,1-238),]
—[((2-3)1, 1734 1.23,123.3),,

—(11234 3.3 1.23,123-4),4]
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(4b)y (1,2,3,2);,—(1,2,3,12)»,+ (1,2, 3, 1),

607,106/1-8

—[2,3,1,2)22— (12,3, 1, 2) 22
+(1,23,1,2) 22— (1,2, 13, 2%) 2]
— [, 12°%,223,2.3),5— (1, 123,23, 2%),5
+(1,2-3,1%3,28), 1]
=[(1123 2123 (3.3)1 1.23),,
__(11 2.3 (2 3)1 21 23 1 23)
+(11232.3)11-23,2"),,—(2-3)}, 1
+((2-3),178 203 1.33) .+ (2. §)i,I.23
[(11 2.3 21 2.3 I'Z 12_3)14_(11.13’1
+(11 23 1 2 12 3 2‘23)14—(1 , 1 "3, 12.3,213),
.t

3, 21,3)24—(12, 3, 4,5)24+(i,23, 4,5)
~(1,2,34,5),0+(1,2,3,85)— (1-2,3, 4) %]
+0(1,2,3,4-5)]
+[(1,2,(4,5),3-45)22—(1,2,3-4,34 - 5)]
+[(,(3-3)% (33.5)%,2.343),,,
—(1,(3-5)%3,(3-35) 3.335),,
+(1,(4-5)%°,2-3,23-45),,—(1,2-3,(4-5)%,23.45),,5
+(1,2-3,23-4,234.5),5—(1,(3-4)%,2-34,334 . 5),5]

=(1-2,12-3,123-4.1234.5),.
—((2-3)',1-23,123.4,1234.5),4
—((3-3)7%,(2-33)",1.234, 1233 -5),.
+((2-3)1,1-23,(4.3)'%,123.43),4
—((3-3)1,(d-3)15,1.23,123.43),.
+(1-2,(3-3)23,12.3,123.45),4
—((4-5)1°23,1.2,12.3,123.45),4
+(1-2,(3-4)12,(3.45)"2,12.343) .
—(1-3,(3-3)73(3.45)"%, 12.383)
+((3-4)"2(34.5)121.2,12.343),4
—((3-&)“’,1-2, (321 )*2 . 3&5)14

3

—((4.3)1 23 (3 z15)l 21 '2, 12-345),s

107

1.23 i 23 2123)4
1!

3 3)1,
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Proof. (1) is clear by restriction. For (2.a), reduce both sides of

o(s(y1) 1 s(ya), X1, Xz, x3) —a(ayy, y2) | s(y1 ¥2)h X015 X2, X3);

for (2.b), reduce o(s(y), x;, x5, X; | x,); for (3.a), reduce both sides of

a(s(y), s(¥3) | s(y3) x4y, X3} =0(s(y ), 2(V2, ¥3) | s(y2 y3), X4, X3);

for (3.b), reduce a(s(y,), s(¥.), x|, X5 | x3); for (4.a), reduce both sides of

a(s(y,), s(y2) | s(y3) s(ya), x}=0(s(y(), a(ya, ¥3) | 5(y2 1), 5(ya), X);

for (4.b), reduce o(s(y), s(¥,), s(¥1), X, | x,); for (5), reduce both sides of

o(s(y1), s(¥2) s(¥3), s(¥a) | 5(¥5))
=0(s(y1), $(2) s(¥3)s A yas> ¥s) | 5(ya ys))-

THEOREM 3.2. Every determined cocycle o in Z*(G, A) can be written as
a sum

o(11, 22, 33, 4d)
=[(1,2,3, 41+ [(1,2,3,4),, ]+ [(1,2,3,4%)2,]
+[(1,23%42°33.3 23 .4),5— (1,23%4* 3, (3-4)%, 2-34),»
+(1,2322.3,4%),,-(1,23%, 43,2 . 3),5+ (1,2, 3%, 42 ),5]
+(1,21,302,412%) 4 (121,31°2,4123 1.3y,
+(121,35°2,7.2,412%) (4 (121,1-2,312,4123),,

— (121,312,472 (2.3)") 0+ (1, 27312, (2-3)1, 472

+(1,2137:241°23 (3.3)1, (23 4)')
412 (2-39))
2,12

—(1, 21312412
3)e— (121312 4123 (5.3)1 1.23),

L3
+(127312 4123, 1.3
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+(12'3021.2,12-3,412) . — (121372 (2.3)1,1.23, 4133y,
— (121312 1.2, 4723 12.3) 4
+(12737241-231.2/12.3 Jis
— (1273724122 (2.3)1,1.23,123.4)
+(12'3124123 (3.4)12 1.2, 12.34)14
— (1273724123 1.2 (3-4)1°2,12.34),.
+(12131:241°23 (3.3)1 (23.4)! 1.234) 4
— (1213124123 (3.4)12 (2.34)", 1

—
.hl

,123.

t\.)

Proof. Reduce a(x,5(y1), x25(¥5), X35(p3), X4 | 5(4)).

THEOREM 3.3. If we have functions 6,11, 011> G311 G22215 G2222
satisfying the functional equations in Theorem 3.1 and we define o as in
Theorem 3.2, then g is a 4-cocycle on G.

Proof. The cocycle equation for ¢ thus defined is equivalent to the
satisfaction of the functional equations, as follows from a straightforward
calculation.

It is not immediate how one might set about solving these equations in
general. We concentrate our attentions on solving them for the Heisenberg
group H,, for which group the equations simplify considerably, and in fact
sufficiently so that it is possible to obtain extremely explicit formulas for
the cocycles.

IV. CoHoMOLOGY OF H,,

If we now consider cohomology defined using Borel cochains, as in
[Dul, Mo, Wg1, we see that all our previous algorithms and constructions
work when we assume measurable, continuous, differentiable, analytic, or
even polynomial cochains. Since H, is simply connected and is also con-
tinuously solvable of finite length, it follows from [Dul] or [Wg] that its
Borel cohomology can be computed using continuous, or by [ Mst] even,
analytic cochains.

Matters simplify considerably in the case of a central extension
l1->N->G—- H-1, where H"(N, 4)=0 for some n. We also assume until
further notice that G operates trivially on A.
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LemMma 4.1. If H"(N,A)=0, then in calculating H"(G, A), if
g€ Z"(G, A), we may assume that ¢ | y»=0.

Proof. We have to show that if ¢|y- is a coboundary, then ¢ is
cohomologous to & with 6 |,»=0. Suppose that ¢ly.=dc with
ce Z"(N, A). Define

C(xyS(¥1)s s X1 S(Vp_ 1)) =Xy, s X, ()
Then ¢ = ¢ — 8¢ works.

A similar argument yields

LemMa 4.2, If HX(N, A)=0, then in calculating H"(G, A) for n>k, we
may assume that o | yp-x g =0.

Note that all this is compatible with the property of being a determined
cocycle, so that we obtain a corresponding simplification in the appropriate
functional equations and expression of ¢ in terms of its restrictions. Since
for H, its center R has H"(R, R)=0 for n > 2, we obtain

THEOREM 4.1. If 6€ Z™(H,, R) and m<n, then we may assume that
Opeym-+=0 for m—k =2.

THEOREM 4.2. If ceZ™(H,,R) and 2<m<n, then the functional
equations for o |m-1, and 6 |, are

m—1

Gom=11 (V25 ey V> X) + Z (= 1Y 0(Y1s s Vi Vit 1s oo Yous X)

i=1
+(=1)"0m1;(¥ys s Y1, %) =0
Gom 11 (V15 s Yo 15 X2) = Oom11 (V15 s Yo 15 X1 X3)

+62M—11(y13--" ym~l’x1)=0

02'"(y2’ L) ym+l)+ Z (_l)m Uz'"(J’l, eeey yiyi+1""’ ym+l)

i=1
+ (=) o (Pis s Vi)
=U2"‘"l(yls B ym—laa(ym9 ym+1))

Proof. A straightforward calculation, using the assumption that o is a
Lyndon cocycle for which oyym-«=0for m—k >2.

Because, by [Dul], H™(R*", R) may be calculated using multilinear
cocycles, we have
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LEMMA 43. o6 is cohomologous to & with 6,m-1, multilinear on
S(R™)™ x R.

Proof. The proof is similar to that of Lemma 4.2.

We now see¢ that, in order to construct an m-cocycle on H,, we need to
know how to trivialize the multilinear function Gum-1;(¥1,s s Vou— 15
Y m» Ym+1)) on (R?)™ 1 The theory of trivializing general trilinear func-
tions is treated in [Du2], and in [Du3] the particular quadrilinear func-
tion in question is trivialized, as part of the calculation of H>(H,, R).

LEMMA 4.4. We mau assume that our (m+ )-multilinear function in
question is of the form B(yi, ., Yo_1) (Vs Ym+1), Where a is the non-
degenerate skew 2-form on R* x R*" defining H,, and B is an (m — 1 -multi-
linear alternating form on R

Proof. Clear.

From [Dul ] we see that an (m + 1)-multilinear function on R?" is trivial
as a cocycle iff it is annihilated by the alternating map 4. But

A(ﬁ()’n, ey ymwl)a(ym’ ym+l))=(ﬂ A cx)(yl’ ey ym+1)9

thus leading us to

LEMMA 4.5. Be A™ YR*) is such that B is a trivial cocycle precisely
when we have e Ker{L: A™~(R*') > A™*(R*")}, where L(B)= A

It follows from [Ho, We] that Ker(L)=0 if m<n+ 1 and surjective if
m=n+1.

THEOREM 4.3. In computing Z(H,, R), if m < n then an m-cocycle ¢ on
H,, has its g,»-1, component zero, and the cohomology of H™(H,, R) can be
computed using m-multilinear alternating forms on R*". If, on the other hand,
m>n, then since dim(Ker L)=(2")—(,2,), there is a vector space of
this many dimensions of (m+ 1)-cocycles of the form B(yi, . Vm—_1)
Vs Vm+1) Which may be trivialized by a vector space of this number
of dimensions of cochains which may be used as o, components of
ceZ™(H,, R). In this case o is not cohomologous to an m-multilinear
Sfunction.

Proof. All the ingredients for the statements in the theorem have
already been proved and it is clear how to assemble them.

If we fix m and let n vary, we see that we obtain a dichotomy between
the Heisenberg groups for which multilinear functions suffice to compute
the cohomology. For the lower dimensional Heisenbergs, it is necessary to
use cocycle representatives which are not multilinear, but eventually,
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for large enough n, namely n—1>=m, it is possible to compute the
cohomology using multilinear functions.

We must now address the question of determining when a cocycle s is a
coboundary. Theorem 2.9 indicates that o, if trivial, is the coboundary of a
determined (m — 1)-cochain b, but we now have to ascertain in our case of
H, how b is determined.

LEMMA 4.6. If ceZ™(H,,R) is the coboundary of a cochain
be C"~'(H,, R) which is determined, then we may assume that

b(xls(yl)’ ety Xm7 ls(ym - l))
= b(S(y] )’ (] 3(}’m72), Kot - l) + b(s(yl)’ ey S(}’m - l))

Proof. Start by expanding (86)(x (V1) oo X 25(Vm—2)y  Xm—1s
${(y., .1)) and using the fact that db = o, which is a determined cocycle.

THEOREM 44. oceZ™(H,, R) is a coboundary iff

0 =0 and 02”‘(}’1 7 erery .vm) = b2"’ 1 (J’1 ooy Ve — 2 a(ymr» 1 ym))’
where bym_2 is alternating multilinear in y,, .., y,, _, and linear in x,,_,.
Proof. Straightforward cohomological calculations.

Now since H™(H,, R) is a vector space, we know its structure if we
know the quotient in a tower of subspaces, which is precisely what the
spectral sequence furnishes. But with the method we are using we obtain an
explicit set of representatives for the cohomology classes. The results of
Theorems 4.3 and 4.4 are consistent with the following result from [McL,
p. 355].

THEOREM 4.5. Suppose n=1 and H™(N, A)=0 for 1 <m <n. Then for
0 <m < n we have the long exact sequence

— H™(H, A")—"— H"(G, A)—~H" " '(H, H'(N, 4))
g Hm+l(H,AN)—> .
Here tg is the transgression map, which is given at the cocycle level as

tg(a)(yl’ sy y,,,+1)=0(s(y,), ey s(ym—l)’ a(ym’ ym+1)),

and inf is the inflation map which is just j* for j: G — H the quotient map.
Counting up all the dimensions, we get
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THEOREM 4.6. If 0<m<n then dim H™(H,, R)=(¥)~(,,*",), and if
n+1<m<2n+1 then dim H™(H,, R)=(,>" )~ (,",).

Proof. Suppose 0 <m<n. Then the map A™~*(R*") —» A™(R*") which
takens § to f A a is injective, and, as we have seen in Theorem 4.3, every
m-cocycle on H, is cohomologous to an m-multilinear alternating function,
which must then be defined on the quotient of H, by its center R, which
is R?". But such a cocycle is a coboundary iff it is of the form
B(¥is o Voo 2) (Y _ 1s ¥m) fOr some (m— 2)-alternating multilinear func-
tion f, hence the dimension above. On the other hand, if n+ 1< m<
2n+1, the map A™*'— A™*! is onto and so every m-cocycle on the
quotient group R*” is trivial and we must look elsewhere for elements in
H™(H,, R). Now the wedge map

Am—-](RZn)_’ Am+ I(RZn)

has a nonzero kernel whose dimension is (,>*,)— (,.7,).

Now let us see how explicitly we may choose our cocycle representatives
in Z"(H,, R). We need to be able to explicitly trivialize om-1,(¥,, .-y
Y15 % Vs V1)), an (m+ 1)-cocycle on B>, As in Lemma 4.4, we may
assume ¢ = Ba. Noting our success in [Du2, Du3] in trivializing tri- and
quadrilinear cocycles of a certain special form, namely those which were
products of alternating multilinear functions, we look for a trivialization of
the form

Y= Z iij(y;}l)l +.uij());l)25

i<j
where
(”/:7)1 (yl’ teey ym)= ﬁ(yl’ ey yj—l’ yj+ Lo =9 ym) a(yn yj) (41)
(7’:;)2 (ylv ] ym) = ﬂ(yls s Yic1s Vi ts oo ym) “(yf, yj)~ (42)

In order to shorten notation even further, we write (i, j),, (i, j), for the
right sides of (4.1), (4.2), and (i, j) for

ﬁ(yh vy Vic 15 YViw1s o0 yj— 1> yj+ 1y =y y,,,H:x(y,-, yj})' (43)

A bit of calculation yields

LeMMA 4.7. The action of 8 on the basis {(i, j), | 1 <i<j<m, k=0,1}
is

M) =(=1)Y [+ 1L+ 1)+ j+1))] (4.4)

O((4, j)2) = (=)L j+ 1)+ (5, /)], (4.5)
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Now using the fact that § A =0, we get the equation
Y (=1 j)=0. (4.6)
Isi<jsm

We determine the m(m—1) constants A;, p; so that 6(y")=0,m-1,.
Using Eq. (4.6) to write (1,2) in terms of the (™5 ')—1 other (i, j), we
arrive at a set of (™7')—1 linear equations in the A’s and ws. These
equations take the form

2p—pi3—41,=0 (1, 3)
le_ﬂlj—#l,j+1+(_1)j+l'11,'=0(l,j), d<j<m
ﬂ12+.ulm+/llm=0 (1’m+1)

P+ (1) (s o1+ 42, 1=0(.i+1) (4.7)
#12+(_1)i+l[l‘tj—[‘#ij]‘i‘(‘l)j“ (Ao~ 441=00(,)), 2<i<j<m
(=0 (=1 (A = A ]=0 (,m+1)

ulZ.—'lmfl,mz -1 (mam+1)

THEOREM 4.7. The above system of equations (4.7) can be solved for the
A’s and u’s and the answer is

201 (=) 5 2(i, m),

=%

lgi<jem—1 m(m+1) tarem Mm+1) (4.8)
iCm+1—i) . (m—1)(m+2)
_ISIZZ‘M—I W(z,m—l)z+w(m—l,m)2.

Proof. We arrange the equations in the following order:

(m,m+1),(1,3),..,(1,m),(2,3.,m—1,m),(l,m+1) ..,
(m—1, m+1).

From our system of linear equations we see that we get a
((m+2)m—1)/2)x m(m—1) matrix. The first column consists of a 1
followed by a 2 and then all 1's. The columns (i, j), for 3<j<m—1 have
2 nonzero entries: a —1 in the (1, j) place and a 1 in the (1, j+ 1) place.
Then the (1, m), column has a —1 in the (1, m) place and a 1 in the
(1, m+ 1) place. Then columns (2, j), for 3<j<m—1 have I’s in the (2, j)
place and a —1 in the (2, j+ 1) place. Then (2, m), has 1, —1 at places
(2, m), (2, m+1) respectively. Continuing in this fashion, the columns
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(i, j); for 3<i<j<m~1 have (—1), (—1)*! in the (i, j), (i,m+1)
places, respectively, and the (i, m), columns have (—1), (—1)"*' in the
places (i, m), (i, m+ 1}, for 1 <i<m. The columns (i, j), for I <i<j<m
have zero entries below the (1, m + 1) place except for the columns (i, m),,
and except for (m—1, m) these all have 1, —1 at the places (i, m+1),
(i+1, m+1), respectively. (m—1,m) has —1, 1 at the first place
(m,m+1) and last (m—1, m+ 1) places. We are also interested in the
entries in the columns (i, m—1), for 1<i<m—2. (i, m—1) has —1, 1 at
(i, m), (i+1, m).
We reduce this matrix in five steps.

(1) Multiply row (m,m+1) by —1. Add row (m, m+ 1) to row (i, j)
for I<i<jsm+1, i#m, j#3 and add twice row (m, m+ 1) to row
(1, 3).

(2) Addrow (i,j)torow (i, j+ 1) forI<i<j<m.

(3) Addrow (i, m)torow (i, m+1)for 1 <i<m—1.

(4) Addrow (i,m+1)torow (i+1,m+1)for 1 <i<m—2.

(5) Divide row (m—1, m+ 1) by (™$!) and subtract j—i times row
(m—1, m+1) from row (i, j) for 1<i<j<m and i(2m+1—1i)/2 times
row (m—1,m+1) from row (i, m+1) for 1 <i<m—1, and finally add
row (m—1, m+1) to row (m, m+1).

This puts our matrix in what we may call reduced quasi-echelon form;
ie., we take the variables represented by the columns (i, j), for I <i<j<
m—1 as undetermined parameters and express all the other variables in
terms of these. If we do this, we get

m+1
'lm.m+1=1/( 2 )

, - st o (m+1
A= (=0t Y (—1)"/1.-,k+(j—z)/( N )
k=i k=i+1
for I1<i<j<m
ot i2m+1—1i)
Hims1= (—l)k ikt ————, 4.8)
i k=zf+l ”,k m(m+l) (

where all undefined symbols are zero.
If we set the parameters y; ; for 1 <i< j<m—1 equal to zero, we get the
result in the theorem.

The next obvious step in an application of these techniques is the general
n-step nilpotent simply connected and connected Lie group. The problem
of computing H™ (H,, Z), for Z the integers and H, the integral Heisen-
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berg group, is also approachable and involves studying the decomposition
of the tensor spaces ®™ Z>" under the action of the symmetric group S,,
acting by permuting the coordinates, which is treated in [ABW]. These
methods may help algebra to gain some foothold in an area dominated by
topological techniques, namely the computation of the cohomology of
discrete groups, in particular that of S/(n, Z).

The explicit calculations in this paper should make it clear that mathe-
maticians have at least a fighting chance to compute the cohomology of a
group extension directly and completely, without having to rely on the
spectral sequence to merely furnish quotients of a filtration, which still
leaves the very hard problem of describing how to put these quotients
together to form the cohomology group of the extension.

I am now in the process of working out how this theory fashions itself
in the case of Lie and associative algebras and am getting glimpses of a
metatheorem which states that, whenever there is a spectral sequence con-
necting two cohomological objects, this is but a shadow of a much stronger
and more explicit connection between these objects, which is just waiting
for its bottle to be rubbed the right way to emerge and work its magic.

All the reductions which we proved we could carry out in the case of an
extension can also be effected in the case G = AB, where AnB=¢ and A,
B are not necessarily normal subgroups of G. Instead of the cross section
s and associated 2-cocycle «, we have to concern ourselves with two projec-
tions G — A4, B as in [Ma2], where the theory was first worked out for H?2.

As a first step toward crafting an example for the metatheorem in the
topological case, there is the work by Hirsch in [Hil, Hi2], the first one
of which appeared one year after Leray’s first paper [Lel] and was over-
shadowed by it. Hirsch appears to have developed a method similar to
mine and Lyndon’s for computing exactly the homology of a fiber space,
and not just the quotients in a filtration.
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