Workshop Problems-September 21

1. Let
$$f(x) = \frac{\sqrt{2 - \sqrt{4 - x^2}}}{x}$$
.

- (a) Find $\lim_{x\to 0^+} f(x)$ and $\lim_{x\to 0^-} f(x)$.
- (b) Sketch the graph of y = f(x) in the viewing window $[-2, 2] \times [-1, 1]$.
- (c) Use the graph to check your answer to (a). Explain any interesting behavior, particularly involving signs.
- 2. Find the limit in each of the following cases.
 - (a) $\lim_{x\to 0^+} \sqrt{x} e^{\cos(\pi/x)}$. (Hint: Use the Squeeze Theorem.)
 - (b) $\lim_{x \to 0} \frac{4 \sin x \sin^2 x}{2x}$.
 - (c) $\lim_{x\to 0} \frac{\sin(4x)\sin(7x)}{2x\sin(3x)}$.
- 3. Let $S(x) = x^2$.
 - (a) Consider the function T defined by

$$T(x) = \begin{cases} S(x) & \text{if } x \neq 3, \\ 7 & \text{if } x = 3. \end{cases}$$

Sketch the graph of T. What is $\lim_{x\to 5} T(x)$? What is $\lim_{x\to 3} T(x)$? Justify your answers.

- (b) An evil interstellar visitor changes one million values of S and creates a new function V. What can be said about $\lim_{x\to a}V(x)$ for all values of a? Justify your answer.
- 4. (a) Using a diagram of the unit circle and the Pythagorean theorem, show that

$$\sin^2(\theta) \le (1 - \cos(\theta))^2 + \sin^2(\theta) \le \theta^2$$

(b) Use part a) to show that:

$$\sin^2(\theta) \leq 2(1-\cos(\theta)) \leq \theta^2$$

(c) Use part b) to prove that:

$$\lim_{\theta \to 0} \frac{1 - \cos(\theta)}{\theta} = 0$$

and

$$\lim_{\theta \to 0} \frac{1 - \cos(\theta)}{\theta^2} = \frac{1}{2}$$