Review Problems for Midterm 2

Please note that this set of problems does *not* necessarily cover all topics that may appear on your exam.

1. Let $f(x) = x^3 + 3x + 2$. Let $g(x) = f^{-1}(x)$ be the inverse function. Find g'(2) and g'(6).

2. Let
$$y = e^{x + \sin(x^2)}$$
. Find $\frac{dy}{dx}$.

3. Let
$$f(x) = \ln(3 - 5x^2)^3$$
. Find $f'(x)$.

- 4. Let $g(x) = \sin^2(\sqrt{x^2 + 1}) + \cos^2(\sqrt{x^2 + 1})$. Find g'(x).
- 5. Let $e^x y + y^2 x + x^3 \cos(y) = 0$. Find $\frac{dy}{dx}$. Show that (0,0) is on the curve and that there is a vertical tangent at this point.
- 6. Consider the circle $(x-2)^2 + (y-4)^2 = 25$. Where on this circle is the slope of the tangent line equal to 1?
- 7. Let $h(x) = \cos(x) + \sin(x)$. Find the minimum and maximum values attained by h(x) on the interval $[0, 2\pi]$.
- 8. Let $y = xe^{-x}$ be defined on [0, 2]. Find the min and max of this function.
- 9. Let $f(x) = x^2 + 2x + 3$. Find the average rate of change of this function on the interval [1,3]. The mean value theorem says there is some point c on this interval at which f'(c) attains this average rate of change. Find such a value c.
- 10. Let $f(x) = \frac{1}{4}x^4 + 2x^3 3x^2 + 3x 1$. Find all inflection points of f(x).
- 11. Two runners start running at the origin. One runs due North at 8 m/s. The second runs due East at 6m/s. How fast are they moving apart from each other when the first runner is 80 meters from the origin and the second is 60 meters from the origin?
- 12. An object moves along the curve $y = e^x$. At what point(s) is the object moving twice as fast in the y direction as it is in the x direction?
- 13. Let $g(x) = x \cos(x) + e^x + 3$. Using a linear approximation, estimate g(0.05).
- 14. Let $h(x) = x^3 2x^2 + 3x 4$. We want to find its roots using Newton's Method. Write down a recursive formula for the value of x_{n+1} in terms of x_n . If $x_0 = 1$, find the value of x_1 ?
- 15. Let $f(x) = \sin^2(x)$. Find the critical points, local maxima and minima, global maximum and minimum and inflection points on the interval $[0, 2\pi]$.

16. Evaluate
$$\lim_{x \to \infty} \frac{x^2 \ln(x) + x}{e^x}.$$

17. Evaluate
$$\lim_{x \to 0} \frac{\sin(x) \cos(x)}{e^x - 1}.$$

18. Evaluate
$$\lim_{x \to \infty} \frac{x^{100}}{e^x}.$$

19. Evaluate
$$\lim_{x \to 0} x^2 \ln(1/x^2).$$