Name (print): ______ ID (last 4 digits): ______ 1. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -6 & 7 \end{bmatrix}$ and $= \begin{bmatrix} 4 \\ 5 \end{bmatrix}$. Fill in the blanks with the correct numbers: $A = ---\begin{bmatrix} 1 \\ 3 \\ -6 \end{bmatrix} + ---\begin{bmatrix} 2 \\ 0 \\ 7 \end{bmatrix} = \begin{bmatrix} --- \\ --- \end{bmatrix}$ 2. Write the vector on the left as a linear combination of the two vectors on the right:

[7]		[1]		[2]
9	=	3	+	0
-4		-6		[7]

3. Suppose *B* is a 2 × 3 matrix and , \in^3 are vectors such that $B = \begin{bmatrix} 3\\4 \end{bmatrix}$ and $B = \begin{bmatrix} 1\\2 \end{bmatrix}$. Then $B(5-6) = \begin{bmatrix} ----\\ --- \end{bmatrix}$ (fill in the correct numbers).

(b) What are the **free variables** for the system?

(c) Write down the **general solution vector** to this system. Express each entry in in terms of constants and the free variables.

