
640:250 Introductory Linear Algebra Midterm Exam #2 April 4, 2015

Solutions

Instructions: This is a closed book exam. Show your answers and arguments for your answers in
the space provided. You may use the back of the pages also, but indicate clearly any such material
that you want graded. No calculators, cell phones, or any other electronic devices may be used during
the exam.

Have your photo ID card available for checking. Do not start the exam until instructed to do so.

DO NOT WRITE BELOW THIS LINE

Problem # Points Score
1 15
2 25
3 15
4 25
5 20
Extra Credit 10

total 100+10



Problem 1 (15 points total)

Let A =

 1 1 2
−1 1 −4
0 10 −6

 and ~b =

 9
−15
−22

.

a. (8 points) Compute the LU-decomposition of A.

Solution: A =

 1 1 2
−1 1 −4
0 10 −6

 ~r1+~r2→~r2
−−−−−−→

1 1 2
0 2 −2
0 10 −6

 −5~r2+~r3→~r3
−−−−−−→

1 1 2
0 2 −2
0 0 4

 = U . Next we know

that L will be unit lower diagonal and L2,1 − 1, L3,2 = 5. So we find L =

 1 0 0
−1 1 0
0 5 1

 . We can

double check our answer by multiplying L times U and we do indeed get A.

b. (7 points) Use the LU-decomposition found in part (a) to solve A~x = ~b.

Solution: We are trying to solve LU~x = ~b. Let ~y = U~x. First we solve L~y = ~b. This is the

equation

 1 0 0
−1 1 0
0 5 1

 ~y =

 9
−15
−22

. So we see that y1 = 9, −y1 + y2 = −15 so y2 = −6 and similarly

that 5y2 + y3 = −22 so y3 = 8. Thus ~y =

 9
−6
8

. Next we solve U~x = ~y. This is the equation1 1 2
0 2 −2
0 0 4

 ~x =

 9
−6
8

. Again, we employ back substitution and find x3 = 2, x2 = −1 and x1 = 6.

Thus ~x =

 6
−1
2

. We can double check that A~x does indeed equal ~b. Note that we only expected one

solution as A is invertible as our LU-decomposition shows.



Problem 2 (25 points total)

a. (5 points) Let M =

 3 1 2
−1 0 3
−2 5 4

. Find detM by employing cofactor expansion along the first

row.

Solution: detM = 3 · (0− 15)− 1 · (−4− (−6)) + 2 · (−5− 0) = −57

b. (5 points) Let B =


1 2 3 4
0 0 1 0
5 5 −1 2
1 2 0 1

. Find detB. Indicate clearly which row or column you are

cofactor expanding along.

Solution: We employ cofactor expansion along the second row since there is only one nonzero term.
We have a2,3 = 1 and c2,3 = (−1)2+3 detB2,3 and

det(B2,3) = det

1 2 4
5 5 2
1 2 1

 = 15.

Thus det(B) = (−1) · 1 · 15 = −15.

c. (5 points) Let C =


1 1 1 1 1
2 2 2 2 2
5 4 3 2 1
6 6 7 7 8
1 2 3 4 5

. Find detC. Hint: you do not need to employ cofactor

expansion. Explain your answer.

Solution: Observe that the second row is double the first. So the rows are linearly dependent and
thus the matrix is not invertible. Thus detC = 0.



d. (10 points total, each part worth 2 points) Let A be a 5 × 5 matrix with detA = 10.
Compute the following:

i. Find det(A2).

Solution: det(A2) = det(A) · det(A) = 10 · 10 = 100.

ii. Find det(A−1).

Solution: 1 = det(I5) = det(AA−1) = det(A) det(A−1). Thus det(A−1) = 1/ det(A). So det(A−1) =
1/10.
iii. Let B be the matrix formed by swapping rows 2 and 4 of A. What is detB?

Solution: Swapping two rows multiplies the determinant by −1. So det(B) = −10.

iv. Find det(A+ A).

Solution: det(A + A) = det(2A) = det((2I5)A) = det(2I5) det(A) = 32 · 10 = 320. We get det(2I5)
by multiplying the five 2’s on the main diagonal. Alternatively, the matrix 2A can be obtained from
A by multipying each row by 2. Each of these operations multiplies the determinant by 2 and so we
obtain 25 · 10 = 320.

v. Let D be the matrix formed by multiplying the i-th row of A by i. So the first row is scaled by
1, the second row is scaled by 2, etc. Find det(D).

Solution: Multiplying any row by a scalar mutliplies the determinant by that same scalar. Thus
det(D) = 1 · 2 · 3 · 4 · 5 · 10 = 1200.



Problem 3 (15 points total)

a. (7 points) Let A and B be n×n matrices that are not invertible. Prove that AB is not inveritible.

Solution: This problem was on the first midterm. See solutions to midterm 1 for how we solved
this problem without determinants. The solution is easier with determinants. If A and B are not
invertible then det(A) = 0 and det(B) = 0. Now observe det(AB) = det(A) · det(B) = 0 · 0 = 0. So
the matrix AB has determinant 0 and is therefore not invertible.

b. (8 points) A square matrix, M , is said to be nilpotent if some power of the matrix equals the
zero matrix. That is, there is some positive integer k such that Mk = 0. Let M be a nilpotent
matrix. Explain why detM = 0.

Solution: We have observed that det(A2) = det(A) · det(A) = det(A)2. Similarly, det(A3) =
det(A) · det(A) · det(A) = det(A)3. In general, we have det(Ap) = det(A)p.

If M is nilpotent and k is such that Mk = 0 then observe that 0 = det(0) = det(Mk) = det(M)k.
So when we raise det(M) to the k-th power we get 0. So we must have det(M) = 0.



Problem 4 (25 points total)

Let A =

1 1 2 3
2 2 4 7
1 4 5 6

. Parts (a), (b) and (c) refer to this matrix.

a. (5 points) Find a basis for ColA. What is dim(ColA)?

Solution: The reduced row echelon form of A is

1 0 1 0
0 1 1 0
0 0 0 1

. So we see that columns 1, 2 and 4

are pivot columns. Thus a basis for ColA is


1

2
1

 ,
1

2
4

 ,
3

7
6

. We have dim(ColA) = 3 which

matches the rank of A as expected.

b. (5 points) Find a basis for RowA. What is dim(RowA)?

Solution: The slow way to solve this problem is to take AT , use Gaussian elimnation to put it in
rref and then identify the pivot columns. However, we already showed in part (a) that the rank of A
is 3 and we know that the row rank equals the column rank. That is dim(ColA) = dim(RowA) = 3.

So the three rows must be linearly independent. Thus a basis for RowA is




1
1
2
3

 ,


2
2
4
7

 ,


1
4
5
6


.

Alternatively, having put the matrix in rref in part (a), we recall that elementary row operations

do not change the rowspace of a matrix. So




1
0
1
0

 ,


0
1
1
0

 ,


0
0
0
1


 is also a basis for RowA.



c. (5 points) Find a basis for Null(A)? What is dim(NullA)?

Solution: We can employ the rref of A found in part (a): R =

1 0 1 0
0 1 1 0
0 0 0 1

. We solve R~x = 0 and

see that we have one free variable: x3. Our general vector solution is


−x3
−x3
x3
0

 = x3


−1
−1
1
0

. Thus a

basis for Null(A) is



−1
−1
1
0


. Thus, dim(NullA) = 1. Note, that this is just the nullity and since

the rank is 3, we have NullityA = 4− 3 = 1.

d. (10 points) Let B be an invertible, 5× 5 matrix. Describe the following:

i. Col(B)

Solution: Since B is invertible its columns are linearly independent. Thus they span all of R5. So
Col(B) = R5.

ii. Row(B)

Solution: As above, the rows are linearly independent and span R5. So Row(B) = R5.

iii. Null(B)

Solution: The nullity of B is 0, thus the dimension of the null space is 0. The only solution to
B~x = ~0 is the zero vector. Null(B) = {~0}.



Problem 5 (20 points total)

Let M =

[
−7 18
−3 8

]
. Parts (a) and (b) deal with this matrix.

a. (5 points) Find the characteristic polynomial of M and use it to find the eigenvalues of M .

Solution: pM(t) = det(M − tI2) = det

([
−7− t 18
−3 8− t

])
= (−7 − t)(8 − t) + 54 = t2 − 8t + 7t −

56 + 54 = t2 − t− 2 = (t+ 1)(t− 2). The eigenvalues of M are theof pM(t) = 0 which are −1 and 2.

b. (5 points) Find bases for the eigenspaces corresponding to each of the eigenvalues found in part
(a).

Solution: We begin with λ = −1. Then M − (−1)I2 = M + I2 =

[
−6 18
−3 9

]
. The rref of this matrix

is R =

[
1 −3
0 0

]
and solving R~x = ~0 we find x2 is free and the general solution is

[
3x2
x2

]
. So the null

space has basis

{[
3
1

]}
. We can double check that M

[
3
1

]
= −

[
3
1

]
.

Next, we do a similar computation for λ = 2. We have M − 2I2 =

[
−9 18
−3 6

]
which has rref[

1 −2
0 0

]
. Thus a basis for the null space is

{[
2
1

]}
. We can double check that M

[
2
1

]
= 2

[
2
1

]
as

expected.
Note, since each root of our characteristic polynomial had algebraic multiplicity one, we knew

ahead of time that the dimensions of our eigenspaces had to be one.



c. (5 points) Let A be a 5 × 5 matrix with characteristic polynomial −(t − 5)3(t2 + 8). Identify
the eigenvalues of A and for each eigenvalue state its algebraic multiplicity. Furthermore, for each
eigenvalue λ state the possible values for dim(Null(A− λI5)).
Solution: The characteristic polynomial factors as−(t−5)3(t−2

√
2i)(t+2

√
2i). Thus the eigenvalues

are 5, 2
√

2i and −2
√

2i with algebraic multiplicities 3, 1 and 1 respectively. Since the dimension
of an eigenspace is less than or equal to the algebraic multiplicity of the eigenvalue we see that
dim(Null(A− 5I5)) is either 1, 2 or 3. For the other two eigenvalues, the dimension must be one.

d. (5 points) Let B be an n × n matrix with eigenvalue λ. Show that λ2 is an eigenvalue of the
matrix B2.

Solution: Let ~v be an eigenvector of B with eigenvalue λ. Then

B~v = λ~v.

Multiplying on the left by B we find

B2~v = B(λ~v) = λ(B~v) = λ(λ~v) = λ2~v.

So we see that
B2~v = λ2~v

so λ2 is an eigenvalue of B2.



Extra Credit Problem 1 (5 points)
As stated in problem three, a square matrix, M , is said to be nilpotent if some power of that matrix
equals the zero matrix. That is, there is some positive integer k such that Mk = 0. Let M be a
nilpotent matrix. Show that all its eigenvalues must be 0.

Solution: Generalizing the result from question 5 part (d) we see that if v is an eigenvector of A
with eigenvalue λ, then Ap~v = λp~v and so λp is an eigenvalue of Ap.

Now, let M be nilpotent matrix and suppose for the sake of contradiction that it has a nonzero
eigenvalue λ. Let ~v be an eigenvector of M such that M~v = λv. Now Mk~v = λk~v. However Mk = 0
so Mk~v = ~0. So we have λk~v = ~0. Since ~v 6= ~0 (since it is an eigenvector) we see that λk = 0 which
means λ = 0. Contradiction.

Extra Credit Problem 2 (5 points)
Prove that for any square matrix A, dim(Null(A)) ≤ dim(Null(A2)). Give an example of a matrix A
where dim(Null(A)) < dim(Null(A2)).

Solution: We will show that Null(A) ⊆ Null(A2) and the inequality for the dimensions follows. Let
~x ∈ Null(A). Then A~x = ~0. Observe A2~x = A(A~x) = A~0 = ~0. So we see that ~x ∈ Null(A2). So every
vector in Null(A) is in Null(A2). So Null(A) ⊆ Null(A2).

One example of a matrix A such that dim(Null(A)) < dim(Null(A2)) is A =

[
0 1
0 0

]
. Note that

dim(Null(A)) = 1. Note that A is nilpotent. A2 =

[
0 0
0 0

]
. And so dim(Null(A2)) = 2.


