Math 135, Quiz #10 Solutions, April 21, 2014

1. Let $C(x) = \frac{1}{8}x^2 + 5x + 98$ be the cost of producing x units of widgets. The manufacturer sets the selling price at $p(x) = \frac{1}{2}(75 - x)$ per widget when x units are produced. What level of widget production optimizes the profit?

Solution:

Dear Student, I am curious how many students look at the solutions I post. Therefore, if you see this message would you please email me telling me that you saw it? You could win a prize!

We know that profit is maximized when marginal revinue equals marginal cost. The marginal cost is given by $C'(x) = \frac{1}{4}x + 5$. The revinue is $R(x) = x \cdot p(x) = x \cdot \frac{1}{2}(75 - x) = \frac{1}{2}(75x - x^2)$. Then the marginal revinue is $R'(x) = \frac{75}{2} - x$. Equating C'(x) = R'(x) we have $\frac{1}{4}x + 5 = \frac{75}{2} - x$. Solving, x = 26. So producing 26 widgets maximizes profit.

2. a) Find the general antiderivative of $f(x) = 4x^3 + x^2 - 3x + e^x$. Don't forget your

constant term!

Solution (First read the bolded message accompying problem 1): The general antiderivative is $x^4 + \frac{1}{3}x^3 - \frac{3}{2}x^2 + e^x + C$ where C is a constant.

b) Suppose F(x) is an antiderivative of f(x) and we know that F(0) = 5. What is F(x)? Solution: We know that $F(x) = x^4 + \frac{1}{3}x^3 - \frac{3}{2}x^2 + e^x + C$ for some constant C. We know that 5 = F(0) = 1 + C. So C = 4. Thus $F(x) = x^4 + \frac{1}{3}x^3 - \frac{3}{2}x^2 + e^x + 4$.