Review Problems for Math 135 Final Exam

- 1. Without using the fundamental theorem of calculus, compute $\int_0^5 (2x+4) dx$ and C^5
- $\int_{-2}^{5} (x-2) dx.$ 2. Compute $\int \cos(x) \tan(x) dx$ 3. Compute $\int \sin(x^3-2)x^2 dx$
- 4. Compute $\int_{0}^{1} x\sqrt{x+1} dx$.
- 5. Let $F(x) = \int_{1}^{2x} \sin^2(x)$. Find and identify all critical points of F(x) on $[0, \pi]$.
- 6. Let k be a positive constant. Compute $\lim_{x\to 0} \frac{e^x 1}{\sin(kx)}$ in terms of k.
- 7. A function, f(x) has the following properties. Its second derivative is a positive constant function. What type of function is f(x)? What is $\lim_{x\to\infty} f(x)$?

8. Let
$$y = x^{\tan(2x)}$$
. Compute $\frac{dy}{dx}$

- 9. Compute $\int_{-10}^{10} x^{2n+1} dx$ where *n* is a positive integer.
- 10. Find the area bounded by the curve $y = x^2 7x + 10$ and the x-axis.
- 11. Let the cost of producing x computers be given by $C(x) = x^2 + 32x + 1600$. The manufacturer intends to sell the computers for \$2000 each. How many computers should be produced to minimize average cost?
- 12. Consider the curve $y^3x^2 x\sin(x) + y^5 = 0$. Find $\frac{dy}{dx}$.