
1 Prerequisites

The official prerequisites are real analysis and linear algebra. I am expecting you to have a passing familiarity
with the Lebesgue integral, know the dominated convergence theorem and similar facts, and know what a
measure is and that you can integrate with respect to it. I am hoping you have seen Lp spaces; if not, you
may want to read up a bit on the basic properties. I am also expecting you to know various facts from
point-set topology about metric and topological spaces.

None of the above is especially essential, however. It’s fair game to ask me to prove things that I claim
you should have seen and you haven’t. I reserve the right to not actually do this, but I’ll at least send you
a reference.

2 Structure

We will be following Haim Brezis, “Functional Analysis, Sobolev Spaces, and Partial Differential Equations”
reasonably closely; you will need access to this book. You can access an online copy for free through the
Rutgers library.

This book has many, many exercises of varying difficulty levels. I will assign some of them for you to do,
typically on Thursdays. You will then turn them in to me the following Thursday. I will grade some subset
of them. This will constitute about 15% of your grade.I would encourage you to at least think through and
discuss other exercises from the text. This is the best (only?) way to really learn the material. Yes, I am
aware that some of these exercises have solutions at the back of the book. You are also free to work together
as you see fit on them (but turn in your own work).

I will sometimes ask one of you to present a solution to a homework problem, to help guide the class
through a proof, or to work through one of the problems at the end of the book and present your findings.
This will generally be on a volunteer basis, unless you abstain from volunteering. If the task is difficult I will
assign it a bit in advance. Actively participating in this will account for 15% of your grade; if you participate
often, this will be weighed heavily towards your best showings. I have never tried this in graduate classes
before, so if it’s a disaster I reserve the right to modify this.

There will be a take-home midterm exam worth 30% of your grade. There will be a final exam of some
sort worth 40% of your grade; it will almost surely contain a take-home component, and might also contain
either a written or oral component if I deem it warranted.

I expect to cover the first six chapters of Brezis (with some omissions), and hopefully Chapter 8. This
may be adjusted somewhat to accommodate student interest.

3 What is functional analysis and why study it?

Functional analysis is an approach to linear algebra on infinite-dimensional vector spaces.

The most obvious reason one might encounter an infinite-dimensional vector space is because they are
studying spaces of functions. Given a set X and a vector space V , V X (the set of functions from X to V )
is also a vector space. More usefully, so are various subspaces of this.

Thinking of collections of functions like this is a somewhat modern innovation, diffusing from algebra to
geometry and then to analysis at the end of the nineteenth and beginning of the twentieth century. However,
once you make this observation, many questions take on a distinctly linear-algebra interpretation. To give
some examples:

• Consider any linear ordinary differential equation. This means searching for a function u : R → Rn

1



satisfying a relation of the form
K∑
k=0

ak(t)u(k)(t) = f(t),

where ak are matrix-valued functions, the superscripts are derivatives in t and f is a function into Rn.
Assume ak, f are all smooth. Possibly some boundary or initial conditions are imposed on u. This
is a typical problem in analysis, and one may attempt to solve in various ways, including via power
series, via transformations, via direct integration, via fundamental solutions, etc. One may, however,
interpret it as follows: define a function from CK(R;Rn) (the vector space of functions from R to Rn
which admit K continuous derivatives) to C0(R;Rn) given by

L(v) =

K∑
k=0

akv
(k).

This is a linear map (differentiation is linear; that’s the main point here) between these two spaces
of functions. The question of whether the differential equation is solvable is the question of whether
f lies in the image of L. The question of how to solve it is the most basic question addressed by
linear algebra. The study of the properties of the solution is the study of the structure of the map L.
The desire to diagonalize L lies at the heart of every transformation method designed to study these
equations.

• Ordinary differential equations were actually not the (only) problem which drove the early development
of the subject. Here is another: let gi be a collection of (infinitely many) square-integrable functions
(say from R→ R with Lebesgue measure; this is unimportant), and αi be a sequence of real numbers.
Can one find a single square-integrable function f which satisfies all of the constraintsˆ

fgi = αi

for each i? Square-integrability ensures that the above makes sense (why?). To understand why this
is a “linear algebra” problem, notice that we may, given any square-integrable f , define a linear map
Lf : L2(R)→ R (L2(X) is the space of square-integrable functions) via

Lf (v) =

ˆ
fv.

Therefore, the goal here is to produce a linear map of this type passing through a collection of points
(gi, αi).

Now, given a collection of points of this form, there is an obvious necessary condition that must be
satisfied: if a linear combination of the gi gives 0, the corresponding linear combination of the αi does
too. It can be shown that in fact this is sufficient as well.

However, one quickly realizes that there is a problem here. Not every linear map from L2(X) → R is
of the form Lf for some f ; those that are satisfy an extra condition:

|Lf (v)| ≤ ‖f‖L2(X)‖v‖L2(x),

and this in fact characterizes them (see the Reisz representation theorem for L2; we will discuss this
later in the course). This insight is the first inkling of how functional analysis departs from linear
algebra: purely algebraic characteristics of a vector space either fail to provide useful understanding
of our problems, or they answer different questions from those we had in mind. Notice the core role
played by the norm in this example; this is not an algebraic property at all.

• As a final example, to illustrate some of the perils of functional analysis, consider another classic topic:
the calculus of variations. Say that we wish to minimize the following quantity (here u is an arbitrary
absolutely continuous function whose derivative is square-integrable; these form a vector space, say V ):

E(u) =

ˆ 1

0

a(x)(u′)2 + u2
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over K = {u ∈ V : u(0) = α, u(1) = β}, where 0 < a0 ≤ a(x) ≤ a1 <∞ is fixed and measurable. Some
of you may be able to immediately write down the solution, in fact, but hold back on doing this for a
moment.

Is this even a functional analysis problem? Well, there is an obvious method to try and prove that
it has a solution. Clearly we have E ≥ 0 and there is at least one u ∈ K so that E(u) < ∞. Set
m = infu∈K E(u). Then there is a sequence of uk ∈ K so that E(uk) → m (this is just from the
definition of infimum, nothing has happened yet).

Now, there is a natural norm one may put on V : ‖v‖2 =
´
v2 + (v′)2. If defined suitably, one may

even show that V is complete in the topology derived from this norm (we will consider this carefully
near the end of the course, time permitting). We see that as E(uk) ≤ m+ 1 for large k, and as

‖uk‖2 ≤
1

a0
E(uk) ≤ m+ 1

α0
<∞,

all of the uk live inside of a large ball in V . If V was a finite-dimensional Euclidean space, we could
now argue that this large ball is closed and bounded, and hence compact; it would follow that there
exists a subsequence vkj → v ∈ V , in the norm, i.e. ‖vkj − v‖ → 0 (compact and sequentially compact
are equivalent in metric spaces). It is then not hard to show that E is continuous with respect to this
convergence and that v must be in K (check; you need the fundamental theorem of calculus or similar
for the second point). Hence, this v ∈ K has E(v) = m; it is a minimizer.

This argument fails in infinite dimensional vector spaces. It fails because balls are not compact! (prove
this). Understanding carefully why and how it fails and how to salvage it will take us most of the way
through the course.

What we gather from the above is that if we want to apply linear algebra tools to spaces of functions
in a productive manner, we must adapt them to care about the norm or topology that space comes with.
Functional analysis is this study of topological vector spaces.

4 Basic Notions

You should likely have seen all of the concepts below, but if not, it would be best to review them.

Definition 4.1. A vector space V over a field F is an abelian group (operation denoted by +) together with
a mapping F × V → V (denoted by adjacency) with the following properties (∀α, β ∈ F, v, w ∈ V ):

1. β(αv) = (βα)v

2. 1F v = v

3. (α+ β)v = αv + βv

4. α(v + w) = αv + αw.

For the remainder of the course, F will be R or C. A key point in functional analysis is not only the
field, but also the absolute value on the field and the fact that it is topologically complete with respect to this
absolute value. This means that if you are interested in fields like Q, you will naturally end up studying their
topological completions. There are other fields which are topologically complete besides these two: notably
the p-adics and related things. These end up having extremely different properties due to the geometry of
their absolute value, and are really a subject in their own right which we will not touch. I will note here
that I am personally quite biased when writing the above comment, as I am a PDE specialist and PDE are
studied over R or maybe C; nonetheless, classically the subject has been constrained in this way.

A further remark: functional analysis over R and C is very similar, with only occasional differences. We
will work over R. There is a section in Brezis which discusses the differences and how to deal with them,
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and I would encourage you to read it if analysis over C is what you need. If you continue to study functional
analysis (especially the theory of operators) it is highly likely that you will need or prefer to work over C at
some points, for the same reason that it is easier to discuss diagonalizability of matrices over C than over R.

Definition 4.2. A subset E ⊆ V of a vector space is convex if tx + (1 − t)y ∈ E for any x, y ∈ E and
t ∈ (0, 1). A function φ : V → R is convex if φ(tx + (1 − t)y) ≤ tφ(x) + (1 − t)φ(y) for all x, y ∈ V and
t ∈ (0, 1).

This is an algebraic property; it makes sense for any vector space over R. As such, it plays a critical role
in functional analysis.

Definition 4.3. A normed vector space is a vector space V equipped with a norm, a function ‖ · ‖ : V → R
satisfying

1. ‖αx‖ = |α|‖x‖ for any α ∈ R and x ∈ V .

2. ‖x‖ = 0 only if x = 0.

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ V .

It is typical to just write V for a normed vector space, even though it is really the pair of vector space
and norm which is important (and one may put different norms on the same space, etc). When ambiguous
one may use ‖ · ‖V for the norm, or other subscripts if still ambiguous.

Some obvious observations:

Proposition 4.1. Let V be a normed vector space.

1. ‖ · ‖ is convex.

2. Setting d(x, y) = ‖x− y‖, d is a metric on V . In particular, it induces a topology on V .

3. Let V be finite-dimensional. Then any isomorphism V → Rn is a homeomorphism.

It is important here to understand that (3) fails completely if V is not finite-dimensional, in the sense
that there is absolutely no hope of salvaging it. Norms on Euclidean spaces are a geometric curiosity;
interesting but at the end of the day revealing nothing new about the topology or structure of the set. On
infinite-dimensional spaces, norms produce topologies which are completely different from one another, and
are the key piece of structure we will be dealing with.

It is possible to obtain topological vector spaces that do not come supplied with a norm. This happens
in e.g. the theory of distributions naturally; sometimes there is a metric which produces the topology, but
the metric does not derive from a norm. You may see more of this in the second semester of this course, if
it is offered and you take it. We will also put some other topologies on normed spaces when we study them;
this is a bit different in spirit, as the topologies will be very different from the one induced by the norm.

Definition 4.4. A Banach space is a normed vector space which is complete in the norm topology.

There is an obvious incentive to working with Banach spaces when interested in topics in analysis, as
naturally the completeness lends itself to existence results. It is also technically simpler, though a decent
portion of the theory does not require it.

Some quick review of point-set topology:

A metric space V is complete if every Cauchy sequence (i.e. d(uk, uj)− > 0 as k, j → ∞) converges
(i.e. d(uk, u) → 0 for some u ∈ V ). This means, roughly, that there are no “holes;” it says nothing of the
size or quality of the space. There is a procedure where any metric space can be continuously included in a
completion of it, and this can preserve the linear and norm structure, but we will not really be using it.

There is a hierarchy of properties which describe how well a topological space separates points. Let me
remind you of it, as it will help frame some of what we will soon be doing.
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T1 For any x, y ∈ X, there is an open set such that x ∈ U and y /∈ U .

T2 (“Hausdorff”) For any x, y ∈ X, there are open disjoint Ux, Uy with x ∈ Ux and y ∈ Uy.

T3 (“regular”) T2 + For any closed E ⊆ X and x ∈ X \ E, there are open disjoint UE , Ux with E ⊆ UE
and x ∈ Ux.

T4 (“normal”) T2 + For any two closed sets E,F ⊆ X, there are open disjoint UE , UF with E ⊆ UE and
F ⊆ UF .

Metric spaces satisfy all of these (why?). We will later look at topologies where the question of which
of these are satisfied is more interesting.

Definition 4.5. Let V,W be normed vector spaces and T : V → W be a linear map. This will often be
called a linear operator. If W = R, it will be called a linear functional. We say that T is bounded if there
exists a constant M such that

‖T (x)‖W ≤M‖x‖V
for all x ∈ V .

Proposition 4.2. A linear operator is bounded if and only if it is a continuous function.

(prove this.)

The problem with infinite-dimensional spaces is that linear maps are common, easy to construct, and
typically pathological. To see why, recall that every vector space admits a basis (a Hamel basis, in the sense
of a linearly independent spanning set with respect to finite linear combinations); this can be proved using
the axiom of choice and is found in Exercise 1.5 in Brezis. A linear map is fully determined by how it acts
on a basis, and one is free to choose where each basis element is mapped. The problem with this is that
the resulting maps lose all relationship to the geometry and topology of our vector space. As such, we will
often be more interested in bounded linear maps. These are much less common and do interact with the
important structure fully.

5 List of Characters

This is a list of simple topological vector spaces you should have seen before and a quick summary of some
of their properties.

• Euclidean spaces Rn with various norms. A norm can be constructed as follows: take K a symmetric
(x ∈ K means −x ∈ K) convex set for which 0 is in the interior. Let ‖x‖ = sup{t > 0 : x/t ∈ K}. We
will discuss this construction extensively later. Typical norms you should be aware of are

‖x‖p =

{
(
∑n
i=1 |xi|p)

1
p 1 ≤ p <∞

maxi |xi| p =∞.

(You may check that these are indeed norms, i.e. they satisfy the triangle inequality. You probably
know how to from your real analysis course.)

• Given a measure space (X,µ), take the space of measurable functions u : X → R for which

‖x‖Lp(X) =

{
(
´
X
|u|pdµ)

1
p 1 ≤ p <∞

esssup|u| p =∞.

Actually this is not a normed vector space, as this “norm” (potentially) violates property (2) of being a
norm. One can, however, consider equivalence classes of functions as above, with u v if u = v µ-almost
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everywhere. The set of all such equivalence classes still forms a vector space, and the norm above is
well-defined on it. These normed vector spaces are denoted by Lp(X) (with µ appended if unclear). I
am assuming that you have seen them before in real analysis, that you know that they are well-defined
and that the norm satisfies the triangle inequality, and that you have shown that they are complete,
i.e. Banach spaces.

• A common sub-example of the above is X = N, µ the counting measure. This gives spaces of p-
summable sequences, and is typically abbreviated lp. A slight generalization is lp(E) for any set E,
which is Lp(E) equipped with the counting measure. Note that in these examples all of the equivalence
classes up to a.e. contain one element, and so the issue may be ignored. We will consider a few other
spaces of sequences, including c (the subspace of λ∞ for which the limit of the sequence exists) and c0
(the subspace of c for which the limit is 0).

• Given a topological space X, consider C(X), the space of continuous functions from X to R. This has
the natural norm

‖u‖C(X) = sup
X
|u|,

and is a Banach space. If X = Rn, a common generalization is Ck(X), the space of continuous functions
with k continuous partial derivatives, equipped with the norm

‖u‖Ck(Rn) =
∑
|α|≤k

‖∂αu‖C(Rn).

This is using multi-index notation; the sum is over every possible combination of partial derivatives.
This also makes sense on Ck-differentiable manifolds, for example by using charts.

C∞(Rn) can not be made into a normed vector space (or at least, not in a way that gives the expected
topology, where sequences converge if and only if all of the derivatives converge uniformly). The
problem is that if you want to control infinitely many quantities (all of the sup-norms of all of the
partial derivatives in this case), you are forced to make a choice about how you do so, similarly to why
the lp spaces are not all the same. There is a natural way to make it into a topological (indeed, metric)
vector space (how?).
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