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Jason Long (Squarepoint Capital)

A Topological Turán Problem
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Background

Throughout the talk we will be dealing with graphs. A graph

G = (V, E) is a set of vertices V and a collection of edges E where an

edge is a pair of vertices.

Examples
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Background

Turán Problem
Given a graph H, how many edges does an n-vertex graph G need to

guarantee it contains an isomorphic copy of H?
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Background

Turán Problem
Given a graph H, how many edges does an n-vertex graph G need to

guarantee it contains an isomorphic copy of H?

E.g. Suppose H =△ and n = 6.

Q1: What if we replace “graph” with “r-uniform hypergraph?”

(r-graph)
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Background

Hypergraph Turán Problem
Given a hypergraph H, how many hyperedges does an n-vertex
hypergraph G need to guarantee it contains an isomorphic copy of
H?

a 3-uniform hypergraph
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Background
Hypergraph Turán Problem
Given a hypergraph H, how many hyperedges does an n-vertex
hypergraph G need to guarantee it contains an isomorphic copy of
H?

a 3-uniform hypergraph

Q2: What if we replace “isomorphic” with “homeomorphic?”
6



Topological POV

We can view r-graphs H and G as geometric/topological structures.
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Topological Turán Problem

Linial ’07
Given a k-complex S , how many k-dimensional simplices (facets)
does an n-vertex k-complex need to guarantee it contains a
homeomorphic copy of S?
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Given a k-complex S , how many k-dimensional simplices (facets)
does an n-vertex k-complex need to guarantee it contains a
homeomorphic copy of S?

Folklore: For a k-complex S , there exists λ(S) > 0 such that every

k-complex on cnk+1−λ(S) facets contains a homeomorph of S .

Why nk+1? The maximum number of facets in a k-complex on n

vertices is
( n
k+1

)
∼ nk+1.

Question
Is there some λk > 0 such that λ(S) ≥ λk for all k-dimensional S?
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History: Dimensions 1 and 2

• Mader ’67: λ1 = 1.

• Keevash–Long–Narayanan–Scott ’20: λ2 ≥ 1
5

• Brown–Erdős–Sós ’73: λ(S) = 1
2 when S is the 2-sphere.

• Kupavskii–Polyanskii–Tomon–Zakharov ’20: λ(S) = 1
2 if S is a

triangulation of a closed orientable surface.

• Sankar ’22: extended KPTZ to non-orientable surfaces.

Conjecture

λ2 =
1
2

3-complexes: ??? General k-complexes: ???
9
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Main Theorem

Theorem (Long–Narayanan–Y. ’20)

λk ≥ k−2k2 for all k ∈ N.

Far from tight: e.g. λ2 ≥ 2−8

But the proof is purely combinatorial, compared to the

dimension-specific arguments in previous results.

Our combinatorial/probabilistic tools:

1. Trace-bounded hypergraphs

2. Dependent random choice
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Trace-Bounded Hypergraphs

Key observation: Every k-complex has a homeomorph whose

associated (k+ 1)-graph is trace-bounded.
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Trace-Bounded Hypergraphs
Key observation: Every k-complex has a homeomorph whose

associated (k+ 1)-graph is trace-bounded.

trace-bounded: all the “forward” degrees are bounded.

So to find a homeomorph of S (in a dense k-complex), it’s enough to

find a copy of every trace-bounded (k+ 1)-graph (in a dense

(k+ 1)-graph).
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Main Combinatorial Result

Theorem 2 (LNY ’20)
∃ αr,d ≥ (5rd)1−r such that for any d-trace-bounded r-partite
r-graph H, any r-graph with at least nr−αr,d edges contains an

(isomorphic) copy of H.

Proof idea: Use a variation of dependent random choice to embed H

one part at a time.
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Further Directions

• Optimal values for λk (in particular, λ2 = 1
2 )?

• λ(Sk)?

• Optimal values for αr,d?

• Other settings where trace-boundedness is a natural restriction?
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Hypergraph Ramsey Theory

Quentin Dubroff

(Rutgers)

António Girão

(Oxford)

Eoin Hurley

(Amsterdam)
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Background
Definition
The complete k-uniform hypergraph on n vertices is the collection of

all subsets of size k and is denoted K(k)n .

Definition
The Ramsey number rk(t) is the minimum n such that any 2-coloring

of (the edges of) K(k)n contains a monochromatic K(k)t .

Example

r2(3) = 6

15
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History
A central open question: what is the behavior of r3(t)?
Erdős–Hajnal–Rado (1964)
There exist constants c, c′ > 0 such that

2ct
2
≤ r3(t) ≤ 22

c′t

Why is k = 3 so important?
Stepping-Up Lemma (Erdős–Hajnal, 1972)

rk+1(2t+ k− 4) ≥ 2rk(t).

This implies rk(t) ≥ Tk−1(ct2) where T1(x) = x, Ti(x) = 2Ti−1(x).

EHR also showed rk(t) ≤ Tk(ct). Showing r3(t) is double-exponential

would tell us rk(t) = Θ(Tk(t)) for all k > 3.
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Many Colors

One approach: find out what can happen when we use more than 2

colors.

Definition
The Ramsey number rk(t;q) is the minimum n such that any

q-coloring of K(k)n contains a monochromatic K(k)t .

• Erdős and Hajnal (1972): r3(t; 4) ≥ 22ct .

• Conlon, Fox, and Sudakov (’10): r3(t; 3) ≥ 2tc log t .

Erdős’s Conjecture

r3(t; 2) = Θ(22
t
)
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Many Colors

What if we relax the clique requirement to a different type of graph?

Can the 2-color Ramsey number be “that different” from the 4-color,

or in general q-color, Ramsey number?

Definition
The Ramsey number rk(G;q) is the minimum n such that any

q-coloring of K(k)n contains a monochromatic copy of G.
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Hedgehogs

Definition
The Ramsey number rk(G;q) is the minimum n such that any

q-coloring of K(k)n contains a monochromatic copy of G.

Conlon–Fox–Rödl, ’17
There is a family of k-uniform hypergraphs called hedgehogs such

that rk(G; 2) is bounded above by a polynomial in the size of G but

rk(G; 4) is at least double-exponential.

Question (CFR)
Is there a family of hypergraphs whose 2-color and q-color Ramsey

numbers differ by an arbitrarily large tower?
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Main Theorem
Let Ĥt be the balanced hedgehog.
Theorem (Dubroff–Girão–Hurley–Y. ’22)
There exist c > 0 and q : N → N such that for all k ∈ N and

sufficiently large t, we have

(1) r2k+1(Ĥt; 2) ≤ tk+3, and

(2) r2k+1(Ĥt;q(k)) ≥ T⌊c log2 log2 k⌋(t) .

3-uniform

hedgehog H3

6-uniform

balanced

hedgehog Ĥ6
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20



Main Theorem
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Example: Stepping up from 2- to 3-uniform

Given: “good” coloring of Km. Want: “good” coloring of K(3)2m .

1

2 5

3 4

v1
v2v3

V′ = binary

strings of

length 5

For u, v ∈ V′, define δ(u, v) = {max i : vi ̸= ui}.

v1 = (0, 0, 0, 0, 1)

v2 = (0, 1, 1, 0, 1)

v3 = (1, 0, 1, 1, 0)


δ1 = 3

δ2 = 5

Edge (3, 5) is blue, and

(δ1, δ2) is increasing, which

tells us what color to

assign (v1, v2, v3).

21
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Lower Bound

We show an “Erdős-Hajnal”-type result for a certain sequence

property: the δ-sequence either contains a long monotone

subsequence or some “forbidden” subsequence.

By stepping-up, we construct colorings where cliques span many

colors. From this, we produce colorings with no monochromatic Ĥt.

22
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Further Questions

• Can we say more about Ramsey numbers when we replace

“monochromatic” with “spanning fewer than p colors” (denoted

rk(t;q,p))?

• In particular, Conlon-Fox-Rödl asked: is there an integer q such

that r3(t;q, 3) ≥ 22ct? Our methods don’t apply here because of

limited ranges for the stepping-up parameters.
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Reconstructing Random Pictures
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Background

Reconstruction Problem
Given a discrete structure, can we uniquely reconstruct it from the

list of its substructures of a fixed size?

Most famous example: graphs—Vertex and Edge Reconstruction

Conjectures (Kelly, Ulam 1957, Harary 1964)

Mossel–Ross ’18
What about “shotgun assembly?” (motivated by shotgun

sequencing of DNA)

25



Background

Reconstruction Problem
Given a discrete structure, can we uniquely reconstruct it from the

list of its substructures of a fixed size?

Most famous example: graphs—Vertex and Edge Reconstruction

Conjectures (Kelly, Ulam 1957, Harary 1964)

Mossel–Ross ’18
What about “shotgun assembly?” (motivated by shotgun

sequencing of DNA)

25



Background

Reconstruction Problem
Given a discrete structure, can we uniquely reconstruct it from the

list of its substructures of a fixed size?

Most famous example: graphs—Vertex and Edge Reconstruction

Conjectures (Kelly, Ulam 1957, Harary 1964)

Mossel–Ross ’18
What about “shotgun assembly?” (motivated by shotgun

sequencing of DNA)

25



Random Pictures

Today: Let Pn be a random picture, i.e. an n×n grid with {0, 1} entries

chosen uniformly at random. Let D be the deck of its k× k subgrids.

Question
For what k = k(n) is Pn reconstructible from D with high

probability?

26



Example

A 10× 10 picture

Deck of 9× 9 subgrids
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Example

A 10× 10 picture

· · ·

Deck of 4× 4 subgrids
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Main Theorem

Let R(n, k) be the event that Pn is reconstructible from its k-deck.

Narayanan-Y. ’22+
There exists kc(n) such that as n→ ∞,

Prob[R(n, k)] →

0 if k < kc(n)

1 if k > kc(n)

Moreover, kc(n) takes one of two values: ⌊
√
2 log2 n⌋, ⌈

√
2 log2 n⌉.
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√
2 log2 n⌋, ⌈

√
2 log2 n⌉.

Proof of the 0-Statement: If k < kc(n), then n22−k
2 → ∞ as n→ ∞.

Counting argument; bound the number of reconstructible pictures by

the number of k-decks.
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Main Theorem
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Narayanan-Y. ’22+
There exists kc(n) such that as n→ ∞,
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0 if k < kc(n)

1 if k > kc(n)

Moreover, kc(n) takes one of two values: ⌊
√
2 log2 n⌋, ⌈

√
2 log2 n⌉.

Proof of the 1-Statement: If k > kc(n), then n2k2−k
2+k → 0. Our goal

is to give an algorithm for reconstructing Pn from its deck and prove

that the probability of failure tends to 0.

28



Reconstruction Algorithm

Step 0: Arbitrarily order the deck D and begin with the first deck

element.

29



Reconstruction Algorithm

Step 1: Extend downward to 3k rows by placing the first deck element

that fits.

3k

k

29



Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the

corners

k

2k− 1 k

2k− 1

29



Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the

corners then internally. Repeat to the right and left until n columns.

2k− 1

29



Reconstruction Algorithm

Step 3: Extend upward one row at a time, then downward until n

rows.

2k− 1 2k− 1
2k− 1

29



Naive Extensions

Observe that for each naive extension,

Prob[mistake] ≤ n22−k
2+k

So by union bound,

Prob[there is a mistake in the first step] ≤ 3kn22−k
2+k

which tends to 0 by our assumption. However, we cannot afford to do

naive extensions for the entire grid. This is why we introduce the

corner and internal extensions.
30
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Corner Extensions

Suppose we have reconstructed S and are extending to the right.

Before placing a corner subgrid T, we check to see if it can be

extended to a (2k− 1)× (2k− 1) subgrid S′ using deck elements.

S

T

S′

2k− 1
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Corner Extensions

Suppose we have reconstructed S and are extending to the right.

Before placing a corner subgrid T, we check to see if it can be

extended to a (2k− 1)× (2k− 1) subgrid S′ using deck elements.

γ

e1 X X. . .

S

T

S′

2k− 1

A k-grid is bad if it is incorrect

with respect to Pn. We mark the

upper-right corner with an X.

An interface path is a path

separating the good and bad

entries.
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Interface Paths

X
X

X
X
X
X

X
X
X
X

γ

We compute probabilities associated with the interface paths. For

example,

Prob[first step] ≤ n22−k
2+k

but

Prob[second step | first step] ≤ n22−k
2+1 + 2(4k2)(2−k+1)
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Further Directions

• Sharp threshold?

• Higher dimensions

• Variants: p-biased, multicolor, noisy, correlated...
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Background
In statistical physics, we want to determine macroscopic properties

of physical systems of particles by studying their microscopic

interactions.

• macroscopic: phase transitions, long-range

correlations

• microscopic: nearest neighbor interactions
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Background
In statistical physics, we want to determine macroscopic properties

of physical systems of particles by studying their microscopic

interactions.

• macroscopic: phase transitions, long-range

correlations

• microscopic: nearest neighbor interactions

How can we study these systems
mathematically? Graphs!

35



We begin with

• a graph G = (V, E)

• a finite set of spins {1, 2, . . . , q}, and

• spin configurations σ : V→ {1, . . . , q}

Example

1 1

23

An example spin configuration σ.
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An example spin configuration σ.

• a parameter β > 0 called the inverse temperature

• m(G, σ) = number of monochromatic edges in σ
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We begin with

• a graph G = (V, E)

• a finite set of spins {1, 2, . . . , q}, and

• spin configurations σ : V→ {1, . . . , q} aka vertex-colorings

• a parameter β > 0 called the inverse temperature

• m(G, σ) = number of monochromatic edges in σ

Definition
The Potts model is defined by a probability distribution µ on

q-vertex-colorings. For a coloring σ, we set µG(σ) ∝ eβm(G,σ), i.e.

µG(σ) =
eβm(G,σ)∑

coloringsχ
eβm(G,χ) =:

eβm(G,σ)

ZG(q, β)

The denominator ZG(q, β) is called the partition function.
36



Understanding the Distribution

For a coloring σ, we set µG(σ) ∝ eβm(G,σ)

Getting Some Intuition

• As β → 0, µG approaches the

uniform distribution over all

q-colorings.

• As β → ∞, µG approaches the

uniform distribution over all

monochromatic states.

Low β (high temperature)
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The Potts Model

Low β High β

Physical intuition: high temperature is “gas-like” and low

temperature is “solid-like.” On what graphs is this the truth?

38



The Potts Model—Structural Results

Structural Idea (Carlson-Davies-Fraiman-Kolla-Potukuchi-Y. ’22)
For d large enough, and q ≥ d27, the Potts model on d-regular

2-expander graphs exhibits a “structural phase transition.”

Similar results were previously known for:

• random d-regular graphs (Helmuth–Jenssen–Perkins ’21+),

• Zd (Borgs–Chayes–Helmuth–Perkins–Tetali ’20),

• d-regular Ω(d)-expander graphs when q ≥ dΩ(d)

(Jenssen–Keevash–Perkins ’20)
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The Potts Model—Structural Results

Structural Theorem (CDFKPY ’22)
Fix ϵ > 0. Let d ≥ d0(ϵ), q ≥ d27, and G be a d-regular n-vertex graph

with edge expansion at least 2.

Then the following hold for the q-color Potts model on G with high

probability:

When β < (1− ϵ)β0, each color class has size < (1+ o(1))nq .

When β > (1+ ϵ)β0, there is a color class with > (1− o(1))n vertices.
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Structural Theorem (CDFKPY ’22)
Fix ϵ > 0. Let d ≥ d0(ϵ), q ≥ d27, and G be a d-regular n-vertex graph

with edge expansion at least 2.

Then the following hold for the q-color Potts model on G with high

probability:

When β < (1− ϵ)β0, each color class has size < (1+ o(1))nq .

When β > (1+ ϵ)β0, there is a color class with > (1− o(1))n vertices.

*G is an η-expander if A ⊂ V, |A| ≤ n
2 implies |∇(A)| ≥ η|A|.

β0 is the order-disorder threshold of the Potts model on the random

d-regular graph (β0 ∼ 2 ln q
d )

39



Proof: A Combinatorial Tool

We want to say that most of the weight in the partition function

comes from mostly-monochromatic colorings. To do this, we provide

an upper bound on the weight coming from colorings that are far

from monochromatic.

A Coloring Lemma
The number of q-colorings with exactly ℓ non-monochromatic

edges is at most
( n
2ℓ/d

)
q2ℓ/d.

Proof technique: an adaptation of Karger’s randomized algorithm for

computing min-cuts of a graph.
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Algorithms for Counting and Sampling

Big Question
Does there exist an efficient approximate sampling algorithm

(FPTAS) for a given statistical physics model?

For many models, this is equivalent to finding efficient algorithms for

approximating ZG(q, β).

The low-temperature Potts model lies in a class called #BIS

(Goldberg–Jerrum ’12, Galanis–Štefankovič–Vigoda–Yang ’16). What

are the hard instances?
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The Potts Model—Algorithmic Results

Theorem (CDFKPY ’22)
For every ϵ, there is d large enough such that for q ≥ d27, there are

polynomial-time approximation algorithms for the Potts model on

d-regular 2-expander graphs, for β ≤ (1− ϵ)β0 and β ≥ (1+ ϵ)β0.

Moreover, the high-temperature result does not require expansion

and only requires q large in terms of ϵ.

(Compare to: Jenssen–Keevash–Perkins ’20 which had overlapping

temperature ranges but required q ≥ dΩ(d) and Ω(d)-expansion in

our low-temperature range.)
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Proof: A Statistical Physics Tool
Our second tool is called an abstract polymer model.

abstract polymer models

Potts model
hardcore model

random cluster model
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Proof: A Statistical Physics Tool

“I know what an analogy is! It’s like a thought with another thought’s

hat on.” (Britta Perry, Community)

Potts model hardcore model random cluster model
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Algorithmic Proof—Low Temp

1. Characterize colorings by their “defects” from the

monochromatic states.

2. Define an abstract polymer model (polymer = defect) with the

same partition function Ξ as ZG(q, β).

3. Approximate Ξ efficiently using the cluster expansion.

Helmuth–Perkins–Regts ’19
There are efficient algorithms for abstract polymer models that

satisfy certain conditions, including convergence of the cluster

expansion.

The cluster expansion is simply a Taylor series expansion of the

partition function!
45
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Further Directions

• Extend arguments to the ϵ gap around β0 and to the random

cluster model.

• Constant q?

• Weaker expansion

plus future projects in the intersections of statistical physics and

combinatorics as I continue on to a postdoc at Georgia Tech!
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Thank you!


	A Topological Turán Problem
	Hypergraph Ramsey Theory
	Reconstructing Random Pictures
	Algorithms for the Potts Model

