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Abstract: In continuation of a work with Sushmita
Venugopalan, I will describe a calculus for counting disks
bounding tropical Lagrangians. In particular, I will describe a
new kind of vertex called “tropical trouser”, corresponding to a
half-pair-of-pants bounding a Lagrangian.



SAMPLE THEOREM

Setup: Let L ⊂ X be a compact spin monotone tropical
Lagrangian in a del Pezzo surface.

WL : Hom(π1(L),C×)→ C× the disk potential of L counting
Maslov index two disks passing through a generic point,
weighted by holonomies.

If L is a Lagrangian sphere, WL is just an integer.



SAMPLE THEOREM CTD

Thm: WL is a sum over tropical graphs Γ, with the contribution
of each Γ given as a product over vertices v of some
multiplicities m(v) by a Mikhalkin-type formula

m(Y) =
∑

Γ

# Aut(Γ)−1
∏

v∈Vert(Γ)

m(v)

assuming “general position”. I will describe the multiplicities
m(v).



SAMPLE APPLICATION: FUKAYA CATEGORIES OF DEL

PEZZOS

Manin observed that Lagrangian homology classes in del
Pezzos corresponding to simply-laced root systems.

I will explain how to understand the numbers in the following
table which can be computed purely from tropical geometry.

X Manin Root System ≈ Spec(c1? ∈ End(QH(X)))

P2 3α, α3 = 1
P1 × P1 A1 4, 0⊕2,−4
Bl1 P2 −0.33, 3.8,−2.23± 1.94I
Bl2 P2 A1 (−1)⊕2, 4.73,−2.86± 0.94I
Bl3 P2 A1 ⊕ A2 (−2)⊕3, (−3)⊕2, 6
Bl4 P2 A4 (−3)⊕5, 8.09,−3.09
Bl5 P2 D5 (−4)⊕7, 12
Bl6 P2 E6 (−6)⊕8, 21
Bl7 P2 E7 (−12)⊕9, 52
Bl8 P2 E8 (−60)⊕10, 372.



MIKHALKIN FORMULA

Mikhalkin introduced a formula for counting holomorphic
spheres in toric surfaces X as a sum over tropical graphs. For
example, here is the unique tropical graph contributing to the
count of spheres of degree (1, 1) in X = P1 × P1 passing
through three generic points (drawn in pink.)

“There is a unique
automorphism of P1

with specified values
at three points. “



MIKHALKIN FORMULA

Let m(Y) be the number of holomorphic genus zero maps with
the given constraints Y. m(Y) is a sum over tropical graphs Γ,
with the contribution of each Γ given as a product over vertices
v of some multiplicities m(v).

m(Y) =
∑

Γ

# Aut(Γ)−1
∏

v∈Vert(Γ)

m(v).

This formula was generalized to toric varieties by
Nishinou-Siebert.



MIKHALKIN MULTIPLICITIES, TORIC CASE

The tropical graphs Γ live in the dual complex B = ∪P∈PP∨ for
some particular polyhedral decomposition of the moment
polytope Φ(X) = ∪P∈PP (and it’s also necessary to take
perturbation).

It’s convenient to draw the graphs on top of the moment
polytope.



MIKHALKIN MULTIPLICITIES, TORIC CASE

In Mikhalkin’s case for spheres there are only two multiplicities
needed: At a trivalent vertex v, m(v) is the area parallelogram
spanned by the directions if the outgoing directions of the
edges at v sum to zero, and vanishes otherwise.

At a univalent vertex v mapping to the boundary of the
moment polytope, m(v) = 1 and the direction must be normal
to the boundary.



PROOF OF MIKHALKIN FORMULA

The original proof was rather explicit.

Brett Parker gave an sft-style proof uses a degeneration
argument under multi-directional symplectic cutting.

Venugopalan and I gave a different sft-style version that also
works for holomorphic disks bounding Lagrangians, also in
almost toric manifolds.



SFT-STYLE PROOF OF MIKHALKIN FORMULA

The proof uses the fact that any almost toric manifold admits a
toric degeneration: Pick a polyhedral decomposition P = {P}
of the base diagram so that each cut space XP contains at most
one constraint, face of minimal dimension, or focus-focus
singularity. Each sequence u of maps contributing to the count
has a broken limit u∞ in ∪PXP.



PROOF OF MIKHALKIN FORMULA

Define a tropical graph Γ by assigning to each component u a
vertex v, and each node an edges. For each Γ we wish to count
the subset of Πv∈Vert(Γ)M(XP(v)) of tuples satisfying matching
conditions at the nodes.



PROOF OF MIKHALKIN FORMULA

A special feature in the genus zero dim(X) = 4 case:

Each fiber product M = M1 ×M12 M2 is actually a Cartesian
product after adding constraints.

Since dim(M) = 0, without loss of generality dim(M1) = 0, and
the image of M12 in M2 provides a constraint Y2 so that the
constrained moduli space dim(M2(Y2)) = 0. So

M(X) =
⋃
Γ

∏
v∈Vert(Γ)

M(XP(v),Yv)

There is something like this in higher dimension, but it’s more
complicated (Fulton-Sturmfels splitting of diagonal.)



MIKHALKIN MULTIPLICITIES, ALMOST TORIC CASE

Venugopalan and I worked out the generalization of
Mikhalkin’s formula to the almost toric case, which in some
sense is “known” by results of Brett Parker and others. The
case of K3 surfaces had been done by Lin.

An almost toric moment map is like a toric moment map,
except that fibers that are nodal tori are allowed. The nodes are
called focus-focus values.



There is just one additional vertex for a sphere with direction
going to a focus-focus singularity perpendicular to a branch cut
direction.

The multiplicity is the Bryan-Pandharipande formula
m(v) = (−1)d−1/d2, where d is the lattice length.



VIANNA’S DIAGRAMS FOR DEL PEZZOS

Vianna has shown that every del Pezzo admits an almost toric
structure a la Symington.



HOLOMORPHIC SPHERES IN DEL PEZZOS

Example: A famous formula of Cayley-Salmon is the count of
twenty seven lines (lowest degree curves) in a cubic surface.
The 27 lines in the cubic are all variations on the following
graph:



HOLOMORPHIC SPHERES FOR DEL PEZZOS

There is a less well-known count of 252 degree one curves in
the del Pezzo of degree one:

Of these 240 are embedded (and correspond to the roots of E8).
The extra 12 are half of the 24 nodal fibers in a K3.



THE POTENTIAL OF A LAGRANGIAN

X symplectic manifold L compact oriented spin Lagrangian

We now want to describe how to count holomorphic disks in X
bounding L using tropical curve counting.

Although in general disk counts depend on the choice of
almost complex structure, some counts are independent.

For example, the disk potential WL of a monotone Lagrangian L
is the number of Maslov-index-two holomorphic disks passing
through a generic point, and is independent of choices by a
result of Oh.



EXAMPLE: POTENTIAL FOR THE TWO-SPHERE

Typically one counts disks weighted by the holonomies of a
local system y : π1(L)→ C× to obtain a function WL(y).

Example: The potential of the equator in the two-sphere is
WL(y) = y + 1/y, with the two terms coming from the two
hemispheres.



MOTIVATION: MIRROR SYMMETRY/CLASSIFICATION

OF FANO’S

The function WL is expected to be a chart on the mirror
manifold (sometimes the whole mirror.)

By a conjecture of Coates et al, there is a classification of Fano
varieties by functions WL with certain properties.

By results of Vianna et al, there are infinitely many
Hamiltonian-isotopy classes of monotone Lagrangian tori in
del Pezzos, by counting the number of terms in WL.



EXAMPLE: POTENTIAL OF S2 × S2

Potentials behave in the expected way with respect to products.
So, for example, if L = S1 × S1 ⊂ X = S2 × S2 then
WL(y1, y2) = (y1 + 1/y1) + (y2 + 1/y2).

Its Newton polytope is dual to the moment polytope.



MULTIPLICITIES FOR ALMOST TORIC MOMENT FIBERS

The Mikahlkin-style formula for Lagrangians fibers in
almost-toric manifolds just one additional possible vertex v,
representing the boundary on the Lagrangian, which is
univalent and has m(v) = 1.

Using this one can computed the potentials of monotone del
Pezzos in a straight-forward way. (Was deduced earlier by
Pascaleff-Tonkonog using “structural properties”.)

Similar results using Gross-Siebert by
Bardwell-Evans-Cheung-Hong-Lin



EXAMPLE

For the degree four del Pezzo
WL(y1, y2) = (1 + y1)2(1 + y2)2/y1y2 − 4, arising from the
tropical graphs

The critical value
WL = 12 is easy to
see from this picture,
since y = 1 is a critical
value by symmetry.
What about the other
critical value −4?



TROPICAL LAGRANGIANS

Def: A tropical Lagrangian L of a symplectic manifold X with a
Hamiltonian torus action is a sequence of Lagrangians whose
moment image approximates some piecewise linear complex Λ
in the moment polytope Φ(X) of X.

Example: The diagonal in X = (S2)− × S2 (that is, the graph of
the identity as a symplectomorphism) is a tropical Lagrangian
with graph the diagonal in Φ(X) = [−1, 1]2.



TROPICAL REALIZABILITY THEOREMS
Hicks, Matessi, Mikhalkin have proved various tropical
realizibility theorems, describing which tropical graphs or in
higher dimensions, which polyhedral complexes can be
approximated by Lagrangians.

Example: A tropical Lagrangian in Bl3 P2:



TROPICAL REALIZABILITY THEOREMS

Generalization of Mikhalkin’s Realizibility Thm for Almost
Toric Four-Manifolds: Any tropical graph Λ ⊂ B whose
univalent vertices v appear either

-at the vertices of B (in which case they must bisect the angle in
the lattice sense) or

- at the focus-focus values Bfoc (in which case they must be
shear directions) and

- have primitive lattice directions µ(ε), ε ∈ Edge(Λ) satisfying
the Mikhalkin balancing condition at any trivalent vertex, is
realizable.

An undergraduate Annie Wei working with me pointed out
that there are a lot more graphs that are realizable.



A PICTURE OF A TROPICAL LAGRANGIAN IN AN

ALMOST TORIC MANIFOLD



MANIN CONFIGURATIONS

The diagonal is the first case of a Manin system: An ADE
configuration of tropical Lagrangians in a del Pezzo surface X.

A system of Lagrangian two spheres whose intersection
diagram is one of the simply-laced root systems.

On the homology level these were discovered by Manin (as
generators for the second cohomology perpendicular to the
canonical class).



MANIN CONFIGURATIONS

I’ll focus on the thrice-blown-up projective plane X = Bl3(P2),
whose associated Manin root system is A1 ⊕ A2.

To get the positive roots of the A2 system, just take the inverse
images of the diagonal in any of the three blow-down-to
P1 × P1 maps.



THE LAGRANGIAN PAIR OF PANTS

To get the A1 system in Bl3 P2 one needs the Lagrangian pair of
pants. Near a vertex, this Lagrangian is defined by taking a
holomorphic pair of pants and taking a hyperKahler rotation.



POTENTIALS FOR MANIN CONFIGURATIONS

Each Lagrangian in a Manin configuration is a sphere, and so
WL is an integer.

Main Thm: There is a Mikhalkin-type formula for counting
disks bounding these Lagrangians.

Two new types of vertices: univalent v starting on an edge e of
lattice length `(e) ∈ Z≥0 of Lagrangian, with m(v) = (−1)`(e),
corresponding to a half-cylinder, perpendiular to the tropical
Lagrangian.



ANTI-SYMPLECTIC INVOLUTIONS

The multiplicity of a half-cylinder can be computed using
anti-symplectic involutions. Recall (see e.g.
Fukaya-Oh-Ohta-Ono) if L ⊂ X is the fixed point set of an
anti-symplectic involution then disks bounding L correspond
to spheres in X.

Example: Let L be the diagonal in S2 × S2. Then disks bounding
L with an interior and boundary constraint correspond to
spheres in S2 × S2 with three interior constraints.

The count of the spheres is 1, but the orientation is reversed at
one of the interior constraints in the “double” so the count of
the disks is −1.



THE HOLOMORPHIC TROUSER

Trivalent vertex v corresponding to the holomorphic pant (half
a pair of pants) with m(v) = | det(µ◦µ•)| ∈ Q where µ◦ resp. µ•
is the boundary puncture resp. interior puncture direction .
Proof is a reduction to the case of real lines by a multiple cover
argument.



DISKS BOUNDING THE LAGRANGIAN PAIR OF PANTS

m(v) = −1, 1, 1 for disks bounding the Lagrangian pair of pants
and hitting one resp. two resp. three legs.



PROOF OF MULTIPLICITIES FOR LAGRANGIAN PANTS
The proof of the multiplicities for Lagrangian pants is harder.

Hind, Evans: The Lagrangian pants L in Bl2(P2) is Hamiltonian
isotopic to the inverse image L′ of the diagonal (which has
tropical graph an interval).

So WL = WL′ = −1.



EXAMPLE FOR X = Bl3(P2).

For the A2-system Lagrangians WL = −2 by the degeneration
argument in the following picture: The tropical graphs of the
holomorphic curves are drawn on the right.



EXAMPLE FOR X = Bl3(P2).

For the A1-system Lagrangians WL = −3.



THE CARTOON PICTURE FOR THE FUKAYA CATEGORY

OF Bl3(P2)



FUKAYA CATEGORIES OF DEL PEZZOS

Under the open-closed map HH∗(Fuk(X))→ QH(X) classes of
Lagrangians with potential WL map to generalized
eigenvectors of quantum multiplication by c1(X).
(Dubrovin-Kontsevich spectrum)

Def: A Manin summand in QH(X) is a generalized eigenspace
with WL integer and |WL| non-maximal.

Thm: Each Manin summand in QH(X) is generated by the
corresponding Manin configurations of Lagrangians in X
under the open-closed map. By Abouzaid generation criterion,
the Manin configurations split-generate the corresponding
Fukaya eigencategories.



THE CASE OF LOW DEGREE

In the case of low degree, there are generalized eigenvectors of
c1? that are not eigenvectors. These cannot be generated by
Hochschild chains of length one; one has to explicitly construct
Hochschild chains of higher length.

One can find such chains that involve combinations of the
Lagrangians in the Manin system. But one never needs
non-trivial Maurer-Cartan solutions in these cases.



FINAL REMARKS

Analogy:

Cohomology Quantum cohomology
Mayer-Vietoris Relative Gromov-Witten theory
Čech cohomology Multi-directional sft/tropical geometry

Generally speaking not any “decomposition” is allowed, only
those corresponding to “sympectic cutting” a la Lerman.



FINAL REMARKS

Tropical curve counting does not “reduce pseudoholomorphic
curve counting to combinatorics”.

Instead, one sometimes finds that using formal properties of
holomorphic curves one is reduced to computing a few
examples, which can then be computed e.g. using tropical
curve counts.



FINAL REMARKS

The techniques work best in, but are not limited to, dimension
four.

For example, one can computing potentials and
split-generation for moduli spaces of flat bundles on Riemann
surfaces (my student Sumeet Khandelwal is finishing a thesis
about this; he proves split-generation in some cases).

To give another example, the Chiang Lagrangian is tropical in
P3, but curve counts reduce to a tropical Lagrangian of an
orbifold projective plane which can be performed tropically.


