INVARIANCE OF IMMERSED FLOER COHOMOLOGY
UNDER LAGRANGIAN SURGERY

JOSEPH PALMER AND CHRIS WOODWARD

ABSTRACT. We show that cellular Floer cohomology of an immersed Lagrangian
brane is invariant under smoothing of a self-intersection point if the quantum
valuation of the weakly bounding cochain vanishes and the Lagrangian has di-
mension at least two. The chain-level map replaces the two orderings of the
self-intersection point with meridional and longitudinal cells on the handle cre-
ated by the surgery, and uses a bijection between holomorphic disks developed by
Fukaya-Oh-Ohta-Ono [42, Chapter 10]. Our result generalizes invariance of po-
tentials for certain Lagrangian surfaces in Dimitroglou-Rizell-Ekholm—Tonkonog
[30, Theorem 1.2], and implies the invariance of Floer cohomology under mean
curvature flow with this type of surgery, as conjectured by Joyce [53].
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1. INTRODUCTION

A Lagrangian immersion in a compact symplectic manifold with transverse self-
intersection defines a homotopy-associative Fukaya algebra developed by Akaho-
Joyce in [6]. The framework of Fukaya-Oh-Ohta-Ono [42] associates to this algebra
a space of solutions to the projective Maurer-Cartan equation. For any solution,
there is a Lagrangian Floer cohomology group, independent up to isomorphism of
all choices. In Palmer-Woodward [66], we studied the behavior of Floer cohomology
under variation of an immersion in the direction of the Maslov (relative first Chern)
class, such as a coupled mean-curvature/Kéhler-Ricci flow. The main result of [66]
was that there exists a flow on the space of projective Maurer-Cartan solutions with
the following property: The isomorphism class of the Lagrangian Floer cohomology
is invariant as long as the valuation of the Maurer-Cartan solution with respect to
the quantum parameter stays positive and the Lagrangian stays immersed. In
particular, the Floer cohomology is invariant as the immersion passes through
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a self-tangency. Naturally a question arises whether one can continue the flow
through a “wall” created by the vanishing valuation at a self-intersection point.

Via the mirror symmetry conjectures, this question is expected to be related to a
question on deformation theory of vector bundles on a mirror complex manifold, or
more precisely, matrix factorizations [55]. The mirror of the mean curvature flow
is expected to be (a deformed version) of the Yang-Mills flow [51]. The isomor-
phism class of the bundle is constant under Yang-Mills flow and, in particular, the
cohomology is invariant [8]. That is, there are no real-codimension-one “walls” on
the mirror side, and so one does not expect such walls in the deformation spaces
for Lagrangian branes either. For vector bundles on projective varieties there exist
versal deformations [40] in the sense of Kuranishi; see for example [82] for coherent
sheaves. The base of these versal deformations are complex-analytic spaces. The
results of this paper can be viewed as giving a theory of versal deformations for im-
mersed Lagrangians, in which solutions to the projective Maurer-Cartan equation
with negative g-exponents parametrize the actual deformations of an immersed
Lagrangian. As in the case of deformations of singular algebraic varieties [27,
Chapter XIJ, in order to produce the expected space of deformations one must
allow smoothings at the singularities.

A way of smoothing singularities of immersed self-transverse Lagrangians was
introduced by Lalonde-Sikorav [58] and Polterovich [69]. Let ¢ : Lo — X be a self-
transverse Lagrangian immersion with compact domain Ly with an self-intersection
point = € ¢o(Lg). For a sufficiently small surgery parameter ¢ € R denote by

9

FIGURE 1. An immersion and its surgery

¢e : Le — X the surgery obtained by removing small balls around the intersection
and gluing in a cylinder. The surgery parameter € is closely related to the difference
A(e) from (16) in the areas of disks bounding ¢o(Lo) and ¢.(L.).

A long line of papers in symplectic geometry have studied the effect of Lagrangian
surgery on Floer theory. Seidel’s long exact triangle [76] is perhaps the first exam-
ple, since a Dehn twist is a special case of a surgery. More generally, holomorphic!

ITo save space, we refer to holomorphic disks with respect to some almost complex structure
as holomorphic.
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disks with boundary in the surgery were described in Fukaya-Oh-Ohta-Ono [42,
Chapter 10]. Abouzaid [4], Mak-Wu [62], Tanaka [84], Chantraine-Dimitroglou-
Rizell-Ghiggini-Golovko [20, Chapter 8], Fang [35], and Hong-Kim-Lau [50, The-
orem B] proved various generalizations. The invariance of disk potentials was
shown for certain Lagrangian surfaces by Pascaleff-Tonkonog [68, Theorem 1.2]
and Dimitroglou-Rizell-Ekholm-Tonkonog [30, Theorem 1.2]. In dimension two,
the Lagrangians related by the two different signs of surgery parameter are said
to be related by mutation. Mutation-invariance of Lagrangian Floer homology was
shown via Lagrangian cobordism techniques by Hicks [48]. The “wall-crossing”
formula for the change in the local system given by the above formulas is discussed
in Auroux [11], [12], Kontsevich-Soibelman [56], and Pascaleff-Tonkonog [68].

We construct a natural identification of solutions of the projective Maurer-Cartan
equations for the surgered and unsurgered Lagrangian branes that preserves the
disk potentials and Floer cohomology. The version of Floer cohomology used here is
the cohomology of the twisted first composition map for a Fukaya algebra generated
by cellular cochains and self-intersection points on the immersed Lagrangian, which
counts treed holomorphic disks bounding the Lagrangian with cellular constraints.
The treed holomorphic disks are natural generalizations of the treed holomorphic
disks considered in the Morse model for Fukaya algebras considered in [75]. There
the tree segments in the disk determine gradient trajectories while in this paper
the parameter corresponds to an evaluation in some cellular degeneration of the
diagonal embedding of the Lagrangian. The cellular model is essentially equivalent
to the Morse model considered in the earlier paper [66] but we find that the bijection
between Floer cochains is most naturally phrased as a correspondence involving
cells, rather than Morse critical points.

Our results show that if the quantum valuation at a self-intersection point of a
family of Maurer-Cartan solutions in a mean curvature flow of Palmer-Woodward
[66] reaches zero then the solution may be continued by Lagrangian surgery so that
the Floer cohomology of the surgery is invariant. Thus the flow may be continued
after the singular time without changing the Floer cohomology.

The assumptions necessary for invariance of Floer cohomology to hold are en-
coded in the following definitions. Let

1) A=C(() = { iq

lim d; = 00, Vi, d; € R, aiEC}
71— 00
denote the Novikov field with complex coefficients,? equipped with g-valuation

val, 1 A = {0} =R, Zaiqdi — min(d;, a; # 0).

=0

2The Fukaya algebras in this paper are defined with rational coefficients, but allowing complex
coefficients gives a possibly-larger Maurer-Cartan space.
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Let Ay denote the group of units in A with vanishing ¢-valuation

Ay = Valq_l(O) = { ag + Zaiqdi eA

i>1

aOEC—{O}, Vi, aiGC,di>O}.

Let ¢p : Ly — X be a Lagrangian immersion. A local system on ¢q is a flat Ag-
line bundle y on ¢(Ly), or equivalently, a flat line bundle on L, together with
identifications of the fibers y(x_) — y(x) at the self-intersection points

T = (.CL',,.%'+), ¢0(x*) = ¢O($+)-

If ¢o(Lo) is connected with fundamental group 7 (¢o(Lo)) for some choice of base
point then the space of isomorphism classes of local systems is isomorphic to the
space of representations

R(¢po) = Hom(mi(do(Lo)), Ao) = Hom(Hi(po(Lo)), Ao).

For disconnected Lagrangians, R(¢g) is defined by replacing m (¢o(Lo)) with the
product of the fundamental groups of the connected components of ¢g(Lg). Let
¢o : Ly — X be equipped with a brane structure consisting of an orientation,
relative spin structure, and Ag-valued local system y € R(¢g). In Sections 5 and
6 we construct for any such datum a Fukaya algebra C'F(¢q), which is a strictly
unital A, algebra.

The Fukaya algebra has a canonical family of deformations parametrized by odd
cochains, and the cohomology is defined for solutions to the projective Maurer-
Cartan equation. By definition, any element b € C'F(¢y) is given as a sum

b= > blz)x

z€Z(¢o)

over generators x € Z(¢g) corresponding to cells or self-intersection points. In
particular, if b is odd then b(z) vanishes for = even degree. Let MC(¢) denote
the space of projective Maurer-Cartan solutions, as in (69). For ¢ > 0 small let
MC5s(¢g) denote the subspace satisfying

valy(b(x)) € (=9, 00)

at the transverse self-intersection points x of ¢g. For sufficiently small §, associated
toany by € MCs(¢y), called a weakly bounding cochain, is a Floer cohomology group
HF(¢o,bo), independent of all choices up to isomorphism. Given x = (z_,xz,),
denote by T = (z,,x_) € L the self-intersection point with the opposite ordering.
The degree of = is even resp. odd if the natural map

T, L& Ty, L — Tyap X

is orientation preserving resp. reversing. If dim(L) is even then z is odd if and
only if T is odd, while if dim(L) is odd then z is odd if and only if T even. By
convention by(Z) vanishes if T is even.
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Definition 1.1. Let ¢y : Ly — X be a Lagrangian immersion and by € M Cjs(¢y)
a Maurer-Cartan solution. An odd self-intersection point = (x_,z,) € L3 is
admissible for by if and only if

(a) the g-valuation of the coefficient by(x) is close to zero in the sense that
(2) valy(bo(z)) € (=0,0)

and
(b) either dim(Ly) = 2 and the g-valuation of by(Z) is sufficiently large in the
sense that

(3) valy(bo()bo(Z)) >0 or by(T) =0

or dim(Lg) > 2 and by(z) = 0.
This ends the Definition.

We remark that for the bounding cochains arising in our previous study of in-
variance of Floer cohomology under the development of tangencies [66] in fact we
have by(T) = 0 since only one of the orderings was needed to cancel the obstruction
arising from the additional contributions to the curvature of the immersed Fukaya
algebra.

The invariance of Floer cohomology under surgery holds after the following
change in the weakly bounding cochain. The surgered Lagrangian L. is obtained
from Lo by removing the self-intersection points x4 € Ly and gluing in a handle
H, =~ S" ! xR, as in Section 2. We denote by

p= St x {0}, A={pt} xR

the meridional and longitudinal cells on the handle H,, oriented so that the bijection
of Proposition 7.2 is orientation preserving. These cells appear as generators of the
space of Floer cochains in the cellular model.

Definition 1.2. Let v = (z_, x) with ¢g(x_) = ¢o(z). For € > 0 let
C'Fs(do,€) C CF(¢o)

denote the space of elements by € C'F(¢y) satisfying
valy (bo(2)g ™) = 0

(see (16)) and (3). Let
M05<¢, 6) C CF5(¢, 6)

3For the sake of discussing explicit examples, we also allow dim(Ly) = 1 under the following
assumptions (which do not typically hold): bg(Z) = 0, every holomorphic disk u : S — X with
boundary on ¢ meeting x has a branch change at every z € S with u(z) = z, and there are no
holomorphic disks u : § — X with exactly one corner at 7.
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denote the space of Maurer-Cartan solutions by that vanish on the closure of the
cells containing x.:

(4) bo(0) =0, Yo CT, 724
and if dim(Lg) > 2 then by(Z) vanishes. Define

(5) W :CFs(do, ) — CF(o0), bmﬁ%—hﬂ)x—%(ﬂ+

m%() M+M%H%@+DAdm@@:2

where the logarithms are defined by formal power series expansion at the leading
order term for any choice of branch, well-defined by the assumption that by(z)q?(
and by(x)bo(T) + 1 have vanishing ¢-valuation. This ends the Definition.

The vanishing condition (4) can always be achieved up to gauge equivalence by
Lemma 5.11. In the case dim(Lg) = 2, we assume that the surgered Lagrangian
L. is equipped with a local system which has holonomy —1 around the meridian;
note that this assumption constrains the topology of the surgery. The conditions
in Definition 1.2 are satisfied in our application to mean curvature flow [66].

We may now state the main result. Let MCso(¢.) be the enlarged space of
projective Maurer-Cartan solutions in (76) for ¢, in which one allows the coefficient
of A to have vanishing g-valuation.*

Theorem 1.3. Let ¢g : Lo — X be an immersed Lagrangian brane of dimension
dim(Ly) at least two in a compact rational symplectic manifold X . There exists a
constant 0 > 0 such that for any by € MCs(¢o) and any admissible transverse self-
intersection point x € I%(¢) as in Definition 1.1 there exist perturbation systems
defining the Fukaya algebras C'F(¢o) and CF(¢.) so that the following holds: The
map VU of Definition 1.2 satisfies

(6) U(MCs(¢o,€)) € MCxo(o)
preserves the disk potentials
UWe =Wy, Wo: MCs(do) — A, We: MCso(oe) —
and lifts to an isomorphism of Floer cohomologies
HF (¢, bo) = HF (¢, b := W (bo)), Vbo € MCs(co, €).

In other words, immersed Floer cohomology is invariant under surgery after a
suitable change in the weakly bounding cochain.

4This enlargement is only relevant in the case dim(L) = 2, and in this case we show that the
Maurer-Cartan sum still converges.
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Remark 1.4. J. Hicks [49, Section 2] has given examples of Lagrangian spheres that
have surgeries that in the Fukaya category are non-isomorphic depending on the
sign of the surgery parameter ¢; the result above does not contradict these examples
since we require the immersed Lagrangian ¢y : Ly — X itself to have a non-zero
weakly bounding cochain by.

Remark 1.5. Returning to the application to mean curvature flow, Theorem 1.3
suggests the possibility of mean curvature flow for Lagrangians with preventive
surgery. Namely, similar to the set-up in the Thomas-Yau conjecture [85] suppose
one performs coupled mean curvature/Kéahler-Ricci flow on a Lagrangian immer-
sion ¢; with unobstructed and non-trivial Floer theory H F(¢;). The results of this
paper and Palmer-Woodward [66] imply that the non-triviality of the Floer homol-
ogy HF(¢;) carries along with the flow ¢, if a surgery before the time at which the
geometric singularity forms is performed whenever the g-valuation val,(b;) of the
Maurer-Cartan solution b; crosses zero. This type of surgery is preventive rather
than emergency in the sense that the Lagrangian immersion ¢; is not about to
cease to exist. Non-triviality of the Floer cohomology affects the types of sin-
gularities that can occur as discussed by Joyce [53]. One naturally wonders what
kind of singularities can occur generically (meaning allowing arbitrary Hamiltonian
perturbations) in the case of non-trivial Floer cohomology.

We may upgrade the isomorphisms of Floer cohomology to a quasi-isomorphism
in the Fukaya category as follows. A full construction of a Fukaya category con-
taining all Lagrangians is beyond the techniques of this paper; we consider rather
the following simplified Fukaya category with two objects. Let ¢ : L — X be a
Hamiltonian isotopy of ¢y : Ly — X such that ¢, ¢ intersect transversally, as in
Figure 15. We assume that € is sufficiently small so that the surgered immersion
¢ : Le — X intersects ¢y transversally as well. After a Hamiltonian perturbation
we may assume that the Lagrangian

b:doUdy: LoUL), — X

is rational, immersed, and with transverse self-intersection, and similarly for

bt U L.ULY — X.

As such, we obtain a category Fukg (X) with two objects ¢, ¢ equipped with
weakly bounding cochains, and with morphisms defined by the corresponding sub-
spaces of CF(¢y). For sufficiently small surgery parameter €, the intersection ¢.N¢y;
is still transverse and we obtain a category Fuk; (X) with objects (¢, be), (90, b))
with weakly bounding cochains. Invariance of Lagrangian Floer theory under
Hamiltonian isotopy (specifically, the homotopy invariance of the A, bimodule
associated to a pair of Lagrangians) implies that that ¢f, admits a weakly bound-
ing cochain ¢f, and so that the objects (¢, bo), (¢5,b;) are quasi-isomorphic in
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Fuk; (X). That is, there exist elements

(7)  ag € CF(¢o, dp), Po€ CF(¢y,d0), 0o € CF(¢o,do), & € CF (g, dp)
so that
bo,bE) o bO b(),b() o blo ]
Mo (aojﬁo) — Ly, = my (50), My (507040) - 1¢6 =y (50)'
It follows from the associativity of the composition law that
HF(¢o,bo) = HF (¢, bp).-
We prove a similar theorem for the surgered immersion:
Theorem 1.6. Under the assumptions of Theorem 1.3, the objects (¢pe,b.) and

(¢0,b5) are quasi-isomorphic in Fukg (X), and in particular have their endomor-
phism algebras have isomorphic cohomology HF (¢.,b.) = HF (¢q, bo).

More generally, in any reasonable definition of the Fukaya category we expect
that (¢o,bo) and (¢, b.) are quasiisomorphic. This would be the mirror statement
to invariance of the isomorphism class of the bundle under (deformed) Yang-Mills
heat flow.

We thank Denis Aurouzx, Soham Chanda, John Man-Shun Ma, Dmitry Tonkonog,

Sushmita Venugopalan and Guangbo Xu for helpful discussions.

2. LAGRANGIAN SURGERY

Lagrangian surgery was introduced by Lalonde-Sikorav [58] in dimension two
and Polterovich [69] for arbitrary dimension. Surgery smooths a self-intersection
point by removing small balls around the preimages of the self-intersection point
and gluing in a handle. Haug [47] introduced generalizations to handles of higher
index, which we do not consider here.

2.1. The local model. The local model for the surgery is obtained by parallel
transport of the vanishing cycle of the standard Lefschetz fibration along a line
parallel to the real axis, as explained in Seidel [78, Section 2e|]. The standard
Lefschetz fibration is the map

(8) T:C" = C, (21,...,20) = 254+ ... + 22

Equip C" with the standard symplectic form w € Q*(C"). The space C" — {0} has
a natural connection given by a horizontal sub-bundle

Th c T.(C"—{0}), T!= (KerD.m)"
equal to the union of symplectic perpendiculars of the fibers 771(2). For any path
v :[0,1] — C — {0}
there is a symplectic parallel transport map
T, 7 (7(0)) = 7 (1))
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by taking the endpoint of a horizontal lift of v with any given initial condition.
Let v : [0,1] — C be an embedded path with endpoint v(0) = 0 at the critical
point of the Lefschetz fibration. Each fiber of m over v([0, 1]) has a vanishing cycle
C, C 7 !(z) defined as the set of elements w € 7 !(2) that limit to the origin
0 € C" under symplectic parallel transport C, — Cy. If S"71 € R® C C" is the
unit sphere, then explicitly

C,:=z5"!, :eC.

Now let v : R — C be an embedded path so that except for ¢ in some compact
interval [—c, ¢|, we have

9) v(t) =t +1i2¢, Vt¢ [—c .

For example, one could assume that the path is the affine linear path v(t) = t+i2e.
The handle Lagrangian H., is the union of vanishing cycles over :
Hy = Gy
teR
As in [76, Discussion after (1.12)], H, may be equivalently defined as symplectic
parallel transport of C, along 7.

More generally, as pointed out by Seidel [78, Section 2e|, one may define surgery
by allowing more general paths in the base of the Lefschetz fibration. By bending
the path somewhat below the real axis one can achieve a zero-area surgery for
which the disks have the same area as for the original. However, we will only use
the straight paths for the classification of disks in Section 7.

The handle has the following explicit description. Let C® = R?" be equipped
with Darboux coordinates

z2=(z1,..,2n), 2Zk=qe+ipy, k=1,...,n.
For a real number e with |e| small define a Lagrangian submanifold H, of C", the

handle of the surgery, by

. 4 n €
(10) Hez{(qlﬂpl,.--,qnﬂpn)€C q#0, Vk, pk=|qq|';}.
Identify C™ = TVR™ in the standard way. Denote the standard symplectic form

wo = Y _ dgp A dpy € Q*(CM).
k=1

Define

fe:R"—={0} = R, ¢~ €eln(|q]).
The Lagrangian H. is the graph of the closed one-form df.:

(11) H, = graph(df.) Cc R*".
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Also note that H. C C" of (11) is invariant under the anti-symplectic involution
t:C"—=C"  (p,q) — (q,p).

For the purposes of symplectic field theory, it is convenient to replace the above
Lagrangian with one that is cylindrical near infinity in the sense of Definition 6.7
rather than only asymptotically cylindrical. By the flattened handle we mean the
Lagrangian defined by parallel transport of a sphere along a path  with v(¢) = ¢ for
t outside of a compact neighbourhood of 0, and passing slightly above the critical
value 0 € C. An equivalent definition can be given explicitly as follows. Define a
Lagrangian submanifold H.ccr equal to H, in a compact neighborhood of 0 and
equal to R™" U4R™ outside a larger compact neighborhood of 0 as follows. Following
Fukaya-Oh-Ohta-Ono [42, Chapter 10], let

(>0, €#0

be constants. The constant € is the surgery parameter describing the “size” of the
Lagrangian surgery, while the parameter ¢ is a cutoff parameter describing the
size of the ball on whose complement the surgery ¢. agrees with the unsurgered
immersion ¢o. These constants will be chosen later so that ¢ is large and (|e|'/? is
small. Following Fukaya et al [42, 54.5,Chapter 10] consider a function

In(r) —le| 7 <|el'/*¢
12 e C*(Rso), =
( ) p ( >0) IO(T) {ln(|€‘1/2<) r > 2|5|1/2C
satisfying
Vr € Rso, p'(r) <0< ().
Define
(13) foR" =R, g ep(la)).

Consider the graph

graph(df,) ¢ TVR" = R*",
Let U C X be a Darboux chart near x so that the self-intersection of ¢ at = has
the form (15). One realization of the flattened handle is the union of the graph of
the differential of fe and its reflection:

(14) He = (graph(df) N (C" = By u/(0))) U (graph(dfe) N (C" = Byg12¢(0))) -
The inclusion 5

Qe : ﬁe — U.
is then a Lagrangian embedding, with image equal to that of R™ U‘R" outside of a
compact set.

This explicit definition of the handle agrees with the previous one by parallel
transport. Indeed, since H. projects to Im(z) = 2, the tangent space to T H,
consists of a corank one sub-bundle 7" H, := TH.NKer(Dm) and the horizontal lift
of T({Im(z) = 2¢}). Hence H, is obtained by symplectic parallel transport of any
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He IJ

Hy

A(e

FiGURE 2. The local models

fiber. The Lagrangian H, defined in this way is cylindrical near infinity and the
argument of Proposition 2.2 (d) shows that after a change in surgery parameter
the two definitions are Hamiltonian isotopic.

2.2. Surgery and its properties. The surgery of an immersed self-transverse
Lagrangian is obtained by gluing in the local model of the previous section. Let X
be a compact symplectic manifold. Let ¢ : Ly — X be a self-transverse Lagrangian
immersion with compact, connected domain Ly. Let

T =do(zs) = ¢o(x-), x4 #x- € Lo

be an intersection point. The local model for transverse Lagrangian self-intersections
(see for example Pozniak [70, Section 3.4] for the more general case of clean inter-
section) implies that there exist Darboux coordinates in an open ball U C X of
x

a1 59n;P15---,Pn € COO(U)
such that the two branches of ¢y meeting at x are defined by
(15) L.={p=...=p,=0}, Ly={q=...=¢q,=0}
Let V C U be a subset so that H, agrees with ﬁe outside of V.

Definition 2.1. The Lagrangian surgery of ¢y : Ly — X is the immersion defined
by replacing a neighborhood U N Ly of the self-intersection points x_, x, € Ly with
an open subset U N H, of the cylindrical-near-infinity local model H.:

L= ((Ly-V)U(UNH))/ ~

where ~ is the obvious identification of Hy with H. on the complement of V. The
surgered immersion

¢e : Le — Xa ¢E = (¢0‘L0—V) U (&e

HemU)
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is defined by patching together the immersions (EE of H, NU — X and ¢, on
L.—V=Ly—V —= X. Let

(16) Ale) :/Sv*w

be the area of a small holomorphic triangle v : S — X with boundary in ¢¢(Lg) U
¢e(Le), as in Figure 2 and Equation (150) below. Equivalently, by Stokes’ theorem,
A(e) is the difference of actions

Ale) = /Rvé‘a — Yo

given by the integral of the canonical one-form « over paths 7y, v, from oo in R"
to oo in iR™ along Hy and H, in the local model; see the proof of Lemma 7.3. This
ends the Definition.

We collect some basic properties of the surgery, most of which will be used later.
See [69], [76], and [42, Chapter 10] for more details.

Proposition 2.2. Let ¢y : Ly — X be an immersed Lagrangian with transverse
ordered self-intersection point (v_,x,) € LE.

(a) (Skew-symmetry) The surgery ¢. obtained from x with parameter —e is equal
to the surgery obtained from the conjugate T with parameter €.
(b) (Orientation) If Ly is oriented and € > 0 then there exists an orientation

on L. that agrees with that on Lo in a complement of the handle H. if and
only if the self-intersection x € L3 is odd.

(c¢) (Relative spin structure) Any relative spin structure on ¢o : Lo — X and an
isomorphism Spin(T'Lg),_ = Spin(T'Ly)., defines a relative spin structure
on the surgery ¢.: L. — X.

(d) (Independence of choices) The exact isotopy class of the surgery ¢ is inde-
pendent of all choices, up to a change in surgery parameter €.

Proof. Item (a) is immediate from the definition. Item (b) follows from the fact
that the gluing maps on the ends of the handle are homotopic to (¢,v) — €e'v resp.
(t,v) — ie 'v. These maps are orientation preserving exactly if the intersection
is odd®. For item (c), suppose a relative spin structure is given as a relative Cech
cocycle as in [88]. Such a cocycle consists of charts U,,a € A for X indexed by

SRecall that the self-intersection is odd if in the local model Ly in a neighborhood of z_
resp. x4 in Lg is identified with R™ with the standard orientation induced by the volume form
dg1 A ... Adg, resp. iR™ with the opposite orientation —dp; A ... A dp,. Reversing the sign of ¢
changes the order of the branches, and so changes the parity of the self-intersection if and only if
dim(Lg) is odd. Thus in the case that dim(Lg) is odd, there is always some choice of sign € for
which the oriented surgery exists regardless of the parity of z = (z_,zy). On the other hand, if
dim(Lg) is even then either both surgeries exist as oriented surgeries or neither. The existence of
orientations on the surgery is related to the fact that the monodromy of a Lefschetz fibration is
orientation preserving exactly in odd dimensions.
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some set A, corresponding charts V,, C ¢~1(U,) for Ly, and transition functions
defined as follows. For a, 5 € A let

Vag = Vo NVs, resp. gas : Vag — SO(n)

denote the intersections of the charts for L resp. transition maps for the tangent
bundle T'Ly. A relative spin structure is a collection of lifts g,s and signs o.g,
given by maps

Gop : Vap = Spin(n), 0apy : Us NUsNU, — {£1}
such that the following relative cocycle condition holds:

gaﬁg;«}gﬁ’y = ¢*004,3’yv VO(,B,/}/ € A.

To obtain the relative spin structure on the surgery L. we take the cover on the
surgery with a single additional open set on the handle Uy := H, with no triple
intersections. The relative spin structure is defined by transition maps near the
handle gy = Gog = Id.

A more precise reformulation of the independence in item (d) is the following:
Let U',U? C X and H!, H? C C" be two sets of such choices and ¢! ,¢? the
corresponding families of surgeries for parameters €;, €. For any €; € R with ||
small there exists e, € R so that ¢! is an exact deformation of ¢2,. In particular if
both ¢! and ¢?, are embeddings then ¢? (L.,) is Hamiltonian isotopic to ¢} (L, ).
To prove this claim, recall that any Lagrangian ¢! : L. — X nearby a given one
is a graph of a one form ¢, = graph(a) for some a € Q'(L,.) and local model
TVL. D U — X. An exact deformation is one generated by exact one-forms, as in
Weinstein [90]. Exact deformations are equivalent to deformation by Hamiltonian
diffeomorphisms in the embedded case, but not in general. Any two Darboux
charts are isotopic after shrinking, by Moser’s argument. The approximations H,
are also independent up to isotopy of the choice of cutoff function. Therefore, any
two choices of surgery are isotopic through Lagrangian immersions ¢! : L, — X.
In particular, the infinitesimal deformation ¢! is given by a closed one-form a! €
QY(L,).

We distinguish the following two cases in item (d): Firstly, if the surgery con-
nects different components of the Lagrangian Ly then the positive-degree homology
H.o(L,) is isomorphic to H~¢(Lp). On the other hand, if the surgery connects the
same component of the Lagrangian, then by the Mayer-Vietoris Theorem H~q(L,)
has at most two additional generators. If n = 2 then the integral of a! on the
additional generator corresponding to the meridian is, by Stokes’ theorem, the
evaluation of the relative symplectic class [w] € H?(C? H.) on the generator in
H,(C?, He). Such a generator is given by a disk u : S — X, S = {|z| < 1} with
boundary u(dS) on the meridian S* x {0} of the handle. The disk v may be
deformed to a disk ug : S — X taking values in R?, and so has vanishing area
A(u) = A(up) = 0. Returning to the case of arbitrary n > 2, the action [z 7'«
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along a longitude 7. : R — H. takes on all positive values near 0 as e varies. It
follows that for any such ¢!, ¢ € [0,1] there exists a family €(t), €(0) = € such that
the deformation is given by an exact form. Compare Sheridan-Smith [81, Section
2.6]. 0

Remark 2.3. (Gradings) By Seidel [78], absolute gradings on Floer cohomology
groups are provided by gradings of the Lagrangians: Given a positive integer N,
an N-grading of a Lagrangian L is a lift of the natural map

L — Lag(TX), z~—T,L
from L to the bundle of Lagrangian subspaces Lag(TX) to an N-fold Maslov cover
Lag"(TX) — Lag(TX).

If Ly is graded by a map ¢y : Ly — Lag™(X) and the self-intersection point has
degree 1 then ¢, : L. — X is graded [78, Section 2e].

Remark 2.4. (Brane structures) A brane structure for ¢ consists of an orientation,
relative spin structure, and Ag-valued local system y € R(¢p). For any holomorphic
treed disk v : S — X the holonomy of the local system around the boundary is
denoted by

y(au) € Ao, Yy Wl((b(L)) — Ao.

Any local system on ¢ induces a local system on ¢, trivial on the handle, by
identifying the local system on the handle with the fiber of the local system over
the self-intersection point. Remark 2.3 and Proposition 2.2 imply that any brane
structure on ¢g induces a brane structure on ¢,, at least if the gradings are collapsed
to Zy-gradings.

3. TREED HOLOMORPHIC DISKS

We recall the construction of a strictly unital A, algebra from Charest-Woodward
[21]. We re-write the construction in terms of cellular cochains, rather than Morse
cochains.

3.1. Treed disks. A disk will mean a 2-manifold-with-boundary S, equipped with
a complex structure so that the surface S, is biholomorphic to the closed unit disk
{z € C||z| <1}. A sphere will mean a complex one-manifold S, biholomorphic to
the complex projective line P! = {[( : (1] | o, (1 € C}. A nodal disk S is a union

of a finite number of disks S,;,7 = 1,...,n, and spheres S,;,7 = 1, ..., n, identified
at pairs of distinct points called nodes wq, ..., w,,. Each node

We = (w;w:) € Si_(e) X Si,(e)
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is a pair of distinct points (either both interior or both boundary points) where
Si.(e) are the (disk or sphere) components adjacent to the node; the resulting
topological space S is required to be simply-connected and the boundary 9§ is
required to be connected. The complex structures on the disks S, ; and spheres S, ;
induce a complex structure on the tangent bundle 7'S (which is a vector bundle
except at the nodal points) denoted j : T'S — T'S. A boundary resp. interior
marking of a nodal disk S is an ordered collection of non-nodal points

(17) 2= (20,...,24) €S resp. 2 =(2},...,2) € int(S)°

on the boundary resp. interior, whose ordering is compatible with the orientation
on the boundary 0S. The combinatorial type T'(S) is the graph whose vertices,
edges, and head and tail maps

(Vert(I'(S)), Edge(I'(S))), (b x t) : Edge(I'(S)) — Vert(I'(S)) U {oc}

are obtained by setting Vert(I'(S)) to be the set of disk and sphere components
and Edge(I'(S)) the set of nodes (each connected to the vertices corresponding to
the disks or spheres they connect). The graph I'(.S) is required to be a tree, which
means that I' is connected with no cycles among the combinatorially finite edges;
each edge e € Edge(I'(5)) is oriented so that it points towards the outgoing leaf
ep € Edge(T'(S)) corresponding to the marking zp. An edge e is combinatorially
finite neither of its ends are at infinity. The set of edges Edge(I'(.S)) is equipped
with a partition into subsets Edge,(I'(S)) U Edge,(I'(S)) corresponding to interior
resp. boundary markings respectively. The set of boundary edges (h~!(v)Ut ™! (v))N
Edge, (I'(S)) meeting some vertex v € Vert(I'(S)) is equipped with a cyclic ordering
giving I'(S) the partial structure of a ribbon graph. Define

Edge ,(T'(S)) = h (o) Ut (o)
Edge, ,(I'(5)) := Edge,(I'(S)) N Edge_, (I'(5))
Edge, ,(I'(5)) := Edge,(I'(5)) N Edge_,(I'(5))

The sets Edge, _,(I'(5)), Edge, ,(I'(S)) of boundary and interior semi-infinite edges
is each equipped with an ordering; these orderings will be omitted from the no-
tation to save space. A marked disk (5, z,2’) is stable if it admits no non-trivial
automorphisms ¢ : S — S preserving the markings z, z’. The moduli space of sta-
ble disks with fixed number d > 0 of boundary markings and no interior markings
admits a natural structure of a cell complex which identifies the moduli space with
Stashefl’s associahedron.

Treed disks are defined by replacing nodes with broken segments as in the pearly
trajectories of Biran-Cornea [14] and Seidel [80]. A segment will mean a closed
one-manifold with boundary homeomorphic to a connected closed subset of the
real line. Given two such subsets, one with a non-compact end at infinity and
another with a non-compact end at infinity we may form a new closed manifold
with boundary by gluing along the infinite ends, which we call a broken segment.
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A treed disk is a topological space C obtained from a nodal disk S by replacing
each boundary node or boundary marking corresponding to an edge e € I'(S) with
a (possibly broken) segment. Each such segment T, is naturally equipped with a
length ((e) € R>o U {oo}, where the semi-infinite edges e € I'(S) are automatically
assigned infinite length. A treed disk C' may be written as a union C' = SUT where
the one-dimensional part 7" is joined to the two-dimensional part S at a finite set
of points on the boundary of S, called the nodes w € C of the treed disk (as they
correspond to the nodes in the underlying nodal disk.) The semi-infinite edges e
in the one-dimensional part T are oriented by requiring that the root edge e is
outgoing while the remaining leaves ey, ..., e, are incoming; the outgoing leaf ey is
referred to as the root while the other semi-infinite edges eq,...,eq are leaves.

In particular, we have the following gluing construction which produces treed
disks from a pair of treed disks. Given treed disks C,Cy and and a leaf T, of Cs
one may glue together C and Cy by identifying the point at infinity along the root
edge T,, of C; with the point at infinity for an incoming leaf of Cs, creating a treed
disk

(18) C= 01 U {OO} U OQ, Te = Te1 U {OO} U 71,32

with a broken edge T, C C. We say that the treed disks C7, Cy are obtained from
C by cutting along e. The combinatorial type

['(C) = (Vert(I'(C)), Edge(I'(C)))

of a treed disk C' is defined similarly to that for disks with the following addition:
The set of edges Edge(I'(C')) is equipped with a partition

Edge(I'(C)) = Edge,(I'(C')) U Edge g o) (I'(C)) U Edge, (I'(C))

indicating whether the length is zero, finite and non-zero, or infinite.

The space of isomorphism classes of treed disks satisfying a stability condition is
compact and Hausdorff with a universal curve. A treed disk C' = SUT is stable if
the underlying nodal disk obtained by collapsing edges T, C T to points is stable.
An example of a treed disk with one broken edge (indicated by a small hash through
the edge) is shown in Figure 3. In the Figure, the interior leaves e € Edge,(I") are
not shown and only their attaching points w, € S NT are depicted so as not to
clutter the figure. For a given combinatorial type I', denote by M the moduli
space of treed disks whose domains have combinatorial type I' and

ﬂd = UrMrp

the union over stable types I' with d leaves. The moduli space My is compact.
It admits a universal curve Uy, given as the space of isomorphism classes of pairs
[C, z] where C' is a holomorphic treed disk and z € C' is any point, either in S or
T. The two cases correspond to a splitting

(19) Uy =S4UT4
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\/

: _X.\?/-

FIGURE 3. A treed disk with d = 2 incoming boundary edges

of the universal treed disk into one-dimensional and two-dimensional parts T 4 resp.
S where the fibers of T, — M, resp. Sg — M, are one resp. two-dimensional.
Denote by Sr resp. Tr the surface resp. tree parts of the universal treed disk living
over Mp, and similarly their closures Sp, Tt over Mrp. If for some types I/, T the
moduli space My is contained in Mr then we write IV < T.

3.2. Cell decompositions. We introduce notation for cell decompositions. A
finite cell complex of dimension d is a space L, obtained from a finite cell complex
Lg4_1 of dimension d — 1 by attaching a collection of d-cells via attaching maps. The
topology is induced from the quotient relation given by the attaching maps. The
standard ball and sphere in dimension d(7) are denoted

Bd(i) _ {U c Rd(z’)7 ||U|| < 1}7 Sd(i)—l _ aBd(i).

A finite cellular decomposition of an n-manifold L is a finite cell complex given by
maps
do; : Sd(i)_l — Ld(i)—h 1=1,..., k.
to Lg(i)—1 together with a homeomorphism of L, with L. The induced maps from
the cells B¥® into L are denoted o, : B9 — L. For each d each point = € L is in
the image of the interior of at most one of the d-cells o;(int B?). For d > 0 the
d-skeleton of a cellular structure on L consists of images of balls
Ld = U O'Z<Bd(7')) C L.
d(i)<d
of dimension d(i) < d. Our cell decompositions will be cell decompositions in
the smooth sense. Thus the interiors o;|int(B%?) are diffeomorphisms onto their
images in L.
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The cellular chain complex is derived from the long exact sequence for pairs
of skeleta, as in Hatcher [46, Section 2.2, Section 3.1, Section 4.1, Appendix A].
For i > 0 let H;(Lg4, Ly—1) denote the i-th relative singular homology group of the
skeleta L, relative to the lower-dimensional skeleta Ly ;. By excision,

Hy(Lg, Lyr) = @ Hy(B',0B") = z#U00O=4" vqg=0 ... n.
d(i)=d
A cellular chain of dimension d is a formal combination of the cells of dimension
d, or equivalently an element of Hy(Lg4, Lg—1). The space of cellular chains of
dimension d is
Ca(L) = Hy(Lg, Lg_1)-

The cellular boundary operator 04 : Cy(L) — Cy—1(L) is the connecting morphism
in the long exact sequence for the inclusion (Lg4_1, Lg—2) — (L4, Lg—2). For cells
o, of L denote

(20) do,T)€Z, do= > Oo7)T
TEL(P)
the coefficient of 7 in Jdo.

In our applications, the cell decompositions will be induced by a gradient flow
of a Morse function. In this case, the boundary operator in (20) has a simple
description in terms of counts of gradient trajectories. Recall that a Morse-Smale
pair on L is a pair (f, g) consisting of a Morse function and Riemannian metric

f:L—R, ¢g:TLx,TL—R

so that the stable and unstable manifolds of (f, g) meet transversally. Any Morse-
Smale pair on L gives rise (somewhat non-canonically) to a cellular decomposition
whose cellular chain complex is equal to the Morse chain complex of L (see for
example [9, Theorem 4.9.3]). The images of the interiors of the cells o are the
stable manifolds of the critical points of f. In this description, the coefficient
J(o,7) is the number of isolated Morse trajectories v : R — L connecting the
unique critical points z(o),z(7) € crit(f) contained in o, 7, counted with sign.

Cellular homology is functorial for cellular maps. A smooth map ¢ : L — N
between manifolds L, N equipped with cell decompositions is cellular if

W(Lg) € Ny, Vd=0,... dim(L).

Any cellular map ¢ : L — N induces a chain homomorphism 1, : Ce(L) —
Co(N) independent of the cellular homotopy type of 1. On the other hand, by
the smooth cellular approximation theorem any map is homotopic to a cellular
map, and any two homotopic cellular maps are cellularly homotopic. Let L, Lo
be smooth manifolds and ¢ : L1 — Ly a smooth map. A cellular approximation
of ¢ may be chosen inductively, starting with a map on the 0-skeleton ¢y : L1 o —
Lsg. Cellular approximations of maps naturally induce cellular approximations
for their products: Let L), L}, LY, L) be smooth manifolds and ¢’ : L} — L/, and
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" LY — LY be smooth maps. Any cellular approximations for ¢, 4" induce a
cellular approximation for )’ x "

By a cellular approximation of the diagonal we mean the following. Choose a
possibly different second cellular decomposition ¢ : B¥® — [ inducing skeleta L%
with cellular boundary operator

0" P Hy(LY, L) — @ Hyr (L7, LO72).
d=0 d=0
Denote the cellular structure on the diagonal obtained by taking products by
o; x 07 : B x BYU) 5 [ x L, VieI%¢),j eI ).
The product L x L has d-skeleton the union of skeleta L;, L’ of the factors whose
dimension sum to the product:
(LxL)yg= |J (Lix L)), Vd=0,...,2n.
i+j<d
Choose a cellular approximation of the diagonal, that is, a homotopy
0 :L—LxL, tel0,1]
where
do(l) = (4,0), Ylel
is the diagonal and 6, : L — L x L is a cellular map. The homology class of the
diagonal has expansion in the cellular decomposition

(21) [61(L)] = c(04,07)]o; x 07) € Hy((L X L), (L X L)y_1)
1,J
for some coefficients A
cloy,0YezZ, 1,j=1,...,k
and n = dim(L). Since §; : L — L x L gives rise to a cycle in the cellular chain
complex we have

(22) (0®@1+1®09")[0]=0.

In terms of matrix coefficients (22) translates to the conditions

(23) > 0la Delan ) = - Y e )0" ().

We require that our cell decompositions admit duals. A cell complex {c} is
dual to a given cell decomposition {7} if for each cell o there is a unique dual
cell 7 of complementary dimension meeting o transversally once, as in Seifert-
Threlfall [77, p. 250]. Any smooth manifold admits a cell structure admitting a
dual. In particular, for dual complexes the matrix ¢(«, ) is the identity matrix for
a suitable indexing of the cells Z¢(¢),Z%"(¢) and (23) says that the differentials
are transposes. In the case of cellular decompositions defined by gradient flows
of a Morse-Smale pair, a dual decomposition is that associated to the gradient
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flow of the additive inverse; see Abbondondalo-Majer [3] for the cell structure
associated to a Morse function; the fact that the cell structure for the inverse is
dual is immediate from the definitions. Cellular cochains are defined as sums of
the relative cohomology groups of the skeleta:
dim(L)
C*(L)y= P CUL), CUL)=H%La,La).
d=0
A product on cellular cochains is obtained by pullback under a cellular approxima-
tion 0; of the diagonal, that is,

57 C*L)® CY(L) — C*(L), k,0=0,...,dim(L).
This induces an associative product in cohomology.

3.3. Treed holomorphic disks. Treed holomorphic disks for immersed Lagrangians
are defined as in the embedded case, but requiring a double cover of the tree parts
to obtain the boundary lift. To define holomorphic treed disks, choose an almost
complex structure and cellular structure as follows. Let J : TX — TX be an al-
most complex structure compatible with the symplectic form w € Q(X). We will
assume that J is adapted to the local intersections of ¢ : L — X in the following
sense: For any self-intersection there is a Darboux chart on U C X as in (15) so
that

LNU=R"UR"
and J is given by the standard complex structure on U C C". Choose a pair of cell
decompositions

0;: B - LieI(¢) ol : B — L,j e I%(¢)

with index sets Z¢(¢),Z%"(¢), where B is the closed unit ball of dimension d. The
product L x L inherits the product cellular decomposition

(24) 0y x o7 : BT = pd@)  pd0) 5 [ L, (i,j) € Tp) x I (o).
Choose a cellular approximation of the diagonal
(5t L — L x L)tG[O,l]'

The reader may take the image d,(L) to be the image of the diagonal under the
map | — (I, ¢:(l)) generated by the time ¢ flow ¢; of a Morse-Smale pair, so that
in particular d;(L) is the union (over critical points) of the products of stable and
unstable manifolds.

A holomorphic treed disk consists of a map from the surface part of a treed
disk, together with a lift of the boundary to a map to the Lagrangian. Since our
Lagrangians are only immersed, the domain of the boundary map is a one-manifold
with boundary as follows: Given a treed disk C' = S UT, denote by

(25) 95 = (85 — ((05)NT)) U{w.,ws € (dS)NT}
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the compact one-manifold obtained by replacing each element w of 05 N'T with
a pair of points w.,w~ lying in the closure of the component of the boundary
0S —(0S)NT) which lies before resp. after the intersection point. Each component
of the boundary (85); C &S —T has closure in 85 that is homeomorphic to a closed
interval. Let

L1058 = S
denote the canonical map that is generically 1 — 1 except for the fibers over the
intersection points S N7 which are 2 — 1. Consider a pair of maps

u:S — X, Ou:0S — L
so that
uot=¢odu.

For each edge T, adjacent to a component u, : S, — X, evaluation at the end
points w., w-~ defines an element

(26) eVe(ty) 1= (eVe«(Uy), €Ve s (y)) = (Quy(ws), Quy(ws)) € L2

We introduce the following notation for vector fields. Let Vect(X) denote the
space of vector fields on X, and let Vect,(X) C Vect(X) denote the subset of
Hamiltonian vector fields. For any subset U C X, let

(27) Vecty, (X, U) C Vect(X)
be the space of Hamiltonian vector fields vanishing on U C X. Let
H € Q(S, Vect),(X))

be a one-form with values in Hamiltonian vector fields supported in the interior of
S. Denote by

dpu =du — Hou e QY(S,u*TX)
the Hamiltonian-perturbed exterior derivative.

Definition 3.1. A (J, H)-holomorphic treed disk with boundary in ¢ : L — X
consists of a treed disk C' = S UT and continuous maps

w:S— X, Ou:8S— L, [:Edge(l)— L
so that wot = ¢ o du and
(a) the map w is (J, H)-holomorphic on S — (S N T, that is,
(28) Jdp(uls) = du(uls)j

(b) at each pair of components S,_, S,, joined by an edge T, C T either
(i) Ou has a branch change, in which case ev(u,_ ) = eve(u,, ) with no-
tation as in (26)
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(ii) or Ju has no branch change at 7, NS in which case the matching
condition

(29) (eve(uy_ ), eve(un, ) = 97 (I(€))

is required where

and /(e) is the length of e.

We denote a treed disk by (C,u : S — X), omitting du and v to save space.
An isomorphism between treed disks (C,u : S — X) and (C",u : 8" — X) is an
isomorphism of treed disks ¢ : C'— C” so that u' o (1)g) = u.

A compactified moduli space for any type is obtained after imposing a stability
condition.

Definition 3.2. A holomorphic treed disk (C'=SUT, u:S — X) is stable if it
has no non-trivial automorphisms ¢ : C' — C, or equivalently

(a) each disk component S, C S,v € Vert,(I') on which the map wu is constant
(that is, a ghost disk bubble) has at least one interior node w, € int(S,) or
has at least three boundary nodes w, € 9.5,;

(b) each sphere component S, C S, v € Vert,(I") on which the map u is constant
(that is, a ghost sphere bubble) has at least three nodes w, € 95,.

The combinatorial data of a treed holomorphic disk is packaged into a labelled
graph called the combinatorial type:

Definition 3.3. For a holomorphic treed disk v : S — X the combinatorial type
of u is the combinatorial type I' of the underlying treed disk C' together with

e the labelling of vertices v € Vert(I') corresponding to sphere and disk
components S,,v € Vert(I') by the (relative) homology classes u.[S,] €
Hy(X) U Hy(X,¢(L)), and

e the labelling t(e) € {1,2} of edges e by their branch type (whether they
represent a branch change of the map du : S — ¢(L) or not).

The total homology class of a type of positive area is called primitive if it is
not the sum of homology classes of types 1, o of smaller positive area. We write
— ["if [' is the domain type of a map type

For any combinatorial type of map denote by M (¢) the moduli space of stable
treed holomorphic disks bounding ¢ of type . Denote by

Mr(¢) = U M (¢)
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the union of strata of stable map type with domain type I' and

Md(d)) = U MF(¢)

the union over combinatorial types with d incoming edges. The case that C' consists
of a single edge so that S = () and T'= R is allowed; in this case Mrp(¢) is defined
to be the manifold L.

Each stratum is cut out by a Fredholm map of Banach spaces as follows. Let
u:S — X be amap of type . Let

S°=85—-—{weSnT,,tle) =2}

(where t(e) was the number of branches of the map u on the edge e defined in 3.3)
denote the complement of the points w € SNT' representing branch changes of the
map Ju : 0S — L. The surface S° is naturally a surface with strip-like ends: For
each w € SNT, above there exists a proper embedding of manifolds with boundary

€w : Rsg x [0,1] — S°, Slllgloew(s,t) =w, Vtel0,1]

such that the complex structure on S pulls back to the standard complex structure
in the coordinates s,t. For a Sobolev exponent p > 2 and Sobolev differentiability
constant k > 1 with kp > 2 | let

Map®?(5°, X) = {u = exp,, (£), &€ Q°(S°,TX),}

denote the space of continuous maps u : S° — X of the form u = exp,, (§) where
ug is constant in a neighborhood of infinity along the strip-like ends and & €
0°%(S°, TX);,, has finite W*? norm. In particular, £ has k covariant derivatives
in LP using a connection on X and a metric on S° that is of product form on the
ends. For each branched edge e, let

wye(e) €edSNT

denote the points at the end of each finite edge T, C T' (distinguished by requiring
that with the given orientation of T, the segment T, points from w_(e) to w,(e))
and
evie(u) = lim (u(s,0),u(s, 1)) € L?

the limits along the boundary of the strip-like end approaching w4 (e), while for e
unbranched ev, 4 (u) = u(wx(e)) is simply the evaluation. We denote the similar
limits at the end of any leaf by ev.(u). Let T} resp. To C T be the locus on which
u is unbranched resp. branched and Edge, (T"), Edge,(T") the corresponding subsets
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of edges. define

(C,u,du,1) € (Mp(¢) x Map*?(S°, )

(30) Bp=1{ * Mapkil/”’p(ﬁSo, L) x Map(Edge, (T’ SO
uotr=¢odu, (eve_(u),eve4(u)) = 513 (l(e)), Ve € Edge, (I),
eve—(u) = evy (u) Ve € Edge, ()

Boundary values of W*? maps lie in W*~1/PP (see [60, (0.15)]). Maps close to any
given pair (u,du) are exponentials exp,, (&), expg, (0€) of sections

€€ (S uTX)y, 06 QIS (Ou) TL)k-1/pp,
where the subscript denotes Sobolev class WP, satisfying
£or=D¢pod.

Here exponentiation means geodesic exponentiation using, for example, a metric
on X for which each branch of ¢(L) is totally geodesic. The fiber of the bundle &
over some map u is the vector space of one-forms

(31) Eru = QNS uET X)) 1,
Local charts are provided by almost complex parallel transport
(32) TS Q%(S°, exp, () TX ) g1, — QU (S, ' TX )1,

along exp, (s§) for s € [0, 1]; note here that the connection used for parallel trans-
port T2 need not be related to the metric used for geodesic exponentiation. In
any local trivialization of the universal curve, one can obtain Banach bundles with
arbitrarily high regularity. Let

(33) U — M x C

be a collection of local trivializations of the universal curve. Let Bi denote the
inverse image of Mp. in Br and &} its preimage in &p. The Fredholm map cutting
out the moduli space over M. is

The linearization of the map (34) cutting out the moduli space is a combination of
the standard linearization of the Cauchy-Riemann operator with additional terms
arising from the variation of conformal structure. With k,p integers determining
the Sobolev class as above let

D, : QU(S°,w'TX, (0u)*TL)y, — Q" (S°,w TX )1,

35
(33) £ Ve — ;(VgJ)Ja]u
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denote the linearization of the Cauchy-Riemann operator, c.f. McDuff-Salamon
(61, p. 258]; here
oju = ;(dHu + Jdguj).
The complex structures on the fibers induce a family
(36) Mp = T(S), mw j(m)

of complex structures on the two-dimensional locus S C C, and In particular, any
tangent vector ¢ € T’Mt% induces a variation Dj : T'S — T'S of complex structure
on S: Let

Q°(S°,08°;usTX; (Ou)* T L)y, C Q°(S%usTX )y
denote the subspace of sections ¢ whose boundary values lift to W*~1/PP_sections
0& with values in (Ou)*T'L. The tangent space to Br is the space of deformations
(Cs, Cr, &) preserving the matching conditions given by

(eve,— (&), eve +(€)) = Dorye) (£, Cr(e)) }
Ve € Edge, (I

where §(1,t) := &;(1) is the cellular approximation. The linearized operator for the
map u is given by the expression

(37) Dy : TicuwBr — Q%1(S°,08%uw' TX) 1,

1 .
(Cs: Gy €) (Dug + 2JduDj(CS)> .
A holomorphic treed disk v : S — X with stable domain C' is

Tic,uyBr = { (CRORNS)

regular if the linearized operator D, is surjective;

stratum-wise rigid if u is regular and D, is surjective and the kernel of D,
is generated by the infinitesimal automorphism aut(S) of S; and

rigid if u is stratum-wise rigid and the domain C' lies in a top-dimensional
stratum Mr in the moduli space of domains M.

The moduli space of holomorphic treed disks admits a natural version of the
Gromov topology which allows bubbling off spheres, disks, and cellular boundaries.
For Hamiltonian-perturbed maps, the Hamiltonian-perturbed energy is

1
(38) B(u) =5 /5 dzrul[2d Vol

where d Volg is the area density on the surface S. The area of a map type is
the sum of the pairings of the homology classes of the disk and sphere components
u.[S,] with the symplectic class [w]. The energy E(u) is equal to the area A(u) up
to a curvature term explained in [61, Chapter 8]. Consider a sequence

u, .S, —+ X, 8uyzfi§:,—>L, veN
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of treed holomorphic disks with boundary in ¢ with bounded energy F(u,) > 0.
Gromov compactness with Lagrangian boundary conditions as in, for example,
Frauenfelder-Zemisch [41] implies that there exists a subsequence with a stable
limit

(Cou:S— X) = lim (Cp,uy: 5, — X).
Standard arguments using local distance functions then show that for any fixed
energy bound E > 0, the subset

(39) M;5(6) = {ue My(6) | E(w) <E}

satisfying the given energy bound E(u) < E is compact.
The moduli space further decomposes according to the limits at infinity and the
expected dimension. Define

I(¢) = I°(¢) UT™(9)

where

7¢(¢) := {0y : B*) — L}
is the set of cells. Thus each element of Z¢(¢) is a map o; from balls B¥® of
dimension d(7) to L with boundary in the union of the images of j-cells for j < i;
and

T%(¢) == (L x4 L) — AL
is the set of ordered self-intersection points, where L x4 L is the fiber product and
A C L? the diagonal. Given

o= (O'(]7 - ,O'd) € Zv<¢)
denote by

M(p,0) = { [Cou: S — X]| € My(o) ‘ eve(u) € o, Ve € Edge(T) }

the locus of maps such that for each semi-infinite edge e the evaluation lands in o,.
We consider the case of no disks in the configuration as a special case. Let

o €T(9), o, €TV(9), degloy) = deg(o )+ 1.

Let Mr(o_,0,) be the oriented fiber 0=!(p) for generic p in the image Im(c,) C
L. The moduli space Mr(o_,04) is independent of p up to oriented cobordism.
Indeed, for any generic path + from points p to p’ in Im(o,) the inverse image
o~(y) C L is a one-manifold with boundary o~!(p) U c=!(p'). The moduli space
Mr(o_, 0, ) would be the set of rigid Morse trajectories in the Morse model of the
Fukaya algebra.

For any integer d denote by

(40) Mr(qb,a)d:{[C,u:S%X] ‘ Ind(Du)—i|ai|:d}

=0
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the locus with expected dimension d, where D, is the operator of (37) and |o;| is the
codimension of the constraint o; for i = 0,...,d. An element of Mr(¢,a) is rigid
if it lies in the locus Mr (¢, g)o of expected dimension zero and Mr is codimension
zero in My. A labelled type of map is the map type with a labelling ¢ of its
edges. A labelled map type is rigid if any (and so all) maps (C,u : S — X) of
labelled type are rigid.

4. COHERENT PERTURBATIONS

Regularization of the moduli spaces is achieved through domain-dependent per-
turbations, using a Donaldson hypersurface [32] to stabilize the domains as in
Cieliebak-Mohnke [26].

4.1. Donaldson hypersurfaces.

Definition 4.1. A Donaldson hypersurface of a compact symplectic manifold X is
a codimension two symplectic submanifold D C X representing a multiple k[w], k >
0, of the symplectic class [w] € H*(X). The integer k is the degree of D.

A relative Donaldson hypersurface for a Lagrangian immersion ¢ : L — X is a
codimension two symplectic submanifold D C X disjoint from ¢(L) representing a
multiple k[w], & > 0, of the symplectic class [w] € H?(®).

Donaldson’s construction in [32] associates to any asymptotically holomorphic
sequence of sections s of tensor powers X* of a line bundle X — X with first
Chern class ¢;(X) = [w] a sequence of hypersurfaces Dy = s;2(0); for k suffi-
ciently large the submanifold Dy is a Donaldson hypersurface. A result of Auroux
[10] provides a homotopy between any two such choices with the same degree.
Results of Auroux-Gayet-Mohsen [13] show the existence of Donaldson hypersur-
faces in the complement of an isotropic submanifold, and a result of Auroux in-
cluded in Pascaleff-Tonkonog [68, Theorem 3.1] extends this to the case of cleanly-
intersecting Lagrangians satisfying the Bohr-Sommerfeld condition that the pull-
back bundle ¢*(X* — X) is trivial for some k. As in [68, Corollary 3.4] one may
assume that the Lagrangian to be exact in the complement by choosing the ap-
proximately holomorphic section defining the Donaldson hypersurface to be flat on
the Lagrangian. Then Stokes’ theorem implies that &k times the area A(u) of any
disk v : § — X bounding L is given by its intersection number ([u], [D]) with D.
Equivalently, D represents [w] in the relative cohomology group H?(¢).

As explained in Cieliebak-Mohnke [26], the set of intersections of a holomorphic
curve with a Donaldson hypersurface provides an additional set of marked points
that stabilize the domain. Let D C X be a Donaldson hypersurface. We say
a compatible almost complex structure Jp € J(X) is stabilizing if J preserves
TD, a compatible almost complex structure preserving D so that D contains no
non-constant holomorphic spheres as in Cieliebak-Mohnke [26, Section 8], and each
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non-constant .JJp-holomorphic sphere u : P — X of energy at most E intersects D
in finitely many but at least three points u=1(D). ©

Lemma 4.2. [26, Section 8| Suppose D has sufficiently large degree k > 0. Then
any generic almost complex structure Jp preserving D is stabilizing, and for any
energy bound E > 0 there exist an open neighborhood J (X, Jp, E) of Jp consisting
of stabilizing almost complex structures.

We use the additional markings provided by the Donaldson hypersurface to define
domain-dependent perturbations. Choose an open neighborhood U of D. Recall
from (27) that Vect, (X, U) denotes the space of Hamiltonian vector fields v : X —
T'X vanishing on U.

Definition 4.3. For each combinatorial type of domain T,

(a) a domain-dependent almost complex structure for I' is a map
JF : gr — j(X, JD,E)

(notation from (19)) smooth as a map Sy x TX — TX.
(b) A domain-dependent Hamiltonian perturbation for T" is a one-form

Hp € Q'(Sr, Vect, (X, U))

smooth as a map TSr x X — TX.
(c) A single-valued domain-dependent matching condition for T' is a map

MFI(EFQTiF)XL—)L

such that Mr(w,,-) is a diffeomorphism of L for each w, € S N Tr.
(d) A perturbation datum is a datum

PF = (JFa HF7 MF)

such that Jp agrees with the given almost complex structure Jp on the
hypersurface D and in a neighborhood of the nodes w. € S and boundary
0S8 for any fiber S C Sr, and takes values in J (X, Jp, # Edge,(I')/k). The

space of Pr of perturbation data is denoted
PI‘ - {Pp}

To achieve certain symmetry properties of the Fukaya algebra, multi-valued per-
turbation data are required. For example, if expects divisor insertions to contribute
exponentials to the disk potential then one expects the factorials to appear as an
averaging factor as in Theorem 5.13.

In order to prove independence from all choices, [26] also consider tamed almost complex
structure in order to prove independence from all choices. However, in this paper we do not prove
any independence results so compatible almost complex structures suffice.
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Definition 4.4. (a) A multivalued domain-dependent matching condition for T’
is a formal sum

k k
(41) MF = ZCiMRi ZCZ' =1 c € [0, 1] \4)
i=1

i=1
of single-valued matching conditions Mp ;.
(b) Similarly, a multi-valued domain-dependent Hamiltonian is a formal sum

! !
i=1 i=1
of single-valued Hamiltonian perturbations.
For much of the paper, one could assume that M, Hr to be single-valued. How-
ever in order to deal with repeated inputs one must allow formal sums, that is,
multivalued perturbations, as in Section 5.4.

Given perturbations, the perturbed moduli spaces are defined as follows.

Definition 4.5. For Pr = (Jr, Hr, Mr), a Pr-perturbed treed holomorphic disk is
a pair (C,u : S — X) where C is of type I' and the equations (28) and (29) are
replaced with the following conditions:

(a) The map u is perturbed holomorphic in the sense that

_ _ 1 (du(z) — Hr(u(2)) =
(43) O, ipt(2) = 3 ( +Jr(z, u(2))(du(z) — Hr(u(2)))j(z)) ) -

on the surface S,
(b) For each unbranched interior edge e the perturbed matching condition

(44) (Mr,i(w-(e), u(w—(e))), Mri(w4(e), u(wi(e)))) € dye)(L)
holds for some 7; and for each leaf e labelled by a cell o, for some ¢ we have
My j(we, u(we)) € o¢;
(c) the matching condition holds for each branched interior edge e

eve,—(u) = eve 1 (u);
with notation as in (26).

The map is adapted if each connected component of u~!'(D) contains an interior
node w, € S, e € Edge,(T") and each such w, lies in u~'(D). This ends the Defini-
tion.

Remark 4.6. By Theorem 4.19 a generic adapted map u : S — X has the prop-
erty that every holomorphic disk component u|S, meets D in finitely many points
u~ (D), and positively many points if the disk is non-constant. The definition
above, however, allows constant sphere components S, mapping entirely to the
divisor D, which would therefore have infinitely many intersections.



IMMERSED FLOER COHOMOLOGY AND LAGRANGIAN SURGERY 31

The construction above naturally produces a collection of moduli spaces satisfy-
ing an energy gap condition:

Lemma 4.7. Let ¢ : L — X be a self-transverse Lagrangian immersion. There
exists an h > 0 such that any treed holomorphic disk u : S — X with boundary on
¢ containing at least one non-constant holomorphic component u, : S, — X, du, #
0,v € Vert(I") has area A(u) at least h.

Proof. By Gromov compactness, for £ > 0, the set of homotopy classes [u] € m3(¢)
of stable holomorphic disks u : S — X, S = {|z] < 1} with energy bound E(u) <
E is finite. It follows that the set {A(u),du # 0} of non-zero energies of disks
u : S — X bounding ¢ has a non-zero minimum min{A(u),du # 0}, which we
may take to equal h. U

Lemma 4.8. For a reqular Hamiltonian perturbation Hy that is sufficiently small
in the C* topology, the areas A(u) of all rigid (Jr, Hr)-holomorphic treed disks
u: S — X are non-negative.

Proof. The areas of such configurations are topological quantities, that is, depend
only on the homotopy type of the map. The set of homotopy types [u] achieved
by holomorphic maps u : S — X is unchanged by the introduction of a pertur-
bation Hr, by a standard argument using Gromov compactness. Any (Jr, Hr)-
holomorphic map may be written as a J{--holomorphic map for some almost com-
plex structure J{. obtained by pulling back Jr under a Hamiltonian flow as in [61,
Chapter 8]. Suppose that u, : S, — X is a sequence of (Jr, Hr,)-holomorphic
maps with Hy, converging to zero in C*°. After passing to a subsequence, we may
assume that the domain C', converges to a limit C'. By the energy-area relation for
Hamiltonian-perturbed maps, in particular the bound in [61, Remark 8.1.7], the
energy of the sequence u, is bounded. By Gromov compactness (see for example
[61, Chapter 4], although a modification is necessary to adapt for the varying do-
main) a subsequence of u, Gromov converges to a limiting Jp-holomorphic map
u .S — X with the same area. Since the Hamiltonian perturbation Hr, vanishes
in the limit, the area is necessarily non-negative. 0

The combinatorial type of an adapted map is that of the map with the additional
data of a labelling i(e), e € Edge(I") of any interior node by intersection multiplicity
i(e) with the hypersurface D; let i(e) = 0 if the map u : S — X is constant with
values in the hypersurface D near w.. Denote the moduli space of D-adapted treed
holomorphic disks bounding ¢ of type I' with respect to the perturbation Pr by

Mr(¢,D) C{u:S = X |9y mu=0, ulw)eD, VecBdge,(I)}.

Denote by
M(Qb’ D) - UFMF(¢7 D)
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the union over combinatorial types I'. As before, we may further refine to a union
over map types

M(p,D) =U M (¢, D).

4.2. Coherence. In order to obtain good compactness properties of the moduli
spaces of holomorphic curves, the following coherence properties of the perturba-
tions are required.

Assumption 4.9. The perturbations P = (Pr) satisfy the following coherence
axioms:

(Locality axiom) For the locality axiom we require the following notation.
Given a type of map I', for each vertex v € Vert(I'), let I'(v) denote the
subtree of I' consisting of the vertex v and all edges e of I' meeting v. Let I',
denote the subgraph of I whose vertices are those of open type v € Vert,(I")
and whose edges are e € Edge (I"). Let

T =T X Ty : Sp = Mr, X Sp)

be the product of the maps where 7, is given by projection followed by
forgetful morphism and m, is the map S + S, that collapses all components
other than S, onto the corresponding special points of S,.

The locality property is the following: For each vertex v, the perturbation
Pr restricts on S, to the pull-back under 7 of some perturbation Pr, on
Mro X Sp(v) to SF. 7

(Cutting edges axiom) If I' is obtained from types ['1,T's by gluing along
semi-infinite edges e of I'; and €’ of I'y as in (18) then let

7T12M1‘—>MF1, ngMr%Mm

denote the projections obtained by mapping each curve C' = Cy U,  Cs to Cy
resp. (5. For the coherence axioms Pr is the product of the perturbations
Pr,, Pr, under the isomorphism Sp & 7;Sr, U 75Sr, "

(Collapsing edges axiom) If I is obtained from I" by setting a length equal to
zero or infinity, or collapsing an edge, then the restriction of Pr to Sp|Mp =
St is equal to Prr.

"In other words, on each component S,, the perturbations only depend on the positions of the
special points on that component and the boundary edge lengths. This locality principle is used
later in Theorem 4.19 to rule out constant spheres with more than one marking, in the case of
zero and one-dimensional moduli spaces.

8That is, on any configuration with a broken edge, the perturbations on the components
separated by the broken edge depend only on the domains on that side of the edge, rather than
the domain on the other side. This property is necessary for boundary description in Theorem
4.19, which in turn is used to prove the A, axiom.
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Type I Type f(I')

FIGURE 4. The types I and f(T")

Remark 4.10. (Forgetting markings on spheres) The locality axiom provides the fol-
lowing forgetful construction, which is a variation of the construction in Cieliebak-
Mohnke [26]: Suppose that C' is a curve of type I' containing a sphere component
S, with more than one interior marking w, € S,. Forgetting all but one marking,
say we, on S,, and collapsing unstable components produces a marked curve f(C')
with type f(T') possibly with a component f(S,) containing a single marking, as
in Figure 4. Define a perturbation datum f(Pr) for f(I') by taking the almost
complex structure Jyry to equal the base almost complex structure Jp on f(S,),
and the almost complex structures Pr|f(C) — f(S,) on the complement; while
the Hamiltonian perturbation Hr and Mr remains the same. If u : S — X is a
Pr-holomorphic map constant on S,, then one obtains an f(Pr)-holomorphic map
on f(S,) by forgetting all markings except we, on S,. Since each interior node
we, e € Edge,(I") is required to map to the divisor D, the resulting type f(I") is the
same expected dimension as that of maps of type I'.

Remark 4.11. The (Cutting-edges) and (Collapsing-edges) axioms in particular
imply that the part of the moduli space M (¢, D) over the image of the inclu-
sion Mrp, x Mr, — Mr is a union of products of moduli spaces M (¢, D) and
M ,(¢,D) as 1, o range over map types with domain types I'1, I'y; this identi-
fication implies that the terms in the A, axiom are associated to configurations
obtained by gluing treed disks in the sense of (18).

Remark 4.12. The (Cutting edges) axiom implies the following relationship between
moduli spaces.

(a) Suppose that the type I' is obtained by gluing together types I's and I'y
along a boundary edge. An element of My (¢, D) consists of
(i) a pair Cy = Sk U Ty, ug : S — X of treed holomorphic disks of
combinatorial types T’y for k € {1,2} and
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(ii) an element [ € L such that §;(I) = (I1,l3) where [, is the evaluation of
ug at the node w* on the relevant side of the edge e of I' being glued
together.

Thus if ¢ denotes the index of the incoming edge for I'y glued at the outgoing
edge of I'; and j+1 the number of incoming edges of I'y the map u +— (uy, us)
defines a map

(45> MF(¢7 D7 go, - - - 7ad)0
— Ua,BMF1 (gb, D, 00,01y +-30;—1,0, 044541, ,O'd)[)

X MFQ((bJD?/B?O-’L""'?O-’L'“Fj)O

with finite fiber over a pair (uq,uz) evaluating at
(l,, l+) = (ul(w;),UQ('w:)) S O'z(Bd(l)) X O'j(Bd(j))

the set of points [ € L with 6;(l) = (I_,1,) € L x L. The number of such
points counted with sign is by definition ¢(a, 3).

(b) The true boundary components of any one-dimensional component of the
moduli space M(¢, D) consist of these configurations as well as elements
C=SUT,u:S— X of Mrp(¢, D) of unbroken type I" whose evaluation at
an end w, of some leaf e C T lies in the boundary of the cell o, of dimension
d(e). For generic maps, the boundary lies in the interior of a (d(e) — 1)-cell
ol and the map

(46) To,—or - {u € Mrp(¢, D, 00,...,0c,...,04),u(w,) € 0.}
— Mr(¢,D,09,...,0.,...,04)

e

is generically finite-to-one with finite fiber Wge{aé (p) over any generic element
p € o, having a signed count of d(o.,0.) elements, by Definition (20).

Obtaining strict units requires the addition of weightings to the combinatorial
types as in Ganatra [44, Section 10] and Charest-Woodward [21, Section 4]. When
the weighting of an edge is infinite, we will assume that the perturbation data
is pulled back under the forgetful map forgetting that edge and stabilizing. For
this reason, the edges where the weightings are forced to be infinite are called
forgettable.

Definition 4.13. A weighting of a treed disk C' = S UT of type I is
(a) a partition of the boundary semi-infinite edges
Edge™ (I') U Edge™">(T') U Edge™**(T') = Edge, _, (T')

into weighted resp. forgettable resp. unforgettable edges, and
(b) a map
p: Edge, ,(T') = [0, o0]
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satisfying the property: each of the semi-infinite e edges is assigned a weight
p(e) such that

{0}  e€ Edge" ()
p(e) €X[0,00] e € Edge™(I)
{oo} e € Edge™>(T)

If the outgoing edge ey € Edge_, (') is unweighted (forgettable or unforgettable)
then an isomorphism ¢ : (C,p) — (C’,p’) of weighted treed disks is an iso-
morphism of treed disks C' — ("’ that preserves the types of semi-infinite edges
e € Edge_ (I') = Edge_, (I') and weightings: p(e) = p/(¢’) for all corresponding
edges e € Edge, ,(I'), ¢ € Edge, ,(I"). This ends the Definition.

There is an additional notion of equivalence in the case that the outgoing edge
is weighted: If the outgoing edge e; is weighted then an isomorphism of weighted
treed disks C' — (" is an isomorphism of treed disks preserving the types of semi-
infinite edges e € Edge, ,(I') and the weights p(e),e € Edge, ,(I') up to scalar
multiples:

(47)  3n€ (0,00), Ve € Edge, ,(T).¢ € Edge, (I"), p(e) = Ap'(€).

In particular, any weighted tree T' such that Vert(I') = () and a single edge
e € Edge, ,(I') that is weighted p(e) € (0,00) is isomorphic to any other such
configuration 7" with a different weight p(e’) € (0, 00), e € Edge(I").

The combinatorial type of any weighted treed disk is the tree associated to the
underlying nodal disk with additional data recording which lengths resp. weights
are zero or infinite. Namely if C' = S UT is a weighted treed disk then its combi-
natorial type is the tree I' = I'(C') obtained by gluing together the combinatorial
types I'(S,) of the disks S, along the edges corresponding to the edges of T; and
equipped with the additional data of

(a) the subsets
Edge™(I") resp. Edge™" > (T) resp. Edge™(T") C Edge, (')
of weighted, resp. forgettable, resp. unforgettable semi-infinite edges;
(b) the subsets
Edge™(T) resp. Edge? (') resp. Edge™™(I") ¢ Edge_(T)
of combinatorially finite edges of infinite resp. zero length resp. non-zero
finite length;
A well-behaved moduli space of weighted treed disks is obtained after imposing
a stability condition.
Definition 4.14. A weighted treed disk C' = S UT of type I is stable if either

(a) there is at least one disk component S,,v € Vert,(I'), and the following
conditions hold:
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(i) each disk component S,,v € Vert,(I') has at least three edges e €
Edge(T") attached to the boundary 05, or at least one edge attached
to the boundary 0S5, and one edge to the interior int(S,);

(ii) each sphere component S,,v € Verty(I') has at least three edges e €
Edge(T") attached;

(ili) each combinatorially-finite edge e € Edge_(I") is broken at most once,
and each semi-infinite edge e € Edge_, (I") is unbroken;
(iv) if the outgoing edge is weighted ey € Edge™" (") then at least one leaf
e; € Edge, ,(I'),7 > 0 is also weighted, that is, e; € Edge™(T).
(b) if there are no disks, so that Vert(I') = 0, there is a single weighted leaf
e1 € Edge™(T") and an unweighted (forgettable or unforgettable) root eq €
Edge"">(I") U Edge™(I").

Because a configuration with no disks is allowed (namely an infinite interval)
the stability condition for weighted treed disks is not equivalent to the absence of
non-trivial automorphisms. The moduli space of weighted treed disks of some type
' is denoted M. The natural map MJ* — My forgetting the weightings is a
fiber bundle with each fiber the product of intervals for each leaf, so that as long
as there is one vertex,

(48) Wt M x (0, oo)# Bdeew ™)

where # Edge,,(I") is the number of weighted edges with weights in (0, 1); the case
of trees with no vertex is exceptional, since in this case both the incoming edge
may be weighted but the moduli space MJ* is still dimension zero, and there are
no stable strata Mr-.

A weighted treed holomorphic disk is a holomorphic treed disk with a weighting
on the underlying treed disk and the following restriction on leaf labels. Given a
non-constant pseudoholomorphic treed disk u : S — X with leaf e; for which the
weighting p(e;) = oo resp. 0, we view u as obtained from gluing the pseudoholo-
morphic treed disk u’ : S — X obtained by attaching to e; a constant configuration
u” with weighted incoming e; and forgettable resp. unforgettable outgoing edge
e; . See Figure 5. Also, any two configurations u : S — X, : S’ — X with an out-
going weighted edge ey with the same underlying tree I' are considered equivalent.
See Figure 6.

Remark 4.15. (Constant maps) If x; = 2" and zy = 29 resp. xo = x° then the
moduli space M (L, xg, 1) contains a configuration with no disks and single edge
on which u is constant, corresponding to a weighted leaf e € Edge™(T") and a root
edge ey € Edge(I") that is unforgettable resp. forgettable. These maps are pictured
in Figure 7.

The set of generators of the space of Floer cochains C'F'(¢) is enlarged by adding
two elements 13 (with superscript s denoting strict unit) resp. lg (with superscript
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FI1GURE 5. Equivalent weighted treed disks

s C[?h xs IEh
" N \sz
P1 y P2
Cl'h ./L’h
zh
xd zh x9
= o .p=o00
x9 29

FI1GURE 6. Equivalent weighted treed disks, ctd.

h denoting homotopy between strict and geometric unit) of degree 0 resp. —1
to Z(¢). Any edge e labelled 1} resp. 17 is required to have p(e) = oo resp.
p(e) = 0 while an edge with label 1% may have weighting p(e) € [0, 00]. There is
no constraint for the edges e € Edge(T") labelled 1%, while any edge with label not
equal to 1% or 1} must have zero weighting. The labels 15 and 1)} are only allowed
on the outgoing leaf only if the area of the treed disk is zero, the number of leaves
is one or two and the expected dimension is zero. Thus either there are no disks
and the incoming edge is labelled 12 and the outgoing leaf is labelled 13 or 1Y or
there is a single disk with no interior markings, one incoming leaf labelled 17 and
the label of the other incoming leaf and outgoing leaf are the same. The outgoing
weight p(eg) is required to be the product of the incoming weights [] p(e;) and in
the case of zero-area configurations all weightings are declared equivalent. By this
definition, in each of these cases the moduli space Mr(¢, D) is a point in each of
these special configurations.

Definition 4.16. (Forgetful axiom) A perturbation datum Pr satisfies the forgetful
axiom if for any leaf e € Edge(I") with infinite weighting p(e) = oo, the perturbation
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FIGURE 7. Unmarked treed disks

datum Pr is pulled back from the perturbation datum Pjry for the type f(I')
obtained by forgetting the leaf e and stabilizing (that is, collapsing any unstable
components) under the forgetful map Sp — Sy of universal curves.

In particular, this axiom implies that the resulting moduli spaces admit forgetful
morphisms Mr(¢, D) — Myp/(p, D) whenever there is a leaf e with weighting
p(e) = oo. See [21, Section 4] for more details on the allowable weightings. We
will show in Theorem 5.2 below that the resulting A, algebra C'F(¢) has 13 as a
strict unit.

4.3. Transversality and compactness. Ciceliecbak-Mohnke perturbations [26] are
not sufficient for achieving transversality if there are multiple interior nodes on
ghost bubbles. Indeed, suppose there exists a sphere component S, C S,v €
Verte(I') on which the map wulg, is constant and maps to the divisor so that
u(S,) € D. The domain S, may meet any number of interior leaves T, C T.
Adding an interior leaf T, to the tree meeting S, increases the dimension of a
stratum dim M (¢, D), but leaves the expected dimension Ind(D,,),u € M (¢, D)
unchanged. It follows that M (¢, D) is not of expected dimension for some types
that we call crowded:

Definition 4.17. A holomorphic treed disk (C,u : S — X) is crowded if each such
ghost component S, C S meets at least two interior leaves T, so that #{e, T.NS, #
0} > 2, and uncrowded otherwise.

The construction of coherent perturbations for uncrowded types proceeds induc-
tively. We summarize the properties that we wish our perturbations to satisfy in
the following definition:
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Definition 4.18. A perturbation datum P = {Pr € Pr} has good properties if the
following hold for each uncrowded type of map of expected dimension at most
one:

(a) (Transversality) Every element of M (¢, D) is regular;

(b) (Compactness) the closure M (¢, D) is a finite set, if expected dimension
zero; or a compact one-manifold, if expected dimension one, with boundary
contained in the adapted, uncrowded locus; and

(¢) (Boundary description) the boundary of M (¢, D) is a union of components
M (¢, D) where ' is a type with an edge e of length £(e) zero, an infinite
length edge e, f(e) = oo connecting two disk components, or a leaf e €
Edge( ) with ev, mapping to the boundary ¢;(0B%Y) of a cell;

Suppose that perturbations Pr on the types IV < I' have been chosen in Defini-
tion 4.18 making the moduli space of type I'” regular and all moduli spaces obtained
by forgetting interior leaves in Remark 4.10 regular. Via a gluing construction the
perturbations P/ induce regular perturbations in some neighborhood Sfi; of Spv in
Sr. Namely any curve C' of type I" near My is obtained from a curve C’ of type
IV by some combination of removing small balls from the nodes and identifying the
complements by gluing maps given in local coordinates z — d/z; and varying the
edge lengths. Since the perturbations by assumption vanish near the nodes, one
obtains perturations on C from those on C’. Denote by Pr C Pr the subset of
perturbations that agree with Pr on Sf, on the types IV < T

Theorem 4.19. There exists a comeager subset Pr® of the subspace Pr making
the moduli space of type I' reqular and all moduli spaces obtained by forgetting
interior leaves from domains of type I' in Remark 4.10 regular. Furthermore, the
perturbations chosen inductively in this way have the good properties in Definition

4.18.

Sketch of proof. The statement of the Theorem is an application of the Sard-Smale
theorem to the local universal moduli spaces. For | > k consider the space of
perturbation data of class C"

PL = {P- = (Jr, Hr, Mp)}

which have C'-norm distance to the base almost complex structure resp. vanishing
Hamiltonian perturbation resp. identity diffeomorphism smaller than some con-
stant k. The space of allowed perturbations is contractible, assuming that  is
sufficiently small. For almost complex structures Jr or Hamiltonian perturbations
Hr, contractibility is standard. For the matching conditions M, convexity follows
from the convexity of the space of solutions to the equation ¥ , ¢; = 1 and the
fact that any C! diffeomorphism close to the identity is given by a flow of a C'~!
vector field. In particular, consider two matching conditions

o Ve " __ "
MF—ZciMM, M. —Zci T
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The family
(49) Mr = (1 —t) M} + t M

is a family of perturbed matching conditions for any ¢ € [0, 1]. It follows that Pk
is non-empty.

The moduli spaces Mr(¢, D) are cut out locally by a section of a Banach vector
bundle. Let S° = S — T5 denote the surface with strip-like ends obtained by
removing the branched special points on the boundary. Recall from (33) the local
trivializations U — Mt x C of the universal bundle. Using the Sobolev mapping
spaces from (30) define a universal space

B ¢ M x Map®P(S°, X) x Map* 1/P?(95°, X) x Map(Edge(I"), L) x PL

to be the subset of tuples (¢, u, du, [, Pr) satisfying the following conditions:

e the boundary condition uor = ¢podu where ¢ is the canonical map 95° — S°;
e the matching conditions

(Mr(w-, u(w-(e))), Mr(wy, u(wy(€)))) = die)(I(€))

at each pair of endpoints (w_(e), w, (e)) of combinatorially finite edges with
no branching; otherwise if branched

eve_(u) = eve 4 (u) € I%(e)
in the sense of (26);
e the leaf conditions
Mr(we, u(w,)) € ae(Bd(e)) resp. u(w,) = o,

if e is unbranched resp. branched;
e for each of the interior leaves e € Edge,(I")

u(w,) € D

with intersection multiplicities d(e) € Z>.

As in the construction of the moduli space with fixed perturbation data, the uni-
versal moduli space is constructed locally over the trivializations given in (36).
Consider the fiber bundle £ = & over B} given by

(ED)ewrr € QNS U T X))y 1,

the space of 0, 1-forms with respect to j(c), Jr on the surface with strip-like ends
S —1T, that vanish to order d(e) —1 at the node w,. For ¢ < {—F the g-th derivatives
of J(u) with respect to & € WkP are in W*~1P and the Cauchy-Riemann operator
defines a C'%-section

(50) Or:B.— &, (c,u, Pr) — Oru
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where

(51) Oru(z) := ;((du(z) — Hr(u(z))

+ Jr(z,u(2))(du(z) — Hr(u(2)))j(m, z)), Vze€S.
The local universal moduli space is
(52) M (6, D) = By O

where 0gi C &L is the zero section. As in [21], the local universal moduli spaces

MY (p, D) are cut out transversally. Indeed, by unique continuation it suffices
to show that any element 7 of the cokernel coker(D,,) of the linearized operator van-
ishes in an open neighborhood of a point z in each component of the domain S, T,.
In the case of constant components, the linearized operator D,g, is surjective for
any choice of J and the matching conditions at the nodes are cut out transversally
by an induction. Suppose that Iy C I' is a connected subgraph consisting of ver-
tices for which u|S, is constant and Sy C S the corresponding subset of S. Let
v € Vert(I'y) be a vertex with the property that v is adjacent to exactly one other
vertex in ['y; such a vertex v exists since [y is a tree. The operator D, is surjective,
with kernel given by constants & € Q°(u*TL), if S, is a disk, or QY (u}TX), if S, is
a sphere. Via evaluation ker(D,,) surjects onto the fiber T}, )T'L resp. Ty, ()T X
connecting to the adjacent component in Sy, so the matching condition at w,(w)
is transversally cut out. We may assume that the matching conditions at the re-
maining nodes of Sy are transversally cut out by the inductive hypothesis, and the
claim follows. The case of higher order tangencies with the divisor requires special
treatment, as in [26, Section 6]. By the Sard-Smale theorem, for [ sufficiently large

the set of regular values P52 of the map

i MP™ (6, D) = Pl (cu, Pr) = Pr
is comeager. Let
Pll_‘,reg _ mi,]DIij,l,reg.

The set of smooth domain-dependent perturbations Pr® is open and dense and
so also comeager. Fix (Jr, Hr, M) € Pr®. By elliptic regularity, every element
of ML(¢, D) is smooth. The transition maps for the local trivializations of the

universal bundle define smooth maps
M%((ﬁ? D)‘/\/@m\/ﬂf - M{“(QS? D)lM%mMﬂf'

This construction equips the space Mr(¢, D) = U;M4(¢, D) with a smooth atlas.
Since Mr is Hausdorff and second-countable, so is Mr(¢, D). It follows that
Mr(¢, D) has the structure of a smooth manifold.

Compactness is similar to the case of spheres in Cieliebak-Mohnke [26]. To see
that compactness holds for the union of uncrowded types of expected dimension at
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most one, note that for any crowded stratum Mrp(¢) there exists a moduli space
Mry(¢) of some other type f(I') by forgetting all but one of the interior nodes
on such ghost bubbles S, as in Remark 4.10. Combinatorial types f(I') of maps
w: S — X with sphere bubbles S, C S, S, = P! in the domain represent moduli
spaces M yr)(¢, D) of expected dimension two less than that of holomorphic disks
M(¢, D) of strata of top dimension. Thus, these moduli spaces are of negative
expected dimension. If the sphere S, is collapsed under stabilization, then the re-
sulting marking w,, € f(C') represents a point whose intersection multiplicity with
the divisor D is at least two, by topological invariance of intersection numbers,
where (at least) two intersection points we,,w., € C have come together. Either
way, such configurations lie in moduli spaces of negative expected dimension. Thus
such configurations do not appear for generic choices of domain-dependent pertur-
bations as above. The construction of tubular neighborhoods is similar to the case
treated in [22]. O

4.4. Orientations. Orientations on the moduli spaces may be constructed fol-
lowing Fukaya-Oh-Ohta-Ono [42, Orientation chapter], [88], given a relative spin
structure. For this purpose, we may ignore the constraints at the interior nodes
Wi, ..., Wy in int(S). The tangent spaces to these nodes and the linearized con-
straints du(w;) € Ty,)D are even dimensional and oriented by the given complex
structures. Suppose the type has at least one vertex v € Vert( ). Consider a
regular element

(Ciu:S—=X)eM (¢,D,0)
of type . The tangent space is the kernel of the linearized operator:

T, M (¢,D) = ker(D,)

where (abusing notation) D, is the restriction of the operator in (37) to the space
of sections ((, € : S — w*TX) satisfying constraints

{(we) € Toe,e € Edge, (), &(we) € TD,ec Edge, ,( ).
The operator D,, admits a homotopy
D! te[0,1], D!=D, D°=0@®D,

so that DY is a direct sum of the zero operator and the linearized Cauchy-Riemann
operator D,,. For any vector spaces V, W, the determinant line of the direct sum ad-
mits an isomorphism det(V@W) = det(V)®det(W). The deformation DY, ¢ € [0, 1]
of operators induces a family of determinant lines det(D?) over the interval [0, 1],
necessarily trivial. One obtains by parallel transport of this family an identification
of determinant lines

(53) det(T,M (¢, D)) — det(TcMr) ® det(D,,)

well-defined up to isomorphism. In the case of nodes of S mapping to self-intersection
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FiGURE 8. Bubbling off the strip-like ends

points x € I%(¢), the determinant line det(D,,) is oriented by “bubbling off one-
pointed disks”, as in [42, Theorem 44.1] or [88, Equation (36)]. For each self-
intersection point

(- #r) e’ Bla) = olrs)

choose a path of Lagrangian subspaces
(54) 2 [0,1] = Lag(Ty(a_)=¢(a) X)

12(0) = Dx,cb(Tx,L) Vo(1) = D, (15, L).
Let S be the unit disk with a single boundary marking 1 € 95. The path ~, defines
a totally real boundary condition on S on the trivial bundle with fiber T, X. Let
det(D;") denote the determinant line for the Cauchy-Riemann operator D; with
boundary conditions 7, as in [88]. Let D, be the operator as in the previous
discussion but with the direction of the path ~, reversed and

D) =det(D)), D, =det(D,)® det(T,L)
The once-marked disks with boundary conditions =, and ~z glue together along
the strip like end to a disk with no-strip like end whose boundary condition is the
concatenation of ~, and 4z This boundary condition is isotopic to the constant

boundary condition, and the determinant line extends over the isotopy giving a
canonical isomorphism

(55) D, ®Df —R.

A choice of orientations o, € DE for the self-intersection points = are coherent
if the isomorphisms (55) are orientation preserving with respect to the standard
orientation on R. For each cell o; € Z¢¢) choose an orientation on the domain
B0) and let D_ denote the determinant line of the tangent space to B4 at any
point. Choose orlentatlons D+ for cells in the dual decomposition. Given a relative
spin structure for ¢ : L — X, fhe orientation at u is determined by an isomorphism

(56) det(D,) =D; ®D; ®...®D,..

The isomorphism (56) is determined by degenerating the surface with strip-like
ends to a nodal surface as in Figure 8. Thus each end €., e € £(5,) of a component
S, with a node w mapping to a self-intersection point is replaced by a disk Sy ()
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with one end attached to the rest of the surface by a node wZ. After combining
the orientations o, on the determinant lines on S,=() with orientations o, on the
tangent spaces to cells o in the case of broken edges or semi-infinite edges e €
Edge(T"), (e) = oo, one obtains an orientation o, on the determinant line of the
parameterized linear operator det(D,). The orientations on the determinant lines
give orientations on the regularized moduli spaces Mr(¢, D, a).

There is a similar discussion for weighted moduli spaces. The moduli space of
weighted trees MJ" is oriented via the product description (48). in the case of
labels 17 or 11 the orientations of the moduli spaces are defined by considering the
normal bundles of the inclusions {oo} — [0, 00| resp. {0} — [0, 00| to be positively
resp. negatively weighted. As a corollary of this discussion we have:

Corollary 4.20. The components Mr(¢, D,a)<1 of expected dimension at most
one are equipped with orientations satisfying the standard gluing signs for inclusions
of boundary components described in [21].

In particular, for labelled map types of expected dimension zero the strata
M (¢, D) inherit orientation maps
(57) 0: M (¢, D) = {+1, -1}

comparing the constructed orientation to the canonical orientation of a point.

5. FUKAYA ALGEBRAS IN THE CELLULAR MODEL

Fukaya algebras of immersed Lagrangians with cell decompositions may be de-
fined by adapting the Morse model definition in Palmer-Woodward [66] for cellular
homology. The difference is mostly an aesthetical one; the cellular decompositions
used in this paper are in fact associated to Morse-Smale pairs but conceptually the
result is more easily understood in terms of cells rather than critical points.

5.1. Cellular Floer cochains. The generators of the Floer complex in the cel-
lular model consist of cells, self-intersection points, and additional generators for
homotopy units. The set of generators is

(58) I(9) = I(6) UT™(9) UT™(9)
where
I°(¢) := {o; : B"Y — L}
is the set of cells, given as maps o; from balls B¥") of dimension d(i) to L with
boundary in the union of the images of j-cells for j < 4;

ISI(¢) = (L X L) — AL

is the set of ordered self-intersection points, where L x4 L is the fiber product and
A C L? the diagonal; and

T(9) = {13, 14}
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are two additional generators added as part of the homotopy unit construction.

The sum
1 = o oo
codim(o;)=0
is the geometric unit. Thus Z(¢) consists of the cells in L together with two copies
of each self-intersection point, plus two extra generators.

In order to obtain graded Floer cohomology groups, a grading on the set of
generators is defined as follows. Given an orientation, there is a natural Z,-valued
map

I(¢) — 227 T |'T|
obtained by assigning to any cell ¢ € Z¢(¢) the codimension mod 2 and to any
self-intersection point (z_,z,) € Z%(¢) the element |z| = 0 resp. |z| = 1 if the
self-intersection is even resp. odd. The grading degrees of the cells are determined
by the codimensions codim(o;) = dim(L) — d(i) for the cells o;, and

15l=0, [1§]=-1
for the extra generators 13, 1. Denote by Z%(¢) the subset of o € Z(¢) with |o| = k
mod 2. Let ZV(¢) denote the corresponding set for the dual cell decomposition.

The space of Floer cochains is freely generated by the above generators over the
Novikov field. The space of Floer cochains is the Z,-graded vector space

CF(¢)= € CF*(¢), CF"¢)= P Az

keZy x€Tk(p)

The g-valuation on A extends naturally to C'F(¢):
val, : CF(¢) — {0} = R, D c(z)z — mgn(valq(c(x)), c(x) #0).

5.2. Composition maps. The composition maps in the cellular Fukaya algebra
are counts of rigid holomorphic treed disks weighted by areas and holonomies. For
perturbations from the last section, define higher composition maps

mq : CF ()% = CF(¢)[2—d], d>0
on generators as follows. Let oy,...,04 € Z(¢) and let
MP(¢7 Dug)o - MF(¢7 D)

denote the subset of rigid maps with constraints given by generators g = (oy, ..., 0q)
as defined in (40). Given cells «, 3 in the first resp. second cellular decomposition,
Z¢(¢) resp. IV (@) let c(a, B) = ¢¥(, ) denote the coefficient of [a] x [f] in &;

9Here we work only with Z, gradings, so the extra generators are simply even and odd respec-
tively; see Remark 2.3.
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as in (21). Extend c(+,-) to Z(¢) x Z(¢) by defining the dual of x to be T and
vice-versa, that is,

0 otherwise

(59) oo, z) = {1 o=

Definition 5.1. (Composition maps) On generators o7, ..., 0,4 define

(60) ma(o1,...,0q) = Z wt(u, v)y
00€TY (), v€Z($)
"weEM (¢,D,00,...,04)

where the weight wt(u, ) is defined by

1\
i) = ok 0w Vol ()

with the notation

e O(u) € Z-g is the number of interior leaves e € Edge,(I"), corresponding to
intersections u(w,) € D with the Donaldson hypersurface D;

e y(Ou) € Ay is the holonomy of the local system y around the boundary
u(0S) C ¢(L) as in 2.4;

o A(u) € R>q is the sum of the areas A(u,) of the disks and spheres u, : S, —
X for v € Vert(I');

e o(u) € {£1} is an orientation sign defined in (57) using the relative spin
structure for ¢ : L — X

e the exponent O € Z is given by

d
(61) O =2 iloil;
i=1

e the sum is over all types of rigid maps ;
e the sum > ¢¥(09,7)7 from (59) dualizes the output constraint oo, and

we have written tensor products as commas to save space. If a matching condition
My is a formal sum (rather than a single diffeomorphism) the contributions are
weighted by the coefficients ¢;, d; of the perturbations My ;, Hr; in (41), (42). This
ends the Definition.

The composition maps involving one input of type 17, 13 are also defined geomet-
rically by the above sum, as in Lemma 5.4 below computing my(1}). In particular

<62) mQ( Z? 12) = 127 _m2(1g, 1;) - m2(127 12) = 12

since the corresponding moduli spaces are points. Recall that 13 is a strict unit if
and only if

(63) my(13,a) = a = (—=D)llmy(a, 15), ma(...,15,...) =0,Vd # 2.
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Theorem 5.2. For a perturbation system P = (Pr) with good properties as in
Theorem 4.19 the maps (mg)a>o satisfy the axioms of a (possibly curved) A algebra
CF(¢) with strict unit 13, € CF(¢).

Proof. We must show that the composition maps (mg)a>o satisfy the A, -associativity
equations

d i
(64> 0= Z <_1)dl+zii1 COdlm(Ui)md*derl (017 <5 0dyq,

dy,d2>0
di1+d2<d

My (Tay 15 -+ Odi+ds)> Odydat1s - - -+ 0d)

for any o4,...,04 € Z(¢). Up to sign the relation (64) follows from the description
of the boundary of the one-dimensional components in (c¢) of Definition 4.18, as
we now explain. The condition (c) implies that any one-dimensional component
M(¢p, D, ), of M(¢, D, o) has true boundary points (that is, those 0-dimensional
strata M (¢, D,c) that form the topological boundary of M(¢, D,g);) that are
given either by configurations v : S — X in which the length parameter [(e) for
an edge e € Edge (I') is infinite or one of the semi-infinite edges e € Edge_ (I") has
node w, € S mapping into the boundary of a cell o;(9B%™).

In the first case of interior edge breaking, suppose that the combinatorial type
[’ of the moduli space Mr(¢, D) has all weights 0 and there is a single interior
edge e € Edge_(I') of infinite length ¢(e) = oo. The graph I' is obtained by
gluing together graphs 'y, 'y with d — dy + 1 and d5 leaves along leaves e_, e, , say
with 0 resp. 0, interior leaves. There are 0!/6,!65! orderings of the interior leaves
T,,e € Edge, ,(I') compatible with the fixed orderings on the two component
graphs I'y,I's. There is a natural map of moduli spaces with an infinite length edge

(65) U./\/l (¢,D,00,...,04q)

— U M 1(¢7D7007O_1a"'70i7170470i+d27"'70d)
a€L($),B€IV ()

X M 2(¢7D7570’i7"'70i+d271)
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which has ¢"(a, 3)0!/6:!65! points in the fiber. Combining(45) and (46) we have
(up to signs to be determined) for any ~

(66) 0= > +0(0y, @) wt(u, )
i=1,....d,a€L(¢)
UWEMT(4,D,00,.. 05 —1,04,0i41,50-,04)0
+ > + wt(u, a)0(a, )
a€Z(¢p),ue Mr($,D,00,01...,04)0
+ > + wt(uq,y) wt(uz, )
a€Z(9),B€LY (4),d1+d2<d
u1 EMry (6,D,00,01,,0d; s0,0dy +dg+15-0d)0
U2€EMry (6,D,8,04; +15-:0d; +d5)0
where the first sum consists of maps u with evaluation in the boundary of the
given generator o; (corresponding to broken incoming edge in the Morse case); the
second sum consists of maps u with an outgoing marking mapping to the boundary
of 0p; and the third type consists of maps u with an interior edge mapping to the
degenerated diagonal §;(L). For a picture of maps of the third type, see Figure
3 which (after removing the spheres) shows a possible contribution to the A
associative equation corresponding to the term mg(mgo(1),a1,az)). The sum over
0o gives the A, axiom (64) up to sign. Following [63, Theorem 4.10] for the sign
computation, we have the following: (As far as we can see one could also equally
well use the treatment in Seidel [75, 12f], after redefining the generators of the
Fukaya algebra to be orientations on the corresponding determinant lines.) The
gluing map on determinant lines takes the form (omitting tensor products from the
notation to save space)
(67) det(R) det(T/\/ldQ)D;[D;d1+1 . D;d1+d2

det(TMa-g4,+1)D; D, ...D5...D
— det(TM,4)D} D5 ...D;

oo~ o1 o4

where M, is the moduli space of treed disks with d boundary leaves. The com-
putation of the sign of this map is similar to that of [63, Theorem 4.10] and is
congruent mod 2 to

d

(68) > (k+1)|ox|.

k=1

Since (68) is independent of d;, dy, the A, -associativity relation (64) follows for
inputs not involving 15 or 1.

The introduction of weighted semi-infinite edges produces boundary terms arising
from a weight becoming 0 or 1, rather than an edge reaching infinity length. In the
case of a weighted leaf e one has additional boundary components of the moduli

space My of treed disks (C': u : S — X) with weightings p(e) either zero or
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infinity. Those configurations correspond to a weighted leaf e € Edge”, (I') and
outgoing edge ey € Edge?, (I') U Edge®, (I'). In the A, maps, those configurations
correspond to the terms involving 1% and 19 in m,(1%).

The strict unitality follows from the existence of a forgetful map for perturbations
with edges with an infinite weighting. Suppose that an incoming leaf is labelled
13. The forgetful axiom implies the existence of a map

M (¢, D,a) = My (¢, D, f(a))

where f( ) is obtained by forgetting the edge and stabilizing, and f(g) is ob-
tained by forgetting the input labelled 15, assuming that f( ) is non-empty. Since
M (¢,D,0) has expected dimension zero by assumption, My (¢, D, f(c)) has
expected dimension —1 and is therefore empty. This is a contradiction unless f( )
is empty, which is to say that is a type with no interior leaves and either one or
two boundary leaves. In the case of one incoming leaf, the count of such configura-
tions is zero since 17 is classically closed. For one of the generators 13, 17, 1‘2, the
condition (63) follows as in Remark 4.15.

Remark 5.3. The second A, relation gives a condition for the existence of a
coboundary operator. The element

mo(1) € CF(¢)

is the curvature of the Fukaya algebra and has positive g-valuation val,(mg(1)) > 0
by Remark 5.5. The Fukaya algebra C'F(¢) is flat if mq(1) vanishes, and projectively
flat if mo(1) is a multiple of the identity 15. The first two A, relations are the
analogs of the Bianchi identity and definition of curvature respectively in differential
geometry:

mi(mo(1)) =0, mi(o) =ma(mo(1),0) — (=1)Ima(o,me(1)), Vo € I(9).

Thus if CF(¢) is projectively flat then m? = 0 and the undeformed Floer cohomol-
ogy HF(¢) = ker(my)/im(m) is defined.

Lemma 5.4. For the composition maps mg defined using (60), my (1)) is equal to
15— 1; plus terms that are higher order in q.

Proof. By definition, ml(lg) counts configurations with a single input and output
edge. By definition, constant configurations from a single edge T, with input 12
and output 13 or 1‘; are stable. The moduli space of such configurations with
weight p(e) = oo occur as the positive end of the moduli space M¥* and by
definition is positively oriented, while the locus with p(e) = 0 is negatively oriented.
Configurations with no disks contribute 13 —17, while configurations (C,u : S — X)
with at least one disk u, : S, — X contribute terms with positive area A(u) > 0,

since at least one of the disks u, must be non-constant by the stability condition.
O
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Lemma 5.5. For composition maps mg defined using (60), the curvature mg(1)
satisfies the gap condition val,(mo(1)) > h, where h > 0 is the energy quantization
constant of Lemma 4.7.

Proof. Any configuration (C,u : S — X) with no leaves T, must have at least one
non-constant holomorphic disk w,|S, : S, — X, by the stability condition. Thus
the area of any configuration (C,u : S — X) contributing to mg(1) must be at
least A(u,) > h by Lemma 4.7. O

More generally, the Fukaya algebra may admit projectively flat deformations
even if it itself is not projectively flat. Consider the sub-space of C'F'(¢) consisting
of elements with positive g-valuation

CF(¢)+ = @ Asoo.

o€Z(e)
where A = {0} Uval_'(0,00)."” Define the Maurer-Cartan map
m: CF(¢), — CF(¢), b mo(1) +ma(b) + ma(b,b) + ...
Here mg(1) is the image of 1 € A under
mo: OF(¢)*° = A — CF(¢).
Let MC(¢) denote the space of (weakly) bounding cochains:

(69) MC(¢) = { i)/aelq((i)ff(;(gb) m(b) € span(1}) } :

The value W (b) of m(b) for b € MC(¢) defines the disk potential
W:MC(¢) — A, m(b) = W(b)1.

For any b € MC(¢) define a projectively flat deformed Fukaya algebra C'F(¢,b)
with the same underlying vector space but composition maps mf defined by

(70) m4(ar,....a0) = > Marirttigy (Dy.--iba1, b, ... b as,b,
i1 T T
..., byag, by b);
——
ld+1
note that these maps only satisfy the A, axiom if b has odd degree because of
additional signs that appear in the case b even. Occasionally we wish to emphasize
the dependence of MC/(¢) on the local system y € R(¢) and we write M C(¢,y) for

101y fact one can only require positive valuations of the coefficients of the degree-one generators,
and the self-intersection points. The requirement of positivity at the self-intersection points can
be slightly weakened, see (76) below.
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MC(¢). For b€ MC(¢), the maps m%,d > 1 form a projectively flat A, algebra.
The resulting cohomology is denoted

HF(,b) = ker(m}) /im(m)

The union of HF(¢,b) for b € MC(¢) mod gauge equivalence, see the following
section, is a homotopy invariant of C'F'(¢) and independent of all choices up to
isomorphism of groups and change of base point b.

In the case of self-intersection points, the condition that the Maurer-Cartan
solutions have positive g-valuation may be relaxed using the following lemma, which
is a sort of energy quantization for corners at self-intersections. The following is
an analog of [30, Lemma 2.6].

Lemma 5.6. Let dim(Ly) > 2 and k > 2. There exists a constant § > 0 such
that the following holds: Suppose that (C,u : S — X) is a rigid treed holomorphic
disk with k + 1 leaves. If s is the number of boundary nodes w. € S mapping to
transverse self-intersection points o, € I%(¢), then A(u) > 6.

Proof. In each local chart near a self-intersection, we aim to show that the area
of a holomorphic map as in the statement of the Lemma is controlled by the
number of corners mapping to the self-intersection. Let z € Z%(¢) be a self-
intersection point. We may assume without loss of generality that the Darboux
chart X D U — C" has image that contains the radius r ball B,(0) C C" for
r € (0,00) small. Recall from Section 3.3 that the complex structure Jr € J(X)
near the self-intersection point is standard so that Jp|U = Jy, where Jyz = iz for

any tangent vector z € T, U = R* =2 C". The symplectic form wy on C" is exact
with

(¢;dp; — pjdg;) € QH(C™).

N | —

n
wo = dag, ag:= Z
Jj=1

By Stokes’ theorem,

(71) / wWwy = u*ay.
u=1(U) u=1(U)

Here we have used that the restriction of a to the Lagrangian branches R"™,iR"
vanishes.

We first deal with the case that the configuration is non-constant. On the locus
U* = {z € S,u(z) # 0} where u is non-zero in the local chart the map u descends
to a map

[u] : U* — CP™ ! 2z span(u(z)).

Consider the corresponding section z — ([u(2)],u(z)) of the pull-back [u|*T" of the
tautological bundle

T={(tz)ecP ' xC" |zet}—CP".
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The restriction of ag to the boundary of the ball B, (z), viewed as the unitary frame
bundle of the tautological bundle T, is —r2 times the standard connection one-form
ar € QY(T)) on the unit circle bundle T; in the tautological bundle T' = §?"~! over
CP" ! with projection 7 : T'— CP""!. Let

curv(T) € Q*(CP™™Y), (7|r)* curv(T) = dar

denote the curvature two-form of az. One checks easily from, for example, a Taylor
series expansion that removal of singularities holds in this case and the map [u]
extends to a holomorphic map v~ '(U) — CP™"!. Since [u] is also holomorphic,
the pull-back of minus the curvature —[u]* curv(T) € Q*(u=(U)) is a positive two-
form. On the other hand, on the locus u # 0 the map u determines a section of U
whose normalization v = u/||u|| trivializes ©*T". The integral (71) is up to a scalar
the parallel transport in the frame defined by the section u: Let B.(u=1(0)) denote
a union of e-balls around the finite set «~!(0), and denote the fractional winding
number

d(u, z) = (2%)_1/ viar

9B.(2)NS

of the phase of the section u along the path dB.(z) N S; note that this integral is
well-defined even if z is a boundary point. By Stokes’ theorem

(72> / U*OCO — —TQ/ Q}*O{T

u=1(dU) u1(9V)
73 = lim —7? (/ v|" curv(T
(73) e—0 [u|UfBe(U_l(0))}[ | &)
(74) - ”*O‘T>

9Be(u=1(0))
(™ = [ e st X )
u|lU

z€u=1(0)

The tautological bundle 7" has curvature — curv(7") that is a positive two-form,
see for example Demailly [29, Section 15.B]. It follows that the first term on the
right-hand side of (75) is non-negative. Let ¢ be the minimum of constants r’r/2,
as x varies over transverse self-intersection points. The angle change at any self-
intersection point is a multiple of 7/2, which proves the claim.

Finally, we deal with the case of constant disks mapping to self-intersections.

Constant disks mapping u : S — X with image ¢(z), x € Z%(¢) must have corners
with alternating labels

0'1:[L',O'Q:f703:$,0'4:f,...,0'2k =.

The sum of the degrees of these constraints is k dim(L), while the moduli space of
2k 4+ 1-marked disks has dimension 2k — 2. The expected dimension of the moduli
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space of holomorphic treed disks is therefore
dimM (¢,D,0) = (2k—2)—k(|z| + (dim(L) — |z|)
= (k—1)(2 —dim(L)).
Thus the labelled type is rigid only if dim(Lg) =2 or k = 1. O

Corollary 5.7. Let ¢y : Lo — X be a self-transverse immersed Lagrangian brane
of dimension dim(Lg) > 2. The projective Maurer-Cartan equation

(76) > ma(b,...,b) € span 13

d>0

is well-defined for b of the form b = b%t + b¢ satisfying the condition in Definition
b

1.1 for the ¢ described in Lemma 5.6. Any such solution b has square-zero mi and
so a Floer cohomology group

HEF(6.b) = ker(m?%)

im(mb)
Proof. By Lemma 5.6, the infinite sum in the Maurer-Cartan equation (76) has g-

valuations approaching infinity and is well-defined in CF(¢). A similar argument
shows that the deformed Fukaya maps mf, from (70) are well-defined. O

Denote the set of solutions in Corollary 5.7 by
MCs(¢) = {b e CF(¢)|(76)}.

Remark 5.8. In the case ¢ = ¢, is a surgery, we allow the coefficients b.(u), b(\)
of the meridian and longitude to have vanishing g-valuation. Theorem 5.13 implies
that for the perturbation systems we use, the potential W (b,) and Floer cohomology
HF(¢,b.) are still well-defined for such elements.

Remark 5.9. We briefly describe the invariance properties of cellular Fukaya alge-
bras. The argument using quilted disks with diagonal seam condition, see Charest-
Woodward [21, Section 3] and Palmer-Woodward [66, Remark 6.3] extends to the
cellular setting to define A,, morphisms between A, algebras defined using dif-
ferent choices. Given two sets of choices Ji, Dy, P; this argument gives an A,
morphism

CF(¢, Jo, Dy, Py) — CF(¢, J1, D1, Py)

inducing in particular a morphism of Maurer-Cartan spaces
MC(¢, Jo, Do, Py) = MC(¢, J1, D1, Py)

preserving the Floer cohomologies. We expect that the homotopy type of the
immersed Fukaya algebra C'F(¢) is independent of the choices of almost complex
structure, divisor, and perturbations. However, we prove no such invariance result
here.
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Example 5.10. The following example of an immersion of a circle in the plane shown
in Figure 1 is an easily visualizable example of the invariance of the disk potential.
In this case, the correspondence between holomorphic curves in X bounding ¢g
and ¢, is an application of the Riemann mapping theorem. The Floer cohomology
HF(¢) is trivial since the circle is displaceable by a compactly-supported Hamil-
tonian flow. The disk potential W (¢) is non-trivial and will be computed below.
Let ¢ : S' — R? be the immersion with three self-intersection points

x, 2, 1" C ¢o(Sh).

The complement of the image ¢o(S*) C X = R? has five connected components as
in Figure 1.

We identify a particular weakly bounding cochain. Suppose that the area of the
central region in X — ¢g(L) is Ag > 0 while the area of each of the lobes is A; > 0.
For simplicity, choose a cell structure on Ly = S! with a single 0-cell oy on the lobe
containing x, and a single dual 1-cell oy; the actual cell structure used for the proof
is somewhat more complicated but the difference in cell structures is irrelevant for
the example. The coefficients of the cells o¢, o1 in this cellular approximation are
necessarily

CV(O'l,O'o) = C(O'Q,O'l) =1
and all other coefficients vanish for degree reasons. Consider the cochain
bo = Z-q(—Ao+3A1)/21go + Z»q(A1—A0)/2($ + 2+ ZL'//> c CF(¢0)

with coefficient ig(41=40)/2 on the self-intersection points z, 2/, 2 and a multiple of
the degree —1 element ig(~0341)/21% |
We compute the twisted curvature m’(1) as follows. The three outer lobes

with no inputs contribute ¢*(Z + 2’ + ") to mg(1), and also to m{(1). The

disk v : S — X whose interior int(S) maps to the central region of X — ¢y(Lo)
contribute to m¥ (1) with outputs on z, 2/, 2”. Since for each such output there are
two inputs labelled by, the contribution of this region is

g (ig™ AT + 77+ 27) € OF (o).

The holomorphic strip connecting x to the zero-dimensional cell contributes to
me (1) as well, with a single by input and so a contribution of ig(41=40)/2¢414.
Finally, the constant disk with input ig(~“0*341)/ 21’(;0 contributes

ig AR (LS — 19 ) € CF(¢)
to my (by), hence m¥ (1). Thus
mP(l) = ¢" @+ +27) + ¢ >igM PP (@ + 7 +27)
b (g A2y gt gy Aot /2(ps 19 )

— /Lq(_A0+3A1)/212)0
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is a multiple of the unit 13 . Therefore, the element by € MC(¢yp) is a solution to
the projective Maurer-Cartan equation.

The self-intersection points of ¢y are admissible in the sense of Definition 1.1,
which implies that the Floer cohomology is well-defined. Any disk u : S — X with
boundary on ¢, and meeting one of the self intersection points r = (z_,x,) € S*
without a branch change must contain in its image u(.S) the exterior non-compact
region in X outside the curve ¢y(S*). This is impossible since the image of a
compact set must be compact.

A small Lagrangian surgery produces a Lagrangian immersion of a disjoint union
of circles. Choose € > 0 sufficiently small so that the surgery is defined and

(A1 — Ag)/2 = —A(e)
where A(e) > 0 is the area from Definition 2.1. Let of,0} denote the top-
dimensional cells on the two components near the self-intersection point x, as in

Figure 1. As explained below in (187), the shift from by to b is equivalent to a
shift in the local system. Define a local system on y. on ¢, by

(o)) = (o) = ig 2 =i
Define b. by removing the x-term so that
bg — iq(—A0+3A1)/21gO =+ iq(Al_AO)/2<x/ + .73//).
We have
mge(l) — ?:qu_A(E)O-i + (iq(A1—A())/2)2qA()—A(€)0.1/
+qu (I/ + T//) + qu—A(E)Z'(iq(A1—A0)/2)(T/ + T//)
- (—Ao+3A1)/2(1s
Fig AL 1)
= iq(7A0+3A1)/2120_
It follows that mj<(1) is a multiple of the strict unit 13, on the right-hand-side with
the same value of the potentials
Wo(bo, yo) = ig3H1 =42 = W, (b, y.)
as the unsurgered immersion ¢q. This ends the Example.

5.3. Gauge equivalence. A notion of gauge equivalence relates solutions to the
weak Maurer-Cartan equation so that cohomology is invariant under gauge equiv-
alence. Let by, ...,bq € CF(¢) have odd degree and let ay,...,aq € CF(¢). Define

(77) miptretaay L ag) =

Z md+io+.._+id(bo, e ,bo, ai, bl, e ,bl, as, bg,
10,-s0q

io i2
..,bg,...,ad,bd,...,bd).
————

id
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Two odd elements by, b; € CF(¢), are gauge equivalent if and only if
3h € CF(@)4, by — by = m2"(h), deg(h) even.

We then write by ~j b;. The discussion on [21, p. 75] shows that ~j, is an
equivalence relation. The linearization of the above equation is mq(h) = by — by, in
which case we say that by and by are infinitesimally gauge equivalent.
For notational convenience, we define a “shifted valuation”

val’ (b)) = val, (b%) + 0 b* € span(Z°(¢)) — {0}

valg(bc) = val, (b°) b¢ € span(Z¢(¢)) — {0}

val) (b + b¥) = min(val)(b°), val) (b)), b°, 5% # 0.
Then MCjs(¢) is the space of solutions to the projective Maurer-Cartan equation
with non-negative Valg.

Lemma 5.11. Let ¢ : L — X be a self-transverse immersed Lagrangian brane and
bo, by € CF (o).
(a) (Preservation of the Maurer-Cartan space under gauge equivalence) If by ~,
by for some h € CF(¢)y and by € MCs(¢) then by € MCs(¢) as well.
(b) (Integration of infinitesimal gauge equivalences into gauge equivalences)
Suppose that h,bg, by € CF(¢) and ¢ > 0 are such that

(78) m{" (h) = by — by, mod (val’) (¢, 00)), vall(h) > (.
Then there exists an element by, € CF(¢),V&12(()OO) > 0 with
M (h) = bog — by, val(boo — by) > vall(by — b) + C.
Proof. For item (a), define W (b;) € A so that

(79) mg (1) = W)L + ¢, c:= (mi (1) — W(b1)1L).
The element ¢ € C'F(¢) has coefficient of the strict unit 13 equal to zero. We have
mgl(l) — mgo(l) = Z md(bo, .« 7b0, bl — bo, bl, ce ,bl)
di<d—1 _—

= m" (m"" (h))

= —my ™" (g (1), h) + ms" " (b, mg (1))

= W (b1)h — W (bo)h + m5* " (h,m{ (1) — W (by)13)
= W(b1)h — W (bo)h + my" " (h,c)

where the last inequality uses the definition of ¢ in (79) and the strict unit identities
(63). Rearranging terms we have

(W (b1) = W(bo))(15 = h) = ((mg'(1) = ¢) = W(bi)h) — (mg (1) — W (bo))
(80) = mP"(h,e) —c.
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Since the two terms on the right have no coefficient of 13 by (62), we must have
W (bo) = W (by).

We now apply an induction to show that the correction ¢ vanishes. Suppose
that there exists ¢ > 0 and k > 1 such that c is divisible by ¢*¢ and Valg(h) > (;
note that this holds for £ = 1 and some ( > 0 sufficiently small by the previous
paragraph. The equation (80) implies that

mi (1) = ms"" (h,c) + W (by)1*
€ Wi(bo)1s+ (val)) " (((k + 1), 00)).

Since this holds for every k, the claim (a) follows.
The second item (b) follows from a filtration argument. Suppose

b, = mP"*(h) + by mod (val))~*((k(, 00)).
Define a solution by, to order (k + 1)¢ by defining
The desired element is the limit of the elements by. O

The following gives a way of “gauging away” the weakly bounding cochain in a
neighborhood of the self-intersection.

Proposition 5.12. Let ¢ : L — X be a Lagrangian immersion and U C L an
open set in L so that cellular differential on L is surjective onto the quotient of
C°4(L) by the span of odd cells not contained in U. Then any by € MCs(p) is
gauge equivalent to some by, € MCs(¢) that vanishes on cells contained in U.

Proof. The leading order term in the Floer differential is the Morse differential, and
by assumption the ¢° term in m? is surjective as a map from CF°(¢) to CF(¢)
after modding out by cells not contained in U. Suppose that b, € M Cs(¢) vanishes
on cells contained in U modulo terms of order k¢ for some k£ € Z,. By Lemma

5.11 there exists b1 € MCs(¢) gauge equivalent to by, such that
bt — b = my " (R, vald(beia(0)) > (k+1)C.

for any cell o contained in U. The gauge transformation does not affect the lower
order terms in b; and so the limit

b= fm b

exists, lies in M Cjs(¢), is gauge equivalent to by, and b, vanishes on all cells con-
tained in U. O
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5.4. Divisor insertions. The divisor equation for Lagrangian Floer cohomology
is a hoped-for relation for the insertion of a degree one cocycle into the composi-
tion maps. In this section, we prove a related result for the contribution of any
configuration with a codimension one cell as input up to repetition of the input.'*
The divisor equation for Fukaya algebras is similar to the familiar divisor equation
in Gromov-Witten theory. For k > 0 write

mp= Y. myg:CF(¢)** — CF(¢)
BEH2(¢)

where my, 5 is the contribution to m; arising from holomorphic disks of class 3 €
Hs(¢). The divisor equation for a codimension one cycle ¢ reads

k+1
(81> Z karl,,B(xl; sy L1, G Ty - ,.Tk) = <[C], [aﬁbmk,ﬁ(xla <. 7$k)

i=1
see [23, Proposition 6.3]. In particular, the divisor equation implies that for = a
degree one cocycle in ¢(L)

(82) S omp(z,.x) =)0 > m]?!ﬁbmo,g(l).

k>0 k>0 B€ Hy ()

The right hand side of (82) is the contribution of mg(1) with local system y shifted
by
eXp($) € HOHI(H1<¢(L), Z)a AO) = R(¢)

In this sense, variations of the weakly bounding cochain b € MC(¢) should be
equivalent to variations of the local system y € R(¢). In general the truth of the
divisor equation typically depends on the existence of regularized moduli spaces of
holomorphic disks equipped with forgetful maps. The existence of such maps is
rather difficult in the Morse or cellular settings.

We prove an identity for contributions to the composition maps with repeated
cellular inputs related to the divisor equation (81); the terminology will be ex-
plained in the following discussion.

Theorem 5.13. Suppose P is a reduced-reqular perturbation system. There
exists a system of perturbations Pr satisfying the conditions in Definition 4.18
such that for each codimension one cell o;, rigid treed disk uw : S — X whose
boundary meets o; transversally, and collection of positive integers d = (d(z) > 0),

UThe results of this section are not necessary if dim(Lp) > 3 and one uses the shift in local
system (184) and

be = by — bo(ﬂl‘)x - bo(f)f + bO(.’L‘)bO(f))\

instead of shifting the weakly bounding cochain in Definition 1.2, or in dimension dim(Lg) = 2
with the local system formulas (184), (187).
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there exists a unique configuration ug obtained by repeating d(z) inputs at each
z € u=(o;) in the neighborhood UMY with weight given by the inverse factorial
wt(ug,v) = [[(d(2)) ™" wt(u, 7).

The terminology is explained by the following definitions.

Definition 5.14. (Inserting repeated inputs) Let u : S — X be a holomorphic
disk bounding ¢ and let z € 95 be a point where u(z) intersects a codimension
one cell o transversally. Given such a disk and an integer d > 1, let

ufd Ot X
be the configuration whose domain

cyd=CuT,US,UT, U...UT,,

consists of an additional disk S, on which w9 is constant, attached at z via an

edge T, of some length ((eg) and d edges T, ..., T., attached to S, mapping to
o, as in the middle drawing in Figure 9.

FiGUuRrE 9. Configurations corresponding to an intersection with a
codimension one cell: Left, a configuration meeting the cell transver-
sally; Middle, adding a constant disk with multiple edges to the left
configuration; Right, the center configuration after perturbation

Definition 5.15. A perturbation system P™ is reduced reqular for a cell o if

(a) the matching conditions M = (Mr) are equal to the identity map in an
open neighborhood of ¢ and

(b) all rigid configurations u not of the form (u*ed)

4 for some u and d are regular.

In other words, rigid maps v : S — X not obtained by repeating inputs are all
regular.

Suppose a reduced regular perturbation system P™® has been chosen. Consider
a new perturbation system P obtained from P™? by perturbing the matching con-
ditions for the semi-infinite edges T, e € Edge_, (T').
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Lemma 5.16. For a generic perturbation system P obtained from P™% as above,
each rigid treed disk u is regular and obtained from some uF by removing the
ghost component and changing the positions of the edges T,,...,T., so that the

corresponding nodes map to the perturbed cell Mr(w.,,-) (o).

Proof. Transversality is a standard consequence of Sard-Smale. To see that any
rigid treed disk is of the form u’fd for some u for sufficiently small perturbation,
suppose that u, is a family of such maps for perturbations Mr, (w,,,-) that con-
verges to the identity in the C'*° topology, but w, is not obtained as above. By

Gromov compactness, there exists a subsequence of u, that converges to some u}4.

But by transversality, there is a unique u, closed to uf? satisfying the perturbed

matching conditions. This is a contradiction. O

That is, perturbed configurations are clustered around the configurations ob-
tained by repeating inputs.

Example 5.17. We explain how repeating inputs appear in the product structure
on the Floer cohomology of a Lagrangian given by the circle in the two-sphere.
Let X = 8?2 and L = S a circle dividing X into two regions of areas A, and A_.
Equip L with its standard cell decomposition into two cells consisting of a 0-cell
oo and a 1-cell o1. Equip X with its standard complex structure. Since there are

F1cUurE 10. Disks with point constraints on the sphere

two Maslov-index-two disks corresponding to the two hemispheres, for the trivial
bounding cochain we obtain

mo(1) = (g™ + ¢ oo
and the relation

my(o1) = (¢ — ¢*)ao.
Consider the family of maps ufd obtained from one of the two hemispheres as
above with d by repeating incoming edges labelled by o;. The unperturbed com-
plex structure and matching condition is reduced-regular for o, since every config-
uration without constant disks labelled by multiple codimension-one constraints is
regular. In particular, the map u; obtained from u by adding an edge 7., mapping
to og is regular. A choice of perturbed matching conditions M at the incoming
edges T, ,...,T., amounts to a collection of perturbations oy 1,...,014, that is,
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points near o;. Suppose the perturbations o;, are in the same order around the
boundary 05, as the order given by the indices. Then there is a Ppr-perturbed map
ug obtained from u by repeating inputs. Otherwise, if the order is different, then
no such map exists. In particular, for d = 2 if the perturbations oy i, 02 follow
the cyclic order around the disk with area A, then we have

(83) my (o1, 01) = ¢ og
while if the perturbations are in the opposite order then
(84) mg(al,al) = qA_O'o.

If A, = Ay, then the Floer cohomology is non-trivial and we obtain the relation
on cohomology
ma([o], [01]) = ¢+ [o0] = ¢ [o0]

so the product on cohomology is independent of the choice of perturbation. The
standard complex structure .J on X = S? combined with the unperturbed matching
condition Mr(w,l) =1,Vl € L is reduced regular since the only maps of expected
dimension zero are those containing a single Maslov index two disk constrained by
degree one cells. Any such disk u, : S, — X is necessarily one of those above with
area A, or A_ and is regular as long as there is a single incoming leaf. The only
other configurations of expected dimension are those with multiple leaves labelled
01, and these are not required to be regular. The contributions to my(oy, ..., 01) are
clustered around the two maps arising from the two disks with areas A,, A_, and
obtained by slightly perturbing the points oy, ..., 01 to points in general position
01,15,---,014d-

We wish to choose perturbations so that the count of perturbed configurations
with repeated inputs is controlled by the weight of the original configuration.

Definition 5.18. The matching condition Mr for a type I' is permutation-invariant
on an open subset U C L for o if for any two edges ey, e5 € Edge(I") Mr(we,,1) =
Mr(w,,,l) as multivalued perturbations for all [ € U.

Example 5.19. We continue the two-sphere example in 5.17 and compute the second
structure map for a permutation-invariant matching condition. A permutation-
invariant multi-valued perturbation is given by matching conditions assigning the
nodes to map to perturbations of the 0-cells oy 1,012 in clockwise order around
the boundary of the disk with coefficient 1/2, and oy 1, 012 in the counterclockwise
order also with coefficient 1/2. The resulting structure map is

1
mao(oy,01) = E(CIAJr +¢*)oo.

In the case A_A_, this agrees with the formulas (83), (84) obtained without aver-
aging, and so induces the same product on Floer cohomology.
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Proof of Theorem 5.13. The statement of the Theorem follows by perturbing the
perturbations so that they are permutation-invariant near the reduced configura-
tions. Let P = (Prd) be a reduced-regular perturbation system for oy, ..., oy.
Inductively construct, as in the proof of Theorem 4.19, a nearby regular per-
turbation system P so that the perturbed matching conditions M = (Mr) are
permutation-invariant in a neighborhood of each cell ¢;. Suppose that the reduced
configurations of type I'"*¢ meet the codimension one cells o; in a finite set Zr. It
follows from the implicit function theorem that for sufficiently small perturbations
Pr of Pred there is a bijection between Prd-perturbed configurations uid with
l(eg) = 0 and Pr-perturbed configurations. After a generic perturbation M of
Mr, the points zq,..., z4 are distinct. Since the number of permutations is finite,
the set of single-valued conditions g*Mp that are regular for all permutations g of
the edges Tt,,...,T., is comeager. The average M is then regular. Assuming the
perturbations M are invariant under permutations of the points on the constant
disks, of the d! possible orderings of the perturbations Mr ;(o) of o induced by the
matching conditions Mr exactly one ordering is achieved by a sequence of points
Z1,...,2q in cyclic order around the boundary of S. It follows that the weight of
any point in the fiber is (d!)~! times the weight of the image configuration. In the
recursive construction of the perturbation system P = (Pr), at each stage we are
given Pr on the boundary of Ur and wish to extend it over the interior. Because
the space of perturbations is contractible, the inductive procedure may be carried
out as before. O

Remark 5.20. (Divisor edges attached to constant disks) In the moduli space of
rigid treed disks there may also be configurations with boundary edges labelled
by o; so that the adjacent disk S, is constant. Suppose that the perturbations
vanish, so that all treed disks are regular without perturbation. If the number of
adjacent edges to S, is at least four, then forgetting the boundary edge labelled
o; produces a configuration of lower dimension which is impossible. On the other
hand, if the number of adjacent edges is three, say with two incoming edges 7, , T,
then there is another configuration u' obtained by interchanging the order of the
inputs 7,,, T, around the boundary of S,. As long as the area of the configuration
is positive, these two configurations contribute with opposite signs and cancel.

We will need a similar “repeating input” type formula for disks with repeat-
ing alternating inputs at the self-intersection points in the case of Lagrangians of
dimension two. Suppose that dim(Ly) = 2 and =z = (z_,2,),T = (v4,2_) are
ordered self-intersection points. In this case, there are additional constant disks
ulS, : S, = {p(x)} C X of expected dimension zero with corners alternating

01 =2,00=2T,03 =X,04=2,... GISi(QZﬁ)

where o4 € Z¢) is the top-dimensional cell containing x; resp. z_. Let I" denote
the corresponding combinatorial type of domain, with 2d + 1 boundary leaves and
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no interior leaves. The unperturbed relevant moduli space M (¢) is not of expected
dimension. Indeed, any 2d + 1-marked constant disk (C,u : S — X) mapping to
the self-intersection point ¢(z) is holomorphic. The moduli space of such maps
M (¢) is dimension 2d — 2, not the expected dimension zero.

Assumption 5.21. Let ¢ : L — X be an immersed Lagrangian brane of dimension
dim(L) = 2 and = € Z%(¢) a self-intersection point contained in a pair of cells o
of top-dimension in the dual cell decomposition, each dual to O-cell o4 . The
immersed Fukaya algebra C'F(¢) is rotation-invariant at x if and only if for any
d > 1 we have

-1 d—1
mag(z, T, x,...,T) € ()dUﬂJ + Valgl(O, 00)
-1 d—1 _
mog(T, 2, ..., T,x) € _()dU,O + val(;l((), 00).

Remark 5.22. Tt seems that rotation-invariant perturbations exist, essentially be-
cause perturbations for zero-energy disks are the first step in the inductive proce-
dure for constructing perturbations. We take 5.21 as an assumption in the case
dim(L) = 2 and both by(x) and by(T) are non-vanishing. (Note that for the pur-
poses of mean curvature flow we only need the case that one of by(z) or by(T)
vanishes.)

6. HOLOMORPHIC DISKS AND NECK-STRETCHING

In symplectic field theory, one studies the behavior of holomorphic curves as
the almost complex structure on the target changes in a family corresponding to
neck-stretching. Following Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder [16] and
Venugopalan-Woodward [86] we describe the limit of the Fukaya algebra of a La-
grangian under neck-stretching. The limit of a sequence of holomorphic disks
with respect to such a neck-stretching is a holomorphic building in the language of
Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder [16].

The situation in this paper differes from the situation in the above papers in
several ways. First of all, the Lagrangian is allowed to pass through the neck
region, as it is in Fukaya-Oh-Ohta-Ono [42, Chapter 10]. Second, since our Fukaya
algebras are defined using treed disks, it may be that the tree part, rather than
surface part, breaks in the neck-stretching limit. Thus the levels of the buildings
in this case have not only strip-like and cylindrical ends going to infinity, but also
additional breakings of the segments. Finally, we wish to degenerate our moduli
spaces to products of treed disks in the pieces, rather than fiber products. For
this we take an an additional limit which degenerates the matching conditions at
the separating hypersurface. The main result is Theorem 6.33 below which gives
a homotopy-equivalent Fukaya algebra obtained by counting buildings with each
level satisfying some constraints at infinity.
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6.1. Broken holomorphic disks. Broken disks arise by the following neck-stretching
limit studied by Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder [16] in the context

of symplectic field theory. Recall that if Z C X is a coisotropic submanifold, then
the null foliation of Z is the distribution defined by

ker(wlrz) = |J{€ € T.ZJw(€,¢) =0, V(e T.Z} C TZ.

z2€Z

The null foliation ker(w|rz) is called fibrating if there exists a fiber bundle p :
Z — Y so that the null foliation is ker(w|rz) = ker(Dp). In this case, the bundle
p: Z — Y is unique up to isomorphism and called the null fibration.

Definition 6.1. (Neck-stretching for almost complex structures on symplectic
manifolds) Let Z C X be a codimension one coisotropic submanifold admitting
the structure of an S!-null-fibration p : Z — Y over a symplectic manifold Y.
Thus

ker(Dp) = ker(w|rz) C TZ
is the vertical subspace. Let
wz = prwy € V*(Z)

denote the pullback of the symplectic form wy to Z.

The neck-stretched manifold is obtained by cutting along the hypersurface and
inserting a cylinder. Let X° denote the manifold with boundary obtained by cutting
open X along Z. Let Z', Z" denote the resulting copies of Z. For any 7 > 0 let

(85) X =X° U ([-7,7] x 2)
ZN={—1}xZ{r}x2Z=2"

be the manifold obtained by gluing together the ends Z’, Z” of X° using a neck
[—7, 7] x Z of length 27.

Define almost complex structures on the neck-stretched manifold as follows. The
R action by translation on R and U(1) action on Z combine to a smooth C* =
R x U(1) action on R x Z making R x Z into a C*-bundle. Consider the projections

pr:RXZ =R, ps;:RXZ—=Z py:RxZ—-Y

onto factors R and Z resp. onto Y. An almost complex structure J on R x Z is
called cylindrical'® if J is C*-invariant, preserves the tangent spaces to the fibers
of py : Rx Z — Y and J is equal to the standard almost complex structure on
any fiber

py'(y) =R x Z, ¥R x U(1) 2 C*.

2These conditions are stronger than the definition in Bourgeois-Eliashberg-Hofer-Wysocki-
Zehnder [16], which deals with a more general situation.
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In particular, each orbit of C* is holomorphic. Any cylindrical almost complex
structure J on R x Z induces an almost complex structure Jy on Y by projection
by the formula

Dpy (Jw) = JyDpyw, w € T(R x Z).
We assume that Jy is compatible with the symplectic form wy on Y. ' There are
complementary vertical resp. horizontal rank resp. corank two sub-bundles

V = ker(Dp) @ ker(Dpz) C TR x Z)
H = TZnJTZ)Cpy,TZ CTRx Z).

with the first bundle V' being a a trivial bundle over R x Z. We have a splitting
into complex vector bundles

(36) TRxZ)2HaoV.

Since Z is assumed to admit the structure of a principal S'-bundle, there is unique
connection one-form compatible with the splitting

ae(2)%, ker(a)=H

(and in particular Z is a stable hypersurface in the terminology of symplectic field
theory.) Conversely, given such a one-form, there is a unique almost complex
structure J given by Jy on H on the standard almost complex structure on V.

The neck-stretched submanifolds of (85) are all diffeomorphic, and the construc-
tion provides a family of almost complex structures on the original manifold. The
neck-stretched manifold X7 is diffeomorphic to X by a family of diffeomorphisms
given on the neck region by a map

(87) (—7,7) X Z = (=79,70) X Z

equal to the identity on Z and a translation in a neighborhood of {£7} x Z. Given
an almost complex structure J on X that is of cylindrical form on (—79, 79) X Z, we
obtain an almost complex structure J™ on X7 by using the same cylindrical almost
complex structure on the neck region. Via the diffeomorphism X7 — X described
in (87), we obtain an almost complex structure on X also denoted J7. This ends
the Definition.

Compactness results in symplectic field theory [16] describe the limit of holomor-
phic curves as the length of the neck approaches infinity. The complement of Z in
X divides X into regions X~ and X-, which we consider as symplectic manifolds
with cylindrical ends. Similarly, suppose that ¢ : L — X is a possibly immersed
Lagrangian submanifold intersecting Z transversally in a submanifold Ly = ZNL,
so that in a neighborhood of {0} x Z in the tubular neighborhood (—¢,¢) x Z — X
L is the image of (—¢,€) x Ly — X. We denote by

Le=¢'(Xo), Lo =0¢"(X5)

BFor many purposes, it suffices to assume that Jy tames wy, see for example [25].
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the pieces of L in X~ and X-5. In the neck-stretching limit, the symplectic field
theory compactness results produce a configuration of holomorphic maps with La-
grangian boundary conditions called a building.

Definition 6.2. The broken symplectic manifold arising from the triple (X, X5,Y)
above is the topological space

X=XcUY UXS
obtained by compactifying X~, X5 by adding a copy of Y and identifying the
copies. Thus X is the singular space obtained by gluing the smooth manifolds

along Y. The space X inherits a natural topology by viewing X as the quotient of
X by the equivalence relation on Z given by the S'-fibration. Thus X is a stratified
space and the link of a point in Y in X is a disjoint union of two circles. The space
X comes equipped with an isomorphism of normal bundles

(88) N (T]{(;)Y N ((T;f;)y){

The infinite neck is the product R x Z and may be compactified by adding copies
of Y at +o00. For an integer k£ > 1, define the k-broken symplectic manifold

(89) Xk]=XcURXxZ)U...U(RXx Z)UL X-.
The k — 1 copies of R x Z are called the neck pieces. Define
(90) X[klo=Xc, X[k =RxZ,.... X[klx =R x Z, X[k]x = X>.

For each piece we denote by X[k]; the compactified space obtained by adding one
or two copies of Y at infinity. The complex torus (C*)*~! acts X[k] via the action
of C* on each neck piece,

C*xXxP(Nt®C) = P(NL®C), (z[n,w])— z[nw]:=[zn,w).
Similarly, define the broken Lagrangian
(91) L=L-ULyUL-
where Ly = p(Lz). Let
Lkl =LcURX Lz)U...U(RX Lyz)U L~.
The group (R*)*~1 acts by real translations on the neck pieces.

Definition 6.3. A holomorphic building with k + 1 levels consists of

(a) a collection of surfaces S;,7 = 0,...,k with strip-like and cylindrical ends
and
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(b) holomorphic maps
called the levels of the building; satisfying the given boundary conditions
(c) a pairing of the outgoing ends of S; with the incoming ends of S;;; so that
the limits along the ends satisfying matching conditions: For each such pair
of ends, there exists a multiplicity p € R (possibly non-integer in the case of
strip-like ends) and coordinates (s,t) on the ends so that so that

(92) lim exp(—=2mpu(s + it))ui(s, ) = lim exp(2mp(s + it))uipq1 (s, t).

In particular, the completions u; to @; ;1 have matching value at Y = X[k];N
X[k]i+1 and the same multiplicity of intersection with Y.

Automorphism of buildings u : S — X[k] are pairs
¢ € Aut(S), ¢ € Aut(X[k])
consisting of translations on the neck pieces so that
wo =1 ou.
A building u : S — X is stable if it has finitely many automorphisms.

The limits of the levels in a building along the ends is a collection of Reeb chords
and orbits.

Definition 6.4. (Reeb orbits and chords) Loops in a fiber of constant speed
d
v:S'"—>Z, « (dtﬁ(t)> constant

are called Reeb orbits. Paths of constant speed beginning and ending at the La-
grangian

v:[0,1] = Z,, « (j}fﬁ(t)) constant, Y(k) € Lz, k €{0,1}

are called Reeb chords. This ends the definition.

Remark 6.5. Given a Reeb orbit or chord ¢ with o (%ﬁ(t)) = u the trivial strip
or trivial cylinder corresponding to ¥ is the map with domain S = R x [0, 1] resp.
S=RxS!

S—RxZ,  (s,t)— (su,¥(t))
Equivalently, a building « is stable if and only if each component

Uy Sy — X[k]o U X[E]g

in the components X[k]o, X[k]; without translation automorphisms is stable and
each level
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in the neck region has at least one component that is not a trivial cylinder or
strip; the latter condition prevents the existence of automorphisms arising from
the translation action on the neck pieces.

We now turn to treed holomorphic buildings. In the neck stretching limit, we
assume that the cellular deformations of the diagonal are given by deformations on
the neck in the translational direction only:

515(57 Z) = ((572>7 (5 + f(t)az))

on the neck region for some function f(t) converging to infinity as ¢ converges to
1. For each piece L, L~ let

U-C Le, UsC L

be open sets describing the image of the neck region under cellular deformation.
Let

(93) oc :Uc — Lz, ¢5:Us5— Ly

be maps so that a pair (I-,l5) is in the image of the cellular deformation in the
limit if and only if

pc(lc) = ¢5(1s).
Given a k-fold breaking L[k] define U[k]; C L[k]; to be U5 for the first level, U for
the last level, and L[k]; for any intermediate levels. Thus we have maps

;i Ulkl; = Lz,i=0,...,k.

Definition 6.6. A treed building is a treed disk C' equipped with a building struc-
ture S = Sy U ... U Sg on the surface part S, with each segment T, connecting
different levels only if those levels are adjacent S;, S;+1 and the length ¢(e) is infi-
nite. Each component S; together with the edges T, attached to it will be called a
treed level; see Figure 11.

A holomorphic treed building is a treed building C' = S UT equipped with a holo-
morphic map u : S — X[k] for some k so that the intersections 7'N .S occur away
from the nodes joining levels and the collection w; := u|S; satisfies the conditions
(92) as well as the matching conditions for the edges T, connecting levels S;, S;. 1
with endpoints w4

(94) pi(w_) = @iy1(wy).

Stability for treed buildings is defined in the same way as for buildings, with the
following special case: If a building C' consists of a single edge 7. with no disks with
an incoming label 12 and an outgoing label 17 or 1‘;’) then we declare the building
stable; similarly a building consisting of a single edge with input labelled o., and
output labelled o.,, where 0., appears in the boundary of o, is stable.
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FIGURE 11. A treed level

For each treed level type ; evaluation at the semi-infinite edges defines a map
(95) ev: M (X, 6,D) = LG© x ya® x 40

assigning to each map w; : S — X the beginning points 9J.(0) € Z of the limiting
ei(o) Reeb chords or e;(e) orbits 9, at infinity along each strip-like or cylindrical
end of 5, as well as the evaluations at the ends of the d;(o) semi-infinite edges. For
any subset

(96) ¥ c L8 x ye® x [40)
denote by
(97) M (6,%) =ev (D)

the moduli space of maps with the given constraints.

We will regularize these moduli spaces by passing to maps adapted to a Donald-
son hypersurface. A broken divisor D = (D¢, D) is a pair of divisors D C X
and D~ C X5 with

D-NY =Dy =D5NY
such that
¢o: Ly =Y, ¢c:Lc— Xo, ¢5: L5 — X

are exact in the complement of Dy resp. D resp. D-. Any broken divisor
D = (D¢, D+) gives rise to a family of divisors D such that ¢ : L — X is exact in
the complement of D, since the section defining D is approximately holomorphic
constant on ¢(L). As in [21], one may first choose a Donaldson hypersurface Dy
for Ly disjoint from the Lagrangian Ly C Y. One may then extend to Donaldson
hypersurfaces D- C X and D~ C X+, by choosing extensions of the asymptoti-
cally holomorphic sequence of sections. The definition of adapted buildings is then
similar to that of adapted maps: Each component of u~!(D) is required to contain
an interior edge, and each such edge is required to map to D.
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6.2. Fredholm theory and exponential decay. In this section, we collect some
technical results on holomorphic maps asymptotic to Reeb orbits or chords. In
order to carry out the necessary classification of levels in the local model, we allow
Lagrangian boundary conditions that are asymptotically cylindrical rather than
cylindrical in a neighborhood of infinity.

Definition 6.7.  (a) An almost complex manifold X has a cylindrical end mod-
elled on Z if there exists an embedding

KX Rag X Z - X

such that the image of % has compact complement. A cylindrical end
almost complex structure is an almost complex structure J : TX — T X for
which the pull-back J|g.,xz to Rsg X Z is of cylindrical form in the sense
of Definition 6.1, that is, the restriction of a cylindrical almost complex
structure Jryxz on R x Z.

(b) Let ¢ : L — X be a Lagrangian immersion. Call ¢ cylindrical near infinity
if there exists a smooth manifold Lz of Z and s € R so that L is cylindrical
in (s,00) X Z on the end: That is,

(%)M (6(L)) N ((s,00) x Z) = (5,00) X Lz.

Since we are considering only the circle-fibered case, our cylindrical end manifolds
have natural compactifications at infinity. Given a manifold X with cylindrical
almost complex structure J as above, the compactification of X is the almost
complex manifold X = X UY obtained by gluing in a copy of Y at infinity. In
terms of charts, we have

(98) X=X UR>0><Z (Z Xcx C)

where Z xcx C is the line bundle associated to Z. The inclusion of Ryg X Z in
Z Xcx Cis given by the isomorphism

R>0><ZgZX51CX.

Proposition 6.8. Suppose that ¢ : L — X is cylindrical-near-infinity. Then the

closure ¢(L) C X is contained in the image of a Lagrangian immersion ¢ : L — X
with (without boundary, but possibly non-compact) clean self-intersection.

Proof. The subset Ryy x Z glues into the chart Z xcx C near infinity by the map
(s,2) — [2,e7%]. Let L denote the union

f = qb(L) U (R>0 X Lz) U Ly

in X. In a neighborhood of Y the closure L is contained in the cleanly-self-
intersecting submanifold L given as the image of (Rsg X (=LzU Lz))ULy. O
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Definition 6.9. Let X = X UY be as above equipped with a symplectic structure.
A Lagrangian submanifold L C X is asymptotically cylindrical to a cylindrical-near-
infinity Lagrangian L if the closure L is an immersed submanifold-with-boundary
in X tangent to the closure of Ly at Ly-.

Proposition 6.10. Let L C X be an asymptotically cylindrical Lagrangian mani-
fold asymptotic to a cylindrical-near-infinity Lagrangian submanifold Ly. The clo-
sure L is contained in a (possibly non-compact) cleanly-self-intersecting Lagrangian
submanifold of X.

Proof. The closure of L is Ly and L is tangent to Ly, which is contained in a
cleanly-self-intersecting Lagrangian by Proposition 6.8. We may write L near Ly
as the graph of an exact one-form df on Lo where f : Ly — R is smooth, using
Weinstein neighborhoods of each branch of L’ in X to write nearby Lagrangians as
graphs of one-forms. By, for example, the Seeley extension theorem [74] extension
theorem f extends to a function f’ on L’. After possibly shrinking L', there are no
self-intersection points of graph(df’) other than Ly, that is, the extensions of the
branches do not intersect, and graph(df’) provides the desired extension. 0

Let S be a holomorphic curve with cylindrical and strip-like ends
Keo tRX ST =S e=1,... e
Keo :RXx[0,1] = S e=1,...,¢(o).

Definition 6.11. (Holomorphic maps asymptotic to Reeb chords) Given a cylin-
drical or asymptotically cylindrical Lagrangian ¢ : L — X, a map from a surface
S with strip and cylindrical ends to X with boundary in ¢ is a map

u:S — X, u(dS)cC ¢o(L).

A map u : S — X is asymptotic to a Reeb chord ¥ on an end of S if there exist
sp € R and a multiplicity i € Ry such that in cylindrical coordinates (s, t) on each
end the distance in the cylindrical metric dey; on R X Z, with coordinates given by
Fe O Keo

(99) deyi(uls, 1), (50 + ps, 9(t))) < Ce™®

for some constant € > 0 and sy € R. The definition of an end asymptotic to a Reeb
orbit is similar. This ends the Definition.

The exponential decay above is closely related to a finite-energy condition. Our
case is a special case of a more general definition for stable Hamiltonian structures in
[16]. For simplicity consider holomorphic maps to U = R x Z, where Z is equipped
with closed two-form wy € Q%(Z) with fibrating null-foliation ker(wz) C TZ and
connection form o € QY(Z). Let J : TU — TU be a cylindrical almost complex
structure. The horizontal energy of a holomorphic map

u=(¢Y,v):(S,7) > (Rx Z,J)
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is ([16, 5.3]) with S° C S denoting the complement of the corners (points where
u|0S has a branch change)

EMu) = / viwg.
The wvertical energy is ([16, 5.3])
(100) B (1) = sup /SO(g o)) A v
where the supremum is taken over the set of all non-negative C'*° functions
C:R—R, /RC(s)ds:1
with compact support. The Hofer energy ([16, 5.3]) is the sum
E(u) = E"(u) + E¥(u).

Let X° be a symplectic manifold with cylindrical end modelled on R+ x Z. The
vertical energy EY(u) on the end is defined as before in (100). The Hofer energy
E(u) of a map u : S° — X° from a surface S° with cylindrical ends to X° is
defined by dividing X° into a compact piece X“™ and a cylindrical end Ry X Z,
and defining

E(u) = E(ulxcon) + E(ulroxz)

where F(u) is the Hamiltonian-perturbed energy from (38).

Lemma 6.12. Let ¢ : L — X be an cylindrical-near-infinity Lagrangian immer-
sion. Any J-holomorphic map u : S — X with boundary on ¢(L) and finite Hofer
enerqy extends to a J-holomorphic map u : S — X, and the extension defines a
bijection between maps to X and maps to X.

Proof. Exponential convergence on strips with finite Hofer energy is proved in
Cieliebak-Ekholm-Latschev [18, Proposition 3.2]. The exponential convergence
implies that u is finite area. Removal of singularities for holomorphic maps with
boundary on immersed Lagrangians with clean self-intersection Schméshke [72] im-
plies that the map v extends to a map @ : S — X with boundary on L. Conversely,
any map @ : S — X restricts to a map from S to X by removing the points mapping
to X — X. The finite Hofer energy condition E(u) < oo follows from the fact that
by the constant rank embedding theorem, the symplectic form in a neighborhood
of Y in X — X diffeomorphic to a neighborhood of the zero section in the normal
bundle Ny may be written d(¢v*«) + 75wy ) where ( is the norm-square function.
This form is cohomologous to that one for which ( has compact support, and the
Stokes’ formula computation in [16, Section 5.7] implies that bounded Hofer energy
is equivalent to bounded area. See [16, Remark 5.9]. O

The condition that a holomorphic map has finite Hofer energy implies asymptotic
convergence to Reeb chords at infinity for an exponential decay constant that is
related to the minimum angle of intersection between the Lagrangians.
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Lemma 6.13. (Removal of singularities for cylindrical maps) Let ¢ : L — X
be an asymptotically cylindrical Lagrangian immersion. For any finite energy J-
holomorphic map u : S — X either

(a) there exist x € X such that u(s,t) converges to x as s — oo, uniformly in t
for cylindrical coordinates (s,t) along the end e (so that u has a removable
singularity) or

(b) there exists a Reeb chord resp. orbit ¥, such that u(s,t) converges exponen-
tially fast to ¥.(s) as s — oo, for s — oo with constant 6 in the sense of
(99) depending only on V..

Proof. The desired convergence for strip-like ends &, ¢ is a consequence of Schmashke
[72, Theorem 3.2|: There exist positive constants ', ¢o, ¢1, ¢, . .. and an eigenfunc-
tion

v:[0,1] > T,X, Ow=0v, v(0)eT,L;, v(l)eT,L;

with eigenvalue 6 so that for every integer £ > 0

—1 /
(101)  wu(s,t) = exps (eosv(t) + w(s,t)) s lwllor soexgony < cre” @0,

0

The eigenfunctions v of d; on the vertical parts of T, L;,_, Ty Lz, . correspond to Reeb
chords (c.f. Robbin-Salamon [71, Appendix EJ]) 9, and in cylindrical coordinates on
X the exponential of e=%u(t) is equal to (6s,9(t)). The second estimate in (101)
implies the desired exponential convergence. U

We develop Fredholm theory for holomorphic treed maps to cylindrical end man-
ifolds. Given a holomorphic map u : S — X with finite Hofer energy, denote by I'
the type of the domain S and Mrp(¢, D) the space of maps v : S — X with domain
type I'.

Proposition 6.14. For any domain type T, the space My (¢, D) of finite-energy
holomorphic maps (C,u : S — X) with domain type T is locally cut out by a
Fredholm map of Banach spaces.

Proof. There are two possible approaches to the Fredholm theory. By Lemma
6.12, the moduli space of finite-energy maps Mr(¢p, D) is in bijection with the
space of maps @ : S — X to the compactification bounding ¢(L). The statement
of the Proposition follows from the Fredholm theory for holomorphic maps with
boundary on a clean intersection Lagrangian [72]. The second version of Fredholm
theory treats the target as a cylindrical end manifold, and is required to prepare
for the needed gluing result later in Section 6.5.

To carry out the second approach, we suppose for simplicity that the limits
along the strip-like or cylindrical ends are Reeb chords or orbits, so that there are
no self-intersection points. Since the intersection L; N Z, with each branch L; of
L at infinity with each fiber Z,,y € Y is by assumption finite, we may assume
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that the boundary of u on the strip-like ends maps to branches Lj_, Lj, of the
Lagrangian on the boundary at infinity. The two branches differ by

(102) Ly, NZ, 2Ly NZ,)

for some angle 6 € [0,27). Choose a Sobolev decay constant A € (0,27) smaller
than the angles 6, if 8 # 0. Let 5 be a good cutoff function

B(s)=0 s<0
103 e C*(R,|0,1]), :
(103 5 e CXR.[0,1) {M:l Y

Define a Sobolev weight function

(104) Ny : 5% = [0,00), (s,t) — B(s)pAs

where 3(s)pA is by definition zero on the complement of the cylindrical ends. Let
Q(S° u TX Yy = { € € QS TX) i | NEIR 0 < 00 }

denote the weighted Sobolev space of exponent p, differentiability class k, and decay
constant A. By definition this space consists of sections with finite norm for sections
£:5° = wTX with limits

lim €oreo(s, ) = &le) € Q([0,1],R x 9;TZ)

at infinity defined by

(105)  1€]l%x ::ZII(é(e))H“r/SO >Vl

+H1E = B(sl - | 1n(5)!/2)T“(§(e))Hp> exp(Ry)d Volge

where 7" is parallel transport from .(t) to u(s,t) along u(s’,t). By definition,
these Sobolev spaces have evaluation-at-infinity maps
(106) Voo : QUS° W TX)jpn = P TRxZ), & (&(€))ece(se)-
e€&(S°)
Let
Map(So, X)k,p,)\ = {eXpuo (5), 5 € QO(SovuéTX)k,p,)\}
denote the space of maps u : S° = X equal to exp, (§) for some uy : S° — X

constant near infinity on each strip like ends by an element of the weighted Sobolev
space £ € QV(S°, ubT X )i pr Let

QM (8% W TX)y 0 ={n € Q" (S°uTX)g,\ [lli-1pa < 00}

denote the space of (0,1)-forms with finite (kK — 1,p, \) norm, given in the case
k—1=0 by

1/p
Iloa = ( [, Il exp () d Vols. ) ™
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Using the local trivializations (36) define a Banach manifold resp. Banach vector
bundle

Br = ML x Map (SO,X7L)k,p,A

: i 0,1 o *
&r = Uuenr Fu “Tau — Q (S U TX)IC—LPM\ ’

Note that
(107) TouBr = TMp @ Q0 (S°, w*TX, (Ou)" TL),

k.p,A -
As usual we obtain a Cauchy-Riemann operator

(108) Fl:Bh— &L uws Oppu

whose zeros cut out the space of holomorphic maps from S° to X locally. For
cylindrical ends, the linearized operator D, is Fredholm by standard results on
elliptic operators on cylindrical end manifolds in Lockart-McOwen [60], and in
the case with Lagrangian boundary condition, results described in Schméshke [72,
Section 5]; note that these results require that the almost complex structure is

compatible. O

We compare the linearized operators for the map to the cylindrical-end manifold
and its compactification as follows. For holomorphic, finite energy u : S — X, let
7 : S — X denote its extension to the compactification described in Lemma 6.12
above. On the cylindrical end, we have a splitting

(109) kK5xTX = ker (Dpy) @ pyTY, ker(Dpy)=(Rx Z)xC

which we call the splitting into the vertical and horizontal parts. Thus the re-
striction of uw*TX to u™ (kx (Rsg X Z)) splits into vertical and horizontal parts as
well.

Definition 6.15. Define extensions of the pull-back bundles u*T'X, (Ju)* T'L
(w'TX),— S, ((Ou)'TL), — 35"

(where 9S° denotes the complement of the corners in S, that is, endpoints of strip-
like ends limiting to self-intersection points) as follows. For each end asymptotic
to some Reeb chord or orbit 4 in a fiber over u(z) = y € X, choose a trivialization
of Z, = C. Consider the splitting

(WTX) = (pyou)'TY @ (X x C).

where the inclusion of the trivial summand S x C is spanned by the partial deriva-
tives Osu(s, t), Qyu(s,t) of u(s,t); the fact that this gives a direct sum decomposi-
tion follows from the exponential convergence result (101). For the first summand
(py ou)*TY there is an obvious extension of (py o u)*TY given by the extension of
py o u using removal of singularities. The second summand has the trivial exten-
sion. Similarly, define ((Ou)*T'L). by gluing in the trivial bundle 05 x (T,(Ly) ®R)
with local frame given by sections given by a chart for Ly and the section Osu(s,t).
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Proposition 6.16. Suppose a finite-energy holomorphic map v : S — X bound-
ing L extends to a holomorphic map u : S — X bounding ¢(L), and the almost
complex structure preserves the splitting T(R x Z) 2 C® (pow)*TY on the ends.
Then the Cauchy-Riemann operator D, extends to an operator Dy on (u*TX ). and
restriction defines an isomorphism of kernels and cokernels

ker(Dyz) = ker(D,,), coker(Dy) = coker(D,,).
In particular these operators have the same indez.

Proof. The statement of the Proposition is an application of removal of singulari-
ties. For sections of (mowu)*TY this result is found in Abouzaid [5, (4.19)], while in
the cylindrical end case a version appears in Ekholm [33, Lemma 6.4]. The Cauchy-
Riemann operator on the surface with ends is a restriction of a Cauchy-Riemann
operator on the compactification. Indeed, since translation produces a family of so-
lutions to the Cauchy-Riemann equation on each end, D,0,u = D,0;u = 0. Hence
on each end D, is equal to D, plus a trivial Cauchy-Riemann operator on the
vertical part. Thus D, extends to a Cauchy-Riemann operator Dy, equal to Dpsy
plus a trivial operator near infinity.

Restriction defines an isomorphism of kernels. Any section of (u*7'X ). bounding
(u*TL). and in the kernel of Dy restricts to a section of (v*T'X). By definition,
smooth sections of (T°X). may be written in cylindrical coordinates on each end

(110)
£(s:1) = expy(y (UO(t) +e () + w(s,t)) c wller(ssoxoy < cve” O

where ¢ is a real constant and vy(t) is a leading eigenvector the tangential part of
D,. Thus & has exponential convergence to a constant and lies in the kernel of
D,. On the other hand, c.f. Schméshke [72, Appendix B], elements of the kernel
of D, have the same exponential convergence. Thus any ¢ € ker(D,) extends to
€ € ker(D,).

The identification of cokernels follows from a similar statement for the kernels
of the adjoints: First note that the cokernel of D, is identified with the subset of ele-
ments of the cokernel of the operator D,, acting on the space Q°(u*T X, (Ou)*T L)k p
that are also orthogonal to the images of sections asymptotic to elements of the
zero-eigenspace; these sections were thrown in by hand, so to speak, as in (105). As
in Lockart-McOwen [60], this cokernel may be identified with the cokernel of the
operator D, acting on the space of sections Q°(u*T'X, (Ou)*T L)y, —» with small
negative exponential decay constant —\. The sign of the exponential decay con-
stant allows sections asymptotic to the zero eigenspace in the cokernel. Thus,
any such section extends to an element of the kernel of the adjoint D%, and this

extension defines an isomorphism of adjoint kernels as before. 0

6.3. Compactness for buildings. The relative form of the compactness theorem
in Bourgeois-Eliashberg-Hofer-Wysocki-Zehnder [16, Section 11.3] and Abbas [1] in
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symplectic field theory describes the limits of subsequence of holomorphic maps
with Lagrangian boundary conditions and Morse-Bott non-degeneracy conditions
as in [16, Remark 5.9]. Compactness in symplectic field theory is also treated
in related situations by Cieliebak-Mohnke [25] without Lagrangian boundary and
Venugopalan-Woodward [86] in the case that the Lagrangian is disjoint from the
stretching hypersurface. Chanda [19] gives further details in the Lagrangian case.

We will need an extension of these results to the case of treed holomorphic curves.
The first result, Theorem 6.17 below, describes a compactness theorem in a neck-
stretching limit. The second, Theorem 6.19, describes compactness for buildings
under variation of the Lagrangian boundary condition. We assume that the cellular
degeneration o, : L — L x L of the Lagrangian L near the cutting hypersurface Z
is given by a flow ¢, : Z — Z that is a translation by s on the neck region in the
sense that

5,(2) = (p_s(@), p3()), Vo € [-T.T] x Z

for some function § that tends to infinity as s tends to 1. In the Morse setting, this
corresponds to assuming that the gradient flow on the edges is in the R-direction
on the neck region.

Theorem 6.17. Given a sequence of adapted stable holomorphic treed disks (C,,u,, :
S, — X™), 1, — 0o with Lagrangian boundary conditions in ¢ and bounded energy,
there exists a subsequence of u, converging to an adapted stable holomorphic treed
building (C,u : S — X) with boundary (0u)(S) mapping to the broken Lagrangian
L. Furthermore, the limit of any Gromov convergent sequence is unique.

Sketch of proof. Venugopalan-Woodward [86] prove sft compactness for the case of
Lagrangians not meeting the neck, and Chanda [19] extends this to the case of
Lagrangians passing through the neck. For completeness, we sketch the modifica-
tions of the argument in [86] necessary to handle the case in hand. We assume that
we have chosen a broken divisor D = (D¢, D-), and a family D, of Donaldson
hypersurfaces in X™ limiting to D in the sense that D, is the pull-back of Dy
on the neck region, as in [86, Lemma 5.15]. We suppose furthermore that we have
a collection of almost complex structures J(X) = (Jr(X)) for X for which every
adapted holomorphic building in X of expected dimension at most one is regular
and for which there are no non-constant holomorphic spheres contained in D. By
[86, Lemma 5.29], there exists a collection J(X™) = (Jr(X™)) of almost complex
structures for X™ converging to J(X) so that every adapted stable map to X™ of
expected dimension at most one is regular and for which there are no non-constant
holomorphic spheres contained in D, . Let

(Cpyuy S, — X™), 1, > 00

be a sequence as in the statement of the Theorem. Since C, is stable, after passing
to a subsequence the sequence C),, Gromov-converges to a limiting treed disk C.
The argument in [86, Step 2, Proof of Theorem 8.4] shows that the derivatives of u,
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are bounded on the neck regions in C,, as otherwise one would obtain by rescaling
a component of C' mapping non-trivially into X but with no intersections with D.
This is impossible since D is a Donaldson hypersurface in each component. For
cach edge e € Edge(I") the corresponding pairs of points wy ,(e) € S, NT,, have
limits w4 in different levels S;_, S;_ , after passing to a subsequence. By assumption
we have

+

(up(w- ), up(wy,)) € 5@(6)(L)
and by assumption 5gy(e) maps to the neck region to L~ X L~ and is given by a
negative resp. positive translation in the first component on the neck region. Thus

(up(w- ), wp(wy,)) = 52,,(e)(uu(5w z))

for some sequence of points on the neck. This condition implies (94) in the limit
vV — Q. ([l

We will also need various compactness results for moduli spaces of buildings
under variation of the Lagrangian boundary condition. Let X~ be a manifold with
a cylindrical end, and ¢~ : Lo — X~ an asymptotically cylindrical Lagrangian
embedding. By Proposition 6.10, the closure L. is contained in a cleanly-self-
intersecting Lagrangian submanifold of X .

Definition 6.18. Denote by X[k] the union of X~ with k& — 1 neck pieces P(NL ®
C). A treed holomorphic building in X is a collection of levels

(Ciyui 2 Sp = Xclkliyi=1,... k)

as in Definition 6.3, satisfying matching conditions for any collection of inter-level
edges between u; and ;1.

Any treed building in a broken manifold may be viewed as a pair of treed build-
ings in the corresponding cylindrical end manifolds, although not in a canonical
way. Let X = (X, X5). A building in X[k] of type T' consists of a building uc in
Xc[kc] and a building u~ in X5[k-] for some ke, k~ with & = k- + k- satisfying
matching conditions at the leaves e~ € Edge(I'-), e € Edge(I'5) corresponding to
Reeb chords and orbits that are glued to form TI'.

The key point in the following Theorem, whose proof will occupy the rest of the
section, is that the Lagrangians are not required to be cylinddrical-near-infinity,
but only asymptotically cylindrical. As such, the Theorem is not a consequence
of known results about compactness of buildings with Lagrangian boundary con-
ditions.

Theorem 6.19. Given a sequence of asymptotically stable Lagrangian boundary
conditions ¢c,, converging to some limiting boundary condition ¢ (at least in the
C? topology on submanifolds) and a sequence of stable holomorphic treed buildings
(Cyyuy = Sy — Xc[ky]) bounding ¢c,,, there exists a subsequence of u, converging to
a stable holomorphic treed building u : S — Xc[k] with boundary (0u)(S) mapping
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to the broken Lagrangian Lc[k]. Furthermore, the limit of any Gromov convergent
sequence S unique.

We will need the following generalization of Gromov compactness for Lagrangian
boundary conditions with clean self-intersection in Schmaéschke [72, Section 4].

Theorem 6.20. Let X be a compact symplectic manifold and ¢ : L — X a possibly
non-compact Lagrangian immersion with clean self-intersection. Let Ly C L be a
compact subset of L that is a submanifold with boundary. Suppose that J, is a
sequence of tamed almost complex structures on X converging in C* to a limiting
tamed almost complex structure J. Suppose that u, : S, — X is a sequence of
Jy-holomorphic maps with bounded area A(u,) bounding Lo. Then a subsequence
of u, Gromov-converges to a J-holomorphic stable map v : S — X bounding L.

Sketch of proof. With L compact, the statement is the standard Gromov compact-
ness for clean intersection, as explained in [72, Section 4|. The extension is a
kind of target-local Gromov-compactness theorem. One constructs the components
Uy 1 S, — X of the limit u : S — X by composing u with a sequence of embeddings
Gvy @ Sy — Sy, where S, is obtained from S, by removing a sequence of small
balls B, , around the nodes Z, C 5,. Consider a sequence ¢, : S,, — S, so that
the maps u, o ¢, have bounded first derivative on compact sets of S, — Z,. The
compositions u, o ¢, have boundary in Ly and so converge, after passing to a subse-
quence, to a collection of components w, : S, — B,, — X bounding Ly, uniformly
on compact sets. The exponential decay results on cylinders with small energy
(used to show that bubbles connect) follow by considering u, as maps bounding L
and do not require compactness of L. 0

Sketch of proof of Theorem 6.19. We indicate the modifications necessary for sft
compactness as presented in, for example, Venugopalan-Woodward [86] to go through.
Consider a sequence of treed disks (C,,u, : S, — X) with bounded energy with
boundary values in L-. Because L has clean self-intersection, Gromov compact-
ness for disks with clean self-intersection implies the existence of a subsequence
converging to a limit (C)uy : S — X ) where C is a tree disk with surface com-
ponent S = |J, S, mapping into the compactification X .

By adding marked points, we may assume that the limiting stable map has stable
domain. For example, choose a Donaldson hypersurface D C X transverse to the
limit u., and add leaves to C, according to the intersections of w, with D. We
denote by S, the complement of the nodes in S,. For each edge 7. meeting S,
choose ¢, small and denote by B, (€) = U.Br.ns, (€.) the complement of the e.-balls
around the intersection T, N .S,. The surface S, is obtained by gluing together the
surfaces S, — B,(¢,) for suitable choices of €., converging to 0 as v — oco. We
denote by u,, the restriction of u, to S, — B,(e,).

Construct the levels of the limiting building by rescaling the target locally as
follows. By assumption, an open neighborhood of Y in X is isomorphic to the
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normal bundle N_ of Y. Identify the complement N* of the zero section with
R x Z as above, and consider the action e : N* — N of scalar multiplication of
e® for a real number s € R, equivalent to translation in the R-factor by s. Suppose
u, has image in Y. Fix a point z € S, and choose a sequence s,, € R so that the
translations e**u,,(z) converge to a point in N*. The argument in [86, Section
10.4] shows that the derivatives of u,,, are bounded with respect to the cylindrical-
end metric on Sy, so that after passing to a subsequence we may assume that u,,
converges to a level in P(N1 @ C).

It remains to show that the matching conditions between levels are satisfied.
Suppose that u,, and u,, are adjacent components of the limit. Denote by u, , the
restriction of u,, to the neck region [—(., (] x St resp. strip [—(, (] x S! connecting
the two components of the limit. For z lying in some such strip, choose a sequence
s, so that the maps e*u, .(2) converge. Since the derivative of u, . is bounded and
the Lagrangians e® L., converge in C'*° to a boundary condition R x Ly, after
passing to a subsequence the maps e*u, .(z) converge in C* on compact sets to
a limit u, which is contained in a fiber of P(N_ & C), necessarily with a single
intersection with the divisors at zero and infinity corresponding to the two ends
of Sc,. In the case of a strip, the boundary conditions on e®**u., converge to the
cylindrical boundary condition R x Lz as v — oo. It follows that u., converges
to a trivial cylinders resp. strip of the form wu.(s,t) = (us,?¥,(t)) in some fiber
N*, =RxS ! for some p € R and Reeb chord or orbit ¢, with total angle change
I

The Reeb orbit appearing in the limit on the thin parts of the surface is indepen-
dent of the choice of rescaling. Indeed, suppose by way of contradiction that there
exist two rescaling sequences e u., and e’ Vuel, converging to different to trivial
cylinders corresponding to different Reeb chords or orbits 4,,, v,» with different an-
gle changes p, p/. Since the angle change of . ,(s,-) is a continuous function of s
and the set of angle changes

111 a, :10,1] = Z resp. S' = Z
(111) v ] p.

of Reeb chords and orbits is discrete, the intermediate value theorem implies the
existence of a rescaling sequence s for which the limit of e*u,,(0,-) has angle
change p” € (u, p') which is not the angle change of any Reeb chord or orbit. This
is a contradiction.

The limiting building is constructed as follows. Assign each component u, to
a level S; by comparing the translation sequences s,, necessary to construct the
limit. By the discussion from the previous paragraph, if two components u,_, u,,
are in different levels and are joined by an edge then for one of the components, say
u,_, the image of S,_ N S,, maps to the divisor at infinity in P(N_ @ C) and the
other maps to the divisor at zero. After possibly adding trivial strip or cylinders,
we obtain a building (C,u = (u,,v € Vert(I'))) with the matching conditions that
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the Reeb chords at either side of the node match, the projections to Y match on
either side of the node, and the matching occurs at the same copy of Y in X [k].
Since the limit in X~ was unique and the rescaling sequences s,,, are unique up to
addition of constants, the limiting building in X [k] is unique up to translation in
the neck pieces. The statement of the Theorem follows. 0

6.4. Transversality for buildings. Regularization of the moduli spaces of build-
ings may be carried out using Donaldson hypersurfaces following Charest-Woodward
[21] and Venugopalan-Woodward [86]. We modify the construction to allow bound-
ary in asymptotically-cylindrical broken Lagrangians

L= (LQLD)-

The broken analog of Theorem 4.19 gives an inductive construction of regular
perturbation data. For any type we denote by M (X, ¢, D) the regularized moduli
space of buildings with type . Asin Proposition 6.14, the moduli space of buildings
M (X, ¢,D) is locally cut out by a Fredholm map. Let S; C S denote the subset
of the domain mapping to X[l];,), and u; the restriction of u to S;. Using the
Sobolev norms from (105), let

Br C MpxI1_ Map(Sy, X[1];)kpx X Map(9S, L[1]:)s—1/ppr x Map(Edge . (T), L)

be the space of maps of class k, p from each S; to the spaces X[{];, lifting to a map
to L[l]; on the boundary, and satisfying the following conditions: The matching
conditions along cylindrical and strip-like ends via the evaluation maps including
(106) and the deformed matching conditions of (44). The linearized operator for
such buildings is defined as in the discussion after (108).

Definition 6.21. The linearized operator for a holomorphic building (C,u) is
(112) Dy :TicwBr — QS u*TX)k 10

(13 (GG 608) = Dy = S JduD;(Gs)

where T(¢..)Br = {(Cs, (r, &, 0§)} restricts to deformations & satisfying in addition
to the conditions in (37) the matching conditions at infinity

eVe(é.Si) = eve(ési-u)

for all edges e of I' connecting different levels S;, Si11. A holomorphic building
u: S — Xis called regular if the operator D, is surjective.

Theorem 6.22. For any broken type I, given perturbations Py for strata My (X, ¢, D)
with T" < T, there exists a perturbation Pr so that for each uncrowded type — with
expected dimension at most one, the closure of M (X, $,D) is contained in the
uncrowded locus and, if non-empty, is a finite set or a compact one-manifold with
boundary.
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Sketch of proof. The proof of this theorem is similar to that in Charest-Woodward
[21]. At any point (C,u : S — X, Pr) in the universal moduli space My (X, ¢, D)
one must show that any element in the cokernel of D, vanishes. The elements
of the cokernel n = (7,) have vanishing restriction 7, = 0 to any component S,
on which u has non-trivial horizontal derivative. The restriction 7, of 1 must
satisfy D;, 1, = 0 and be perpendicular to domain-dependent variations of the
cylindrical almost-complex structure Jpr. The last condition in particular implies
that 7, vanishes in a neighborhood of any point at which d(p o w) is non-zero. The
claim follows by unique continuation.

Multiple covers of trivial cylinders, meaning maps whose image is contained in
a fiber of the projection R x Z — Y, are transversally cut out. Indeed, if u maps
to R x Z, for some y € Y then the Cauchy-Riemann operator D, splits

Du = gTyY ) DZ

as the standard Cauchy-Riemann operator gTyy on maps to 7,Y with boundary
T, Ly plus the linearized operator D}, for a map of a genus zero surface S, into the
fiber C—{0} with boundary conditions (RUiR)—{0}. Such operators are surjective
by any number of arguments; for example, by Proposition 6.16, D; compactifies to
a rank one Cauchy-Riemann operator Dy with a non-trivial kernel

ker(D2) =2 R

given by dilation. In rank one, any Cauchy-Riemann operator cannot have both
non-trivial kernel and cokernel by Oh [64], so the cokernel of DY must vanish. Simi-
larly, 5Tyy has non-trivial kernel and vanishing cokernel as well, so D, is surjective.
In particular, the usual problem in symplectic field theory of multiple covers of triv-
ial cylinders or strips lacking regularity does not occur. Thus, the operator Duv
on any component u, that covers a trivial cylinder is surjective. In particular,
Ny = Dy, &, for some &, possibly with non-trivial evaluations on the ends of S,,.
An induction shows that the restriction of D, to any union of components S,
that are covers of trivial components, or on which the map is constant, is also
surjective: The kernel of D, on any disk with strip like ends consists of constant
sections and is identified with R @ T}Y" via the splitting of the symplectization. As
such, the matching conditions are cut out transversally as in the proof of Theorem
4.19. Thus there are no non-trivial elements of the cokernel. Compare also Ekholm
[33, Lemma 6.4] and especially Venugopalan-Woodward [86, Corollary 6.35] where a
similar proof is given for the context of multi-directional symplectic field theory. [

6.5. Gluing with Lagrangian boundary conditions. The gluing argument
produces from any holomorphic building a limiting family of holomorphic maps.
The proof is probably standard and similar to that in Charest-Woodward [21].
First recall the gluing construction on domains and targets. Given gluing param-
eters d1,...,0, > 0, the glued domain S%-% is obtained from S by gluing necks
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[—|1In(8;)]/2, | In(8;)| /2] x S of length |In(d;)| at each node of S separating two
levels. There is a similar construction of the glued target X° obtained by gluing
in a neck of length |In(d)| in X. In the case that the Lagrangian meets the neck
region, we assume the Lagrangian is asymptotically cylindrical on the neck so that

(114) L ([=n(0)|/2,[In(d)]/2] x Z) = [=|In(d)|/2, [In(d)[/2] x (L N Z).

If (Lc, L+) is only asymptotically cylindrical, then we may achieve the condition
(114) by a diffeomorphism on the neck region which makes the almost complex
structure J cylindrical only up to exponentially decreasing terms on the cylindrical
ends of X, X-.

For simplicity we state the gluing result for the case of two levels only:

Theorem 6.23. Let X = XUy X+ and L = Lc Uy, L~ be a broken rational sym-
plectic manifold and rational self-transverse immersed asymptotically-cylindrical
broken Lagrangian in the sense of (91). Suppose that (C,u : S — X) is a regular
treed building with limiting eigenvalues iy, . .., ur of Reeb chords or orbits at the
separating hypersurface Y C X with boundary in ¢. for some € < 0. Then there
exists &g > 0 such that for each gluing parameter § € (0,080) there exists a treed
building

with the property that us depends smoothly on 6. Furthermore the Gromov limit
recovers the original map:

lim us = u.

0—0

We construct from any holomorphic building a holomorphic map to the man-
ifold with long neck, using Floer’s version of the Picard Lemma. Afterwards we
show that any such map for sufficiently long neck length is obtained by such a
construction. Recall Floer’s version of the Picard Lemma, [36, Proposition 24]).

Lemma 6.24. Let f : V}, — V5 be a smooth map between Banach spaces that
admits a Taylor expansion

f(v) = f(0) +df (0)v + N(v)
satisfying the following condition: There exists a constant C > 0 such that df (0) :
Vi — V4 has a right inverse G : Vo — Vi satisfying the uniform bound

IGN(u) = GN ()| < C([Jull + [v)llu =l Yu,v € V.
Let B.(0) denote the open e-ball centered at 0 € Vi and assume that
IGFO)]] < 1/(8C).

For e < 1/(4C), the zero-set of f~1(0) N B.(0) is a tranversally-cut-out (hence
smooth) submanifold of dimension dim(Ker(df(0))) diffeomorphic to the e-ball in

Ker(df(0)).
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Proof of Theorem. To simplify notation, we consider only the case that the build-
ing consists of a pair of maps joined by strip-like ends; the general case is left to
the reader. To construct the approximate solution, we begin by recalling the con-
struction of the deformation of a complex curve at a node. Let S be a broken curve
with two sublevels S;,S_. Let 6 > 0 be a small gluing parameter. Variations of
the domain may be represented as variations of the conformal structure on a fixed
curve together with variations of the edge lengths. Let

u_:S-. — X_:=Xc

Uy S+ — X+ = XD
be maps from components S; containing points wy € Sy corresponding to the
ends satisfying (92) so that v = (u_,uy) form a building in X. Let ' denote the
combinatorial types of the domains of uy and let
(115) L, ME xSy, i=1,..,1

be local trivializations of the universal treed disk. These local trivializations iden-
tify each nearby fiber with (S, z,w) such that each point in the universal treed

disk is contained in one of the local trivializations (115). We may assume that
b, is identified with an open ball in Euclidean space so that nodal fiber con-

taining S_ U S, lies over 0. Similarly, we assume we have a local trivialization
of the universal bundle near the glued curve as a smooth fiber bundle. The local
trivialization gives rise to a family of complex structures

(116) M = T(S°%)

that are constant on the neck region. We consider metrics on the punctured curves
S¢ that are cylindrical on the neck region. That is, on the images of the maps

kS 1 £[0,00) x [0,1] = Sy

the metrics are the product of the standard metrics on the two factors. By as-
sumption we have cylindrical ends so that the images of

kY F[0,00) X Z — X4

are isometric. Both the glued target X° and glued domain S° are defined by
removing the part of the end with |s| > |In(d)| and identifying

(s,t) ~ (s = [In(d)[,t) (s.t) € (0,[In()]) x S*
(s,t) ~ (s — |pIn(d)],t) (s,t) € (0,]In(d)]) x Z.
The prerequisite for Floer’s version of the Picard lemma is an approximate solu-
tion to the Cauchy-Riemann equation on the glued curve. Choose a cutoff function
B(s)=0 s<0

(117) B € C™(R,[0,1)), {6(5) I
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We denote by exp, : T, X° — X? geodesic exponentiation, using the given cylindri-
cal metric on the neck region. We write using geodesic exponentiation in cylindrical
coordinates

Ui(S, t) = CXP(Fpus,thz) (Cj:(s, t))

Define u}™ to be equal to us away from the neck region, while on the neck region
of S with coordinates s,t define

(118) ugl"e(& t) - eXp(us,t“z) (C§<S7 t))a

o) = =0 (= L) 4 e (5= L),

In other words, one translates u,,u_ by some amount |In(d)|, and then patches
them together using the cutoff function and geodesic exponentiation.

To obtain the estimates necessary for the application of the Picard lemma, we
work in Sobolev spaces with weighting functions close to those needed for the
Fredholm property on cylindrical and strip-like ends in (104). The surface part S°
satisfies a uniform cone condition and the metrics on X® are uniformly bounded.
These uniform estimates imply uniform Sobolev embedding estimates and multi-
plication estimates. Denote by

ot) [_|1n2<5>|7 |1n2<5>|] L

the coordinates on the neck region in S° created by the gluing. For A > 0 small,
define a Sobolev weight function

N5 £ 55 [0, 00), <s,t>~>5(““<5)' m)m('“‘“)' rs|).

2 2

By definition N is zero on the complement of the neck region. We will also use
similar weight functions on the punctured curves

Ry 082 = [0,00),  (s,1) = B(|s)pAlsl.

Holomorphic maps near the pre-glued solution are cut out locally by a smooth map
of Banach spaces. Given an element m € Mk and a section ¢ : S° — u*TX? define
as in Abouzaid [5, 5.38] a norm based on the decomposition of the section into a
part constant on the neck and the difference:

(119) [|(m,¢)

Lo = [lmll” + 1I1€117 0

€18, = @I + [ (Ve
+ 11§ = B(1m(O)1/2 = s T*(E(0, 0)) ) exp(¥})d Vol
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where T is parallel transport from uP™(0, t) to uP™(s, t) along uP™ (s, t). Pointwise
geodesic exponentiation defines a map (using Sobolev multiplication estimates)

(120) expypre 1 (S, (uf™) TX")1 0 — Map'?(5°, X*)

and Map'?(5°, X) denotes maps of class W1% from S° to X°". In the case of
Lagrangian boundary conditions, we have a similar map assuming that the expo-
nential map sends tangent vectors to the Lagrangian to points in the Lagrangian
boundary condition; we omit the Lagrangian boundary condition from the nota-
tion. Similarly, for the punctured surfaces we have Sobolev norms

1/p

(121) ([ E)llrpa == (Imll” + 1117 ,0)

ol .:<!\5(0,0)||p+fsa(HV£Hp+ . )””
2= I 5(1s)TE(0,0) ) exp(8$)d Vols; )

Geodesic exponentiation defines maps
(122) exppre : QST (B TX ), — Map (52, X2)

where, by definition, Mapl’p’)‘(Si, X3 ) is the space of I/Vlk’pC maps from S% to Xy
that differ from a Reeb chord at infinity by an element of Q°(S3, (u5™)*TX2)],
(which may vary at infinity because of the inclusion of constant maps on the end
in the Banach space). In the case of the cylindrical end manifolds , the assumption
A small on the Sobolev decay constant implies that the linearized operators

Dui : QO(‘SJD uftTXi)ll,p,/\ - QOJ(Si’u*iTXi)OJ’:)‘

are Fredholm. The kernel contains any infinitesimal variation of the map by Lemma
6.13. By the regularity assumption, the fiber products

(123) ker(D,_) x ker(Dy, )

€Voo,—,€Voo,+

are transversally cut out, where ev,, 4 are the maps of (106).
The space of holomorphic maps near the pre-glued solution is cut out locally by
a smooth map of Banach spaces. For a 0, 1-form n € Q%!(S?, w*T X) define

1/p
Iloga = (., Il exp()d Volss )
Parallel transport using an almost-complex connection defines a map
Ture(€) = QS (uf ) TX )opr — Q*(S?, (expype(€)) T X )op.

Because we are working in the adapted setting, our curves S° are attached to a
collection of interior leaves T¢,,...,T,, . We require

(124) (exppre())(Te,) €D, i=1,...,n.
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By choosing local coordinates near the attaching points w, = T.N.S, the constraints
(124) may be incorporated into the map Fj to produce a map

(125)
Fs o+ My x QU8 (W) TX, (0uf) TL) ,\ — Q¥ (S, (W) TX )gpr x V

where the space V' is the direct sum of additional factors enforcing the matching and

divisor conditions; namely those in (92) together with the sum @,_; T3,(w.) X/ Tuw.) D
enforcing the conditions that the interior markings map to the Donaldson hyper-

surface. The first component of this map is

‘Fé(ma 5) = (7:1,?6 (5)_15JF,HF,j(m) eXpuapre (6)7 e ) .
pre

Zeroes of Fs correspond to adapted holomorphic maps near the preglued map ug .
The expression F3(0) has contributions created by the cutoff function and difference
in the maps:

P In(d
H-FJ(O)HO,p,)\ = |8JF’HF XD (15,4012 <5(_8)C <—S + | n2< )‘ ,Zf)

s (s 0.
0,p,A
= H (D XD (1s,11:2) (dﬁ(—s)c <—5 + “2(6”775>

st (1~ 0L )

(ﬁ(—s)dg_ (—s n |1n2(5)| t

|
- L)

Holomorphicity of u4 implies an estimate

[ In(9)] | n(9)|

(126) H((ﬁ(—s)dg_ <—s+ 1“2 ,t>+6(s)d§+ (s— ; t)))
0,p,A

< cemIMOII-N _ 512

0,p,A

c.f. Abouzaid [5, 5.10]. Similarly, from the terms involving the derivatives of the
cutoff function and exponential convergence of (1 to 0 we obtain an estimate

(127) 1 F5O)llon < cexp(—|m@)](1 — X)) = e
with ¢ independent of 9.
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To perform the iteration, we apply a uniformly bounded right inverse to the
failure of the approximate solution to solve the Cauchy-Riemann equation. Given

ne 90’1(567 (Upre)*TX)O,p
one obtains elements
n=(1-,n+) € Q" (Sy, i TX)
by multiplication with the cutoff function 5 and parallel transport 7"“* to uy along
the path
OXP (5,02 (P(C° (5, 1) + (1 = p)Ce(s, 1)), p €[0,1].
Define
ne =T B(s—=1/2)n, n-=T"B(1/2—s)n.

Since the fiber product (123) is transversally cut out, there exists

(£+7€—) < QO(S:EJ U*TX:I:)l,p,A; Duigi =14+, 6V00<€+) = eVoo(é—)

where ev,, are the evaluation-at-infinity maps of (106). Denote

§oo = Voo(§s) € R X Tov () Z-

Define Q°n equal to (£_,&,) away from [_\1n2(5)|7 \1n2(5)|] x Z and on the neck region

by patching the solutions (£_, &) together using a cutoff function that vanishes
three-quarters of the way along the neck:

(128) Q=5 (—s+ 416 ) (T) " — )

1
8 (54 1mE)) (T - )
+ T 60 € Q¥H(S°, (uf™) T X )10
where 7"+ denotes parallel transport to us from u}™ along the path

eXp(us,tﬂz)(p(C(S(Svt) + (1 - p)Ci(*S?t)))v p < [07 1]‘

Since
n=(T"")""n_+ (T") 'y
we have
1Dus, @1 = llipn = [[Dypre @ — (T*7) ' Dys & — (T") ' Dys & [l1,p1

IA

cexp((1 = A)[In(8)/4])[|7llop.x
+elldB(s — | 1n(8)] /4)Q° nllopx
+el|dB(=s + [ In(8)]/H)Q% o pa
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where the first term arises from the difference between D, pre and (Tv+)"'D,, T"*
and the second from the derivative d3 of the cutoff function 5. The difference in
the exponential factors

In(6
Ny = N exp(+2s)), Fs> [In(9)

in the definition of the Sobolev weight functions implies that possibly after changing
the constant ¢, we have since |In(d)| = — In(d)

_)\[m)
1dB(s — (0| /) Q4nllipa < ce™ = = cd™2,

Hence one obtains an estimate as in Fukaya-Oh-Ohta-Ono [42, 7.1.32], Abouzaid
[5, Lemma 5.13]: for some constant ¢ > 0, for any 6 > 0,
(129) [Dyre@® = 1d || < cmin(6?/?, 50 H/).

It follows that for ¢ sufficiently large an actual inverse may be obtained from the
Taylor series formula

D pre = Q°(DypreQ’) 1 =3 Q°(I — Q°Dypre)”.
k>0

The variation in the linearized operators can be estimated as follows. After
redefining ¢ > 0 we have for all &, £ sufficiently small

(130) [1DeF5(0,&) = Dype&a|] < Cll&allipall€llpa-
To prove this we require some estimates on parallel transport. Let
T2 (m, €) - AT S5 @ T X — AJs ) TS5 @ Ty ()X
denote pointwise parallel transport. Consider its derivative
D7;67x (ma 57 ma, fla 77) - Vt'tzonlgre (m +tmy, f + tfl)n

For a map u : S — X we denote by DT, the corresponding map on sections. By
Sobolev multiplication (for which the constants are uniform because of the uniform
cone condition on the metric on S° and uniform bounds on the metric on X°") there
exists a constant ¢ such that

(131) IDT* (m, & ma, & m)llopn < ell(m, )1 pall(ma, €0 lpallnllop-

Differentiate the equation

T2 (m, ) F5(m, €) = B iy o omy (xDyg, (€)))

pre

with respect to (mg,&;) to obtain

(132) DTy, (m. & ma, &, Fs(m,€)) + Ty (m, €)(DFs(m, & my, &) =
( 5) 3(m),exp,, prc( )(Dj (mvml)aDeXpu‘s(gagl))‘
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Using the pointwise inequality
| Fs(m, )] < cldexpypre( ()] < c(|dug™| +[VE])
for m, £ sufficiently small, the estimate (131) yields a pointwise estimate

| Tore (€)™ DT, (m, & 11, &1, Fs(m, €))| < e dugye| + [VE]) [(m, €)] (&1, ).

Hence

(133) H'Eg’““' (5)71D7:Lgre(m>£7m1>£17F5(m7 6))“07;0,)\
< (14 [|du’lopn + V€0 pa) 172, €)oo [ (€1, ) || oo
It follows that

(134) ||7;6pre(§)_1D7:Lgre(m7§am17£1af5<m7€))||07p,)\ S C||(m7€)||17p,)\||(m1751)”1,10,)\

since the W1 norm controls the L> norm by the uniform Sobolev estimates. As
in McDuff-Salamon [61, Chapter 10], Abouzaid [5] there exists a constant ¢ > 0
such that for all § sufficiently small,

(135) | Tag (€)™ Despy ety (Don* (), Desp g ©61) = Do (1, €1) o

<c|lm, &l pallma, §illipa-

Combining the estimates (134) and (135) and integrating completes the proof of
claim (130). Applying the estimates (127), (129), (130) produces a unique solution
m(0),&(d) to the equation

Fs(m(0),£(6)) =0
for each 9, such that the maps

s = expype(£(0))

depend smoothly on §. Note that the implicit function theorem by itself does
not give that the maps us are distinct, since each us is the result of applying the
contraction mapping principle in a different Sobolev space. O

We now state the main result on the behavior of the moduli spaces under the
neck-stretching limit. Let M<¥(X, ¢.,, D) denotes the locus in M (X, ¢,, D) with
area less than E. Similarly, let M<¥(X, ¢,,D) denote the locus with area less than
E in M(X, ¢,,D).

Theorem 6.25. Let X = X Uy X+ be a broken rational symplectic manifold and
¢ : L = X a broken self-transverse Lagrangian immersion in the sense of (91).
Suppose perturbations P = (Pr) have been chosen so that every rigid labelled map
in M<E(X, ¢, D,0) is reqular. There exists g such that for § < &y, the assignment
[u] — [us] from Theorem 6.23 defines a bijection between the rigid moduli spaces

M<E(X’ ¢’Y’ D7Q)0 and M<E(X67 nga D7Q>0'



IMMERSED FLOER COHOMOLOGY AND LAGRANGIAN SURGERY 91

Proof. To prove injectivity, suppose that us, = vs, for some pseudoholomorphic
buildings u # v and gluing parameters 6, — 0. Then the sequence us, has two
stable Gromov limits, which is a contradiction to Theorem 6.17. To prove surjec-
tivity of gluing, it suffices to prove the following: Given a converging family uj
with parameter 0 converging to u, the map uj is close to us in the norms used in
the gluing formula. Indeed, this closeness implies that u§ = us by the uniqueness
part of the implicit function theorem. By definition of Gromov convergence, the
surface Ss is obtained from S using a gluing parameter dc. The parameter ¢ is a
function of the gluing parameter 0 for the breaking of target to X and converges to
zero as 0 — 0. The map on the neck region may be decomposed into horizontal and
vertical component. First consider the horizontal part of the map py ouj : S5 — Y.
Denote by R(l) the rectangle

R() = [~1/2,1/2] x [0,1].

Since there is no area loss in the limit § — 0, for any C' > 0 there exists ¢’ > d¢
such that the restriction of py ouf to the annulus R(|In(¢")|/2) satisfies the energy
estimate of [41, Lemma 3.1]. Thus

(136)
pyug(s, ) = expyy e E"(s, 1), [[€"(s,8)]| < C(emT M2 erlln(@)l/2=e))
s € [=]In(d")[/2,]In(d")]/2].

A similar estimate holds for the higher derivatives D*¢"(s,t) by elliptic regularity,
for any k£ > 0. The necessary exponential decay result on the neck region is proved
in the case of cylinders in Venugopalan-Woodward [86, (8.13)]; the case of strips is
similar. U

Corollary 6.26. If M<E(X,¢.,,D)q is regular, then there exists 8y such that for
§ > &g, M<E(X° ¢, D)y is regular.

Proof. We may assume that every (C%#--9/m yg) in M<F(X% ¢,, D) for § suf-
ficiently small is obtained by an application of Lemma 6.24 to the approximate
solution in the proof of Theorem 6.23. By the transversality statement in the Pi-
card Lemma 6.24, the nearby solution us produced from ug by the implicit function
theorem also has surjective linearized operator ﬁué. (In fact, the operator is sur-
jective even restricting to variations of conformal structure on C%#19/# arising
from variations on S.) O

We will need a similar bijection for the case of buildings in X~ consisting of a
map uc : Sc — X and a neck piece ug : Sy — P(N_ @ C), where the Lagrangian
Lc in X is only asymptotically cylindrical.

Theorem 6.27. Let  be a type of building in X- with two components as above.
Suppose perturbations P = (Pr) have been chosen so that every rigid labelled map in
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M (X, ¢,,D,a) is reqular, and let ' be the type with a single level in X obtained
by gluing. Then each u € M (X, ¢,,D,a) is in the closure of a unique component
OfM ’(Xa ¢’ya D>Q)

Proof. The statement of the Theorem is a type of result known as "surjectivity of
gluing" in the literature, in which one must show that the sequence on the long
cylinders is close to the approximate solution in the chosen Sobolev norm. Let u
be as in the statement of the Theorem. By the gluing construction, there exists
a one-parameter family wus of buildings of type IV Gromov-converging to u in the
limit § — 0. To see that us is the unique such limit, it suffice to check that if u,
converges to u = (uc, ug) then u, is close to the approximate solution u§™ of (118).

To prove this, we examine the vertical and horizontal parts of the map. Denote
by % the map to X~ obtained by projecting vy to the base Y of the neck piece
P(N_@®C). Similarly, let %, denote the map to X induced by w,,. Then u, Gromov
converges to u, and in particular the domain C, of @, converges to the domain C'
of w. Hence C, is obtained from C' by removing small balls around the node and
gluing in cylinders of length |In(d,)| for some sequence of gluing parameters 9,.
Let y € Y be the image of the node in w. We trivialize the bundle R x Z — Y in
a neighborhood B.(y) of y. Denote by

e :RxZ—=RxZ, (0,2)—(c—1,2)
translation by —7,. We may pass to a subsequence so that

lim e” “u,,(0,0) = (0, 2)

for some point (0, z) over y. By the annulus lemma for maps to X, we have on
the long strips of length |In(d,)| connecting the components

(137) ﬂy(s’t) — expyg(s,t), ||£(s,t)|| < C(GW(s—\ln(éu)lﬂ)uo + ew(lln(éu)\ﬂ—s)uo)
s € [~[In(4,)[/2,1n(d,)]/2]

where the exponential decay constant pg is determined by the angles at the clean
intersection; see Abouzaid [5, 10.12].

To control the Sobolev norms of the vertical part of the map on the neck pieces,
we compare the given almost complex structure and boundary conditions to a
model problem in which the almost complex structure and boundary conditions
are constant. Let

y(s,t) = ple ™, (s, 1)) €Y, s €[=[In(d,)]/2,[In(d,)|/2]

be the projection of the given map to Y. Choose local coordinates on B,(y) so that
Ly is linear. Denote by LZ the branches of L containing the images of u,, (s, t) for
t =0 resp. t = 1 and s sufficiently large and 1 € S* the angles of the branches at
y. Define affine-linear model boundary conditions in R x S x B.(y) by

LredelE — R {0} x Ly.
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Let 0, be the R-coordinate of the evaluations u,(0,0). Define T by
u([=I1n(0,)/2, [1n(6,)/2] x 0) = [T,/ T,]].

Since L has smooth cleanly-self-intersecting compactification L in X -, the trans-
lations

e ™(LEN[T, + 7, T, +7,] x Z) CRx S' x B.(y)
differ from L™°%°b* near u(s,t) by a map
Be: LEN ([T + 7, TF + 7] X Z) = Npmosa s
satisfying an exponential decay estimate
(138) |le™™B(0,2)|| < C(e ™ 7 +dist(z,2') o€ [T,,Tf],z€ L2 nZ
Choose a diffeomorphism identifying the boundary condition with its model
¥, € Diff(R x S' x B.), 1, (e ™LE) = Lmodeh=,

Because of (138), the diffeomorphism D1, may be taken to satisfy an estimate
similar to that for the boundary conditions:

(139) | D (0,2") —1d || < C(e7™™7 +dist(z,2") o€ [T, ,00).

The composition ¥, e~ u, satisfies the model boundary conditions and the Cauchy-
Riemann equation up to an error term arising from the failure of the map v, to
be J-holomorphic: Let Jy(t) denotes the almost complex structure obtained by
evaluating at 1,e ™u,(0,t). By assumption, the R-derivative of w,(s,t) on the
neck so that if 0, (s, t) denotes the R coordinate of e~™u,(s,t) then for any € > 0
we have for v sufficiently large

P 3M>
0,0,(s,1) € (2, OF

This implies
o(5.1) = 0,(0.8)] = .
Let
™ (s, t) = (s, t"2)
as in (118). As in the discussion around (111), we have
pz(bye” ™ u,(s,,t)) = t'z in C*([0,1])

for any sequence s, with |s,|/|In(d,)| — 0. Define

Co(s,t) = (e ™uy,) (s, 1) — u™ (s, t).
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Then (, satisfies linear totally-real boundary conditions and is approximately holo-
morphic: Since the difference between J and .Jy depends only on the projection to
Y, after re-defining o we have

105G (s, ) < 11056 (s, )l + 1105 = 00)Cu (s, 1)
< C(e o IImG)I/2)/2 (= ImGI/20  o(I(E))/2-5)ho)
s € [=|n(d,)]/2,[In(4,)[ /2]

where the first term arises from exponential convergence of the vertical part of the
boundary conditions, and the second from the annulus lemma for the horizontal
map. Write

n, = 05,¢ € Q"Y[~|In(6,)|/2,]In(d,)]/2] x [0,1],C").
Denote by
fi € C=([0,1],R*™),i e I

the eigenfunctions of Jyd; with boundary conditions the linear subspaces T Lmdel*
and the eigenvalues \; € R, the operator Jyd; being self-adjoint. Consider the de-
composition of the maps (,, 7, into eigenfunctions of J0, with boundary conditions
T Lmodel® with coefficients ¢, ;, d,; € R:

Cols,t) =Y cuils)filt), mu(s,t) =3 dy(s)

el el

We obtain a solution for the coefficients by integration
(140) ¢,i(s) = ci(]In(0,)]/2) exp </\i(s —|In(4,)]/2) + /Il Gl dl,72-(3’)d3/>
(141) = ¢,i(—|1n(d,)]/2) exp ()\i(s + |1In(6,)|/2) + / 2 du,i(sl)d3,> :

We may assume, by redefining po, that the exponential decay constant p is smaller
than the minimum of the non-zero eigenvalues |)\;|. For any i € I, (140) gives

(142)
llevi(s)]| < C(HCV,@-(Iln( /2)|| el 1mEDm0 e, (—|1n(8,)]/2)]| elm@l/2= s)p,o)
s € [=[In(3,)|/2, | In(4,)[/2].

Using elliptic estimates, one obtains similar estimates for the derivatives of (,. We
obtain by (142) and elliptic regularity that for any constant C, for v sufficiently
large the estimate

(143) ey (s,) = u™ (s, t)lkan < C(1+ 057/ (o — A))

holds for any £ > 0. Note that in the norm defined in (121), the zero modes
¢i(s,t), A\; = 0 have norm determined by evaluation, and are not required to have
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small k,p norm on the neck. The Sobolev embedding theorem implies the same
estimate for the k, p, A norm for any kp with kp > 1. Write

wVe_Ttu(S7 t) = expe—ﬂ/uégre (st) (gu(sa t))

with notation as around (121). The difference between geodesic exponentiation
and addition vanishes uniformly in the limit. Hence, the estimate (143) holds for
&, by comparability of geodesic exponentiation with addition in the local model.
Away from the neck w,, converges to ugere uniformly in all derivatives, so the &k, p, A
norm of &, tends to zero on S% as v — oco. Thus the map v/, is the unique solution
appearing in the implicit function theorem. 0

6.6. Deformation to split form. As in Charest-Woodward [21] we consider a
deformation of the matching conditions between levels to split form. In this limit,
the moduli spaces of treed buildings become products, rather than fiber products,
of moduli spaces of their treed levels. This deformation is similar to the theory
introduced by Bourgeois [16]. The resulting Fukaya algebra is homotopy equivalent
to the original.

The deformation replaces the matching conditions at the Reeb orbits and chords
with deformed matching conditions using deformations of the diagonal. Choose
cellular deformations of the diagonal on Y = Z/S* and Ly =L N Z :

60 Y Y xY, 67 Ly, L;xLy.

In the examples considered in this paper, the submanifold L; is always a sphere
Lz = S™ 1. A cellular deformation of the diagonal in Lz x Lz = (S"1)% is given by
the standard degeneration of the diagonal S~ — S"~! x S"~! 50 that the diagonal
is degenerated to the split form corresponding to its Kiinneth decomposition

518" =({(1,...,0)} x S Hu (S" ! x {(~1,0,...,0)}).

Similarly, Y = CP"! will be a complex projective space in our application and
6y deforms the diagonal embedding &} to the map d} whose image is the union of
products of projective space CP*¥ x CP" k-1,

Definition 6.28. A treed p-building C' is a treed building C?*® together with split-
ting parameters @1, ..., o € [0,00] so that the sum

k
dopi=p
i=1

is equal to .

A holomorphic treed p-building is a pair (C,u : S — X[k]) where C is a treed
p-building and a holomorphic map u satisfying the deformed matching conditions

(144) (Je—(0), 9o 1(0)) € Im(d5,), s = pﬁ .
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and instead of the condition (94) the deformed condition

(sh_{go ©s(we,-), Sgr_noo 905(w67+)> € Im(dg,)

for the original edges T, connecting levels S; and ;1 with endpoints u(we —), u(we +)
in L.

We now repeat the construction of the broken Fukaya category using g-buildings
rather than treed buildings. The moduli space of holomorphic gp-treed buildings is
denoted M¥®(X, ¢). The same regularization procedure as in the previous section
leads to regularized moduli spaces M¥®(X, ¢, D) with good compactness properties
for the components of expected dimension at most one.

Remark 6.29. Treed buildings with the deformation above have the following bound-
ary strata. Boundary types of codimension one occur when one of the compo-
nents S, develops a boundary node in the interior of one of the pieces X[k];. Such a
boundary type has stratum M¥ (X, ¢, D) that is a fake boundary component of the
one-dimensional component of M¥#(X, ¢, D). Indeed, given a configuration (C,u) of
type the length ¢(e) of the corresponding edge may also be deformed to a non-zero
value. This fact implies that M*(X, ¢, D) lies in the closure of two one-dimensional
strata. Another codimension one type occurs when a level u; : S; — X[k]; splits
into two levels, so that wu; is replaced by maps u; and w; , joined by inter-level
edges £(e) of length zero. This locus is again a fake boundary component since the
length of those edges ¢(e) may be made non-zero. Note that for p < co, an increase
in the length of one of the lengths g; must be compensated by a decrease in one of
the other lengths p;. In any one-parameter family of buildings with non-zero p;,
eventually one of the lengths g; becomes zero or one of the lengths ¢(e) of the edges
connecting to boundary points of S becomes infinite. In particular, the topological
boundary of any one-dimensional component of M¥®(X, ¢, D) consists of buildings
with an infinite length boundary edge e, f(e) = oo so that e is not an inter-level
edge. This ends the Remark.

Using moduli spaces of buildings, we may define a broken analog of the Fukaya
algebra. The underlying vector space C'F (X, ¢) is defined in the same way as
CF(X,¢), but in equation (60) the count of elements of M (X, ¢, D) is replaced
by a count of elements of M (X, ¢, D). Counts of p-treed buildings lead to a family
of broken Fukaya algebras C'F®(X, ¢).

6.7. Homotopy equivalences. We consider various kinds of homotopy equiva-
lences of A, algebras involving broken Fukaya algebras in this section. The first
Theorem 6.30 is an A, equivalence which arises in the limit of infinite neck length
under the neck stretching limit; this is essentially the same as considered in Charest-
Woodward [21]. For this theorem, the Lagrangian boundary condition is required
to be cylindrical on the neck. The second Theorem 6.32 describes a homotopy
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equivalence of Fukaya algebras where the boundary conditions are allowed to vary
in an asymptotically cylindrical (rather than cylindrical-near-infinity) way, which
in particular allow a local model for the surgery in which the Lagrangians are only
asymptotically cylindrical.

First, suppose that ¢ : L — X is a Lagrangian boundary condition that is
cylindrical in a neighborhood of a hypersurface Z C X. We denote by m] the
composition maps on CF (X, ¢) associated to the neck-stretched almost complex
structure J7 € J(X).

Theorem 6.30. The maps mj; have a limit m3° as T — oo equal to the compo-
sition map my for the algebra CF(X,®). The broken Fukaya algebra C'F (X, ) is
homotopy-equivalent to CF(X, ¢).

The Fukaya algebras associated to different choices of almost complex structure
are homotopy equivalent. In particular, denote by J” the almost complex structure
stretched by gluing in a neck of length 7. As in [21] counts of quilted treed disks
(C,Q,u) with diagonal seam condition define homotopy-equivalences

CP(X™,6) == CP(X™,¢).

We refer to [21] for the detailed definition of quilted disks; in particular there is a
collection of disk components S’ C S equipped with quiltings, meaning circles in
S’ intersecting a boundary component exactly once. These components are called
quilted components and, in the treed context, the lengths ¢(e) of edges connecting
these components satisfy a system of equalities, if the number of quilted components
is greater than one. We claim that the composition of these homotopy equivalences
converges to a homotopy equivalence with the broken Fukaya algebra.

Lemma 6.31. For any energy bound E, the terms in the homotopy-equivalence (,
with coefficient ¢*™, A(u) < E vanish for sufficiently large T except for constant
disks.

Proof. Suppose, by way of contradiction, that there exists a sequence (C,,u, :
S, — X)) of non-constant treed quilted disks with arbitrarily large 7 in a compo-
nent of the moduli space with expected dimension zero and bounded energy E(u,).
By forgetting the quilting and stabilizing, we obtain a sequence v, of treed disks
with domain dependent almost complex structures and bounded area. By sft com-
pactness, the limit of a subsequence of v, is a stable broken disk (C,u : S — X)
with boundary in ¢. The limiting cylindrical-end manifolds are independent of the
position of the quilting, and the map (C,u) lies in a component of the moduli space
of expected dimension —1, which is a contradiction. 0

Proof of Theorem 6.30. Lemma 6.31 implies that there exist limits of the succes-
sive compositions of the homotopy equivalences. For N,7 € Z., consider the
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composition
(Nr = C(Ngr 0 Cnara10...0Cy : CF(XY,¢) = CF(XN7 ).
Because of the bijection in Theorem 6.25, the limit
Cv = lim G s CF(XN,6) = lim CF(XV*7,9)
exists. Similarly, the limit
Yy = 1im Yy YN = YN 0N 0. 0Py

exists. The composition of strictly unital morphisms is strictly unital, so the com-
position 1 is strictly unital mod terms divisible by ¢ for any E. So v is strictly
unital.

The limiting morphisms are also homotopy-equivalences. Let h., g, denote the
homotopies satisfying

Grotp, —id = ml(hT)v Yro(G —id= ml(gT)v

from the homotopies relating ¢, o ¢, and 1, o (; to the identities in [75, Section
le]. In particular, h,y1, g,41 differ from h,, g, by expressions counting twice-quilted
disks. For any E > 0 and 7 sufficiently large, all terms in h,,; — h, are divisible
by ¢”. It follows that the infinite composition

hy = lim A = lim
N A RN, gn T_)OOgN,T

exists and gives a homotopy-equivalence between (n o ¥ resp. ¥y o (i and the
identities on C'F (X, ¢) and CF (X, ¢). O

In the second homotopy equivalence result, we study the broken Fukaya category
as the Lagrangian boundary condition is varied in a family that is only asymptoti-
cally cylindrical. The regularization procedure for the moduli spaces of buildings is
the same as before, while the necessary compactness result is Theorem 6.19. One
obtains by counting such buildings broken Fukaya algebra C'F(X,¢) for any La-
grangian boundary condition that is asymptotically cylindrical. Given a family ¢,
of such boundary conditions, one may consider moduli spaces of quilted buildings
where the boundary condition ¢, depends on the distance from the quilted compo-
nent (similar to the proof of independence of homotopy type of the Fukaya algebra
on the choice of almost complex structure.) Since the moduli spaces on each disk
are defined with a fixed ¢,, Theorem 6.19 implies that these moduli spaces are also
compact. One obtains by counting quilted buildings:

Theorem 6.32. LetL, = (Lc ,, L~ ,) be a path of asymptotically-cylindrical broken
immersed Lagrangians in X = (Xc, X5) with immmersions ¢, so that L , and L~ ,
are Hamiltonian isotopic for all values of p. Then the corresponding broken Fukaya
algebras are homotopy equivalent:

CF(X, ¢,,) ~ CF(X, ¢,,)
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if the area parameters in (150) defined by the two paths are equal.

Theorem 6.33. Let ¢ : L — X be an asymptotically-cylindrical Lagrangian bound-
ary condition. For any g € [0, 00] the broken Fukaya algebra CF¥? (X, ¢) is homotopy-
equivalent to C'F (X, ¢).

Sketch of proof. The necessary homotopy-equivalences
Yor.00 - CF1 (X, 9) = CF(X, )

are given by a count of quilted disks (C,u : S — X) of the following type: The
buildings before the quilted components and at infinite distance from the quilted
components (that is, the sum of the lengths of boundary edges ¢(e) connecting S, to
a quilted component is infinite) are p;-buildings and the buildings after the quilted
components at infinite distance from them are go-buildings; see [21, Section 8.1]
for the corresponding construction with the Morse model; for components S, C S
at finite distance from the quilted components one takes g a function interpolating
between g and gs. Any two such choices of interpolation give homotopy-equivalent
morphisms. This fact implies

¢K927m © ¢K917m = w@h@s

for any @1, g9, p3. For g1 = p3 one may take o = p; = p3 for all buildings in the
construction and (taking perturbations that are independent of the quiltings) one
obtains that 1, ., is the identity functor, so that 1, ., and v, ., are homotopy
equivalences. O

Remark 6.34. In the case of infinite breaking parameter, each moduli space of
buildings is a product of the moduli spaces of levels in the following sense. Each
holomorphic building (C,u : S — X[k]) breaks up into a collection of pairs

(C’i,uz S —>X[l€] l+())

where X[k|i_@), i) C X[k] is the union of components in the decomposition (89)
between levels I_(7), 1 (7). We denote in particular X-[k] C X[k] the union of the
components except the last X5, and similarly for X5[k]. Thus, in particular an
oo-level may be a pair (C,u : S — X< [k]) which consists of a map to X~ and some
collection of maps to R x Z with matching conditions. For a type of building
and collection of constraints 3 the moduli space of treed buildings M>(X, ¢, D) of
labelled type is a product of the moduli space of its labelled treed levels

M>(X,$,D) = | HM (X,¢,D,%;).
(2;) =0
Here the union is over possible labellings 3;, representing the collection of con-
straints given by the (un)stable manifolds of the Morse functions chosen on IT and
Y for the inter-level edges and the cellular constraints for each boundary leaf. We
adjust our terminology and call the elements u; of M (X, ¢,D,%;) levels. Each
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u; further decomposes into sublevels u; ; with domain \S; ; C S; mapping into some
X[k]ii.g)-

7. HOLOMORPHIC DISKS BOUNDING THE HANDLE

In this section, we review some results of Fukaya-Oh-Ohta-Ono [42, Chapter
10] on the moduli spaces of holomorphic disks with boundary in the local model.
The main results are Proposition 7.2 and Lemma 7.18, which combined give a
correspondence, up to repetition of codimension one inputs, between rigid maps in
the local model with surgered and unsurgered boundary condition (after adding a
longitudinal constraint, in the case of wrong-way corners.)

7.1. Classifying disks with a single end. We first classify disks with a single
end. Let v(t) = t + i2¢ be the standard path and M (¢,) denote the space of
holomorphic maps v : S — X = C" with boundary condition in ¢, : H, — X of
some type of map . The target X = C" is naturally a cylindrical-end manifold
with cylindrical end modelled on a cylinder R x Z on the unit sphere Z = S**~!
defined using coordinates ¢; +ip;,7 =1,...,n on C" by

Z={¢+p+.. . +E+p> =1}

The Reeb flow on Z is periodic with period 27 and the quotient Z/S! is a complex
projective space
Y =2z/S'=cp.

The handle Lagrangian /., defines a Lagrangian in the projective space CP", whose
intersection with the divisor at infinity is RP"~. The Reeb chords from R™ to iR"
(or vice-versa) through 0 # (a, ..., a,) € R™ are classified by half-integer m € Z/2
and are of the form

Uma(t) =™ (ay,. .., ay).

Consider the case that I is a type of configuration consisting of a disk S attached
to single leaf T" at a node w € S. The following classification of curves with right-
way and wrong-way corners is a modification of Fukaya-Oh-Ohta-Ono [42, Theorem
60.26].

Definition 7.1. Let I" be a type of domain S with a single strip-like end e € £(S5).
Let . resp. _ be a type of finite-energy map given by sections of the Lefschetz
fibration 7 : C" — C over a half space bounding ¢, asymptotic to a Reeb chord of
angle change 7/2 from R™ to iR" resp. iR" to R". We say that the map types .
are minimal types and all other map types are non-minimal. Let ", be the type

A

obtained from the minimal types 4 by adding a boundary leaf e € Edge( +). Let
ev: M- (¢,) — H,x S"!

denote the combined evaluation map for the leaf and end.
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Proposition 7.2. For v be the standard path t — t + i2¢,e > 0 and Jr = Jy

the standard complex structure, the maps of type + and 4+ are reqular and the
following hold:

(a) (Right-way corners) Fvaluation at infinity (95) defines a diffeomorphism
M (@) = S™h uwe 9.(0).
(b) (Wrong-way corners) Fvaluation at infinity (95) defines a map
(145) M (¢,) = S" 1w 9.(0)

giving M _(¢,) the structure of an S™? bundle over S™' diffeomorphic

to the unit sphere bundle T:S™' in T'S"'. For generic a,c € S™ ', the

inverse image ev (R x {c} x {a}) is a single transverse point.
Furthermore, the homology classes of maps of type 4+ are primitive. In the dimen-
sion two case dim(Hy) = 2, the orientations of the two points in any fiber of (145)
agree for the trivial relative spin structure.

Proof. We adopt a proof similar to Seidel’s computation in [76], which studied
a boundary value problem for sections of a Lefschetz fibration with Lagrangian
boundary condition obtained by parallel transport of the vanishing cycle around a
circle, rather than a line considered here.

We compare the indices of the map with its projection to the base of the standard
Lefschetz fibration. Let u : S — X = C" be a map with boundary in H,. The
composition 7 o u of u with the Lefschetz fibration 7w : C" — C of (8) produces a
map 7o u from H to C with boundary condition (7 o u)(0S) C R + i2e. The map
mow is an isomorphism from H to H -+ 72¢ by assumption. After composing on the
right with the shift z — 2 4 i2¢ and an automorphism of H, the map u becomes a
section of the Lefschetz fibration:

mou(z) =z Vze€H+i2e
Thus the components u;,j = 1,...,n of the map
u: (H,0H) — (C", H,)
satisfy equations
uj(z +1i2€) € (2 +i2¢)'’R, z€R.

The rank one problems in the previous paragraph are easily solvable. A change
in sign of € is equivalent to an interchange of the types ., so it suffices to consider
the case of maps whose image is half-plane above the line Im(z) = € and consider
the cases € > 0 and € < 0 respectively. The components u; are solutions to a rank

one boundary value problem of index zero resp. one in the case € > 0 resp. € < 0.
Each component u; of v must be of the form for z € H

a;(z + i2¢)1/? €e>0
u;(z) = { ’

146
(146) (ajz +b;)(z —i2e)7? €< 0
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for some a; € Ry resp. a; € Rsp,b; € R. One can check explicitly that each such
u is a solution to the given boundary value problem: In the first case ¢ > 0 the
map has the required boundary values by inspection while in the second case we
have for z € R,

wj(z)(x +1i26) 2 = (a;z + b;)(x +i2¢) " (x — i2e) 712
= (a;z +b;)(2® +4€)7? €R.

Rank one Cauchy-Riemann operators on a disk with non-negative index are always
regular [64, Section 5]. It follows that (146) gives all the solutions.

The constants are fixed by requiring that the given map is a section of the
Lefschetz fibration over its projection to the base. Solving for the condition mu(z) =
z, that is, u(z) is a section of the Lefschetz fibration, we obtain

a’=1 e>0
147
(147) {a2:1, a-b=0, =€ e<0.

Indeed, if € < 0 then

(148) Tu(z) =2 <= (a(z —i2€) +b)* = (2 —ide)z
a2 =1
(149) — 20 -b—4a’*ci = —2¢i
—4e%a® — 4deia- b+ b* = 0

The equations (149) are equivalent to the equations
=1, a-b=0, b =4

A similar computation computes the kernel of the linearization. In the first case
€ > 0, the kernel at a is the set of solutions a’ to a’a = 0, and so has dimension
n — 1. In the second case € < 0, the kernel of the linearization at (a, b) is the set of
solutions (a’,b") to

a-a=0, d-b+a-b=0 b-V=0

and so dimension 2n — 3.

An index computation implies that the cokernel is trivial. Indeed, for € > 0 the
bundle u*(C* — C) is a trivial symplectic fibration. It follows the vertical part
of the index is equal to the dimension of the boundary condition, that is, n — 1.
On the other hand, if € < 0 then the index problem is related to that obtained by
a connect sum with the index problem over the disk, which has index 2n — 3 by
Seidel [76, Proof of Lemma 2.16]. Since the horizontal index is the same as the
dimension of the space of automorphisms of the domain, the total index is 2n — 3
as well. Triviality of the cokernel implies that the moduli spaces are transversally
cut out by the equations (147). The equations give a sphere of dimension n — 1 in
the first case, and fibration in the second case with spherical fibers of dimension
n— 2.
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It remains to prove the claim on the intersection with a generic line on the handle.
Given ¢ € S" ! and a € S"! such that ¢ # a, —a, there exist unique z € R and
b€ S" ! with a-b = 0 such that

u(z + i2€) ar +b

lu(z +i2¢)|  ((ax)2+ b2~ <

Indeed, the set of points
{(aa: +0)/|lax +0b|, zeRbe span(a)L}

is the complement of the two poles a, —a in S"~!. The claim follows.

To prove the claim about primitivity, we classify the possible homology classes.
The second relative homology group Ho(CP", H.) = Hy(CP™ — {0}, H,) can be
computed by Mayer-Vietoris. Write CP" = C" U CP"! and consider the cover
of CP" by the open sets (C* — {0}) and CP™ — Bg(0)) where Bg(0) is a ball
around 0 € C” of radius R. The classes corresponding to the first homology of the
intersection are generated by disks in the line C with boundary in H,NC that have
area 7/2 + A(e). The remaining classes arise from the classes of disks and spheres
in CP"! with boundary in RP"~!, which have areas equal to multiples of 7. It
follows that there are no decompositions of the classes with areas 7/2 4+ A(e) into
classes with positive smaller areas, so that the homology classes of the maps in the
Proposition are primitive.

To prove the claim on orientations in the dimension two case, we must compare
the contributions from the two points u,’ in each fiber of the fibration of (145).
The orientations o(u), o(u’) may be compared by deforming the Lefschetz fibration
by bubbling off a disk containing the critical value of the Lefschetz fibration as in
Seidel [76]. By the computation in [87, Proof of Corollary 4.31] the orientations of
the two different elements u, v’ in a single fiber agree. U

The areas of the disks on the handle and on the self-transverse Lagrangian are
related by the area correction in Definition 2.1 and indicated (conceptually; the
graph does not exactly match the definition) in Figure 2. As in the introduction
we denote by ¢, resp. ¢ the surgered resp. unsurgered immersion.

Lemma 7.3. Suppose that ug, ue : S — X are maps with boundary in ¢g resp. ¢,
that are equal except in a neighborhood of a self-intersection point x € T%(¢po) as in
Figure 2; and suppose that in a neighborhood of the surgery, the map u. is obtained
by by replacing a right-way resp. wrong-way corner in ug by its smoothing above.
Then the areas of u. and ug are related by

A(ue) = A(ug) — (k — R)A(e)

where k € Z>( resp. K € Z>q 15 the number of times uy passes through x resp. .
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Proof. We compute the difference in areas using Stokes’ theorem. The symplectic
form wy on C" is exact with bounding cochain
n
1
a0 = > 5(g;dp; = p;dg;),  dag = wo.

j=1
The restriction of o to the Lagrangian branches R™, ¢{R™ vanishes. The maps uy, u.
agree away from the corner, and the difference of ug, u. in the relative homology
with respect to ¢g U ¢, is the class of a map

v:Rx[0,1] - C"
bounding Hy, H. and constant outside a compact set [T, 7| x [0, 1] with boundary
Yo - [_T7 T] — ¢0(H0)7 Ve : [_T7 T] - ¢6(H6)

The first path 7y travels from the negative to positive branches of ¢q(Hy), while
the second . travels along ¢.(H,) in the same direction, as in Figure 2. By Stokes’
theorem, the area of v is

150 A :/ * :/ *a — V.
(150) (€) RX[OJ]UW FT’T]%OZO To%o

independent of the homotopy class of the map v. 0

7.2. Ruling out disks with large angle in the unsurgered handle. In this
section we show that the only rigid curves for the unsurgered handle are those
appearing in Proposition 7.2, that is, those curves with a single strip-like end
asymptotic to a Reeb chord of minimal length. Given a map type of punctured
surface , denote by M (¢g) the moduli space of holomorphic treed disks bounding
Hy = R" UiR™ of type . Denote by e(e) resp. e(o) the number of Reeb orbits
resp. chords at infinity, and d(c) the number of boundary leaves in total, so that
d.(o) = d(o) — e(o) represents the number of boundary leaves not corresponding to
Reeb chords. We have a natural evaluation map

ev: M (¢g) — HOC(O) X (S”_l)e(o) x CPe®

which assigns to any configuration (C,u : S — X) the projection of the limiting
Reeb orbits and chords, and evaluates the map at the intersection of the remaining
leaves T, with S. As in (96) let

2 C Hye® x (§771)O) x CPe®

be a submanifold (later, ¥ will be the image under the evaluation map of the
"outside pieces' in the symplectic field theory decomposition) intersecting the eval-
uation map for M (¢y) transversally. As in (97) define

M (¢0,5) = ev1(D)

denote the moduli space of maps with the given constraints. We wish to know in
what conditions M (¢g, X) may be rigid, that is, of expected dimension zero.
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We recall the classification of holomorphic maps of disks to the complex pro-
jective line. Let L C S? be an embedded circle. For the case v(t) = ¢ + 42,
the Blaschke classification in [24] implies that after a change of coordinates any
holomorphic disk v bounding L is of the form

d_ dy

Z— Q; — Z— a; +
151 = e T2, ot
( ) U(Z) ¢ Z:l_Il 1-— zﬁi7_ “+ zl;[l 1— zdlﬁ
for some ¢y with
’Ci| =1, a;+ € C, dy € ZZO'
Returning to the case of arbitrary paths, we introduce the following notation for
topological type. Identify Ho(CP!,RP') = Z2. Let

d=(d_,d.) e Z?

denote the degree of the composition 7 o @ given by the image u,([S,dS]) in the
relative homology group Ho(CP',RP') = Z2. For each point z € S mapping to
infinity oo, let my(z), me(z) denote the “multiplicity” of the corresponding Reeb
chord or orbit, indicating how many Taylor coefficients vanish at z. Thus m,(2)
are the intersection numbers with the divisor at infinity Y at z, while m,(z) = k if
the Reeb chord represents an angle change of km for some k € Z5;.

Lemma 7.4. For a holomorphic map u : S — C bounding R asymptotic to Reeb
chords and orbits, the Fredholm index of the linearized operator D, is

(152) Ind(D,) = 142(d_+dy)— > (mo(2)—1)— > 2(me(2)—1)

z€u1(c0)NBS z€u~ 1 (co)Nint(S)

Proof. The Maslov index of the map @ is I(u) = 2(d_ + d,). The Fredholm index
is Ind(Dz) = 1+ 2(d_ + dy) by Riemann-Roch. The tangency requirements lower
the index by m,(z) — 1 resp. 2(m4(z) — 1) at each Reeb chord or orbit; indeed, the
spectrum of the tangential operator at infinity may be identified with the integers

and the change in index following from change in Sobolev decay constant A follows
as in Lockart-McOwen [60]. O

Lemma 7.5. Let n > 2. Assume that the standard complex structure makes every
punctured holomorphic disk or sphere v : S — C" bounding R™ UiR™ regular. Then
any rigid such map is an isomorphism from a disk onto a quadrant (Rso + iR>q)v
in span(z) = C C C" for some v € R" C C".

Proof. We use the fact that the boundary condition is invariant under dilation. The
action of A € R* on C" induces a one-parameter family of punctured curves A\u
with the same evaluation at infinity. Suppose u is rigid. The dilation A\u must equal
the composition u o ¢, for some automorphism ¢, : S — S. Thus, in particular
S has a non-trivial automorphism, at most two strip-like or cylindrical ends, and
image contained in a line in C", and we are in the one-dimensional case considered
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in (152). For holomorphic spheres, the degree equals the signed count of points
in a fiber u=*(¢) over a point ¢ near oo, so each puncture with multiplicity m(z)
contributes m(z) to the degree. Hence, for spheres u we have

Ind(Dy) > 2+ (d- +dy).

Since the automorphism group is at most dimension four, rigidity forces (d_,d, ) =
(1,1). In this case, the map u(z) = v;z is linear with first derivative given by some
vy € C". The map u admits a deformation u;(z) = vz + tvy with vy not in the
span of vy, and so is not rigid.

Thus the domain is a disk, and we claim that the map is linear. Since the image
of the boundary is R-invariant, «(0.S) must intersect infinity and so u has at least
one strip-like end. If u has only one strip-like end (mapping either to 0 or to o)
then u is a disk in CP* = span(c) U {oo} bounding RP' or iRP'. By (152), u
cannot be rigid. Thus S has two strip-like ends, and by homogeneity one must
map to the corner {0} = R" NiR™. The map u - u has real boundary conditions, so
u is of the form

u(z) =+/a(z)v, Im(z) >0

for some v € R™ and polynomial a(z). Such maps are rigid only if a(z) has degree
one, since otherwise the variation in the sub-leading coefficients in a(z) preserving
the condition a(0) = 0 produces a non-trivial variation of the map. O

In order to prove a similar result for treed disks, we assume the cellular defor-
mation of the diagonal is of a specific form given by a family of dilations.

Lemma 7.6. Assuming the standard complex structure on C" is regular, for any
rigid treed level (C,u : S — C"[k]) bounding R™ UiR™ with at least one component
in C", the domain S is connected with image u(S) equal to a quadrant in a one-
dimensional subspace of C™.

Proof. The general linear group acts on the set of disks with the given boundary
condition. Let u : S — C" be a rigid treed disk for the given constraint > with
components u, : S, = C", v € Vert(I'). Any deformation (&,) of the maps u, by,
for example, a dilation by A € R— {0} extends to a dilation of u, by translating the
remaining components u,,v" # v by elements of GL(n,R) so that the matching
conditions hold. It follows that each component u, must be rigid separately. Each
u, is therefore an isomorphism onto a quadrant in some line span(c) C C". The
attaching points w, of the edges T, to the surface part S are necessarily invariant
under the action of R*. Each such w, must be a point on the boundary 95 with
u(w,) = 0 € C". That is, the non-constant components of u must be quadrants,
with adjacent components joined by nodes mapping to 0 € C". (For example, the
domain S of u could consist of two components S,,,S,,, with the first component
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Sy, mapping onto the first quadrant, and the second S, mapping onto onto the sec-
ond quadrant.) The edge length ¢(e) of the edge T, connecting two such quadrants
is free to vary, so the configuration u cannot be rigid. O

It remains to justify the regularity assumption.

Lemma 7.7. The standard complex structure on C" makes all treed levels (C,u :
S — C"[k]) bounding the unsurgered handle R UiR™ regular.

Proof. We use the fact that the boundary value problem for the unsurgered problem
splits into one-dimensional problems. Let u : S — C" be a holomorphic map from
a connected surface S to C" asymptotic to some collection ¢ of Reeb chords and
orbits. The pair (C", R"UiR") splits into one-dimensional problems (C, RUiR), each
invariant under the action of dilation. It follows that each summand has a non-
trivial element of the kernel and vanishing cokernel. Thus any such holomorphic
map u is regular.

The case of disconnected domain requires an induction. Let u : S — C"[k| be
a treed level with surface components S,,v € Vert(I') and line segments T,,e €
Edge(T'); recall that the notation C"[k] means that u has various components some
of which map to neck pieces C" — {0}. The moduli space of configurations of
type  with any given set of finite edge lengths ¢(e) is transversally cut out. Let
M’ (¢g) denote the moduli space of configurations with no matching conditions at
the nodes. Denote by A; the image of ;. It suffices to show that the evaluation
map M’ (¢g) — (S~ 1)#(TNS) is transverse to the diagonal AF"™? This follows
from an inductive argument: If e is the only finite edge adjacent to a vertex v and
['(v) C T is the subgraph of edges containing v then one sees from the previous
paragraph that the map M’ (U)(gbo) — L is a submersion at T, N S,. Removing v
and e one obtains a tree I'y with fewer vertices and edges, and the claim follows
from the inductive assumption of transversality for such trees. O

Remark 7.8. Alternatively, one may prove regularity using a long exact sequence.
Let u : .S — C" be a punctured holomorphic disk or sphere avoiding 0 € C". Let

p:C"—{0} - cCcp"!
denote the projection. Consider the short exact sequence of vector bundles
W TC" — w*TC" — u*p*TCP" !

where the vertical sub-bundle TVC" is the kernel of Dp. Denote by DY, D the ver-
tical and horizontal parts of the linearized operator D,. The short exact sequence
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of complexes induces a long exact sequence of kernels and cokernels denoted
coker(D;)) — coker(D,,) — coker(D")

(153)

ker(Dy) ker(D,) ker(Dy)

As in Proposition 6.16, the kernel and cokernel of D,,, may be identified with
those of its extension Dysy; obtained by adding in the points at infinity along the
cylindrical and strip-like ends. It is a standard consequence of homogeneity of
CP"™ ! that the cokernel of such operators vanish: Since pou*T'CP" ! is generated
by the image of o(n) in ker(Dpsz) at any point, pou*TCP" ! must be a sum of a
line bundles with boundary conditions with positive Maslov index as in Oh [64].
Since the cokernel of a Cauchy-Riemann operator on any one-dimensional problem
with positive Maslov index vanishes [64], the cokernel of D,, vanishes. Similarly,
the vertical bundle «*T"(C" — {0}) has a section given by the action of R* on
C™ — {0} which preserves the boundary conditions. It follows that coker(D) also
vanishes. By the long exact sequence (153), coker(D,,) vanishes as well.

7.3. Ruling out disks with large angle in the surgered handle. We now wish
to show a similar statement for curves bounding the surgered handle, namely that
rigidity forces strip-like ends of minimal length. We first introduce some notation.
Consider the natural projections

2
n

7:C"=C, (21,...,2,) = 22+ ...2
and
p:C"— {0} = CP™"', 2 span(z).
The null-cone in CP"~! is
N :=p(r 10)) ={[z1,..., 20,27 + ...+ 22 = 0}.

Given a holomorphic map bounding the handle, we obtain maps by composition
with either projection. Namely let u : S — C" be a smooth map with boundary on
the handle H, and avoiding 0. The composition 7 o v maps to C with boundary
in v, while the composition p o u maps to CP"~! with boundary in RP"~!. We
wish to compare the indices of the linearized operator of the map u with that of
its projections. Because the map u may limit to the null-cone along the strip-like
ends, the composition 7 o v may have finite limits along any particular end.

We introduce convenient terminology corresponding to the "multiplicity" of the
map at infinity. For each point z € S mapping to infinity in X, let m,(2), me(2)
denote the “multiplicity” of the corresponding Reeb chord or orbit, indicating which
eigenvector appears in (101). Thus m,(z) are the intersection numbers with the
divisor at infinity Y at z, while m,(z) = k if the Reeb chord represents an angle
change of kr for some k € Z>1/2. Define DI to be the same differential operator

Tou



IMMERSED FLOER COHOMOLOGY AND LAGRANGIAN SURGERY 109

as Doy, but using a Sobolev weight on the ends which is slightly smaller than
—2me(2}) so that sections with poles of order 2m4(z) have finite Sobolev norm.
Recall that D, denotes the operator acting on the weighted Sobolev space with
a negative weight, which disallows poles.

Lemma 7.9. Let u : S — C" — {0} be a holomorphic map bounding H., as
above. The map D induces an isomorphism ker(D!) = ker(D™ ). In particu-

Tou

lar, ker(Dyoy) injects into ker(DM) with equality if there are no cylindrical ends.

Proof. Let £ € ker(D,). Identifying «*T'C" with S x C", the maps £ and u have
at worst poles of order me(2}), in standard coordinates on C". So D, = u - ¢
has, at worst, a pole of order 2m4(2}). Conversely, any section ¢ of (7 o u)*TC
with these growth conditions pulls back to a section & of u*T"C" = S x C" which
has a pole of order m,(z;). Adjusting for the trivialization over the cylindrical end
R.o x S?"~! — C" which is geodesic exponentiation from u in the product metric,
the section £ is asymptotic to a constant at infinity and so lies in the domain of

D" 0

To compare indices we introduce a long exact sequence. We have a short exact
sequence of bundles over (.S, 0S)

154 0— (T°C",T'H,) — (TC",TH.,) — (T"C",T"H.,) — 0.
vy Y i

The short exact sequence of bundles (154) induces a short exact sequence of com-
plexes of 0 and 0, 1-forms. We denote by D?, D" the vertical and horizontal parts
of the linearized operator D,, and lN)Z the parametrized linear operator for the
horizontal part. Consider the map

Dr:uw'TX — (mou)"TC.

The short exact sequence of complexes induces a long exact sequence of kernels
and cokernels given by

coker(Dy)

(155)
ker(D;) — ker(D,) — ker(D")
The long exact sequence equally holds with the parametrized linear operator D,

replaced with the unparametrized linear operator D, whose domain does not allow
variations of the conformal structure, by the same argument. Define

x(2) 2m.(z) — 1 if z represents a strip-like end, or
m®™(z) =
4dmg(z) — 2 if z represents a cylindrical end.
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Proposition 7.10. Let u : S° — C" be a finite energy holomorphic map bound-
ing H, whose evaluations ev.(u) at cylindrical ends avoid the null-cone N. The
Fredholm index of the horizontal part D! of the linearized operator D, is by (152)

Ind(D}) =1+2(dy +d_) — Y. m™(z)

zeu 1Y)
while the index of the vertical part D, is
Ind(D;) =(n—1)+d_(n—2).

Proof. Denote the extensions of Lemma 6.16 by ((7 o u)*T'C, (7 o u)*T(R)). over
(CP,~v(R)). The Maslov index of the horizontal part is

I((rou)* TC, (mou)"Ty(R)). =2(ds +d_) — > m™(z).

zeu 1Y)

To compute the vertical part of the index, note that the map u may be viewed as
a section of the pull-back of the Lefschetz fibration 7 : C* — C under (7 o u). The
“bubbling off singularities” computation in Seidel [75, p. 253] implies that each
bubble containing a singularity contributes the Maslov index of the corresponding
holomorphic map to the disk, computed in Seidel [76, Proof of Lemma 2.16] to
equal n — 2. 0

Lemma 7.11. Let v : R — C be an asymptotically cylindrical path and u : S — C
a level bounding ¢,. Then the parametrized linearized operator D, is surjective.
For the standard path v, the unparametrized linear operator D, is surjective.

Proof. We first prove the last claim for the standard path. The kernel and cokernel
are identified via Lemma 6.16 with a one-dimensional real boundary value problem.
Note that (CP!,RP') has a family of automorphisms ¢, preserving co. The deriva-
tive 2 |,_o¢s o u gives a non-trivial element of the kernel ker(D,,). Hence coker(D,,)
vanishes, since in rank one either the kernel or cokernel of any Cauchy-Riemann
operator vanishes by Oh [64].

For arbitrary paths that are asymptotically cylindrical, the statement of the
Lemma regarding the parametrized linear operator is an instance of automatic
regularity in dimension one as in Seidel [75, Lemma 13.2]. The cokernel of D, may
be identified with the kernel of the adjoint operator. Necessarily, any n € Coker([)u)
is perpendicular to variations of the form (Jdua)®! produced by variations

T,7(S) = {a € Q°(S, End(TS)) | ja + aj = 0}

of the conformal structure on (S, z, 2’), with notation from (17). By definition the
moduli space of curves is a slice for the action of the diffeomorphism group on the
space of conformal variations

T;J(S) = TsM @ Vect(S, z, 2')
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with
Vect (S, 2, 2') := {v € Vect(S)|v(z) =0,Vz € zU 2}

where if S unstable then T4 M is defined to be trivial. The image of the operator D,
is unchanged if one extends the domain to allow all deformations: Let v € Vect(.S)
vanish at the points z,2’ € u~!(c0). The variation of the complex structure and
map with respect to v is given by elements

a(v) € Q°(S,End(T'S)), Lyu e Q°(S,u"TP)

with
(Jdua(v))® — Dy, Lyu = 0.

Since u has derivatives vanishing up to order m(z;) at each z; € z, 2/, the derivative
L,u has derivatives vanishing up to order m(z;) — 1. Similarly, for the points
z € u!(00), if u has derivatives up to order m(z) vanishing at z then du has
derivatives up to order m — 1 vanishing at z. Since v vanishes at z, the derivative
L,u has derivatives up to order m vanishing at z as well. Hence L,u defines an
element in the domain of D,,. Thus, the term (Jdua(v))%! lies in the image of D,,.
Since du is an isomorphism away from the finitely many critical points of u, there

are no 0, 1-forms perpendicular to such variations (Jdua)®!' for all a. The claim
follows. [

Lemma 7.12. For the standard complex structure on C™ and a boundary condition
given by an asymptotically cylindrical path v : R — C, every holomorphic treed disk
w: S — C"[k] with boundary on H., not meeting 0 € C" is regular and the evaluation
map at any point on the boundary z € 0S has surjective linearization in T, H,.

Proof. We will show that the vertical and horizontal parts of the linearized operator
are both surjective. First let be a combinatorial type of map with a single vertex
v and strip-like and cylindrical ends S. Consider the moduli space M (¢,) of
holomorphic maps u : S — X with boundary in H,. By the long exact sequence,
to show regularity it suffices to show that the cokernels of DU and D! vanish.
The homogeneity argument implies that the higher cohomology of the vertical
part vanishes: The action of SO(n) on C" preserves the complex structure and
Lagrangians H.,. Given a holomorphic disk v : S — C" with boundary on H,, one
obtains an inclusion

d
s0(n) — ker(Dyspocn), &+ %h:o exp(té)u

by mapping each Lie algebra element £ € so(n) to the corresponding infinitesimal
deformation of the map. In particular, the evaluation map
ker(Du*Tan) — TvHry, g — 5(2)

at any point z € 9S° is a submersion. By Lemma 7.11, coker(D!) vanishes as well.
The vertical part (u*T"C", (Ou)*T"H,) has spanning sections at any point given
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by the action of SO(n). This fact implies that the linearization of the evaluation
map is surjective.

Similar arguments apply to the case of sublevels mapping to the neck piece, that
is, components u, mapping to C" — {0} with boundary on (R UiR™) — {0}. Given
such a map, the projection 7 o u, is a map to C with boundary values on R with
corners of u, mapping to zeros of 7 o u,. Such maps have surjective linearization
by Lemma 7.7.

The previous paragraphs show that the moduli space M (,(¢,) is cut out
transversally for each vertex v € Vert(I'), and the evaluation map at any point
on the boundary is a submersion. As in the proof of Lemma 7.7, an induction
shows that the evaluation maps at the nodes from H°(u*T'C") are transverse to
the diagonal and so the moduli space M (¢, ) is transversally cut out. 0

Denote by M7 (¢,) € M (¢,) the locus of levels u with 7 o u having finite limit
eve(mou) # oo along some cylindrical end e € Edge., ,(T). Let M"(¢,) C M (¢,)
the locus of maps u with ev.(u) € N at a cylindrical end e.

Lemma 7.13. For each type , the loci /\/lf(%), M™(¢,) are transversally cut out
and codimension at least two. In particular, for rigid map types  the locus of
maps having limit in the null-cone or with m o uw having a finite limit along some
cylindrical end is empty.

Proof. Let u : S — C" be a map so that mowu : S — C has finite evaluation at a
cylindrical end e. The locus of such maps has formal tangent space given by sections
¢ of w*T'C" in ker(D,,) such that D¢ is finite at the end. For simplicity, suppose
there is a single such end with multiplicity me(2]). Evaluating the coefficients of

271 —2me(#1) of any section at the end induces a long exact sequence

ker (Do) — ker(DP) — (Tu(zi)C)Qm'(’Zl) — coker(Dyoy) — .. ..

R

The connecting homomorphism (7T,.;yC)*™e*) — coker(Dy,) maps the Taylor
coefficients (ci, ..., Comg(z1)) to the image of D¢ in coker(Dy.,) where & has the
given coefficients in the expansion at z]. Since Doy is surjective, the long exact

sequence implies that the evaluation map ev, at the cylindrical end from ker (D, )
to (u*T'C), has surjective linearization D ev,.. It follows that the locus of maps u
with ev.(m o u) # oo is transversally cut out. The first claim follows. The second

claim follows from the last statement in Lemma 7.11. O

By Lemma 7.13 rigid maps have evaluations only in the complement of the null-
cone, assuming transversality holds.

Remark 7.14. To give the reader an idea of what kind of maps occur, we classify
such maps for the standard path ~(t) = ¢t +i2e. We claim that any map u from the
complement S of a finite set in H whose evaluations ev.(u) along the cylindrical
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ends e € &(5) do not lie in the null-cone N is of the form

u(z) = b(z)"1/? IT z— o) ? II (- @) V2 cq 2t 4 ..+ az+ ).
Im(a;)<0 Im(c;)>0
for some constants cy, , ..., ¢4, polynomial b(z) and complex numbers «;. Indeed,
suppose the domain of u is the punctured upper half-plane

S = {Im(z) > 0} - {Zla SRR Ze(o)—l} - {Zia R Zé(o)}

The difference (7 o u)(z) — i€ is a rational function a(z)/b(z) of z by the reflection
principle. Since (mou)(z)—1ie has real boundary values, there exist real polynomials
a(z),b(z) so that

(mou)(z) = Zé,:’)) + i2e.
By assumption u(z) goes to infinity as z — oo and the limit in CP"! is not in the
null-cone. So

deg(a) > deg(b), deg((mou)b) = deg(a).

The composition 7 o v admits a factorization

a(z) +i2eb(z) = cf1(2)f-(2)

where
di

fe(z) = 1] (# — ais)

+,i=1

has dy roots o 1 in the lower resp. upper halfplane, that is, with FIm(a; ) > 0.

Define
di

fi(z) =11 —@iz)

i=1
and
i:H—=C oz u(2)fo(2) Y21 (2)Y20(2) V2
Since by assumption the limits of v along the punctures do not lie in the null-cone,

the poles of m o u are twice the order of those of u. Since these are the order of
vanishing of b(z), the map u is a polynomial. The degree of 4 is

deg(i) = o (deg(r o w)+ deg(f-) — deg(+) + deg(b))

= 1 (des(a) + do(f-) — des(f,)) = d_

and so of the claimed form. Conversely, u may be constructed from @ as follows.
Assume that for z real

a(z) alz) = f-(2)f2(2) = [ |z — ol

Im(c;)>0
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This condition imposes 2d_ + 1 real constraints on the coefficients of 4. The map

(156) u(z) = fe(2) V2 (2) 7 20(2) T ()
= b(z)fl/Q (1—[) (Z_ai)l/z (1—[) (2—@)*1/2

(cg 2%+ ... +c1z+ )

has the required boundary values. This ends the Remark.

Lemma 7.15. For any type  of level in C" bounding ¢, there exists a dense open
subset of group elements

g= (ge>e€Edge%(F) C U(n)#Edge_”.(F) X O(n>#Edge_)’O(F)

for which the moduli spaces M (C" — {0}, ¢, g2) with translated constraints g%
are cut out transversally.

Proof. Let M"™(C" — {0}, ¢,,%) denote the universal space of tuples (C,u,g)
where (C,u) is a treed disk with contraints ¥ and

[ 9. €U(n),e e Edge, (I
~ \ 9. €0(n),e € Edge., (I')

for the interior resp. boundary semi-infinite edges. Transitivity implies that the
universal space M"™V(C" — {0}, ¢, %) is transversally cut out. The claim follows
from Sard’s theorem for the projection to (g.). O

Remark 7.16. In the above construction, we have shown that the moduli spaces of

levels in C™ are already regular without using a domain-dependent almost complex

structure. By an argument using Sard’s theorem, there exists a complex hyperusr-

face D in CP" so that the moduli spaces M (¢.,, D, X) are cut out transversally

whenever  is an uncrowded type of expected dimension at most one. Let f( ) be

the type of map without interior edges obtained by forgetting the interior edges of
. There is a forgetful map

M (Cn - {0}7¢77DC7E) - Mf( )(Cn - {0}7¢’WE)

forgetting the interior edges which produces a bijection between the moduli spaces
with and without the Donaldson hypersurface. For this reason, in this section we
use treed disks rather than the adapted treed disks in the earlier chapters.

We introduce further notation on the combinatorial type. Assume that has
(o) boundary leaves representing strip-like ends asymptotic to Reeb chords, d(o)
boundary leaves representing possibly constraints and e(s) interior leaves mapping
to infinity representing cylindrical ends asymptotic to Reeb orbits.

Lemma 7.17. For any rigid map type  of treed disks (C' < w) bounding H., of
bidegree deg(mou) = (d_,d, ), we have dy < d_ — 1.
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Proof. First consider the case without cylindrical ends. By the index formula 7.10,
in the case without cellular constraints the moduli space M (¢,) has dimension

e(o)
(157) dimM (C"—{0}.6,) = 2 +n(l+d_)—3 - (2m.(z) ~ 1)

(158) — 2, (14 d ) —3+d() — (d+d,)
(159) = di+n+(n—1)d-+d6)—3

where (d_,d,) is the bidegree of m o u. Denote by p( ) the corresponding type
of map bounding RP"! obtained by replacing the homology classes in C" with
homology classes in CP" !, and forgetting the intersection multiplicities at the
ends. We have an induced map

(160) p M (C"—{0},6,) = My (CP" ' RP™™), urspou.

Denote by M (C™* — {0}, ¢,,) the locus of maps disjoint from 0, that is, the critical
locus of . The dimension of the moduli space of maps to CP"! (dropping the
constraints at the Donaldson hypersurface) is

My (CP™™' RP"™Y) = (n — 1) + nd_ + d(o) — 3.

Comparing dimensions we see that the map from (160) satisfies

©)
(161) ker(Dp ) > 1+2d; — > 2mo(2)
i=1
where e(o) is the number of strip-like ends. We have Dp C ker(D,) and such
deformations do not change the constraints. Thus rigidity forces ker(Dp ) = {0}
and so
e(o)
(162) 14 2dy <Y 2mo(z) =dy +d_.
i=1
Cylindrical ends contribute an additional term of 2e(e) to the dimension of both
moduli spaces and do not affect the computation. [l

We now wish to classify which configurations in the local model may be rigid. Let
di( ) denote the number of cellular constraints labelled oy and e,,( ) the number
of strip-like ends labelled with minimal length Reeb chords and with a non-trivial
constraint.

Lemma 7.18. Let y(t) =t + i2¢ be the standard path. Let  be a labelled type of
treed holomorphic building (C,u : S — C") bounding ¢.,. Assume that either n = 2
ordi( ) <2, so that there are at most two boundary constraints labelled by the cell
or. If is a rigid type then one of the following holds:

(a) The number of strip-like ends is e(c) = 1 and the Reeb chord at the puncture
is minimal length, or
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(b) the number of strip-like ends is e(o) > 2 and the numbers d( ) resp. em( )
of contraints labelled o1 resp. strip-like ends asymptotic to minimal-length
Reeb chords satisfies

d1( )+€m( ) > 3.
If n =2 then only the first possibility (a) occurs.

Proof. We first rule out the case that the domain is a treed sphere, that is, the
domain has empty boundary. In this case, the dimension of the moduli space of
maps M (¢,, D) of any type with I representing a top-dimensional stratum and
map with degree d to CP" is by Riemann-Roch

e(o)
dim(M (¢,,D)) = 2d(n+1)+2n—6— Z 2(me(2;) — 1)

= (2d+2)n — 6+ 2¢(e)
> 2e(e)(n+1)+2n —6.

Each cylindrical end has a constraint which cut down the dimension by at most
2(n — 1). It follows that for n > 2 such types cannot be rigid.

Therefore, it suffices to consider the case that the domain has non-empty bound-
ary, that is, the domain is a treed disk. Suppose first n = 2. The dimension of the
moduli space from (157) is

dy +2+d_+d(s) — 3> 2d(s) — 1.

Since the constraints at the boundary leaves cut down the dimension by at most 1,
the constrained moduli space is expected dimension at least d(c) — 1, and we must
have d(o) = 1 for rigidity to hold.

In the case of arbitrary dimension, we first deal with the case that there are only
boundary leaves, that is, no cylindrical ends. Each end e contributes some pair
(d4(e),d_(e)) to the bidegree of the composition 7 o u, measured as the number of
points in a fiber of 7 o w near infinity, with |dy(e) — d_(e)| < 1.

Case 1: There is a single strip-like end. The dimension of the unconstrained
moduli space from (157) is dy +n + (n — 1)d_ — 2. In the case of at most one
cellular constraint and one constraint at the Reeb chord, this dimension must be
at most 2(n — 1). Thus either

(d-(e),di(e)) = (0,1) or (d_(e) di(e)) = (1,0);

in the latter case by rigidity there is a constraint at the end and a cellular constraint
labelled ;. Consider the case of two cellular constraints and one constraint at the
end. Since the expected dimension is non-negative,

diy+n+(n—-1)d-—-2(n—-1)>0
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which implies dy + d_ > 2. Lemma 7.17 implies d_ > 2. Since d_(e) — 1 < d, (e),
dy is at least one and the dimension with constaints is

dy+n+n—-1d--2n—1)—-n>14+n+2n—-1)-3(n—-1)>2.
Thus such configurations cannot be rigid.

Case 2: There there are two strip-like ends. Lemma 7.17 implies that d_ > 1,
and if d_ = 1 then d; = 0. This is impossible if there are two ends since both have
non-zero contributions (d_(e), d,(e)) to the bidegree. Suppose d_ > 2 and there is
at most one cellular constraint. The dimension from (157) is then at least 3n — 3.
There are at most two constraints each of which cuts down the dimension by at
most n — 1, and one cellular constraint which cuts down the dimension by n — 2.
Thus such configurations cannot be rigid.

Suppose there are two cellular constraints and no minimal length Reeb chords.
Then one of the ends has d_(e) > 2, so that d_ > 3, and both ends have d, (e¢) > 1
so d, > 2. The unconstrained moduli space has dimension

diy+n+n—-1)d-—1>24+n+3n—1)—1=4n—2.

Again, the cellular constraints and constraints at the chords cut down the dimension
by at most 4(n — 1) and cannot make the configuration rigid. If there is a minimal
length Reeb chord, then d_ > 2 and d, > 1 and the dimension is at least

dy +n+(n—1)d_-—1>14+n+2n—-1)—1=3n-1.

Two cellular constraints and one constraint at a strip-like end are not enough to
produce rigidity, so both ends must have constraints.

Case 3a: There are three or more strip-like ends and there is no boundary constraint
labelled o1. Suppose there are at most two ends eq, e; labelled by minimal length
Reeb chords ¥1,%,. If one of the other ends, say es has d_(e3) > 2 then the
dimension of the moduli space is at least

dy +n+(n—1)d_+d(c) —3 > d(e)n —2

and so cannot be made rigid by adding constraints, each of which lowers the di-
mension by at most n — 1. Lemma 7.17 implies that if there two minimal length
ends then both have type (1,0), so again the moduli space is at least d(o)n — 2,
which cannot be made rigid. Hence at least three ends are labelled by minimal
length Reeb chords.

To see that at least three of the minimal-length ends have a non-trivial constraint,
suppose otherwise. Let eyin(c) be the number of ends asymptotic to a minimal-
length Reeb chord. If one of the non-minimal-length ends has d_(e) > d, (e), then
the dimension of the constrained moduli space from (157) is at least

n+ (n—1)(e(c) = emin(c) + 1) — (n — 1)(e(o) — eminlc)) —2(n —1) >0
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and cannot be rigid. Otherwise, one of the minimal-length-ends must have d_(e) >
0 and the dimension of the constrained moduli space satisfies the same inequality.

Case 3b: There are at least three strip-like ends and there is a boundary constraint
labelled oy. Assume there is one end e; labelled by a minimal length Reeb chord.
If one of the other ends e; has d_(ez) > 2, or all the ends are labelled by non-
minimal-length Reeb chords, then the dimension of the moduli space is at least
(e(c) + 1)n — 2. The dimension with constraints is at least

(e(e) + )n —2 — (e(o) + 1)(n—1) > 0

and so rigidity is impossible. So all of the non-minimal ends have type (1,1) or
(1,2). Lemma 7.17 implies that the type of the minimal-length end cannot be (0, 1).
On the other hand, if the minimal-length end has type (1,0) then the dimension of
the moduli space is at least (e(c) + 1)n — 2, which cannot be made rigid as before.

To see that at least two of the minimal-length ends have non-trivial constraint,
suppose otherwise. If one of the non-minimal-length ends has d_(e) > d (e), then
the dimension of the constrained moduli space is at least

n+ (n—1)(e(o) — eminlc) + 1) — (n — 1)(e(c) — emin(c)) —2(n —1) >0

and cannot be rigid. Otherwise, one of the minimal-length-ends must have d_(e) >
0 and the dimension of the constrained moduli space satisfies the same inequality.

Case 3c: There are at least three strip-like ends and there are two boundary con-
straints labelled o1. If none of the Reeb chords are minimal length then each end
has d;(e) > 1. Since d; < d_ — 1 we must have d_ > e(o) + 1 and d; > e(c). The
dimension of the moduli space is at least

di+n+n—1d_+do)—3 > el)+n+(elc)+1)(n—1)+d()—3
= e(o)(n+2)+2n —4.
The moduli space cannot be made rigid by constraints at the Reeb chords and
two cellular constraints, since each reduces the dimension by at most n — 1. The

argument that at least one of the minimal-length ends has non-trivial constraint is
similar to the previous cases.

Case 4: There are cylindrical ends. Each cylindrical end with multiplicity m,(2])
contributes (2n 4 4)mq(z}) to the degree terms 2d, +nd_ in the dimension formula
(157). On the other hand, any constraint at the Reeb orbit cuts down the dimension
by at most dim(CP""!) = 2n — 2. Since

(2n +4)me(z;) — (2n —2) > 0,
the arguments of the previous three cases still apply. 0

We require similar results for ruling out holomorphic disks mapping to C* — {0}
with boundary in (R"UiR"™)—{0}. Consider a map u from S to X, := C*—{0} with
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boundary on ¢y : (R*UiR") — {0} — C" — {0} with multiple ends or non-minimal
Reeb orbits. We assume that the deformation of the diagonal ¢; is the product of
a deformation of the diagonal 6f of R and 67" of S*~'. In the Morse case, this
corresponds to taking the Morse function and metric on the boundary condition of
product form.

Lemma 7.19. Suppose (C,u: S — Xolk_, ky]) is a treed map bounding ¢o and 3 is
a collection of constraints so that all cellular constraints in ¢ are equal to 1. Then
(C,u) consists of a single component with image in a fiber of C* — {0} — CP"~1.

Proof. The proof is similar to that of Lemma 7.5 and uses the action of the group
R.o on C" — {0} by dilations preserving the boundary condition (R" UiR™) — {0}
preserving the limits at infinity. Suppose the surface part S of the domain has
components S, connected by edges T,.. Suppose some component u, is a component.
of u. By dilation by a constant ¢ € Ry one obtains a new map cu, with the same
boundary condition not isomorphic to the original map. Given two strips S5, Sy
joined by an edge T, joined at points z € S,,2’ € S,, and given ¢ the point
u(cz),u(d’2’) lie in the image of the deformation of the diagonal for some ¢ with
parameter given by the length of 7,. Indeed the points u(cz),u(cz’) lies in the
deformation of the diagonal of S"~! and u(c’z’) ranges over all such possible lifts
of u(cz'), as ¢ varies. It follows that S has a single component that is a trivial
strip. [l

7.4. Ruling out maps intersecting the critical locus. In the previous section,
we ruled out rigid levels with more than one end or non-minimal Reeb length
assuming that the maps avoid the critical locus. To deal with the case that the
map intersects the critical locus, we introduce a blow-up which allows us to extend
the splitting of the tangent bundle into horizontal and vertical parts over the critical
locus. Let

BI(C") = {(2,]) eC"x CP" ' 2 €}
denote the blow-up of C™ at 0, and let
p:BI(C") = CP" ' (z,1)— 2

denote the natural projection. For any path v avoiding 0, the boundary condition
¢~ naturally lifts to BI(C™) and we denote the lift with the same notation. Removal
of singularities defines a bijective correspondence between maps to the blow-up and
to its projection. For some type of level, let M (BI(C"), ¢,) denote the moduli
space of tuples (C,u, () of maps u : S — BI(C") where (C,u) is a treed disk and
with additional markings ¢ C S is a finite set describing the intersection set with
the exceptional divisor in the sense that

u N (CPM) = ¢
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Similarly, let /ﬁp( y(C", ¢,) denote the moduli space of pairs (u, () of maps u : S —
C" with additional markings ¢ describing the intersection set with the exceptional
divisor u=!(0) = ¢; here p( ) is the obvious type of level in C" obtained by pro-
jecting the homology classes of the components. Composition with the projection

M (BL(C"), d,) = My y(C",¢,), urspou
is a bijection, by removal of singularities.

Lemma 7.20. For the standard complex structure on BI(C"), every holomorphic
treed disk w : S — BI(C™) bounding ¢., asymptotic to some collection of Reeb orbits
and chords at infinity is reqular.

Proof. The proof is essentially the same as that of Lemma 7.12. The splitting of
u*T BI(C") into vertical and horizontal parts, corresponding to the tangent space
to P"~! and O(—1), induces a long exact sequence involving the kernels and cok-
ernels of Dy, D,, and D,,,. Homogeneity implies vanishing of the vertical cokernel
coker(D?), while existence of a section implies vanishing of the horizontal cokernel
Doy The claim now follows from the long exact sequence similar to (153). O

Proposition 7.21. For generic constraints 3, there are no rigid treed levels u :
S — X bounding H. passing through the critical locus 0 € C".

Proof. By Lemma 7.20 and a Sard-Smale argument, the moduli space of configu-
rations in the blow-up M (BI(C"), ¢.,, ) is transversally cut out and of expected
dimension for generic translates of the constraints > as in Lemma 7.15. The rela-
tive Chern class of BI(C") — C" is dual to (1 —n)[CP"!], and so the Maslov index
of u differs from that of p o u by 2(1 — n) times the intersection number of u with
CP"~!. For ¢ non-empty, if M (¢,, %) is expected dimension zero then M (¢, %)
is empty, and so the elements of M (¢, X) have images disjoint from 0 € C*. [0

Lemma 7.22. For generic constraints 3, for any type  of treed level the moduli
space M (¢, %) is cut out transversally and any rigid treed level u € M (¢, %)
has image disjoint from 0 € C".

Proof. By Lemma 7.20, the moduli spaces M (¢4, %) are regular. A standard
codimension argument shows that M (¢, ©) has dimension 2(n— 1) less than that
of M (¢,,%), with the obvious identification of map types. Indeed, the relative
Chern class of BI(C") — C" is dual to (1 —n)[CP"!]. Thus, the Maslov index of
u differs from that of p o w by 2(1 — n) times the intersection number of u with
CP"~ 1. For ¢ non-empty, if M (¢,, %) is expected dimension zero then M (94, X)
is empty, and the elements of M (¢, %) have images disjoint from 0 € C". O

7.5. Comparing disks on the flattened and unflattened handles. We wish
to show that the unflattened handle is asymptotically cylindrical so that we may
use Theorem 6.32.
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Lemma 7.23. The handle H, C C" for the standard path y(t) = t 4 2ie is asymp-
totically cylindrical.

Proof. We first consider the case of dimension one targets. The image of the line
R + i2¢ under the coordinate change z +— 1/z is a circle of diameter 1/2¢ with
center at i/4e, described in coordinates z = x + iy as the solution set to

(R+i2e)7 = {2” + (y — (46) )" = (4e)*}.
It suffices to consider the case € = 1/4. The handle H, is the pre-image of R 4 /2
under the square map
(z,y) = (2 = y?, 2zy).

Thus H, is given in coordinates near infinity by

{(2* = *)? 4+ (2zy) —1)* =1} = {y* =222+ 2" +42%* —doy +1 =1}

= {y* +22%y* +2* — 4zy = 0}.
Write y = zz. The equation
vz = (2227 + 22)? Jdw = 2*(1 + 2%)? /4

has a smooth solution of z in terms of z, since z — 2/(1+ 2?)? is a diffeomorphism
near z = 0. By symmetry, each branch is a smooth manifold with boundary at
r=1y=0.

For higher dimension, the handle is the flow-out of the dimension one handle
under the action of the special orthogonal group. Let H : C CP™ denote the handle

in dimension n. Consider the action of O(n) on CP" on the first n coordinates.
The locus

71 TN
= {[z0,...,0,1}nH"

has stabilizer groups contained in O(1) x O(n—1). Thus we have a homeomorphism
H. = 0(n)H, = 0(n) Xomxom-1) H,

which is a diffeomorphism away from the boundary. Since each branch of Hi is
a smooth submanifold with boundary, ﬁ: has a smooth structure for which the
inclusion in X is an immersion. O

Proposition 7.24. Let be a primitive type. There exists an oriented cobordism
from M (¢, %) to M (¢,%), where qﬁw H — C™ is the flattened embedding of
(14).

Proof. We will construct a cobordism between the two moduli spaces by viewing
them as moduli spaces of curves bounding cleanly-intersecting Lagrangians. The
closures of FQ and H, in CP" are contained in cleanly-intersecting Lagrangians
by Proposition 6.10. Furthermore, this extension of ]:[7 is an exact deformation of
H.,, by the description from (13). Choose a family of Lagrangians ny interpolating
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between H., and H.,, for example, by using p; = (1—1t)p+t(In(r) — |¢|) in the defini-
tion (13). Let M (¢, X) denote the parametrized moduli space of Jy-holomorphic
maps for the family consisting of triples (¢,C,u) where ¢ € [0,1] and (C,7) is a
Jo-holomorphic curve bounding ﬁz above.

There is no bubbling in the parametrized moduli space by the primitivity assump-
tion. By definition any element (¢, C,%) in M (¢,,), consists of a collection of
disks or spheres meeting the interior and disks or spheres contained in the bound-
ary CP" ! with homology class summing to the homology class of the sections
described above. Since the homology class is primitive, no bubbling is possible
and the domain of @ consists of a single disk, with at least one corner mapping to
CP"!'. In particular, for every u € M (¢.,X), the set of intersections w—!(CP™)
with the divisor at infinity consists only of a single corner, corresponding to a single
strip-like end asymptotic to a Reeb chord ¥, of minimal length. U

Remark 7.25. In fact in the case of type = the cobordism provided by Lemma
7.24 is trivial. By Lemma 7.12, the linearized operators D, are surjective and
the evaluation map at the end is surjective on the kernel of D,. It follows that
M (¢, %) is smooth and compact. Furthermore, the natural map M (9, 2) =
[0, 1] is a submersion (since the map is index one and the kernel of the linearization
is exactly the kernel of D, ) and the moduli space M (¢, ) is a trivial cobordism
between the moduli spaces M (¢.,%) and M (¢, ).

8. FUKAYA ALGEBRAS UNDER SURGERY

In this section, we prove the main result Theorem 1.3 by combining the homo-
topy equivalences in the previous section with broken Fukaya algebras with the
local computation in Section 7. We work with the unflattened boundary condi-
tion on the handle. By Theorem 6.30, the resulting Fukaya algebra is homotopy
equivalent to that of the surgered Lagrangian immersion ¢.. Theorem 8.5 global-
izes the results of the previous section to a bijection between admissible buildings.
Given this, some algebra identifies the potentials up to the chain in projective
Maurer-Cartan solution in Theorem 1.3. Proposition 8.11 shows that the count of
inadmissible buildings vanishes. After this, a stabilization argument identifies the
Floer cohomologies.

8.1. The cell structure on the handle. The isomorphism of Floer cohomologies
is induced by a map of Floer cochains that maps the ordered self-intersection
points of the original Lagrangian to the longitudinal and meridian cells in the
surgered Lagrangian. Topologically, the surgered Lagrangian L. is obtained from
the unsurgered Lagrangian L, by attaching the handle

H, =~ (-1,1) x S" 1.
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The boundary H, = {—1,+1} x S"7! is glued in along small spheres around the
preimages z4 € Lg of the self-intersection point ¢(z;) = ¢(z_) € X. Choose a cell
structure on L that includes cells consisting of small balls o, + and spheres o,,_; +
around the self-intersection points xy. Let 0 1+ be the zero cells in the boundary
of 0,1 +. A cell structure L, is derived from that on Ly by removing a ball around
each x4 and gluing in a single 1-cell and single n-cell

o:B':=[-1,1] =L, o0,:B"2B"!'x[-1,1] = L.
along the boundary of the 0-cells resp. n — 1-cells
00+ : {0} — LE, Op—1,4: anl — Le

as shown in Figure 13. A dual cell structure is obtained locally by dualizing the
cell structures on the interval and the sphere.

Lemma 8.1. The cell structures on the handles Hy and H. given above extend to
dualizable cell structures on Ly and L. agreeing in the complement of the handle.

Proof. In the case of Hy, view the cell structure as that associated to a Morse
function f given locally as the product of Morse functions fg, fgn—1 on the factors
R and S™!, where fgn1 is the standard height function and fg is a function with
three local maxima on the handle. The Morse function on the handle extends to a
Morse function f on all of Ly. The gradient flow grad(f) and its additive inverse
—grad(f) define dual cell decompositions, as in Section 3.2. Similarly, in the case
of H., assume that f is the product of fgr, fgn-1 on the complement of the top-
dimensional cells, and on each top-dimensional cell f has a single critical point of
index 0. U

FiGURE 12. Cell structure on the unsurgered handle

8.2. The surgered-unsurgered bijection. With the cellular structures on the
Lagrangian and its surgery defined, we now define the chain-level map which re-
places the ordered self-intersection points to be surgered with the longitude and
meridian on the handle. The neck-stretching argument in Theorem 6.25 produces
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FiGURE 13. Cell structure on the surgered handle

a cobordism between rigid holomorphic maps with rigid broken holomorphic maps.
Let X denote the broken manifold obtained by quotienting the spheres S?"~! on
either side of the n — 1-cells o,,_; + by the S Laction. This cell structure is shown
in Figure 12 and 13 as the collection of blue and red spheres. The pieces of X are

(163) X=XcUXoUX>
where
(164) Xo=CP', X, BI(CP") X5 = BI(X)

is a projective space resp. the blow-up BI(CP"™) of projective space at a point
resp. the blow-up BI(X) of X at the self-intersection point ¢g(z_) = ¢o(z4). The
handle H, admits the standard cellular deformation of the diagonal induced by
positive translation on o; = [—1,1] and the standard Morse flow on o, _; = S"~1.
The Fukaya algebra CF(X, ¢,) is then homotopy equivalent to the broken Fukaya
algebra CF>(X, ¢,) as in Theorem 6.30 whose structure maps have levels with
cellular constraints.

Lemma 8.2. There exists a reqular perturbation datum P = (Pr) for holomorphic
buildings in X with boundary in ¢. such that Jr is the standard complex structure

on Xc =C" and Xy =C" — {0}

Proof. Lemma 7.7 shows that rigid holomorphic maps to X- = C" are automat-
ically regular, while Lemma 7.20 shows that rigid holomorphic maps to X, =
C" — {0} are regular for the standard complex structure. O

Definition 8.3. A component u, : S, — X< of a building u : S — Xis inadmissible
if it has more than one strip-like end. A building u : S — X is admissible if it has
no inadmissible components.

Lemma 7.18 classifies the possible rigid configurations with inadmissible com-
ponents. We apply the classification of rigid maps bounding the handle in the
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previous section to classify rigid holomorphic buildings. Denote by ¢, the La-
grangian boundary condition in X defined using the Lagrangian H., using a path ~
in the local model corresponding to the surgered or unsurgered Lagrangian.

Lemma 8.4. Suppose the perturbations on X and Xo vanish. There are no rigid

oo-buildings in X with inter-level edges between levels of non-zero areas in X< and
Xo.

Proof. Let u,_,u,, be components of a rigid configuration v with wu,_ mapping to
Xc and u,,, mapping to Xy, connected by an inter-level edge T¢ at points wy € S,, .
Necessarily either ¢_(u,_ (w_)) is required to be a point and there is no constraint
on ¢ (uy, (wy)), or vice versa, In the first resp. second case, forgetting the edge
T and stabilizing produces a rigid configuration w;, resp. w, in a moduli space
of expected dimension one lower. The assumption on areas guarantees that these
configurations are non-empty, and one obtains a contradiction. 0

Define the map between generators as follows. Denote by
H = On-1+, A =04

the meridienal and longitudinal cells; the choice of which cell o,,_; 1 is immaterial
as both choices give the same counts. Define a map

I(qu) — I(¢e)a 00 = O¢

by mapping the surgered self-intersection points

v=(v_,2) €M) = neINpe)
T=(vy, 0 ) €Tpo) — AeIdc)

to the meridianal resp. longitudinal cells and leaving the remaining generators
unchanged. Given o € Z(¢g)*™! define o, € Z(¢)4*! by applying this map to each
generator. We view this as a bijection up to the homology equivalences between
On—1,+ and o,_; _ and similar which will be explained as a stabilization.

The bijection between maps with boundary in the unsurgered handle ¢, and
those in the surgered handle ¢, in the local model in Proposition 7.2 and Lemma
7.18 and Lemma 7.5 produces a correspondence between admissible rigid types with
only contraints A on each level in the neck region. More rigid types are obtained
by repeating inputs labelled by p (or in the case n = 2 by the constraint o.)

Theorem 8.5. (c.f. Fukaya-Oh-Ohta-Ono [42, 55.11, Chapter 10]) For any labelled
rigid type o with positive enerqy, there exists a type . of building obtained by
replacing components in X bounding ¢o with those bounding ¢., possibly after
adding edges labelled oy, so that there is a bijection between rigid moduli spaces of
admissible buildings of positive area

(165) M (X, ¢0,D) = M (X, ¢, D), g = e
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preserving orientations. If u.,ug are related by this bijection then the symplectic
areas are related as in Lemma 7.3:

A(uc) = A(uo) + (v — R)A(e)

where k resp. K is the number of corners with boundary in ¢g which map to x resp.
T and A(e) is the area of (150).

Proof. Replacing the levels in X~ bounding ¢, with the corresponding levels in
Xc bounding ¢, (with constraint on oy, in the wrong-way case) gives the desired
bijection. We compare the numerical invariants of the corresponding buildings.
Lemma 7.3 then implies that the areas differ by (k —%)A(e). The bijection in (165)
is sign-preserving if and only if the bijection between moduli spaces on the broken
piece X of (164) containing the self-intersection point x € ¢(L) is orientation
preserving. This can always be achieved by changing the orientation on the deter-
minant line Df. The bijection preserves the cellular constraints at the evaluation
maps by construction. O

Remark 8.6. We discuss constant disks on the handle region; these will be needed
later to prove the invariance of the potential. On the pre-surgered side, there are
two constant disks

uy S = X, us(S)=0o(r_) =o(xy)

in the case dim(Lg) > 2. The first constant disk u_ has inputs z, T and output Ty
while the second u, has inputs 7,z and output o, ,. We have ¢'(o,, ,,004) = 1
and all other pairing vanish, since o 4 is the unique 0-cell in the closure. Thus
the outgoing labels of these two disks u, resp. u_ are oo resp. op_. In the case
dim(Lg) = 2, there are arbitrary numbers of inputs, as in (5.21). For the surgered
Lagrangian, we have two constant configurations uy : S — X corresponding to the
classical boundary o+ — 0o _ of 0.

Remark 8.7. The bijections between moduli spaces of holomorphic treed disks
bounding the immersion and its surgery extend to repeated inputs. Suppose | is
a type of building bounding ¢y with label x appearing [ times, and

r=(ry,...,m)

is a collection of integers. Let £ denote the type obtained by repeating the edge
labelled o,,_1 1+ at the i-th place r; times. Combining Theorem 8.5 with Theorem
5.13 (or rather, it’s extension to buildings, whose proof is the same) gives for
permutation-invariant matching conditions bijections between moduli spaces

MOE(X, ¢07 D) — MOE(X, Qbe, D), Ug > Ue.

Each disk passing once through the handle in the positive direction meets each
generic translate of the meridian o,_; 1 exactly once. If dim(Ly) = 2, then the
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longitudinal cell o, is also codimension one. In this case, let

r=(rf,...,rf,r . 1)

’° s
be a tuple of integers represented a pattern of repetitions. If ¢ is obtained by
replacing the i-th occurrence x resp. T with r;" resp. r; copies of 0,1 4 resp oy,
then there is a bijection as above for exactly one of the r;"! resp. r; !-factorial of
the perturbations of the cycles 0,1 1+ resp. o;. Indeed, each curve hitting X\ hits
each generic translate of o; exactly once. This ends the Remark.

Lemma 8.8. The rigid moduli spaces M (X, ¢, D)o are invariant under replace-
ment of a constraint 0,1 1 with constraint o,_1 _ and vice-versa.

Proof. By Proposition 7.2, for each rigid building (C, u) the boundary du : 90S — L
meets each meridian 0,1 + the same number of times that du passes through the
handle H, C L (counted with sign), and the claim follows. O

8.3. Equivalence of potentials. We may now prove the first part of main result
Theorem 1.3 using the bijection between curves contributing to the potentials.
First we relate the curvatures of the immersion and its surgery. We work with the
broken Fukaya algebras

CF(¢g) = CF*(X,¢0), CF(¢pe)=CF>(X, )

where ¢, is the asymptotically-cylindrical Lagrangian defined in the local model
by the standard path ~(t) = t + 2ie. These broken Fukaya algebras are homotopy
equivalent to the unbroken Fukaya algebras by Theorem 6.30. Define ¥ : by > b,
as in (5). We assume that by vanishes in the neighborhood of the attaching spheres
in Ly by Lemma 5.11. The following is straight-forward from Definition 1.2:

Proposition 8.9. The derivative
Dy, ¥ : CF(¢o) = CF(¢c)

is given by the identity on all generators in I(po) except x,T. On these generators
we have

(166) = (bo(x)g™ )"+ bo(T)A

(167) T = bola)\

for dim(Lg) > 2; while

(168) r = (bo(x)g™ D)+ bo(T) (bo (2)bo(T) + 1) 7'\
(169) T = bo(x)(bo(z)bo(T) + 1)\

for dim(Ly) = 2.

We may write the higher composition maps in terms of correlators as follows.
For e = 0, € define correlators

Po1(00, . on) €N, my(or,...,00) = Y piia(00, ..., 00)c" (00, ).
00,0
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Theorem 8.10. Assume that if dim(Lgy) = 2, then the condition in Definition 5.21
holds. Then

(170) Zp;Jrl(Dbo‘Ij(J)v b€> te 7b6) = Zngrl((Tv b07 LRI bU)

r>0 r>0

for each generator o € L(¢g). Similarly, for any generator T € Z(¢)

(171)
Zpﬁ,H(DbO\I/(U), bey oy Dpg W (), be,...,0) = Zpgﬂ(a, bo, ..., bo, ¢, bg,...bo)
r>0 r>0

We first show that the inadmissible configurations, in the sense of Definition 8.3,
do not contribute to the sum on the left-hand-side.

Proposition 8.11. The weighted count of configurations (C,u : S — X) bounding
¢ with inadmissible surface components u, : S, — X in (170) and (171) vanishes.

Proof. We will show that the weighted count of configurations is a multiple of a co-
efficient of a self-intersection point in the curvature of the weakly bounding cochain
for the unsurgered Lagrangian, which vanishes. First, suppose there is a single in-
admissible component S,. Lemma 7.18 implies that such configurations cannot be
rigid unless one of the minimal length Reeb chords connects to a configuration not
containing the output or input labelled Dy, ¥(c).

Choose such a minimal length chord ¥ leading to a component in Xy which does
not contain the output or constraint o;. Splitting at ¢ divides the configuration into
two pieces, which we denote by u, and u_ as in Figure 14. Since there is a single
inadmissible component, the piece v, has no inadmissible components. We obtain
a building bounding the unsurgered Lagrangian as follows. Let 4 : S — X denote
the configuration obtained by replacing u_ with the map to a single quadrant
bounding ¢g, and all levels in v, mapping to X~ with similar quadrants, as in
Figure 14. The resulting building & = (4_, @4 ) has inputs labelled by and output
labelled 7, in the component adjacent to ¢. Let " denote the type of 4. We have
a bijection

U M (¢) = M _(¢e) x [UM-(¢0)
h -

which maps u to (u_, 4, ), and whose inverse is given by replacinng the quadrants

A

in 4, with the corresponding maps in Proposition 7.2. Here ranges over types
with an output labelled z or 7, (depending on which minimal length chord ¥ is).
The weighted sum over such configurations  is the coefficient of z or Z in m{(1)
which by assumption vanishes.

Suppose now that the configuration has an arbitrary number of inadmissible com-
ponents. Removing the inadmissible vertices Vert™( ) C Vert( ) corresponding to
inadmissible components S, of Definition 8.3 creates a union of trees ,..., .
At least one of these trees | := ; must be adjacent to a single inadmissible
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F1GURE 14. Eliminating levels with multiple ends

vertex joined at a minimal-length orbit ¢, since by Lemma 7.18 any inadmissible
component has

em( ) >3—di( ) > 1

That is, one starts from any inadmissible vertex and moves outwards along the tree
away from the output, choosing an edge in  that corresponds to a minimal length
Reeb chord at each inadmissible vertex. If there are several such graphs, we may
choose ; to be the graph containing the last interior edge in the given ordering,
so that the decomposition of into

is unique.

We now sum over the moduli spaces corresponding to the subgraphs separately.
Let u; denote the part of u corresponding to ;. Replacing each component of u;
with the corresponding quadrant, and adding a single quadrant at ¢, produces a
configuration @ bounding ¢y. Let " denote the type of 4. The weighted count
of configurations 4 over types ) vanishes, being the coefficient of x or T in mg‘)(l)
depending on whether 1 is a minimal length chord from R™ to iR™ or vice-versa. U

Proof of Theorem 8.10. Fach correlator is a sum over contributions from disks that
pass k_ resp. ki times through the neck region in the negative resp. positive
direction:
° o k_.k
P (00, ..., 0q) = Z Pair (00, .., 0q).
ke kot

Each non-zero contribution to pZ’f_I’kJr has up to k., groups of inputs labelled p and

up to k_ groups of inputs labelled p or A. Let
bﬁ = b() — bo(l‘)l‘ — bo(f)
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which is the collection of terms of by and b, that both share. Choose a generator
o € I(¢p) not equal to =, T so that Dy W(c) = o. Let r; resp. s; be the number of
repetitions of p resp. A in the j-th group. Set

() = n(bo(2)g™),  e(A) = In(by()ho() + 1).

Suppose first that dim(Ly) = 2. By Remark 8.7, the j-th group of repetitions may
be removed at the cost of changing the correlator by a factorial r;!, where r; is the
length of the group, so that

Zpi(d, be, ey be) = Z (ﬂ Z C(M)rj(rj!)_l)

r>1 r>1k_ky \j=17;>0
k_
(172) (Hl > (=elm)(rih™! (—1 + gocmsqu!)l))
(173) Pk (o, bn, ..., br).

Here the terms in the sum

1+ Y (V) ()

5520

come from the two “wrong-way” curves in the handle, corresponding to the points
in 5" = §% = {1,—1}. We assume that the local system is chosen so that the
boundary of the holomorphic disk in the handle bounding ¢, not passing through
A has parallel transport —1. The other curve crosses the longitude once, possibly
with repetitions, hence the sum over s; in the second term. Denote by

iy resp.i_ CA{l,...,r+k_+ky}
the positions of these groups of label i resp. A. Conversely, define

(174) Jolio,iy)  Z(do) ™ *+ — T(go)FH+er
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the map defined by inserting k. labels z resp. T at the positions ¢_,7,. Continuing
we have

(173) = Z (exp(ln(bo(m)qA(E)))]’“f_k*(—1 + exp(In(by(2)bo(Z) + 1))F-

k_ ky
p;k k+(07 bﬂa coee 7bﬂ)

= > (bo(x)g™ )" (bo(w) g M (=1 + (bo(2)bo(T) +1)))*

rk_ ky
pgk k+(07bﬂa"'7bﬂ)
=3 gy g (@) e (0, )

rk k+

= Z bO k+b pgk k+(0-7j0(1771+)(bﬂ7'-'7bﬂ))

7"'1 'L+

(175) = > po,bo,....bp).

r>1

where jj is defined in (174). For the contributions from non-constant disks, the
first equality above is an application of Remark 8.7, the second is by the power
series of the exponential function, the third and fourth equalities are algebraic
simplifications, the fifth is by Theorem 8.5 and Proposition 8.11, and the last is
the expansion by = b + bo(z)z + by (T)T.

The contributions of the constant disks in the above computation match by the
following argument. The contribution of the two constant disks with inputs x, 7 in
Remark 8.6 to mo(z, ) is

mg(l’,f) = bo(l’)bo(f)(O’oy.;. — 0'0’_) + ...

We also have contributions from alternating inputs z,7,...,Z to 0o+ with coeffi-
cient (—1)471/d by assumption, see Definition 5.21. The sum of these contributions
is

> (_163 - (bo(2)bo(T)) (00,4 — 00,-) = In(bo(x)bo(Z) + 1) (00,4 — 00,-)-

d>1

Since the classical boundary of oy is 0¢4+ — 0o, this sum matches the classical
terms in pe(oy, 4, c(A)A).

It remains to deal with the cases that the constraint on the output is one of
the cells on the neck. In the case 0 = u, the contributions to p4(p,...) arise from
configurations(C,u : S — X) passing either positively or negatively through the
neck region at the outgoing node. Write

5(p) = In((bol) + p)a™ ) + In(bo()bo () + 1)A.
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Let pr,, »_ denote contributions to p, from disks where the first v + 1 labels and
last r_ labels lie on the handle. Then

Zp;(pﬁ bé? ce 7b6) = bo(l’) Zp;(bO(x)ill% b67 ce 7be)

r>1 r>1
= @) X s Gol@)5(0), . 5(0),
r>1,r4+>0
besber - b 0(0), - 6(0))
0
- bo(l‘) Z 87|P:0p;r,,r+(5(:0)7"-a(s(p)7
r>1,5>0 9P

beybey .., be, 0(p), ..., 0(p))
= bo(2) > 9plpmo(bo(z) + p)po(z, b, - - ., bo)

+0plolbo(z) + p)~ (—1 + exp(In(bo(2)bo(T) + 1))
p? (T7 b07 v 760)
= > pbo(x)z,bo, ..., bp)

r>1
. —1+ (bo(x)bo(ZT) + 1) _
—ZqA”p,E’( (ol () )x,bo,...,bo>
r>1 bo ()
= > p(bo(x)z — bo(T)T, by, - . ., o)

r>1
where the terms involving p2(z,bo, ..., by) in the sum arises from configurations
passing through the handle positively and terms involving p2(Z, by, ..., by) arise

configurations passing through the handle negatively. The presence of a label p in
the first entry forces the first node to map to the handle. There are contributions
from any number r_ entries §(p) at the end of the string ¢ and r, entries §(p)
where those labels appear on the same level of the building in the configuration.
These contribute by Remark 8.7 with a factorial entry [ = (1 +r_ +r,)!"!. Since
there are 1 4+ r_ + r such entries for each | (depending on where the 0-th entry
appears in the string), we obtain a contribution of (r; +7,)!"! after summing over
these positions. Similarly for ¢ = A we have

PN b b) = 3 g (bo(x) T g (b (2)bo(T) + 1)), b, - -, bo)

d>1 r>1

= > p)(bo(z) " (bo(T)bo(x) + 1), bo, . - ., bo).

r>1
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Hence

€ _ € -1 b0<T)

ng(DbO\I/(w),bE,...,be) = glpr <b0(:v) i+ (bo(x)bg(f)—i—l))\’ be,...,b6>
(176) = ;pg(bo(x)*l(bo(w)ﬂc — bo(7)7)
bo(@) (bo(@)bo(x) + 1) _

(177) (oo (2)bo(T) + 1)b0(x)x’ bo, - .-, bo)
(178) = > pXx,bo,....bp).
Finally 7

Zpi(Dboqj(T)’ bev s 7be) = pri(bO(x)(bO(x)bO(T) + 1)_1)‘7 bea s 7be)
(179) = > 2T, bo,....by).

If o has no z, T terms then D, V(o) = o. Together (175), (178), (179) imply the
result for dim(Lg) = 2.

The case dim(Lg) > 2 is easier and details are left to the reader. By assumption
on by(Z) = 0, any disk meeting A has a single (not repeated) label A on the bound-
ary. Furthermore, each disk passing through the handle in the negative direction
must have one X label to be rigid. The computation is then the same as in the case
dim(Lg) = 2, but without the repeated X inputs and defining ¢(\) = by(z)bo(T). O

8.4. Equivalence of Floer cohomologies. To prove the isomorphisms of Floer
cohomology, we introduce a quotient C'F*(¢y) of C'F(¢g) that captures the co-
homology H F(¢o,by), and a quotient CF*5(¢,) of CF(¢pe) capturing the coho-
mology HF(¢.,b.). Recall that the generators for ¢, are obtained by removing
two top-dimensional cells and two ordered self-intersections and gluing in cells of
codimension 0,n — 1,1, n. Let

CF (o) = span({on_14,0n+}) C CF(¢p).
Lemma 8.12. CF'(¢y) is a sub-complex of CF(¢y).

Proof. By assumption, the almost complex structure Jr near the self-intersection
points z, T is the standard one. For index reasons, there are no rigid buildings
(C,u: S — X) with positive area A(u) having input o,,: Forgetting the constraint
would produce a building in a moduli space of negative expected dimension. Thus

b
mloan,i = aan,i = 0On—-14-

Since by € MC/(¢), we have (m%)? = 0 and so m%c, 1+ = 0 which proves the
claim. U
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A long exact sequence argument implies that the quotient complex has isomor-
phic cohomology: The quotient

CF™(¢0) = CF(¢o)/CF" (o)
fits into a short exact sequence
0 — CF(¢g) = CF(¢g) = CF™(¢hy) = 0
inducing a long exact sequence in cohomology. Since C'F'°¢(¢y) is acyclic,
(180) H(CF™(¢y),my")) = H(CF(¢o),m}).

Similar arguments apply to the cohomology of the surgered Lagrangian. De-
fine a subspace C'F'°°(¢,) generated by the cells 0,0, +,01+ and their classical
boundaries:

CF(¢.) = span({0, 01, — 0n-1,-}) C CF ()
Lemma 8.13. CF'(¢,) is a sub-complex of CF(¢.)

Proof. Since there are no rigid treed disks with positive area and a constraint o,
on the neck, there are no quantum corrections in the formula
mzfe(an) =00, = Op_14 — On_1,—.
Since (m%)? = 0, we have m{ (6,14 — 0n_1._) = 0. O
The quotient complex
CF™(¢c) = CF(¢c)/CF*(¢c)
fits into a short exact sequence
0 — CF(¢.) = CF(¢c) = CF™(¢.) — 0.
Since C'F'°¢(¢,) is acyclic,
(181) H(CF™(¢c),my) = H(CF(¢e, ), my).
Lemma 8.14. The complexes CF*(¢.) and CEF**(¢g) have the same dimension.

Proof. The quotient C'F**(¢,) has two new generators compared to C'F**(¢) cor-
responding to the longitudinal cell in dimension 1 and the meridional cell in di-
mension n — 1 compared to C'F**(¢y), but two fewer generators corresponding to
ordered self-intersection points (z,z_), (z_,z,) € Z5(¢y). O

Proof of Theorem 1.3. First we prove the equivalence of potentials. Let ¢y resp. c.
denote the coefficients of the approximation for the diagonal for Ly resp. L. from
(59). For the standard approximation of the diagonal we have with superscript ¥
denoting the corresponding cells in the dual decomposition

(182) co(x,T) = (T, ) = ce(an_Li,olv’i) = Ce(Ul,i,UYVL,Li) =1
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and all other coefficients involving cells on the neck vanish. For the cohomology, we
denote by ¢, ¢ the induced coefficients for the quotients CF**(¢y), CF**(¢,).
Let 0,1+ denote the image of 0, _, 0, 1 in CF*%(¢.). The pairings between cells
and dual cells are given by

(183) 3 (x,T) = (T, 1) = 0y 14,07) = (07, Uxfl,ﬂ =1.

We may assume that the diagonal approximations agree away from the cells o,, +
in Ly and o, in L.. The derivative Dy, ¥ induces a map on quotient complexes
by Lemma 8.8, for which we use the same notation. The complex CF*5(¢y) is
generated by the images of

I% (o) = L(¢o) = {on-1,+,0n2}
and similarly for Z¢*(¢.). By Theorem 8.10, the coefficients of cells not on the neck
in m(1) and mb‘(l) agree. Furthermore, for § in the surgery region

(mg’(1) = > po.bo,. - bo)e™ (0,7)c5 (7. B)

a.y,T

= Zpg(ﬂabl);"'abO)
= D P De¥(B), b, .., be)
= pr,(DbO\I/(a),be,.., be) essV(U )y, B)

=: (mo (1), (Dy, 1) ).
Since Dy, ¥ preserves the identity 14, — 14_, the potential is preserved by surgery:
Wo(by) = We(W(bo)).

The derivative of this identity with respect to a cochain v is (171) and gives the
identity

(2 (), @) = (ml(Dy, ¥9), (DyW)a), Vo, s0ml? = (Dy¥)'ml (D, V).
Since Dy, ¥ is invertible, the kernels and cokernels are related by
(D W) ker mb0 = kermb, imm? = (Dy, )" im mbe.
Hence, as claimed
HE(90,b) = HF™(6,,b.) = HF* (o, bo) = HF (6, bo).
O

Remark 8.15. By Proposition 5.12 the map of Maurer-Cartan spaces in Theorem
1.3 is surjective up to gauge transformation. We expect that there is an identifica-
tion of surgered and unsurgered Lagrangian branes equipped with Maurer-Cartan
solutions as objects in the Fukaya category, given the construction of a Fukaya
category in the cellular model.
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Remark 8.16. Recall that a deformation of a complex space X, over a pointed base
(S, s0) is a pair

(m: X = S,¢:7 ' (s9) = Xo)

consisting of germ 7 of a flat map together with an identification of the central fiber
¢. A deformation is versal if it is complete, that is, if every deformation is obtained
by pullback by some map; note that this is the weakest notion of versality in the
literature [17]. There are natural notions of deformation of morphisms, coherent
sheaves, and so on [82]. A naive notion of deformation of an immersed Lagrangian
brane ¢ — L is given by a family of pairs

(ps: L — X, by € MC(¢s))

parametrized by a point s in a space S. Depending on the structure of ¢,, b, one
could speak of analytic, smooth, continuous deformations and so on. Clearly, this
notion is inadequate as the deformation does not include the surgered branes near
L, and one seems to have codimension walls at val,(b) = 0. The results of this
paper imply that those walls vanish by adjoining the Maurer-Cartan spaces of the
surgeries. In this somewhat vague sense, we have shown the existence of versal
deformations of Lagrangian branes including the surgered Lagrangians. It would
be interesting to know whether there is a more precise definition of deformation of
a Lagrangian brane similar to that of coherent sheaf in algebraic geometry.

Remark 8.17. In the proof of Theorem 1.3, we assume that the Fukaya algebras
C'F(¢o) and C'F(¢.) have been defined using perturbation data satisfying good in-
variance properties in Definition 5.18 and, for Lagrangian surfaces, Definition 5.21,
explained in Section 5.4. We were left feeling that we only partially understood
Definition 5.21, and future work will hopefully clarify the situation. Note that in
dimension two, one can also assume (186) and shift the local system rather than
the Maurer-Cartan solution to prove invariance which avoids the assumption in
5.21.

Remark 8.18. The almost complex structures admit an sft-style limit in Section 6,
in which the self-intersection point is isolated by a neck-stretching. For arbitrary
choices of perturbation data, the conclusion of the Theorem holds without the
explicit formula in Definition 1.2 for the change in the weakly bounding cochains

bo, b..

8.5. Variations of local system. The formulas in Definition 1.2 are equivalent to
slightly different formulas using changes in the local system rather than the weakly
bounding cochain. Suppose that the parallel longitudinal transport L. from one
side of the handle {—oo} x S™! to the other {oo} x S"~! using y. is given by

(184) Lo = by(x)g™ € Ag.
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Theorem 8.19. Given the local system L. above, the conclusions of Theorem 1.3
hold for the surgered bounding cochain

In(by(x)bo(Z) + 1)A  dim(Lg) = 2

(185) b = blz)r — b(T)T + {bg(x)bo(a?)/\ dim(Lg) > 2

The proof is essentially the same as that of the main result Theorem 1.3. In the
dimension two case one may sometimes completely replace the change in weakly
bounding cochain with a change in local system. Suppose that dim(Lg) = 2, Lo
is connected, and the weakly bounding cochain by vanishes except on a single one-
chain k : [—1,1] = Lo connecting x, with x_ which has only classical boundary

(186) mi(k) =xy —a_.

Define b. = 0 and set the parallel transport M, around the meridian of the local
system 7. to be

(187) M, = bo(2)bo(T) — 1 € A,

Indeed, variation of a weakly bounding cochain b by a degree one element b’ €
CF'(¢) is equivalent to a variation of the local system y by the corresponding
representation exp(d’) by the divisor equation (81) in Section 5.4.

9. (QUASI-ISOMORPHISMS

In this section we show Theorem 1.6, namely that the objects defined by the
surgered and unsurgered Lagrangian are quasi-isomorphic in a simplified version of
the Fukaya category.

9.1. Quasi-isomorphisms induced by Hamiltonian perturbation. Let ¢
be a Hamiltonian perturbation of ¢y as in the statement of the Theorem and
MC(¢p), MC(¢) the corresponding Maurer-Cartan spaces. Symplectomorphisms
induce A, isomorphisms, since one can use the pull-back almost complex structure
for which the holomorphic disk counts are the same. For each by € MC(¢y) there
exists a by € MC(¢;) with the same value of the potential:

w(by) = w(by) € A.

Fix such a by and let Fuk; (X) denote the category with objects (¢, bo) and (¢, b))
with higher compositions for d > 1

bo,..,bgq _
(188) my (ala"‘ﬂa‘d) - Z md—i—ko—i-u.—i-kd(b(]w"7b07a17"'7
ko,...,kqg >0 P
0
bd—lu cee 7bd—1) Qd, bd7 cee )bd)
kg1 kq

and define mo(1) = 0. The A associativity relation for the algebra C'F(¢) implies
that Fukg (X) is a flat A category.
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FIGURE 15. The unsurgered immersion and its perturbation; the
surgered immersion and its perturbation

Lemma 9.1. (¢, b)) is quasi-isomorphic to (¢o,bo) in Fuks (X).

Sketch of proof. The space C'F(¢q, ¢y) is naturally a (CF(¢g), CF(¢yg))-bimodule
as explained in Charest-Woodward [21, Chapter 6]. The structure maps are defined

by a count of (J; H)-holomorphic strips bounding ¢y, ¢, where H : [0,1] x X — R
is the Hamiltonian whose flow defines ¢f. Let

He C®Rx[0,1] x X))

be a function limiting to 0 as s — —oo and H as s — +00. A count of treed
(J, H)-holomorphic strips implies that the bimodule (C'F(¢), CF(¢))) is homotopy
equivalent to C'F'(¢p). The image of the unit 1, under the homotopy equivalence
with CF(¢o, ¢p), and the image of the unit 14, under the homotopy equivalence
with C'F (¢, ¢o) provides the necessary elements

(189) (&7} € CF(¢07 ¢{))7 ﬂO S CF<¢67¢0)7 50 S CF(¢07¢0)7 56 € CF(¢67 ¢6)

as in (7). The fact that the composition of these two homotopy equivalences is
homotopic to the identity implies the necessary composition relation for ms(ag, Bo)
and ma(Bo, o). O

We also have a Fukaya category with the same two objects, but where the struc-
ture maps are defined by pseudoholomorphic buildings. As a special case of Theo-
rem 6.33 we have an A, homotopy equivalence

CF(X, go) = CF>(X, ).
Let Fuk3® (X) be the category whose objects are ¢y and ¢, and whose morphisms

are the sub-spaces of CF(X, ggo) in the obvious way. The homotopy equivalence of
Ao algebras induces a homotopy equivalence of A, categories

Fuk; (X) — FukZ (X).
0
The existence of quasi-isomorphisms with the broken limit C' F'*°(X, qbo) implies that

(o, bo) and (¢p, b)) define quasi-isomorphic objects in Fusz)(X).
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9.2. Quasi-isomorphism with the surgery. We now use the quasi-isomorphisms
above to show that the surgery is also quasi-isomorphic. Since the intersections of
¢o and ¢ are disjoint from the surgery regions, we have equalities

(b0 x ) (A) = (¢e x ¢p) " (A)

and identifications

(190) CF(o, d9) = CF(¢e, dp),  CF(dp, do) = CF(¢p, be)-
We denote by
aE 6 CF(¢€7¢6)a 56 6 CF(qu)?qu)

the images of o and [y under the isomorphisms (190). Furthermore, let

de € CF(¢e; )

the image of §p under the map DW.

We claim that the bijection between disks bounding the surgered and unsurg-
ered Lagrangians in Theorem 6.23 applies; in fact the corresponding moduli space
have no more than one edge labelled by the cell o; so the argument is somewhat
easier than the first proof given. Since . is an odd element, the output ml{E((Se)
is even and does not contain ¢,,_;. Thus the computation of m’ involves at most

one constraint labelled ¢;. Similarly, the computation of m‘;’%(ﬁe, a.) has inputs
labelled by intersection points of ¢. and ¢} and inputs labelled odd cells in b, or
by, so there are no inputs labelled by 1. Therefore the only possibly constraint la-
belled o; might be at the outgoing edge, and so the number of such constraints is at
most one. The correspondence in Theorem 6.23 therefore gives a bijection between

the moduli spaces computing m% (8.) and m%(8y), the moduli spaces computing

mgf’bo(oze, Be) and m’;°’b0
ml;O’bO (Bo, ap), with the count of inadmissible configurations vanishing by Propo-

sition 8.11. Tt follows that mi (5.) agrees with the image of m%(8y) under the

identification of C'F**(¢.) with CF**(¢y), the element mge’b6(ae, Be) agrees with

the image of mgo’bo(ao, Bo), and the element m’;()"’e (Be, ae) agrees with the image of

bb . : . .
ms" " (Bo, ). Hence a, 3, are quasi-isomorphisms as claimed. This completes the

proof of Theorem 1.6.

(v, Bo), and the moduli spaces computing mgé”be (Be, cre) and

9.3. Mapping cones. In the case of a single intersection point of a pair of em-
bedded Lagrangians, the main result of this paper reproduces the identification of
the surgery with the mapping cone, which was the original intent of Fukaya-Oh-
Ohta-Ono [42, Chapter 10], see also Abouzaid [4], Mak-Wu [62], Tanaka [84], and
Chantraine-Dimitroglou-Rizell-Ghiggini-Golovko [20, Chapter 8]. The special case
that one of the Lagrangians is a Lagrangian sphere was treated earlier by Seidel
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[76] in his paper on symplectic Dehn twists. Pascaleff-Tonkonog [68] have devel-
oped a generalization to clean intersections, related to higher-dimensional analogs
of Lagrangian mutation.

We put ourselves in the following simple version of the Fukaya category, gen-
erated by two branes. Suppose that the immersion ¢y : Ly — X is the disjoint
union of immersions ¢4 : Ly — X intersecting transversally equipped with weakly
bounding cochains by € MC/(¢+). Denote the combined immersion by

bo=6¢_ U¢, L UL, — X.

Recall that CF(¢_, ¢, ) is the subspace of C'F(¢y) generated by the intersection
points of ¢_ and ¢, . As vector spaces

CF(po) 2 CF(¢p-) ®CF(¢4) CF (¢, 04) ® CF (¢, 0-)

and CF(¢+) are A, sub-algebras. The space CF(¢_, ¢, ) is naturally an A,
bimodule over the A, algebras CF(¢_) and CF (¢, ). Let

c€ OF(¢_,dy), mi ™ (c)=0

be a cocycle. Let ¢ : K — X be another immersed Lagrangian brane in X meeting
¢4, ¢_ transversally and disjoint from ¢(L,)N¢(L_). Suppose that K is equipped
with a bounding cochain k € MC(¢) with

W(k) =W(b-) =W(by).
The complex Hom(Cone(c), K) is by definition
Hom(Cone(c), K) = CF(L_, K)[1]® CF(L, K)

with differential m} %" induced by the differentials on CF (L., K) and com-
position with ¢, see for example Seidel [79, 2.10].

Theorem 9.2. (c.f. [42, Remark 54.9, Chapter 10]) Suppose L., K are as above
and dim(Ly) > 2. Suppose that x € ¢_(L_) N ¢ (Ly) is an odd self-intersection
point and

Cc = q_A(E)ZL‘ € CF(L_, L+), mli_’b+c = 0

is a cocycle. Let ¢. denote the e-surgery at x with cochain b, = by + b_ with
b+ wvanishing in an open neighborhood of x. Then the complex CF(¢., K) with
differential ml{“k is homotopy equivalent to the mapping cone Hom(Cone(c), K).

Remark 9.3. The special case that one of the Lagrangians is a Lagrangian sphere
was treated earlier by Seidel [76]. In this case, say L_ is a sphere, the surgery
¢ : L — X is embedded and Hamiltonian isotopic to the Dehn twist 7L, of
L, around L_. Here the Dehn twist 7, € Aut(X,w) is a symplectomorphism on
X that restricts to minus the identity on L_ and is supported on a neighborhood
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of L_. Surgering all self-intersections simultaneously gives an exact triangle in the
derived Fukaya category

HOH].(L_, L+)L_ — L+ — T, (L+) — HOH](L_, L+)L_[]_],
see Seidel [79, Proposition 9.1]. This ends the Remark.

Proof of Theorem 9.2. Let ¢+ : L+ — X be embeddings as in the statement of
the theorem and by € MC5(L.) projective Maurer-Cartan solutions. As in The-
orem 6.30, the complexes C'F(¢., K), Hom(Cone(c), K) are homotopy equivalent
to those defined by curve counts in the broken limit X in which the almost com-
plex structure is stretched along a sphere enclosing the given intersection point
x € L_N Ly. Any configuration (C,up : S — X) contributing to a structure
map of Hom(Cone(c), K) corresponds under the map Theorem 8.5 with a curve
(C,u. : S — X) with boundary on (¢, K). The number of corners of ug on z is
equal to the number of times that u, passes through the handle H, positively. Since
dim(Lg) > 2 by assumption, any rigid curve u, passes in the positive direction on
the handle by Theorem 8.5. That is, there are no “wrong way” corners to deal
with in the bijection between holomorphic disks. On the surgered side, only one
end represents a change of boundary condition from Ly to L;. The rest must have
angle change 6, a multiple of 7, and so d_(e) > 1 and d.(e) > 1 for all but one
end. As in the analysis in Lemma 7.18, the dimension of the unconstrained moduli
space is at least e(c)n — 1 and such configurations cannot be rigid unless there is
a single end asymptotic to a minimal length Reeb chord. The area of A(u.) is
A(ug) — kA(€) as in Lemma 7.3. Counting rigid curves u, defines the differential
on CF(¢., K) using the bounding cochain b_ + b,. One obtains an identification
of complexes as before. [l

Remark 9.4. Fukaya-Oh-Ohta-Ono [42, Theorem 56.14, Chapter 10] use this iden-
tification with the mapping cone to show that there exists a Lagrangian in the
six-dimensional symplectic torus whose Fukaya algebra (defined using their foun-
dational system, presumably equivalent to ours) has no projective Maurer-Cartan
solutions.

REFERENCES

[1] C. Abbas. An introduction to compactness results in symplectic field theory. Springer, Hei-
delberg, 2014.

[2] C. Abbas. holomorphic strips in symplectisations I: Asymptotic behavior. Ann. Inst. H.
Poincaré Anal. Non Linéaire 21 (2004), no. 2, 139-185.

[3] A. Abbondandolo and P. Majer, Stable foliations and CW-structure induced by a Morse-
Smale gradient-like flow. arxiv:2003.07134.

[4] M. Abouzaid. On the Fukaya categories of higher genus surfaces. Advances in Mathematics
217 (2008), no. 3, 1192-1235.

[5] M. Abouzaid. Framed bordism and Lagrangian embeddings of exotic spheres. Ann. of Math.
(2) 175 (2012), no. 1, 71-185.


http://www.arxiv.org/abs/2003.07134

142

[6]

JOSEPH PALMER AND CHRIS WOODWARD

M. Akaho and D. Joyce. Immersed Lagrangian Floer Theory. J. Differential Geom. 86 (2010),
no. 3, 381-500.

P. Alexandre. Structure of J-holomorphic disks with immersed Lagrangian boundary condi-
tions.

M. F. Atiyah and R. Bott. The Yang-Mills Equations over Riemann Surfaces. Philosophical
Transactions of the Royal Society of London. Ser. A. 308 (1505): 523-615.

Michéle Audin and Mihai Damian. Morse Theory and Floer Homology. Translated from the
2010 French original by Reinie Erné. Universitext. Springer, London, 2014.

D. Auroux. Asymptotically holomorphic families of symplectic submanifolds. Geom. Funct.
Anal., 7(6):971-995, 1997.

D. Auroux. Mirror symmetry and T-duality in the complement of an anticanonical divisor.
J. Gokova Geom. Topol., 1:51-91, 2007.

D. Auroux. Special Lagrangian fibrations, wall-crossing, and mirror symmetry. In Geometry,
analysis, and algebraic geometry, volume 13 of Surveys in Differential Geometry, pages 1-47.
Intl. Press, 2009.

D. Auroux, D. Gayet, and J.-P. Mohsen. Symplectic hypersurfaces in the complement of an
isotropic submanifold. Math. Ann., 321(4):739-754, 2001.

P. Biran and O. Cornea. Quantum structures for Lagrangian submanifolds. arxiv:0708.4221.
P. Biran and O. Cornea. Lagrangian cobordism and Fukaya categories. Geom. Funct. Anal.,
24(6):1731-1830, 2014.

F. Bourgeois, Y. Eliashberg, H. Hofer, K. Wysocki, and E. Zehnder. Compactness results in
symplectic field theory. Geom. Topol., 7:799-888 (electronic), 2003.

Catanese, F. A superficial working guide to deformations and moduli. Handbook of moduli.
Vol. 1, 161-215, Adv. Lect. Math. (ALM), 24, Int. Press, Somerville, MA, 2013. Retrieved
at http://www.mathe8.uni-bayreuth.de/pdf/CataneseFabrizio/128.pdf

K. Cieliebak, T. Ekholm, and J. Latschev. Compactness for holomorphic curves with switch-
ing Lagrangian boundary conditions. J. Symplectic Geom. 8 (2010), no. 3, 267-298.

S. Chanda. Floer Cohomology and Higher Mutations. arxiv:2301.08311.

B. Chantraine, G. Dimitroglou Rizell, P. Ghiggini, R. Golovko. Geometric generation of the
wrapped Fukaya category of Weinstein manifolds and sectors. arxiv:1712.09126

F. Charest and C. Woodward. Floer theory and flips. Mem. Amer. Math. Soc. 279, 2022.
F. Charest and C. Woodward. Floer trajectories and stabilizing divisors. Fized Point Theory
19 (2017) no. 2, 1165-1236.

C.-H. Cho. Products of Floer cohomology of torus fibers in toric Fano manifolds. Comm.
Math. Phys. 260 (2005), 613-640.

C.-H. Cho and Y.-G. Oh. Floer cohomology and disc instantons of Lagrangian torus fibers
in Fano toric manifolds. Asian J. Math., 10(4):773-814, 2006.

K. Cieliebak and K. Mohnke. Compactness for punctured holomorphic curves. J. Symplectic
Geom., 3(4):589-654, 2005.

K. Cieliebak and K. Mohnke. Symplectic hypersurfaces and transversality in Gromov-Witten
theory. J. Symplectic Geom., 5(3):281-356, 2007.

E. Arbarello, M. Cornalba, and P. A. Griffiths. Geometry of algebraic curves. Volume II,
volume 268 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences/. Springer, Heidelberg, 2011. With a contribution by Joseph Daniel
Harris.

O. Cornea and F. Lalonde. Cluster homology: An overview of the construction and results.
FElectron. Res. Announc. Amer. Math. Soc., (12):1-12, 2006.


http://www.arxiv.org/abs/0708.4221
http://www.mathe8.uni-bayreuth.de/pdf/CataneseFabrizio/128.pdf
http://www.mathe8.uni-bayreuth.de/pdf/CataneseFabrizio/128.pdf
http://www.arxiv.org/abs/2301.08311
http://www.arxiv.org/abs/1712.09126

20]
30]
31)
32]
33]
34]
35]

[36]

[43]

[52]

IMMERSED FLOER COHOMOLOGY AND LAGRANGIAN SURGERY 143

J. P. Demailly. Complex Analytic and Differential Geometry. Université de Grenoble.
http://www-fourier.ujf-grenoble.fr/~demailly /manuscripts /agbook.pdf

G. Dimitroglou Rizell, T. Ekholm, and D. Tonkonog. Refined disk potentials for immersed
Lagrangian surfaces. J. Differential Geom. 121:459-539, 2022. arxiv:1806.03722.

S. K. Donaldson. Boundary value problems for Yang-Mills fields. J. Geom. Phys. 8:89-122,
1992.

S. K. Donaldson. Symplectic submanifolds and almost-complex geometry. J. Differential
Geom. 44 (1996), no. 4, 666-705.

Tobias Ekholm. Morse flow trees and Legendrian contact homology in 1-jet spaces. Geom.
Topol., 11:1083-1224, 2007.

T. Ekholm, J. Etnyre, M. Sullivan. Legendrian contact homology in P x R. Trans. Amer.
Math. Soc. 359 (2007), no. 7, 3301-3335.

K.-Y. Fang. Geometric constructions of mapping cones in the Fukaya category. Ph.D. Thesis,
Berkeley, 2018.

A. Floer. Monopoles on asymptotically flat manifolds. In: Hofer H., Taubes C.H., Wein-
stein A., Zehnder E. (eds) The Floer Memorial Volume. Progress in Mathematics, vol 133.
Birkhéuser Basel.

A. Floer. Morse theory for Lagrangian intersections. J. Differential Geom. 28 (1988), no. 3,
513--547.

A. Floer. The unregularized gradient flow of the symplectic action. Comm. Pure Appl. Math.
41 (1988), no. 6, 775-813.

A. Floer, H. Hofer, and D. Salamon. Transversality in elliptic Morse theory for the symplectic
action. Duke Math. J., 80(1):251-292, 1995.

O Forster and K. Knorr. Uber die Deformationen von Vektorraumbiindeln auf kompakten
komplexen Rdumen. (German) Math. Ann. 209 (1974), 291-346.

U. Frauenfelder and K. Zehmisch. Gromov compactness for holomorphic discs with totally
real boundary conditions. J. Fized Point Theory Appl. 17 (2015), no. 3, 521-540.

K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono. Lagrangian intersection Floer the-
ory: anomaly and obstruction., volume 46 of AMS/IP Studies in Advanced Math-
ematics. American Mathematical Society, Providence, RI, 2009. Orientation chapter
at https://www.math.kyoto-u.ac.jp/~fukaya/bookchap9071113.pdf version 2007. Surgery
chapter at https://www.math.kyoto-u.ac.jp/ fukaya/Chapter10071117.pdf.

W. Fulton and R. Pandharipande. Notes on stable maps and quantum cohomology. In Alge-
braic geometry—Santa Cruz 1995, pages 45-96. Amer. Math. Soc., Providence, RI, 1997.
S. Ganatra. Symplectic Cohomology and Duality for the Wrapped Fukaya Category. PhD
Thesis, Massachusetts Institute of Technology, 2006.

R. Harvey, Spinors and calibrations, Perspectives in Mathematics, 9, Academic Press, Inc.,
Boston, 1990.

A. Hatcher. Algebraic topology. Cambridge University Press, Cambridge, 2002.

L. Haug. Lagrangian antisurgery. Math. Res. Lett. 27:1423-1464, 2020.

J. Hicks. Wall-crossing from Lagrangian Cobordisms. arXiv:1911.09979.

J. Hicks. Lagrangian cobordisms and Lagrangian surgery. arXiv:2102.10197.

H. Hong, Y. Kim, and S.-C. Lau. Immersed two-spheres and SYZ for Gr(2,C*) and OG(1,C?).
arxiv:1805.11738.

A. Jacob, and S.-T. Yau. A special Lagrangian type equation for holomorphic line bundles.
Math. Ann. 369 (2017), no.1- 2, 869-898.

D. Joyce. UCLhandout2.pdf. Talk slides retrieved 1/17/2018.


http://www-fourier.ujf-grenoble.fr/~demailly/manuscripts/agbook.pdf
http://www.arxiv.org/abs/1806.03722
https://www.math.kyoto-u.ac.jp/~fukaya/bookchap9071113.pdf
https://www.math.kyoto-u.ac.jp/~fukaya/Chapter10071117.pdf
https://arxiv.org/abs/1911.09979
https://arxiv.org/abs/2102.10197
https://arxiv.org/abs/1805.11738
https://people.maths.ox.ac.uk/joyce/UCLhandout2.pdf

144
[53]
[54]
[55]

[56]

JOSEPH PALMER AND CHRIS WOODWARD

D. Joyce. Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau manifolds,
special Lagrangians, and Lagrangian mean curvature flow. arxiv:1401.4949.

D. Joyce, Y.-I. Lee, and M. -P Tsui. Self-similar solutions and translating solitons for La-
grangian mean curvature flow. J. Differential Geom. Volume 84, Number 1 (2010), 127-161.
A. Kapustin and Y. Li. D-branes in Landau-Ginzburg models and algebraic geometry. Jour-
nal of High Energy Physics, 12:5, 2003. hep-th/0210296.

M. Kontsevich and Y. Soibelman. Affine structures and non-Archimedean analytic spaces. In
The unity of Mathematics, volume 244 of Progr. Math., pages 321-385. Birkhduser Boston,
Boston, MA, 2006.

D. Kwon and Y. G. Oh. Structure of the image of (pseudo)-holomorphic discs with totally
real boundary condition. Appendix by Jean-Pierre Rosay. Comm. Anal. Geom. 8: 31-82,
2000.

F. Lalonde and J.-C. Sikorav. Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés
cotangents. Commentarii mathematici Helvetici, 66(1):18-33, 1991.

L. Lazzarini. Relative frames on J-holomorphic curves. J. Fized Point Theory Appl. 9:213—
256, 2011.

R. B. Lockhart and R. C. McOwen. Elliptic differential operators on noncompact manifolds
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4, Volume 12, no.
3, p. 409-447, 1985.

D. McDuff and D. Salamon. J-holomorphic curves and symplectic topology, volume 52 of
American Mathematical Society Colloquium Publications. American Mathematical Society,
Providence, RI, 2004.

C.Y. Mak and W. Wu. Dehn twist exact sequences through Lagrangian cobordism. Compos.
Math. 154, no. 12, 2485-2533, 2018. arxiv:1509.08028.

S. Ma’u, K. Wehrheim, and C.T. Woodward. A,-functors for Lagrangian correspondences.
Selecta Math. 24(3), p. 1913-2002, 2018.

Y. G. Oh. Riemann-Hilbert problem and application to the perturbation theory of analytic
discs. Kyungpook Math. J., 35(1):39-75, 1995.

Y. -G. Oh, Fredholm theory of holomorphic discs under the perturbation of boundary con-
ditions, Math. Z. 222, 505-520, 1996.

J. Palmer and C. Woodward. Immersed Lagrangian Floer theory and Maslov flow. Algebr.
Geom. Topol. 21(5): 2313-2410, 2021. arXiv:1804.06799.

R. Pandharipande, J. P. Solomon, R. J. Tessler. Intersection theory on moduli of disks, open
KdV and Virasoro. arxiv:1409.2191.

J. Pascaleff and D. Tonkonog. The wall-crossing formula and Lagrangian mutations
arxiv:1711.03209.

L. Polterovich. The surgery of Lagrange submanifolds. Geom. Funct. Anal. 1 (1991), no. 2,
198-210.

M. Pozniak. Floer homology, Novikov rings and clean intersections. Northern California
Symplectic Geometry Seminar, 119-181, AMS Transl. Ser. 2, 196, AMS, Providence, RI,
1999.

J. Robbin and D. Salamon. Asymptotic behaviour of holomorphic strips. Ann. Inst. H.
Poincaré Anal. Non Linéaire 18:573-612, 2001.

F. Schméschke. Floer homology of Lagrangians in clean intersection. arxiv:1606.05327.

A. Ranicki. Algebraic and geometric surgery. Oxford Mathematical Monographs. Oxford
Science Publications. The Clarendon Press, Oxford University Press, Oxford, 2002.

R. T. Seeley. Extension of C*° functions defined in a half space. Proc. Amer. Math. Soc. 15:
625-626, 1964.


http://www.arxiv.org/abs/1401.4949
http://www.arxiv.org/abs/1509.08028
http://www.arxiv.org/abs/1804.06799
http://www.arxiv.org/abs/1409.2191
http://www.arxiv.org/abs/1711.03209
http://www.arxiv.org/abs/1606.05327

IMMERSED FLOER COHOMOLOGY AND LAGRANGIAN SURGERY 145

[75] P. Seidel. Fukaya categories and Picard-Lefschetz theory. Zurich Lectures in Advanced Math-

ematics. European Mathematical Society (EMS), Ziirich, 2008.

[76] P. Seidel. A long exact sequence for symplectic Floer cohomology. Topology, 42(5):1003-1063,

2003.

[77] H. Seifert and W. Threlfal. A textbook of topology. Translated from the German edition of

1934 by Michael A. Goldman. With a preface by Joan S. Birman. Academic Press, Inc., New
York-London, 1980.

[78] P. Seidel. Graded Lagrangian submanifolds. Bull. Soc. Math. France, 128(1):103—-149, 2000.
[79] P. Seidel. Homological mirror symmetry for the quartic surface. Memoirs of the American

Mathematical Society, 2015, Volume 236. arXiv:0310414

[80] P. Seidel. Homological mirror symmetry for the genus two curve. J. Algebraic Geom. 20:727—

81

82

"0

3

"©
i~

‘©

769, 2011.

] N. Sheridan and I. Smith. Lagrangian cobordism and tropical curves. J. Reine Angew. Math.
774 (2021), 219-265. arXiv:1805.07924

] Y.T. Siu and G. Trautmann. Deformations of coherent analytic sheaves with compact sup-
ports. Mem. Amer. Math. Soc. 29 (1981), no. 238.

] M. Swaminathan. Quantitative Gromov Compactness. arXiv:2104.11771.

] H. L. Tanaka. Surgery induces exact sequences in Lagrangian cobordisms. arXiv:1805.07424.

] R.P. Thomas and S. T. Yau. Special Lagrangians, stable bundles and mean curvature flow.
Comm. Anal. Geom. 10 (2002), no. 5, 1075-1113.

] S. Venugopalan and C. Woodward. Tropical Fukaya algebras. arxiv:2004.14314.

[87] K. Wehrheim and C. Woodward. Exact triangle for fibered Dehn twists. Res. Math. Sciences

3:17, 2016. arxiv:1503.07614.
] K. Wehrheim and C.T. Woodward. Orientations for holomorphic quilts. arXiv:1503.07803.
| C. Wendl. Lectures on symplectic field theory. arXiv:1612.01009.

[90] A. Weinstein. Removing intersections of Lagrangian immersions. Illinois J. Math. 27 (1983),

no. 3, 484-500.

MATHEMATICS - ALTGELD HALL, UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN, 1409

W. GREEN STREET, URBANA, IL 61801, U.S.A.

Email address:  jpalmer5@illinois.edu

MaTHEMATICS-HILL CENTER, RUTGERS UNIVERSITY, 110 FRELINGHUYSEN ROAD, PISCAT-

AWAY, NJ 08854-8019, U.S.A.

Email address: woodwardc@gmail.com


http://www.arxiv.org/abs/math/0310414
http://www.arxiv.org/abs/1805.07924
http://www.arxiv.org/abs/2104.11771
http://www.arxiv.org/abs/1805.07424
http://arxiv.org/abs/2004.14314
http://arxiv.org/abs/1503.07614
http://www.arxiv.org/abs/1503.07803
http://www.arxiv.org/abs/1612.01009

	1. Introduction
	2. Lagrangian surgery
	2.1. The local model
	2.2. Surgery and its properties

	3. Treed holomorphic disks
	3.1. Treed disks
	3.2. Cell decompositions
	3.3. Treed holomorphic disks

	4. Coherent perturbations
	4.1. Donaldson hypersurfaces
	4.2. Coherence
	4.3. Transversality and compactness
	4.4. Orientations

	5. Fukaya algebras in the cellular model
	5.1. Cellular Floer cochains
	5.2. Composition maps
	5.3. Gauge equivalence
	5.4. Divisor insertions

	6. Holomorphic disks and neck-stretching
	6.1. Broken holomorphic disks
	6.2. Fredholm theory and exponential decay
	6.3. Compactness for buildings
	6.4. Transversality for buildings
	6.5. Gluing with Lagrangian boundary conditions
	6.6. Deformation to split form
	6.7. Homotopy equivalences

	7. Holomorphic disks bounding the handle
	7.1. Classifying disks with a single end
	7.2. Ruling out disks with large angle in the unsurgered handle
	7.3. Ruling out disks with large angle in the surgered handle
	7.4. Ruling out maps intersecting the critical locus
	7.5. Comparing disks on the flattened and unflattened handles

	8. Fukaya algebras under surgery
	8.1. The cell structure on the handle
	8.2. The surgered-unsurgered bijection
	8.3. Equivalence of potentials
	8.4. Equivalence of Floer cohomologies
	8.5. Variations of local system

	9. Quasi-isomorphisms
	9.1. Quasi-isomorphisms induced by Hamiltonian perturbation
	9.2. Quasi-isomorphism with the surgery
	9.3. Mapping cones

	References

