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SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS

YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARD

1. INTRODUCTION

Let Y be an oriented closed three-manifold and r a positive integer. The Reshetikhin-
Turaev invariant Z(Y,r) and Turaev-Viro invariant TV(Y,r) are three-manifold invari-
ants that attempt to make rigorous the Hamiltonian formulation of quantum Chern-
Simons theory. Z(Y,r) is constructed using the R-matrix of the quantized enveloping
algebra U,(sly) and Kirby moves, while TV (Y, r) is based on the 65 symbols for U,(slz)
and a choice of triangulation. Turaev [I¥] and Roberts [EF] independently showed that
the TV(Y,r) is the square of the modulus of Z(Y,r).

On the other hand, the Lagrangian (path integral) formulation of quantum Chern-
Simons theory leads to perturbative invariants developed in [l B 0. The leading term
for the invariant is conjectured in [B] to involve the torsion, the Chern-Simons invariant,
and the spectral flow for flat SU(2) bundles on Y. An interesting mathematical problem
is whether the two formulations can be shown to agree. A proof that the leading term is
the same for lens spaces and torus bundles was given in Jeffrey [B]. Yoshida [[¥] recently
announced a proof of equality of the leading term for a rational homology sphere, using
a different definition of Z(Y,r).

In this paper we apply our previous work on asymptotics of the quantum 65 symbols
[£8] to the asymptotics of TV(Y,r) as r — oo. Substituting the asymptotic formula and
applying stationary phase yield a finite dimensional integral involving Gram matrices of
spherical tetrahedra which turns out to be a spherical version of an integral considered by
Ponzano-Regge ] and Korepanov [H]; see also Mizoguchi and Tada [I2]. Unfortunately,
we have nothing rigorous to say about the asymptotics because of various problems
involving convergence of the integral and error estimates for the asymptotics of the 67
symbols. The modest results of this paper are a proof that the integral is invariant under
the Pachner moves, as one would expect from the connection with Turaev-Viro, and of
convergence for the sphere S°.

We would like to thank I. Korepanov, M. Leingang, F. Luo, 1. Rivin, and J. Roberts
for their comments and discussions. This material appeared in the first author’s Rutgers

University 2003 Ph.D. thesis.
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2. 6) SYMBOL FOR U,(sl;) AND ITS ASYMPTOTIC FORMULA

Let U,(sly) denote the quantized enveloping algebra at a primitive 2r-th root of unity
g = exp(mi/r). Let [n], be the quantum integer n defined by

q* —q™ "  sin(nm/r)
[n]q = -1 = :
qg—q sin(7/r)
for n € Z. We say that a half-integer j is a color at level r if
r—2

0<< .
>7 > 5

For any color 7, define
Aj=(=1)*[2 +1].
A triple of colors 71, ja, js € Z /2 is called admissible if
max(71 — J2,J2 — 1) < Js <min(jy + J2,7 — 2 — j1 — J2)
and
Ji+ 72+ 3 € L.

The quantity
A=A Y A= rsin(a/n)

a
b,c,(a,b,c) admissible

[C3] and in particular is independent of a.
For any 6-tuple of colors jp,1 < a < b < 4, the quantum 65 symbol

Jiz J23 13

J34 J14 J24
is a rational number obtained from associativity of the tensor product for representations
of U,(slz). There are two standard conventions for U,(sl;) with tetrahedral symmetry,

which are related by a sign
(_1)Ea<b 2jab‘

The reader should note that the Turaev-Viro convention is different from the conven-
tion in our earlier paper [[H], which was chosen because it agrees with the accepted
conventions for ¢ = 1. The 65 symbol satisfies the orthogonality relations [A]

\ NN T TR U ST PR S
(1) ]z: e {]34 J24  J14 J34  J24  J14 "
14

and the pentagon or Biedenharn-Elliot relation

(2)  r(1234)}{r(2345)} = 3 (—=1)7[2jss + 1 {r(1235)} {r(1345)} {7 (1245)}

j15
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where z is the sum of all ju, a,b € {1,2,3,4,5} and (ja23, J34, joua) is g-admissible, and

{7r(abed)} is short for
bed)) = .]ab .]bc jac )
{r{abed)y { Jed  Jad  Jbd

In our previous paper [[H] we obtained the following result on the asymptotics of the
quantum 65 symbols as the labels and level are simultaneously rescaled. Set

r(k) = k(r—2) 4 2.
Let 7 denote the tetrahedron in the sphere S® with edge lengths

<3> o ()

if it exists, and let 8, denote the exterior dihedral angles. Define

k) (Z lapOup — 2V01(7'))

a<b

and
G(7) = det(cos(lup))
where (cos(ls)) is the spherical 4 x 4 Gram matrix. Then,

(4) { kji2 kjis kjas } N (TQW cos(§ + &)

kjss Ejos Ejia 2 ’

(k)G (7(Lay))

if 7 exists and is non-degenerate.

3. THE TURAEV-VIRO INVARIANT

Let Y be a compact triangulated 3-manifold with tetrahedra Tet(Y"), triangles Tri(Y"),
edges Edge(Y'), and vertices Vert(Y). A coloring of Y at an integer r > 2 is a map

1 r—2
) Edee(Y 0,—.... .
J : Edge( )—>{,2, 5 }

For each such coloring, define
VY, ) =AT I A [ UG
e€Edge(Y) TETet (Y)

J(7) denotes the vector of values of j on the 6 edges of a tetrahedron 7, {j(7)}, is
the 67-symbol for U,(sly),q = exp(mi/r) for the colors associated to the edges of the
tetrahedron 7. The Turaev-Viro invariant of Y is

(5) TV(Y,r) ZTVYr]
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The pentagon and orthogonality identities imply that T'V(Y,r) is invariant under the
Pachner 2-3 and 1-4 moves and hence independent of the triangulation, that is, a topo-
logical invariant of Y.

4. NON-EUCLIDEAN TETRAHEDRA

This section provides various elementary facts about non-Euclidean tetrahedra relevant
to this paper. For the proof, we refer to [lf]. Let £, 5™ denote n-dimensional Euclidean,
spherical space respectively. Let 5, denote an n-dimensional simplex and [,; edge lengths
in S,. The Cayley-Menger determinant for a Euclidean simplex S, denoted by Go(l4),
is defined by

0 1 1 1 ... 1

1 0 _llfz _ll%:a —llf
(6) Go(lw) =det | 1 =305, 0 -2, .0 =L,

1 2531 2532 0

For a spherical simplex, we define n x n Gram matriz
G(lap) = det(cos(la)).

Note that this is the volume of a FEuclidean n + 1-simplex with n vertices on the unit
sphere and one at 0. We will need later the following facts on Euclidean and spherical
simplices; the hyperbolic versions are discussed in [IH].

Theorem 4.0.1.  (a) (Cayley formula, [B p. 98]) If a simplex S with edge lengths .
exists in B, then

(n!Vol(5))? = Go(lap).
(b) (Schlifli formula, [E0, p. 281]) For an n-simplex S in E™ or S”,

(n — 1)rdVol,(S) =Y " Vol,_»(F)dfr

quhere the sum is over (n — 2)-d2menswnal faces ' of the simplex S, 0 is the
exterior dihedral angle around F' and k = 0,1 is the curvature.
c) For the case of a triangle, one has the factorizations:
gte,

1
Go = 1(512 + Loz 4 Lis)(liz + Loz — L) (L — Loz + Lis) (—liz + Lo + 113)
.1 ! 1
G = 4SIH(§(512 + Iz + 143)) Slﬂ(ﬁ(hz + Iz — 113)) Slﬂ(5(512 — s+ 143))

1
Slﬂ( (—li2+ las + l13))
(d) A Euclidean triangle exists if and only if
(7) Ly <lis+las, lis <o+ lag los < lig + lis.
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A spherical triangle exists if and only if (@) and

lig + 13 + L3 < 27

(e) A non-degenerate tetrahedron with edge lengths l,, exists in E®, 5% respectively if
and only if L,y satisfy (@) for faces and I >0, G > 0 respectively.

(f) The derivative of an edge length L,y in a Fuclidean resp. spherical tetrahedron T
with respect to an opposite dihedral angle 0.4 is given by

Ol _  Go’(ly) Ol _ G'(ly)
60cd lablcd ’ 60cd sin(lab) sin(lcd)7

5. ASYMPTOTIC PENTAGON AND NORMALIZATION IDENTITIES

In this section, we prove several geometric identities which may be viewed as semi-
classical analogs of the identities (H), (H) for 65 symbols. We will use them when we
discuss 3-manifold in section @ The Euclidean versions are due to Ponzano and Regge
[L4]. Starting from this section, we fix an integer r > 3 and ¢ = exp(%).

A simplex spanned by vertices vy, ..., v, is denoted by Sy _,,. If the simplex is two-
dimensional, then we sometime denote Sy by eg. Also, a vector from v; to v; is denoted
by v;;. A simplex spanned by vertices vg, ..., 0;,...,v,, in which the vertex v; is omitted,
is denoted by S;. A volume of a simplex is written as vol(Spy. ), or vol(Sh, . p,),where
h; are spanning vectors of the simplex. If a simplex is two-dimensional, we sometimes
write [y for the length vol(Sy;) = vol(ex).

FiGURE 1. 2-3 move

Consider a complex with vertices vg,...,vs and five tetrahedra Sy, Sy, S1, S92, Ss.
Suppose the complex described above is embedded in S®. For the spherical Gram matrix
associated with S;, let (7; denote its determinant. For j = 1,...,5 define s; = 1 resp.
—1 if the embedding is orientation preserving resp. reversing. Around the edge egy, we
have three exterior dihedral angles 63,, 62,, 03,. Define the defect angle around the edge

€04 by
3

Woq = Z Sj(W - ‘964)-

i=1
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Theorem 5.0.2. The determinants G; of spherical Gram matrices for tetrahedra S;
satisfy the identities

(a) (Asymptotic pentagon identity) In the same situation as in (H)

0 ) [ Gyl
(8) a(’;;: = 515953 s1n2(l04) ﬁ,

(b) (Asymptotic normalization identity) In the same situation described as in (M)

(9) sin({.q) sin (loy)

VG(T(li5))

Here, Ly and l.q are the lengths of opposite edges and G(7(lap)) is the determinant
of the spherical Gram matriz assoctated with the tetrahedron with edge lengths 1;;.

dlab =17

The equation (H) can be obtained heuristically via stationary phase applied to (H). To

prove (@), note that
004 T
dly = df.y = .
Ol ™ /0 =7
by Theorem I (). The proof of (H) is by a series of lemmas. Suppose vy, ..., v, in R”

form a n—simplex Sy . Consider the (n — 3)—simplex So 45 ... Let h; be the vector
starting at the vertex v; perpendicular to the simplex Sg 45, , for each 1 =1,2,3.

4

FIGURE 2. The vectors iy and Ay

The length ||h;|| of the vector is the distance from v; to So 45, .. Also, the dihedral
angle between 3—dimensional simplices So; ;4 and Sg ;x4 for i # j # k € {1,2,3} around
4,...n 18 the same as the angle ¢;; between vectors h; and hy. In particular, the exterior
dihedral angle between Sp; ;4 and Sg j x4 1s T — ¢, which we denote by 0;;. The volume
of the (n — 1)-simplex S; = (vo,...,%;,...,v,), denoted by V;, is
1
(10) V. = = 1)n=2) Vol(0, hj, hi) Vol(So,...n)

1 .
(1) = oy Ml el Vol(Ss..e)sin
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where 1,5,k € {1,2,3},1 # j # k. The volume of the n-simplex Sy, is

(12) (g) Vol(So.....) = Vol(hy, ha, hs) Vol(Soa....0)-

Indeed,
n’ VOI(S(O, ceey n)) == det(601, €02, €03, €044 - - -+ 5 eon)
= det(hl, hg, hg) det(€04, ceey eon)

.....

Lemma 5.0.3.

I(Vol(hy, ha, ha))? 2n — 1)%(n —2)° s18953V1V4 V3
ooy ne0 = (31)? (VoI(So,4,..n))°

Proof. We know that

(13)

1 1 1
Vol(h1, ha, ha) = o det(h; - hi)'/? = g1l Azllll sl det(cos ¢i;)?.

Substituting ¢;; = m — 0;; and expanding the determinant yield
1
3!
The differential with respect to 614, 013, 653 is

(Vol(hy, ha, hs))? = (=) 2|kl || h2]||hs]])? (cos® O12+cos? O13-+cos? Oy3+2 cos b1 cos O3 cos Oa3).

1
3!
2sin 013(cos O3 + cos 015 cos O33)d013+
2sin fa3(cos O23 + cos 012 cos 013)dba3}.

The double angle formula, together with wps = 0 gives

d(VOI(hl, hg, h3))2 == ( )2(Hh1H HhQH thH)Q{Q sin 012(COS 012 -+ cos 013 COS 023)d012—|—

cos B15 = cos(m — (82013 + 51023)) = — cos 013 cos a3 + sin $2613 8in 5103.

Therefore, d(Vol(hy, ha, h3))?* |, =0 is equal to

%(HMH | ha|l || h3|])? sin s361 sin s2613 sin s1043(s3d012 + sodb3 + s1df23).
By (),
VilaVs = ((n — 1)1(n — 2))3(Hh1HHh2HHh3H)2(Vol(So74 ..... n))” sin 012 8in 023 810 015,
The lemma follows since duwns = Sy, sxdf;. O

Let « be the length of the edge ¢;; from the vertex v; to the vertex v; and x4 be the
roots of the Cayley-Menger determinant associated with the n-simplex.
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0

3+

FIiGURE 3. n=3
Lemma 5.0.4.
(14)

Proof. Without loss of generality, assume z is the length of eg,,. Using the Cayley-Menger
determinant,

—1

V012(507,,,7n) = m V012(51 ..... n—l)(xQ - $2_)($2 - 1’3_)
and so

OVol*(So..n +1
(15) %hﬁzwi = m V012(51 ..... n_l)(l’_l_ — 1’2 )

The roots x4 correspond to values of the length for which the simplex embeds into R™.
We can choose the embeddings so that only the image v,4,v,_ of the vertex v, varies;
see Figure Bl Let hg, resp. h,, denote distance of vg, resp. v, 4, to S(1,...,n — 1), so
that |

..... n—l)h07 VOI(SO) =

n — n —

Vol(S,,) =

Let w denote the distance from the projection of wv,, to the projection of vy in
S(1,...,n—1). By the Pythagorean theorem,

:1;3_ = (ho + hn)? + w?, 2% = (ho — h,)* + w?.
Hence 22 — 22 = 4hoh,,, so the lemma follows from (I3). O

Finally we prove the asymptotic pentagon identity. We use the above lemmas for
n = 5. Suppose that the vertices vg, vy, ve,v3, v4 lie in S® and vs = 0. Let
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It suffices to compute

8@04 B 8@04 6[ 81'2
dy 0l 022 Oy’
where x is the Euclidean length between vy and vy and y the spherical geodesic distance.

By (I3),

V012(507475) VOIQ(hl, hg, hg)
5222
Because Vol(Sp45) is independent of woq,
8[ B V012(507475) a(VOIQ(hl, hg, hg))
Owos 5222 Owos

I =

By (&),
8@04 B 5222 V01(507475)313233

ol 96 VivoVs

By (3), ) 222 Vol )
Wo4 5 2 \/01 5045 LOL4 1 LOL4
- = — = Vol(Spas5) —t
15253 81'2 96 h b v3 52 24 © ( 07475) h b v3

Note that Vol(Sp45) = %sin(y) and z = 2sin(§), where z is the length of the straight

line from vy and vy and vs = 0. Hence,
da?
dy

= 4sin(g) Cos(g) = 2sin(y).
2 2
Thus,
8w04 8@04 dDz? 515253 sm(y)

= = 28iﬂ()v0v4 = 51598 sinz() M
dy 922 dy 24 2 vy, — s SN GGGy

6. A SEMICLASSICAL THREE-MANIFOLD INVARIANT

In this section, we explain how to use (H),(H) to define a formal three-manifold invariant
which is a spherical version of the formal invariant introduced by Korepanov in [H] and
[E]. By formal we mean that the existence of the invariant depends on the convergence
of certain finite dimensional integrals, which we can only prove in the case of S°.

6.1. Definition of the Invariant. Let Y be a triangulated, closed, and oriented three-
manifold with vertices Vert(Y'), edges Edge(Y'), triangles Tri(Y"), and tetrahedra Tet(Y").
Let £ denote the space of the edge-labellings

L={l: Edge(Y) = [0,7], G((r))>0Vr e Tet(YV)}.

Here, [(7) denotes the 6-tuple which is a restriction of a labelling [ on the edges in 7 and
G/(I(7)) the determinant of the spherical 4 x 4 Gram matrix associated with [(7), and
the edge length [, is as defined in (H).

By Theorem XL if G/(l,) > 0, there is a non-degenerate spherical tetrahedron with
edge length 5. So, given an | € £ and 7 € Tet(Y'), there is an embedding ¢ : 7 — S°
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such that for any edge e C 7, the length of the edges of the tetrahedron ¢(e) is (e). For
any coloring [ and any edge [(e) := [. in the spherical tetrahedron (7), let ¢+ resp.
0,.: denote the interior resp. exterior dihedral angle at [, in ¢(7). Let

s:Tet(Y) — {£1}

be a sign assignment to each tetrahedron in Y. For each e € Edge(Y) and labelling [,
define the defect angle around the edge e to be

(16) wi,,s = 21 — Z s(T) b,

TDe

We say that a labelling [ is flat with respect to the sign choice s if
wi, s = 0 mod 2r Ve € Edge(Y).

Definition 6.1.1. £, ; denotes the set of flat labellings with a fixed sign assignment s.
That is, £, ={l € L :w;, s = 0 mod 27}.

Proposition 6.1.2. Suppose that Y is simply connected. For a given flat labelling | and
a fived sign assignment there exists a map ¢ : Y — S% such that |, is an embedding
of T with length ., for all tetrahedra 7 € Tet(Y). Any other map ¢’ : Y — S? whose
restriction to a tetrahedron is an embedding is oblained by composing ¢ : Y — S3 with

an element of SO(4).

The proof is similar to the construction of developing maps for hyperbolic or spherical
manifolds and is left to the reader.

Suppose that Y is not necessarily simply connected. Let Y — Y be the universal
cover of Y. Each flat labelling [ with a fixed sign assignment s defines ¢;: ¥ — S3. Let
|7| denote the spherical tetrahedron ¢;(7) realized from [(7). For any v € m1(Y), ¥|7| is
a spherical tetrahedron, related to || by an element p(v) in the isometry group SO(4)
of S3. By construction

pilnlrl) = p(y)p(2)eill7])-
It follows that p is a homomorphism

p: m(Y)— SOM) = (SU(2) x SU(2))/{£1}.
Let [p] denote the conjugacy class of p in the representation variety
R(Y,50(4)) := Hom(m(Y), SO(4))/SO(4).

Because of the last statement in proposition BEI [p] is independent of the choice of the
base tetrahedron 7 or an embedding 7 — S2. Let Ly ) = UsLy [,),s denote the set of flat
labellings { which give rise to the class [p].

Given [ € L, ()5, recall that the defect angle w;, around an edge e is defined by (EQ).

Let H denote the matrix
dwi
H = (d—lj)i,jeEdge(Y)'
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By Schlafli’s formula B H is the Hessian of the function

Y wndi— Y s(rp2vol(lr)):

e€Edge(Y) T€Tet(Y)

in particular, H is symmetric.

For any matrix M = (my;),4,7 € Edge(Y), and subsets I,.J C Edge(Y'), we denote by
M7y the sub-matrix of M obtained by restricting the index set for rows, resp. columns,
to I, resp. to J. Let C C Edge(Y') be a maximal subset of edges such that the sub-matrix
Hee C A is positive definite. Let C denote its complement Edge(Y )~C. Define

(17) 1Y, [p]) := (%)#VertZ/leﬁb[]L l_T[ G(I(r))~ M lEl sin(le)\/%_

If R(Y,S0(4)) is finite, then we define
= Y i

[PlER(Y.S0(4))

This is not exactly the expression predicted by stationary phase applied to TV (Y, r);
that expression is (even) more complicated due to the inclusion of phases and certain
powers of 2 which we have ignored. These omissions are partly discussed in the last
section of the paper.

6.2. Formal topological invariance. By Pachner’s theorem [[3], any two triangula-
tions of a given 3-manifold are related by a sequence of 1-4 and 2-3 moves. The 1-4
move replaces a tetrahedron with four tetrahedra by adding a vertex or vice versa. The
Pachner 2-3 move replaces two tetrahedra sharing a face with three tetrahedra by adding
an edge or vice versa.

Theorem 6.2.1. [(Y, [p]) is a formal topological invariant, i.e., independent of the choice
of C and invariant under the Pachner moves assuming convergence.

First we show invariance of the integral under a 2-3 move. In the triangulation of Y, find
a complex of two tetrahedra with vertices vg, v1, v, v3, v4. Denote it by X. For Edge(Y),
we have the set of labellings £, = |J, £, 5, where s is a sign assignment Tet(Y") — {£1}.
Consider a new triangulation 7" of Y, obtained by adding an edge egy to the complex
X. We denote the new complex by X’. The set of data for the new triangulation is

Tet'(Y) = Tet(Y) — {S(0123), §(1234)} U {5(0234), S(0134), 5(0124)1,

Edge’ (V) = Edge(Y) U {egs}, Vert'(Y) = Vert(Y).

Any flat labelling { of Edge(T') induces a flat labelling I" of Edge(7"). Since any loop in
Y can be deformed so as not to intersect S(0123) U S(1234), [p] is the same for [ and

I'. Let I denote the function of the lengths {y,...,Ix given by the implicit function
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theorem so that if lffé)w is the length of the edge (vovy4), and [; are other lengths, then
Whew = 0. Let [hew denote the length of the edge (vov4), and

(18) aneW — lneW - Z(O)

new'*

Since

Do (1) Ouopew Do . Pnew
I Olpew O al;

we have 5 o,
»,
d new — dlneW sl J dl
+ Z a(~‘)new/alnew
It follows that
dwnew a(~‘)new/alnew 0---0 dznew
duwn Ow1 [ Ol ew dly
(19) : - : H :
dwy Own [ Ol yew din
Hence
8‘/Jnevv 8ll awnew ol
a(~‘)new/alnew 0---0 1 m e m
awl /8lnew 1
U I 0
Oeon [ Dlers 0 .
Since both matrices are block triangular,
det( Hyew) = a“;“ew det(H).

The new triangulation has €’ = C U {(vov4)}, so that ¢’ = Edge’ —C’' = C. Invariance
now follows from (H).
Next we show that /(Y] [p]) is independent of the choice of C. We write

l — (l/,l”), w = (w/7w//)

where [’ is the vector of edge lengths in C, and [” the the remaining edge lengths, and
similarly for w. Generically the length {” may be written as a function of I’, by requiring
that the defect angles w = 0. With respect to this decomposition, the matrix H may be
written in block diagonal form as follows. Let

ol

21 D=—:

(21) ol

denote the matrix of partial derivatives. Define
al"

air = arr+ 2
o
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similar to (EJ). It follows from the definition that

dw'\ (B 0\ [dl
dw”) ~\C 0) \dr"

for some matrices B, C'. We have an equation similar to ()

- B 0\ (I DY (B BD
S \C 0)\0 ) \C CD)"
It follows from the fact that H is symmetric that

_( Hee HeeD
(22) = (DTHCC DTHCCD> '

Let C" be a different maximal subset of edges, such that Heicr is non-degenerate. Take
X CC,Y CCsuch that | X|=1Y]. Set ' = (C— X)UY. From () we see that

He_xe-x He_xxDxy
23 H o =
(23) e (D)T(YHXC—X D)T(YHXXDXY> ’

since 887" = 88%. Thus,
J 7
Heer = FY(Hee) F
where F' is the matrix in block diagonal form with respect to the decomposition C =

(C~X)J X for columns and " = (C'~\Y)|JY for rows
I 0
(00

det(HC/C/) = det(Hcc) det(F)2 = det(Hcc) det(DXy)z.
Together with (EI) this implies that the differential form

Acez dle
det(Hcc)

It follows that

in () is the same for C and C'.
To prove invariance under a 1-4 move we will use the following lemma, whose proof is
left to the reader:

Lemma 6.2.2. The integral over the region

{lbalc:la Slb—l'lcalb Sla—l'lcalcgla—l'lbala—l'lb—l'lcSQﬂ-}

1 o B
(24) (L) //sm(lb) sin(l.)dlydl. =2

for any [, € [0,7].
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Let Spia3 be a tetrahedron with vertices vg,...,vs in Y. We consider the effect of
adding an extra vertex vy in the interior and replacing the tetrahedron Spi93 with the
four tetrahedra Sig34, So234, So134, So124. We use the notation 7; for S, : ,. We have

Vert' = Vert U{vy}, Tet’ = (Tet —{S5(0123)}) U {S5(1234), 5(0234), 5(0134),5(0124)}
Edge’ = Edge U{€04, €14, €24, 634}.

Also C' = C U e34 since adding any other edge would allow a deformation of the new
vertex changing only the lengths of edges in C’. Hence

@ == 5 U {604, €14, 624}.
Exactly the same argument as in the 2-3 case shows that

8w34

Olsy

det(HC/C/) = det(Hcc).

Hence

1(Y') = (%)(#Vert +1) HTeTet—{5(0123)}(G(l(7))_1/4) Heepagesinlle) A dle.
T c (G0G1G2G3)1/4\/(det HCC)(%UlJe?;)

After substituting the Jacobian

Owsy _ in®(Isy) [ G3Gy
8l34 o GOGIGZ

we need to compute the integral
/ Siﬂ(l04) Siﬂ(l14) Siﬂ(l24)dl04dl14dl24
ven '

The equations (H) and (EH) give
7T
Siﬂ(llg)

This cancels with the extra factor of 27 in the coefficient, and completes the proof that
I(Y,[p]) is invariant under the Pachner moves, assuming it converges.

/Siﬂ(l14) Siﬂ(l24)dl14dl24 = 2.

6.3. An acyclic complex and its torsion. In this section we relate the determinant
appearing in [(Y,[p]) to the torsion of an acyclic complex, following Korepanov [H].
Recall the infinitesimal action of the group of gauge transformations Map(Y, SO(4)) on
the space of connections Q'(Y,50(4)) at a connection A is given by

(25) Q°(Y,s0(4)) — QU(Y,s50(4)), & —dat

where d4 is the associated covariant derivative. Hence the infinitesimal stabilizer of A is

Q°(Y,50(4))4 = Ho(dy).
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Let SO(4), denote the stabilizer of p : m(Y) — SO(4), and so(4), its Lie algebra.
If Ais a flat connection defining the holonomy representation p, then evaluation at the
identity induces an isomorphism

Map(Y, SO(4))4 — SO(4),.
Hence H°(dy4) is isomorphic to so(4),. Let
h°(ds) = dim(s0(4),) = dim(H%(d,)).
The cohomology group H'(d4) parameterizes first-order deformations of p; in particular,
if H'(d4) =0 then [p] is isolated in R(Y,SO(4)). Suppose that H'(d4) = 0. Let
V= Map(\/ert(f/), SP)m )

denote the space of maps invariant under 7;(Y’), acting on Vert(Y') by deck transforma-
tions and S® via the representation p. Let

E = Map(Edge(Y'),[0,7])"") = Map(Edge(Y), [0, ])
and ¢ : V — FE the map taking edge lengths of edges. Let w : K — E be the map
which assigns to a set of edge lengths the set of defect angles. The action of SO(4), on
V induces a map

A oso(4), = Vect(V).
Evaluating the vector field at p € V' gives
Ayt os0(4), = T,V.

For any p € V, let [ = é(p), [ = w(l) and p any point in 5_1(5). Consider the sequence
(26) 0—so(4), > 1,V —-TE—TE—T;V —s0(4), =0
with maps A,, D,0, H, Dp5T,)\g. It follows from the fact that H is symmetric and a
straight-forward calculation that the sequence (EH) is exact, that is, (E) is an acyclic
complex. Let 7(/,s) denote the torsion, which is defined as follows. Let Vert’(Y') denote
a maximal subset of the space of vertices so that § is injective on the corresponding

subspace of T,V. Let &' denote the restriction of § to Vert'(Y'), followed by projection
onto the subspace of T E corresponding to the complement of C. Then

7(1,5) = det(N\) 7 det(&")* det(Hee) ™.

7. COMPUTATIONS OF THE INVARIANT FOR THE SPHERE S°
A triangulation of S® consists of the following data:
Vert = {0,1,2,3,4},
Edge = {01,02,03,04,12,13,14, 23,24, 34},
Face = {012,023,013, 124, 123, 134, 234,014, 024, 034},
Tet = {0123,1234,0124,0234,0134}.
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Since 5% is simply-connected, the representation variety R(S®,S0(4)) is trivial. So,
I(5%) = I(S%,[1]). Using the acyclic complex in the previous section, we find that the
rank of C is 1. Since there is no distinction among the edges, we choose C = {04}. Thus,
C = Edge —{04}. Denote by G; the determinant of the Gram matrix associated with the

tetrahedron (0...7...4). We must compute

(27) (L)E)/ HeEEdgeSin(le) /\eegdle
207 Ji,, (GoGhGaGs Gyt /det H e

Note that around the edge (04), there are three tetrahedra (0234), (0124), (0134). When
these tetrahedra match with each other in S® under the curvature zero condition around
the edge (04), we have two tetrahedra (0123) and (1234) as well. In other words, we
are in the situation where the spherical Jacobian (H) is equal to Hee. So, the integral

reduces to
(L)E) / Heeg Slﬂ(le) /\SEE dle ]
27 GGy
Apply the orthogonality identity (H) to the tetrahedra (1234) and (0123) respectively
and integrate the rest from 0 to 7 in each variable. Then, the integral (E) is computed
to be &. There are 2° ways of assigning signs to each tetrahedron in the triangulation,
but the above argument is applied to each assignment of the sign. Therefore,
25
1(S?) = —.

T3

8. REMARKS ON THE SEMICLASSICAL LIMIT OF TURAEV-VIRO

Throughout this section we assume that Y is a rational homology sphere. The sta-
tionary phase approximation to the Chern-Simons path integral predicts [H]

Z(Y,T) ~ %r—%ho(dA)e—Swi/4 Z /7_(A)e—ZWiIA/4€27riCS(AJ’)

[AJER(Y,SU(2))

where 7(A) is the torsion of A, I4 is the spectral flow, and C'S(A,r) the Chern-Simons
invariant at level r

2
CS(A,r) = L/ Tr(AAdA+ SANAN AL
Y

2

We write any SO(4) connection as a pair of SU(2)-connections. The norm-square of the
asymptotic formula for Z(Y,r) is
(28)
f]ﬂ‘/(}/7 T) ~ l Z r—%ho(dA) T(Al)T(Az)e—QW(IAl —IA2)/4627ri(CS(A1,r)—CS(Ag,r))
[AJER(Y,50(4))

where A = (A1, A2).
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8.1. The leading power of r. It follows from A(r) = rsin(mw/r)~? that A ~ ;—z as
r — oo. Let t,e,v denote the size of the sets Tet(Y), Edge(Y), Vert(Y). Collecting
together the powers of r in the asymptotic 65 formula (M), the definition of the Turaev-
Viro invariant (H), and the acyclicity of (EH) we obtain the prediction for leading power
of r in the Turaev-Viro invariant

3 3 3 1.,.. 14
—2U+2€—2t—2h(dA)——Zh(dA).

This agrees with the prediction in (E3).

8.2. The Volumes/Chern-Simons invariant. The terms exp(+i¢) appearing in the
stationary phase approximation to Turaev-Viro lead to a factor

i
exp | — + Vol(7)

i TE%;(Y)
Let ¢ : Y — 52 denote the developing map as in Proposition B2I=d Let d Vol(,5?) denote
the volume form on S? so that fSS d Vol(S?) = 272

Let 7 : SO(4) — S denote the map given by action on (1,0,0). We have 7*d Vol(S?) =

272y where x = (o, [a, a]) € Q3(SO(4)) is the Chern-Simons three-form on SO(4) with
a € QYS0(4),50(4)) the left Maurer-Cartan form and ( , ) the inner product equal to
the basic inner product on one su(2)-factor and minus the basic inner product on the
other. Let A = (A;, A3) be an SU(2)? connection on Y with holonomy representation p
and g : Y — SU(2)* a gauge transformation tr1v1ahz1ng the lift A of A to Y. For any
v € m(Y'), we have ¥*g = p(7y)g. This implies that ¢! - ¢ is mi-invariant, and hence
descends to a map Y — S°. Hence

& Y £Vol(r) = (#m /¢dv01 (5%)

T€Tet(Y)

= l(;éaé7r1(Y))_1/~g*7r*dl\/ol(53) mod 277
m Yy

= 2#(##1(1/))_1/?9*)( mod 277

= 21(#m(Y))TH(CS(A) — CS(Ay))  mod 277
= 2n(CS(A1) — CS(Ay)) mod 27Z
which also matches (E3).

8.3. The Maslov indices and torsion. Each tetrahedron contributes exp(£m¢/4) from
the formula (l). Stationary phase leads to a factor exp(misign(Hee)/4). It seems natural
to conjecture that these combine to the spectral flow factor exp(2mils/4) in the Freed-
Gompf formula. One expects the torsion to correspond to our three-manifold invariant.
However, it is not clear to us how to perform the integral over flat labellings.
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