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SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDSYUKA U. TAYLOR AND CHRISTOPHER T. WOODWARD1. Introdu
tionLet Y be an oriented 
losed three-manifold and r a positive integer. The Reshetikhin-Turaev invariant Z(Y; r) and Turaev-Viro invariant TV (Y; r) are three-manifold invari-ants that attempt to make rigorous the Hamiltonian formulation of quantum Chern-Simons theory. Z(Y; r) is 
onstru
ted using the R-matrix of the quantized envelopingalgebra Uq(sl2) and Kirby moves, while TV (Y; r) is based on the 6j symbols for Uq(sl2)and a 
hoi
e of triangulation. Turaev [18℄ and Roberts [15℄ independently showed thatthe TV (Y; r) is the square of the modulus of Z(Y; r).On the other hand, the Lagrangian (path integral) formulation of quantum Chern-Simons theory leads to perturbative invariants developed in [1, 2, 10℄. The leading termfor the invariant is 
onje
tured in [5℄ to involve the torsion, the Chern-Simons invariant,and the spe
tral 
ow for 
at SU(2) bundles on Y . An interesting mathemati
al problemis whether the two formulations 
an be shown to agree. A proof that the leading term isthe same for lens spa
es and torus bundles was given in Je�rey [6℄. Yoshida [19℄ re
entlyannoun
ed a proof of equality of the leading term for a rational homology sphere, usinga di�erent de�nition of Z(Y; r).In this paper we apply our previous work on asymptoti
s of the quantum 6j symbols[16℄ to the asymptoti
s of TV (Y; r) as r !1. Substituting the asymptoti
 formula andapplying stationary phase yield a �nite dimensional integral involving Gram matri
es ofspheri
al tetrahedra whi
h turns out to be a spheri
al version of an integral 
onsidered byPonzano-Regge [14℄ and Korepanov [9℄; see also Mizogu
hi and Tada [12℄. Unfortunately,we have nothing rigorous to say about the asymptoti
s be
ause of various problemsinvolving 
onvergen
e of the integral and error estimates for the asymptoti
s of the 6jsymbols. The modest results of this paper are a proof that the integral is invariant underthe Pa
hner moves, as one would expe
t from the 
onne
tion with Turaev-Viro, and of
onvergen
e for the sphere S3.We would like to thank I. Korepanov, M. Leingang, F. Luo, I. Rivin, and J. Robertsfor their 
omments and dis
ussions. This material appeared in the �rst author's RutgersUniversity 2003 Ph.D. thesis. 1



2 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARD2. 6j Symbol for Uq(sl2) and its asymptoti
 formulaLet Uq(sl2) denote the quantized enveloping algebra at a primitive 2r-th root of unityq = exp(�i=r). Let [n℄q be the quantum integer n de�ned by[n℄q = qn � q�nq � q�1 = sin(n�=r)sin(�=r)for n 2Z. We say that a half-integer j is a 
olor at level r if0 � j � r � 22 :For any 
olor j, de�ne �j = (�1)2j[2j + 1℄:A triple of 
olors j1; j2; j3 2Z=2 is 
alled admissible ifmax(j1 � j2; j2 � j1) � j3 � min(j1 + j2; r � 2 � j1 � j2)and j1 + j2 + j3 2Z:The quantity � = ��1a Xb;
;(a;b;
) admissible�b�
 = r sin(�=r)�2[17℄ and in parti
ular is independent of a.For any 6-tuple of 
olors jab; 1 � a < b � 4, the quantum 6j symbol� j12 j23 j13j34 j14 j24 �is a rational number obtained from asso
iativity of the tensor produ
t for representationsof Uq(sl2). There are two standard 
onventions for Uq(sl2) with tetrahedral symmetry,whi
h are related by a sign (�1)Pa<b 2jab:The reader should note that the Turaev-Viro 
onvention is di�erent from the 
onven-tion in our earlier paper [16℄, whi
h was 
hosen be
ause it agrees with the a

epted
onventions for q = 1. The 6j symbol satis�es the orthogonality relations [4℄(1) Xj14 �j14�m� j12 j13 nj34 j24 j14 �� j12 j13 mj34 j24 j14 � = Æm;n;and the pentagon or Biedenharn-Elliot relation(2) � (1234)gf� (2345)g =Xj15 (�1)z[2j15 + 1℄f� (1235)gf� (1345)gf� (1245)g



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 3where z is the sum of all jab, a; b 2 f1; 2; 3; 4; 5g and (j23; j34; j24) is q-admissible, andf� (ab
d)g is short for f� (ab
d)g = � jab jb
 ja
j
d jad jbd � :In our previous paper [16℄ we obtained the following result on the asymptoti
s of thequantum 6j symbols as the labels and level are simultaneously res
aled. Setr(k) � k(r � 2) + 2:Let � denote the tetrahedron in the sphere S3 with edge lengths(3) lab = 2��kjab + 12r(k) � ;if it exists, and let �ab denote the exterior dihedral angles. De�ne� = r(k)2�  Xa<b lab�ab � 2 vol(� )!and G(� ) = det(
os(lab))where (
os(lab)) is the spheri
al 4� 4 Gram matrix. Then,(4) � kj12 kj13 kj23kj34 kj24 kj14 �q � 2� 
os(�4 + �)(r(k)) 32G 14 (� (lab)) ;if � exists and is non-degenerate.3. The Turaev-Viro invariantLet Y be a 
ompa
t triangulated 3-manifold with tetrahedra Tet(Y ), triangles Tri(Y ),edges Edge(Y ), and verti
es Vert(Y ). A 
oloring of Y at an integer r � 2 is a mapj : Edge(Y )! �0; 12 ; : : : ; r � 22 � :For ea
h su
h 
oloring, de�neTV (Y; r; j) = ��v(Y ) Ye2Edge(Y )�j(e) Y�2Tet(Y )fj(� )gqj(� ) denotes the ve
tor of values of j on the 6 edges of a tetrahedron � , fj(� )gq isthe 6j-symbol for Uq(sl2); q = exp(�i=r) for the 
olors asso
iated to the edges of thetetrahedron � . The Turaev-Viro invariant of Y is(5) TV (Y; r) =Xj TV (Y; r; j):



4 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARDThe pentagon and orthogonality identities imply that TV (Y; r) is invariant under thePa
hner 2-3 and 1-4 moves and hen
e independent of the triangulation, that is, a topo-logi
al invariant of Y . 4. Non-Eu
lidean TetrahedraThis se
tion provides various elementary fa
ts about non-Eu
lidean tetrahedra relevantto this paper. For the proof, we refer to [16℄. Let En; Sn denote n-dimensional Eu
lidean,spheri
al spa
e respe
tively. Let Sn denote an n-dimensional simplex and lab edge lengthsin Sn. The Cayley-Menger determinant for a Eu
lidean simplex Sn, denoted by G0(lab),is de�ned by(6) G0(lab) = det0BBBB� 0 1 1 1 : : : 11 0 �12l212 �12l213 : : : �12l21n1 �12l221 0 �12l223 : : : �12 l2n2... ... ... : : : ...1 �12l2n1 �12 l2n2 : : : : : : 0 1CCCCA :For a spheri
al simplex, we de�ne n� n Gram matrixG(lab) = det(
os(lab)):Note that this is the volume of a Eu
lidean n + 1-simplex with n verti
es on the unitsphere and one at 0. We will need later the following fa
ts on Eu
lidean and spheri
alsimpli
es; the hyperboli
 versions are dis
ussed in [16℄.Theorem 4.0.1. (a) (Cayley formula, [3, p. 98℄) If a simplex S with edge lengths labexists in En, then (n! Vol(S))2 = G0(lab):(b) (S
hl�a
i formula, [11, p. 281℄) For an n-simplex S in En or Sn,(n� 1)�dVoln(S) =XVoln�2(F )d�Fqwhere the sum is over (n � 2)-dimensional fa
es F of the simplex S, �F is theexterior dihedral angle around F and � = 0; 1 is the 
urvature.(
) For the 
ase of a triangle, one has the fa
torizations:G0 = 14(l12 + l23 + l13)(l12 + l23 � l13)(l12� l23 + l13)(�l12 + l23 + l13)G = 4 sin(12(l12 + l23 + l13)) sin(12(l12 + l23 � l13)) sin(12(l12 � l23 + l13))sin(12(�l12+ l23 + l13))(d) A Eu
lidean triangle exists if and only if(7) l12 � l13 + l23; l13 � l12 + l23 l23 � l12 + l13:



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 5A spheri
al triangle exists if and only if (7) andl12+ l13 + l23 � 2�:(e) A non-degenerate tetrahedron with edge lengths lab exists in E3, S3 respe
tively ifand only if lab satisfy (7) for fa
es and I > 0; G > 0 respe
tively.(f) The derivative of an edge length lab in a Eu
lidean resp. spheri
al tetrahedron �with respe
t to an opposite dihedral angle �
d is given by�lab��
d = �G1=20 (lij)labl
d ; �lab��
d = � G1=2(lij)sin(lab) sin(l
d) ;5. Asymptoti
 Pentagon and Normalization IdentitiesIn this se
tion, we prove several geometri
 identities whi
h may be viewed as semi-
lassi
al analogs of the identities (2), (9) for 6j symbols. We will use them when wedis
uss 3-manifold in se
tion 6. The Eu
lidean versions are due to Ponzano and Regge[14℄. Starting from this se
tion, we �x an integer r � 3 and q = exp(�ir ).A simplex spanned by verti
es v0; : : : ; vn is denoted by S0:::n. If the simplex is two-dimensional, then we sometime denote Skl by ekl. Also, a ve
tor from vi to vj is denotedby vij. A simplex spanned by verti
es v0; : : : ; v̂i; : : : ; vn, in whi
h the vertex vi is omitted,is denoted by Si. A volume of a simplex is written as vol(S0:::n), or vol(Sh1 ;:::;hn),wherehi are spanning ve
tors of the simplex. If a simplex is two-dimensional, we sometimeswrite lkl for the length vol(Skl) = vol(ekl).
Figure 1. 2-3 moveConsider a 
omplex with verti
es v0; : : : ; v4 and �ve tetrahedra S0, S4, S1, S2, S3:Suppose the 
omplex des
ribed above is embedded in S3. For the spheri
al Gram matrixasso
iated with Si, let Gi denote its determinant. For j = 1; : : : ; 5 de�ne sj = 1 resp.�1 if the embedding is orientation preserving resp. reversing. Around the edge e04, wehave three exterior dihedral angles �104, �204, �304. De�ne the defe
t angle around the edgee04 by !04 = 3Xj=1 sj(� � �j04):



6 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARDTheorem 5.0.2. The determinants Gi of spheri
al Gram matri
es for tetrahedra Sisatisfy the identities(a) (Asymptoti
 pentagon identity) In the same situation as in (2)(8) �!04�l04 = s1s2s3 sin2(l04)r G0G4G1G2G3 ;(b) (Asymptoti
 normalization identity) In the same situation des
ribed as in (1)(9) sin(l
d)Z sin(lab)pG(� (lij)) dlab = �:Here, lab and l
d are the lengths of opposite edges and G(� (lab)) is the determinantof the spheri
al Gram matrix asso
iated with the tetrahedron with edge lengths lij.The equation (8) 
an be obtained heuristi
ally via stationary phase applied to (2). Toprove (9), note that Z ��
d�lab dlab = Z �0 d�
d = �:by Theorem 4.0.1 (f). The proof of (8) is by a series of lemmas. Suppose v0; : : : ; vn in Rnform a n�simplex S0;:::;n. Consider the (n � 3)�simplex S0;4;5;:::;n. Let hi be the ve
torstarting at the vertex vi perpendi
ular to the simplex S0;4;5;:::;n for ea
h i = 1; 2; 3:01 4 2Figure 2. The ve
tors h1 and h2The length khik of the ve
tor is the distan
e from vi to S0;4;5;:::;n. Also, the dihedralangle between 3�dimensional simpli
es S0;i;j;4 and S0;j;k;4 for i 6= j 6= k 2 f1; 2; 3g aroundS0;4;:::;n is the same as the angle �ik between ve
tors hi and hk. In parti
ular, the exteriordihedral angle between S0;i;j;4 and S0;j;k;4 is ���ik, whi
h we denote by �ik. The volumeof the (n� 1)-simplex Si = (v0; : : : ; v̂i; : : : ; vn), denoted by Vi, isVi = 1(n� 1)(n� 2) Vol(0; hj; hk)Vol(S0;4;:::;n)(10) = 1(n� 1)(n� 2)khjkkhkkVol(S0;4;:::;n) sin �jk(11)



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 7where i; j; k 2 f1; 2; 3g; i 6= j 6= k. The volume of the n-simplex S0;:::;n is(12) �n3�Vol(S0;:::;n) = Vol(h1; h2; h3)Vol(S0;4;:::;n):Indeed, n! Vol(S(0; : : : ; n)) = det(e01; e02; e03; e04; : : : ; e0n)= det(h1; h2; h3) det(e04; : : : ; e0n)= 3!(n� 3)!Vol(h1; h2; h3)Vol(S0;4;:::;n):Lemma 5.0.3.(13) �(Vol(h1; h2; h3))2�!04 j!04=0 = 2(n� 1)3(n� 2)3(3!)2 s1s2s3V1V2V3(Vol(S0;4;:::;n))3Proof. We know thatVol(h1; h2; h3) = 13! det(hi � hj)1=2 = 13!kh1kkh2kkh3kdet(
os�ij)12 :Substituting �ij = � � �ij and expanding the determinant yield(Vol(h1; h2; h3))2 = ( 13!)2(kh1kkh2kkh3k)2(
os2 �12+
os2 �13+
os2 �23+2 
os �12 
os �13 
os �23):The di�erential with respe
t to �12; �13; �23 isd(Vol(h1; h2; h3))2 = ( 13!)2(kh1kkh2kkh3k)2f2 sin �12(
os �12 + 
os �13 
os �23)d�12+2 sin �13(
os �13 + 
os �12 
os �23)d�13+2 sin �23(
os �23 + 
os �12 
os �13)d�23g:The double angle formula, together with !04 = 0 gives
os �12 = 
os(� � (s2�13 + s1�23)) = � 
os �13 
os �23 + sin s2�13 sin s1�23:Therefore, d(Vol(h1; h2; h3))2 j!04=0 is equal to2(3!)2 (kh1kkh2kkh3k)2 sin s3�12 sin s2�13 sin s1�23(s3d�12 + s2d�13 + s1d�23):By (10),V1V2V3 = ( 1(n� 1)(n � 2))3(kh1kkh2kkh3k)2(Vol(S0;4;:::;n))3 sin �12 sin �23 sin �13:The lemma follows sin
e d!04 =Pk 6=i 6=j skd�ij: �Let x be the length of the edge eij from the vertex vi to the vertex vj and x� be theroots of the Cayley-Menger determinant asso
iated with the n-simplex.



8 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARD01 23+3-Figure 3. n=3Lemma 5.0.4.(14) �Vol(S0;:::;n)2�x2 jx2=x2� = � 1n2ViVj;Proof. Without loss of generality, assume x is the length of e0n. Using the Cayley-Mengerdeterminant, Vol2(S0;:::;n) = �14(n(n � 1))2 Vol2(S1;:::;n�1)(x2 � x2�)(x2 � x2+)and so(15) �Vol2(S0;:::;n)�x2 jx2=x2� = �14(n(n� 1))2 Vol2(S1;:::;n�1)(x2+ � x2�):The roots x� 
orrespond to values of the length for whi
h the simplex embeds into Rn.We 
an 
hoose the embeddings so that only the image vn+; vn� of the vertex vn varies;see Figure 3. Let h0, resp. hn, denote distan
e of v0, resp. vn;�, to S(1; : : : ; n � 1), sothat Vol(Sn) = 1n� 1 Vol(S1;:::;n�1)h0; Vol(S0) = 1n� 1 Vol(S1;:::;n�1)hn:Let w denote the distan
e from the proje
tion of vn, to the proje
tion of v0 inS(1; : : : ; n� 1). By the Pythagorean theorem,x2+ = (h0 + hn)2 + w2; x2� = (h0 � hn)2 + w2:Hen
e x2+ � x2� = 4h0hn, so the lemma follows from (15). �Finally we prove the asymptoti
 pentagon identity. We use the above lemmas forn = 5. Suppose that the verti
es v0; v1; v2; v3; v4 lie in S3 and v5 = 0. LetI = Vol2(S0;:::;4):



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 9It suÆ
es to 
ompute �!04�y = �!04�I �I�x2 �x2�y ;where x is the Eu
lidean length between v0 and v4 and y the spheri
al geodesi
 distan
e.By (12), I = Vol2(S0;4;5)Vol2(h1; h2; h3)5222 :Be
ause Vol(S0;4;5) is independent of !04,�I�!04 = Vol2(S0;4;5)5222 �(Vol2(h1; h2; h3))�!04 :By (13), �!04�I = 522296 Vol(S0;4;5)s1s2s3V1V2V3 :By (14), s1s2s3�!04�x2 = 522296 Vol(S0;4;5)V1V2V3 V0V452 = 124 Vol(S0;4;5) V0V4V1V2V3 :Note that Vol(S0;4;5) = 12 sin(y) and x = 2 sin(y2 ); where x is the length of the straightline from v0 and v4 and v5 = 0. Hen
e,dx2dy = 4 sin(y2) 
os(y2) = 2 sin(y):Thus, �!04�y = �!04�x2 �x2�y = s1s2s324 sin(y)2 2 sin(y) V0V4V1V2V3 = s1s2s3 sin2(y)r G0G4G1G2G3 :6. A semi
lassi
al three-manifold InvariantIn this se
tion, we explain how to use (8),(9) to de�ne a formal three-manifold invariantwhi
h is a spheri
al version of the formal invariant introdu
ed by Korepanov in [9℄ and[8℄. By formal we mean that the existen
e of the invariant depends on the 
onvergen
eof 
ertain �nite dimensional integrals, whi
h we 
an only prove in the 
ase of S3.6.1. De�nition of the Invariant. Let Y be a triangulated, 
losed, and oriented three-manifold with verti
es Vert(Y ), edges Edge(Y ), triangles Tri(Y ), and tetrahedra Tet(Y ).Let L denote the spa
e of the edge-labellingsL = fl : Edge(Y )! [0; �℄; G(l(� )) > 0 8� 2 Tet(Y )g:Here, l(� ) denotes the 6-tuple whi
h is a restri
tion of a labelling l on the edges in � andG(l(� )) the determinant of the spheri
al 4 � 4 Gram matrix asso
iated with l(� ), andthe edge length lab is as de�ned in (3).By Theorem 4.0.1, if G(lab) > 0, there is a non-degenerate spheri
al tetrahedron withedge length lab. So, given an l 2 L and � 2 Tet(Y ), there is an embedding ' : � ! S3



10 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARDsu
h that for any edge e � � , the length of the edges of the tetrahedron '(e) is l(e). Forany 
oloring l and any edge l(e) := le in the spheri
al tetrahedron '(� ), let �le;t resp.�le;t denote the interior resp. exterior dihedral angle at le in '(� ). Lets : Tet(Y )! f�1gbe a sign assignment to ea
h tetrahedron in Y . For ea
h e 2 Edge(Y ) and labelling l,de�ne the defe
t angle around the edge e to be(16) !le;s = 2� �X��e s(� )�le;� :We say that a labelling l is 
at with respe
t to the sign 
hoi
e s if!le;s = 0 mod 2� 8e 2 Edge(Y ):De�nition 6.1.1. L[;s denotes the set of 
at labellings with a �xed sign assignment s.That is, L[;s = fl 2 L : !le;s = 0 mod 2�g:Proposition 6.1.2. Suppose that Y is simply 
onne
ted. For a given 
at labelling l anda �xed sign assignment there exists a map ' : Y ! S3 su
h that 'j� is an embeddingof � with length l� , for all tetrahedra � 2 Tet(Y ). Any other map '0 : Y ! S3 whoserestri
tion to a tetrahedron is an embedding is obtained by 
omposing ' : Y ! S3 withan element of SO(4).The proof is similar to the 
onstru
tion of developing maps for hyperboli
 or spheri
almanifolds and is left to the reader.Suppose that Y is not ne
essarily simply 
onne
ted. Let ~Y ! Y be the universal
over of Y . Ea
h 
at labelling l with a �xed sign assignment s de�nes 'l : ~Y ! S3. Letj� j denote the spheri
al tetrahedron 'l(� ) realized from l(� ). For any 
 2 �1(Y ), 
j� j isa spheri
al tetrahedron, related to j� j by an element �(
) in the isometry group SO(4)of S3. By 
onstru
tion 'l(
1
2j� j) = �(
1)�(
2)'l(j� j):It follows that � is a homomorphism� : �1(Y )! SO(4) = (SU(2) � SU(2))=f�1g:Let [�℄ denote the 
onjuga
y 
lass of � in the representation varietyR(Y; SO(4)) := Hom(�1(Y ); SO(4))=SO(4):Be
ause of the last statement in proposition 6.1.2, [�℄ is independent of the 
hoi
e of thebase tetrahedron � or an embedding � ! S3. Let L[;[�℄ = [sL[;[�℄;s denote the set of 
atlabellings l whi
h give rise to the 
lass [�℄.Given l 2 L[;[�℄;s, re
all that the defe
t angle !le around an edge e is de�ned by (16).Let H denote the matrix H = (d!idlj )i;j2Edge(Y ):



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 11By S
hl�a
i's formula b, H is the Hessian of the fun
tionXe2Edge(Y )!le;sle � X�2Tet(Y ) s(� )2 vol(j� j);in parti
ular, H is symmetri
.For any matrixM = (mij); i; j 2 Edge(Y ), and subsets I; J � Edge(Y ), we denote byMIJ the sub-matrix of M obtained by restri
ting the index set for rows, resp. 
olumns,to I, resp. to J . Let C � Edge(Y ) be a maximal subset of edges su
h that the sub-matrixHCC � A is positive de�nite. Let C denote its 
omplement Edge(Y )rC. De�ne(17) I(Y; [�℄) := ( 12� )#VertXs Zl2L[;[�℄;s Y�2TetG(l(� ))�1=4 Ye2Edge sin(le) Ve2C dlepdet(HCC) :If R(Y; SO(4)) is �nite, then we de�neI(Y ) := X[�℄2R(Y;SO(4))I(Y; [�℄):This is not exa
tly the expression predi
ted by stationary phase applied to TV (Y; r);that expression is (even) more 
ompli
ated due to the in
lusion of phases and 
ertainpowers of 2 whi
h we have ignored. These omissions are partly dis
ussed in the lastse
tion of the paper.6.2. Formal topologi
al invarian
e. By Pa
hner's theorem [13℄, any two triangula-tions of a given 3-manifold are related by a sequen
e of 1-4 and 2-3 moves. The 1-4move repla
es a tetrahedron with four tetrahedra by adding a vertex or vi
e versa. ThePa
hner 2-3 move repla
es two tetrahedra sharing a fa
e with three tetrahedra by addingan edge or vi
e versa.Theorem 6.2.1. I(Y; [�℄) is a formal topologi
al invariant, i.e., independent of the 
hoi
eof C and invariant under the Pa
hner moves assuming 
onvergen
e.First we show invarian
e of the integral under a 2-3 move. In the triangulation of Y , �nda 
omplex of two tetrahedra with verti
es v0; v1; v2; v3; v4. Denote it by X. For Edge(Y ),we have the set of labellings L[ = SsL[;s; where s is a sign assignment Tet(Y )! f�1g.Consider a new triangulation T 0 of Y , obtained by adding an edge e04 to the 
omplexX. We denote the new 
omplex by X 0. The set of data for the new triangulation isTet0(Y ) = Tet(Y )� fS(0123); S(1234)g [ fS(0234); S(0134); S(0124)g;Edge0(Y ) = Edge(Y ) [ fe04g; Vert0(Y ) = Vert(Y ):Any 
at labelling l of Edge(T ) indu
es a 
at labelling l0 of Edge(T 0). Sin
e any loop inY 
an be deformed so as not to interse
t S(0123) [ S(1234), [�℄ is the same for l andl0. Let l(0)new denote the fun
tion of the lengths l1; : : : ; lN given by the impli
it fun
tion



12 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARDtheorem so that if l(0)new is the length of the edge (v0v4), and lj are other lengths, then!new = 0. Let lnew denote the length of the edge (v0v4), and(18) ~lnew = lnew � l(0)new:Sin
e 0 = �!new(l(0)new)�lj = �!new�lnew �l(0)new�lj + �!new�ljwe have d~lnew = dlnew +Xj �!new=�lj�!new=�lnewdlj:It follows that(19) 0BB� d!newd!1...d!N 1CCA = 0BBB� �!new=�lnew 0 � � � 0�!1=�lnew...�!N=�lnew H 1CCCA0BBB� d~lnewdl1...dlN 1CCCA :Hen
e(20) Hnew = 0BBB� �!new=�lnew 0 � � � 0�!1=�lnew...�!N=�lnew H 1CCCA0BBBB� 1 �!new=�l1�!new=�lnew : : : �!new=�lN�!new=�lnew1 . . . 00 1 1CCCCA :Sin
e both matri
es are blo
k triangular,det(Hnew) = �!new�lnew det(H):The new triangulation has C0 = C [ f(v0v4)g, so that C0 = Edge0�C 0 = C: Invarian
enow follows from (8).Next we show that I(Y; [�℄) is independent of the 
hoi
e of C. We writel = (l0; l00); ! = (!0; !00)where l0 is the ve
tor of edge lengths in C, and l00 the the remaining edge lengths, andsimilarly for !. Generi
ally the length l00 may be written as a fun
tion of l0, by requiringthat the defe
t angles ! = 0. With respe
t to this de
omposition, the matrix H may bewritten in blo
k diagonal form as follows. Let(21) D = �l00i�l0jdenote the matrix of partial derivatives. De�ned~l0 = dl0 + �l00�l0 dl00



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 13similar to (18). It follows from the de�nition that�d!0d!00� = �B 0C 0��d~l0dl00�for some matri
es B;C. We have an equation similar to (19)H = �B 0C 0��I D0 I � = �B BDC CD� :It follows from the fa
t that H is symmetri
 that(22) H = � HCC HCCDDTHCC DTHCCD� :Let C0 be a di�erent maximal subset of edges, su
h that HC0C0 is non-degenerate. TakeX � C, Y � C su
h that jXj = jY j. Set C0 = (C �X) [ Y . From (22) we see that(23) HC0C0 = � HC�XC�X HC�XXDXYDTXYHXC�X DTXYHXXDXY� ;sin
e �!i�lj = �!j�li . Thus, HC0C0 = F T (HCC)Fwhere F is the matrix in blo
k diagonal form with respe
t to the de
omposition C =(CrX)SX for 
olumns and C 0 = (C0rY )SY for rowsF = �I 00 DXY� :It follows that det(HC0C0) = det(HCC) det(F )2 = det(HCC) det(DXY )2:Together with (21) this implies that the di�erential formVe2C dlepdet(HCC)in (17) is the same for C and C0.To prove invarian
e under a 1-4 move we will use the following lemma, whose proof isleft to the reader:Lemma 6.2.2. The integral over the regionflb; l
 : la � lb + l
; lb � la + l
; l
 � la + lb; la + lb + l
 � 2�g(24) 1sin(la) Z Z sin(lb) sin(l
)dlbdl
 = 2for any la 2 [0; �℄.



14 YUKA U. TAYLOR AND CHRISTOPHER T. WOODWARDLet S0123 be a tetrahedron with verti
es v0; : : : ; v3 in Y . We 
onsider the e�e
t ofadding an extra vertex v4 in the interior and repla
ing the tetrahedron S0123 with thefour tetrahedra S1234, S0234, S0134, S0124. We use the notation �i for S0:::̂i:::4. We haveVert0 = Vert[fv4g; Tet0 = (Tet�fS(0123)g) [ fS(1234); S(0234); S(0134); S(0124)gEdge0 = Edge[fe04; e14; e24; e34g:Also C0 = C [ e34 sin
e adding any other edge would allow a deformation of the newvertex 
hanging only the lengths of edges in C0. Hen
eC 0 = C [ fe04; e14; e24g:Exa
tly the same argument as in the 2-3 
ase shows thatdet(HC0C0) = �!34�l34 det(HCC):Hen
eI(Y 0) = ( 12� )(#Vert+1) ZL0 Q�2Tet�fS(0123)g(G(l(� ))�1=4)Qe2Edge0 sin(le)Ve2C0 dle(G0G1G2G3)1=4q(detHCC)(�!34�l34 ) :After substituting the Ja
obian�!34�l34 = sin2(l34)r G3G4G0G1G2we need to 
ompute the integralZ sin(l04) sin(l14) sin(l24)dl04dl14dl24pG3 :The equations (9) and (24) give�sin(l12) Z sin(l14) sin(l24)dl14dl24 = 2�:This 
an
els with the extra fa
tor of 2� in the 
oeÆ
ient, and 
ompletes the proof thatI(Y; [�℄) is invariant under the Pa
hner moves, assuming it 
onverges.6.3. An a
y
li
 
omplex and its torsion. In this se
tion we relate the determinantappearing in I(Y; [�℄) to the torsion of an a
y
li
 
omplex, following Korepanov [7℄.Re
all the in�nitesimal a
tion of the group of gauge transformations Map(Y; SO(4)) onthe spa
e of 
onne
tions 
1(Y; so(4)) at a 
onne
tion A is given by(25) 
0(Y; so(4))! 
1(Y; so(4)); � 7! �dA�where dA is the asso
iated 
ovariant derivative. Hen
e the in�nitesimal stabilizer of A is
0(Y; so(4))A = H0(dA):



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 15Let SO(4)� denote the stabilizer of � : �1(Y ) ! SO(4), and so(4)� its Lie algebra.If A is a 
at 
onne
tion de�ning the holonomy representation �, then evaluation at theidentity indu
es an isomorphismMap(Y; SO(4))A ! SO(4)�:Hen
e H0(dA) is isomorphi
 to so(4)�. Leth0(dA) = dim(so(4)�) = dim(H0(dA)):The 
ohomology group H1(dA) parameterizes �rst-order deformations of �; in parti
ular,if H1(dA) = 0 then [�℄ is isolated in R(Y; SO(4)). Suppose that H1(dA) = 0. LetV = Map(Vert( ~Y ); S3)�1(Y )denote the spa
e of maps invariant under �1(Y ), a
ting on Vert( ~Y ) by de
k transforma-tions and S3 via the representation �. LetE = Map(Edge( ~Y ); [0; �℄)�1(Y ) = Map(Edge(Y ); [0; �℄)and Æ : V ! E the map taking edge lengths of edges. Let ! : E ! E be the mapwhi
h assigns to a set of edge lengths the set of defe
t angles. The a
tion of SO(4)� onV indu
es a map � : so(4)� ! Ve
t(V ):Evaluating the ve
tor �eld at p 2 V gives�p : so(4)� ! TpV:For any p 2 V , let l = Æ(p); l̂ = !(l) and p̂ any point in Æ�1(l̂). Consider the sequen
e(26) 0! so(4)� ! TpV ! TlE ! Tl̂E ! Tp̂V ! so(4)� ! 0with maps �p;DpÆ;H;DpÆT ; �T̂p . It follows from the fa
t that H is symmetri
 and astraight-forward 
al
ulation that the sequen
e (26) is exa
t, that is, (26) is an a
y
li

omplex. Let � (l; s) denote the torsion, whi
h is de�ned as follows. Let Vert0(Y ) denotea maximal subset of the spa
e of verti
es so that Æ is inje
tive on the 
orrespondingsubspa
e of TpV . Let Æ0 denote the restri
tion of Æ to Vert0(Y ), followed by proje
tiononto the subspa
e of TlE 
orresponding to the 
omplement of C. Then� (l; s) = det(�)�2 det(Æ0)2 det(HCC)�1:7. Computations of the Invariant for the sphere S3A triangulation of S3 
onsists of the following data:Vert = f0; 1; 2; 3; 4g;Edge = f01; 02; 03; 04; 12; 13; 14; 23; 24; 34g;Fa
e = f012; 023; 013; 124; 123; 134; 234; 014; 024; 034g;Tet = f0123; 1234; 0124; 0234; 0134g:
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e S3 is simply-
onne
ted, the representation variety R(S3; SO(4)) is trivial. So,I(S3) = I(S3; [1℄): Using the a
y
li
 
omplex in the previous se
tion, we �nd that therank of C is 1. Sin
e there is no distin
tion among the edges, we 
hoose C = f04g. Thus,C = Edge�f04g: Denote by Gi the determinant of the Gram matrix asso
iated with thetetrahedron (0 : : : î : : :4). We must 
ompute(27) ( 12� )5 ZL[;I Qe2Edge sin(le)Ve2C dle(G0G1G2G3G4)1=4pdetHCC :Note that around the edge (04), there are three tetrahedra (0234); (0124); (0134). Whenthese tetrahedra mat
h with ea
h other in S3 under the 
urvature zero 
ondition aroundthe edge (04), we have two tetrahedra (0123) and (1234) as well. In other words, weare in the situation where the spheri
al Ja
obian (8) is equal to HCC. So, the integralredu
es to ( 12� )5 Z Qe2C sin(le)Ve2C dlepG0G4 :Apply the orthogonality identity (9) to the tetrahedra (1234) and (0123) respe
tivelyand integrate the rest from 0 to � in ea
h variable. Then, the integral (27) is 
omputedto be 1�3 : There are 25 ways of assigning signs to ea
h tetrahedron in the triangulation,but the above argument is applied to ea
h assignment of the sign. Therefore,I(S3) = 25�3 :8. Remarks on the semi
lassi
al limit of Turaev-ViroThroughout this se
tion we assume that Y is a rational homology sphere. The sta-tionary phase approximation to the Chern-Simons path integral predi
ts [5℄Z(Y; r) � 12r� 12h0(dA)e�3�i=4 X[A℄2R(Y;SU(2))p� (A)e�2�iIA=4e2�iCS(A;r)where � (A) is the torsion of A, IA is the spe
tral 
ow, and CS(A; r) the Chern-Simonsinvariant at level r CS(A; r) = r8�2 ZY Tr(A ^ dA+ 23A ^ A ^ Ag:We write any SO(4) 
onne
tion as a pair of SU(2)-
onne
tions. The norm-square of theasymptoti
 formula for Z(Y; r) is(28)TV (Y; r) � 14 X[A℄2R(Y;SO(4))r� 12h0(dA)p� (A1)� (A2)e�2�(IA1�IA2 )=4e2�i(CS(A1 ;r)�CS(A2;r))where A = (A1; A2).



SPHERICAL TETRAHEDRA AND INVARIANTS OF 3-MANIFOLDS 178.1. The leading power of r. It follows from �(r) = r sin(�=r)�2 that � � r3�2 asr ! 1. Let t; e; v denote the size of the sets Tet(Y ), Edge(Y ), Vert(Y ). Colle
tingtogether the powers of r in the asymptoti
 6j formula (4), the de�nition of the Turaev-Viro invariant (5), and the a
y
li
ity of (26) we obtain the predi
tion for leading powerof r in the Turaev-Viro invariant�32v + 32e� 32 t� 12h0(dA) = �12h0(dA):This agrees with the predi
tion in (28).8.2. The Volumes/Chern-Simons invariant. The terms exp(�i�) appearing in thestationary phase approximation to Turaev-Viro lead to a fa
torexp0� i� X�2Tet(Y )�Vol(� )1A :Let � : ~Y ! S3 denote the developing map as in Proposition 6.1.2. Let dVol(S3) denotethe volume form on S3 so that RS3 dVol(S3) = 2�2.Let � : SO(4)! S3 denote the map given by a
tion on (1; 0; 0). We have ��dVol(S3) =2�2� where � = (�; [�;�℄) 2 
3(SO(4)) is the Chern-Simons three-form on SO(4) with� 2 
1(SO(4); so(4)) the left Maurer-Cartan form and ( ; ) the inner produ
t equal tothe basi
 inner produ
t on one su(2)-fa
tor and minus the basi
 inner produ
t on theother. Let A = (A1; A2) be an SU(2)2 
onne
tion on Y with holonomy representation �and g : ~Y ! SU(2)2 a gauge transformation trivializing the lift ~A of A to ~Y . For any
 2 �1(Y ), we have 
�g = �(
)g. This implies that g�1 � � is �1-invariant, and hen
edes
ends to a map Y ! S3. Hen
e1� X�2Tet(Y )�Vol(� ) = 1� (#�1(Y ))�1 Z~Y ��dVol(S3)= 1� (#�1(Y ))�1 Z~Y g���dVol(S3) mod 2�Z= 2�(#�1(Y ))�1 Z~Y g�� mod 2�Z= 2�(#�1(Y ))�1(CS( ~A1)� CS( ~A2)) mod 2�Z= 2�(CS(A1)� CS(A2)) mod 2�Zwhi
h also mat
hes (28).8.3. TheMaslov indi
es and torsion. Ea
h tetrahedron 
ontributes exp(��i=4) fromthe formula (4). Stationary phase leads to a fa
tor exp(�i sign(HCC)=4). It seems naturalto 
onje
ture that these 
ombine to the spe
tral 
ow fa
tor exp(2�iIA=4) in the Freed-Gompf formula. One expe
ts the torsion to 
orrespond to our three-manifold invariant.However, it is not 
lear to us how to perform the integral over 
at labellings.
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