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QUILTED FLOER COHOMOLOGY

KATRIN WEHRHEIM AND CHRIS T. WOODWARD

ABsTRACT. We generalize Lagrangian Floer cohomology to sequences of Lagrangian cor-
respondences. For sequences related by the geometric composition of Lagrangian corre-
spondences we establish an isomorphism of the Floer cohomologies. We give applications
to calculations of Floer cohomology, displaceability of Lagrangian correspondences, and
transfer of displaceability under geometric composition.
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1. INTRODUCTION

Lagrangian Floer cohomology associates to a pair of Lagrangian manifolds a chain com-
plex whose differential counts pseudoholomorphic strips with boundary values in the given
Lagrangians. In this paper we generalize Floer cohomology to include Lagrangian correspon-
dences. Recall that if (My,wp) and (M;,wq) are symplectic manifolds, then a Lagrangian
correspondence Loy from My to M; is a Lagrangian submanifold Lo C M, x M;, where
My = (Mp, —wp). These were introduced by Weinstein [26] in an attempt to create a
symplectic category with morphisms between not necessarily symplectomorphic manifolds.

So we also denote a Lagrangian correspondence by M Loy 1. With this notation we can
1
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view a pair of Lagrangian submanifolds L, L' C M as sequence of Lagrangian correspon-

dences pt BN N pt from the point via M back to the point. This is a special case of
a cyclic sequence of Lagrangian correspondences

L'I‘ T
Mo 2% My 23 ay oo M, Y My = M,
for which we will define a quilted Floer cohomology
(1) HF(LOl,L12,...,LT(T+1)).

The quilted differential counts tuples of pseudoholomorphic strips (u; : Rx[0,1] — Mj);=o,...r
whose boundaries match up via the Lagrangian correspondences, (u;(s,1),u;11(s,0)) €
Lj¢jy1y for j = 0,...,r. These tuples are examples of pseudoholomorphic quilts with the
strips thought of as patches and the boundary matching conditions thought of as seams.
The theory of quilts is developed in higher generality in [22].

In this paper, we next investigate the effect of geometric composition on Floer coho-
mology. The geometric composition of two Lagrangian correspondences Lo C M, X My,
Lis C Ml_ X My is

(2) Lyi o Lqg := {(370,.%‘2) € My x M, ‘ dxq : (.’L‘o,.’L‘l) € Lo, (.’L‘l,.’L‘Q) € LIQ}.

In general, this will be a singular subset of M x M3, with isotropic tangent spaces. However,
if we assume transversality of the intersection Lo; X pr, L12 1= (Lm ><L12) N (M[; X A, X Mg),
then the restriction of the projection myy : M, X My x M| X My — My x Ma to Loi X pr, L2
is automatically an immersion. We will study the class of embedded geometric compositions,
for which in addition mgy is injective, and hence Lg; o Ljs is a smooth Lagrangian corre-
spondence. If the composition L,_1), © Lyy1) is embedded, then we obtain under suitable
monotonicity assumptions a canonical isomorphism

(3) HF(..., L 1y, Lo@yrys---) EHF( .., Lig1ye © Logesrys - - -)-

For the precise monotonicity and admissibility conditions see Section 5.4l The proof pro-
ceeds in two steps. First, we allow for varying widths (d; > 0);— . x—1 of the pseudoholo-
morphic strips (u;j : R x [0,0;] = Mj)j=0,. k-1 defining the differential. Section 5.3 of this
paper shows that Floer cohomology is independent of the choice of widths. (These domains
are not conformally equivalent due to the identification between boundary components that
is implicit in the seam conditions.) The second (hard analytic) part is to prove that with
the width 0, > 0 sufficiently close to zero, the k-tuples of holomorphic strips with seam con-
ditions in (..., Ly—1)s, Le(e41), - - -) are in one-to-one correspondence with the (k —1)-tuples
of holomorphic strips with seam conditions in (..., L_1y¢ © Lyg41),---). This analysis is
completely analogous to [21], where we establish the bijection for the Floer trajectories of

the special cyclic sequence pt Lo, My Loy, M, Liy M, L2, pt when 0; — 0. The mono-
tonicity assumptions are crucial for this part since the exclusion of a novel "figure eight
bubble” in [21] hinges on a strict energy-index proportionality.

In section [l we provide a number of new tools for the calculation of Floer cohomology
(and hence detection of non-displaceability), arising as direct consequences of (3] or from
a conjectural generalization of Perutz’ long exact Gysin sequence [I3]. As first specific
example we confirm the calculation HF(T{, T() = H.(T") of Cho [3] for the Clifford torus
in CP", and we calculate some further Floer cohomologies in C'P" using reduction at pairs
of transverse level sets. Next, we prove Hamiltonian non-displaceability of the Lagrangian
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3-sphere ¥ C (CP')~ x CP? arising from reduction at the level set of an S' action on CP?
containing T¢). The latter follows from the nontriviality of HF (Tgl, Tgl) together with our
isomorphism

HF(S' x Tc, %) = HF (Tey, Tcy)-

Finally, we generalize this non-displaceability result to certain Lagrangian embeddings ¥ C
(CPF 1)~ x CP™ of (S1)" % x §%~1 for any 2 < k < n.

Another consequence of our results is a general prescription for defining topological in-
variants by decomposing into simple pieces. For example, let Y be a compact manifold and
J Y — Ra Morse function giving a decomposition Y = ¥ U. . .UY(;_1) into simple cobor-
disms by cutting along non-critical level sets X1,..., X;_1. First one associates to each X;
a monotone symplectic manifold M(X;), and to each Y(;_1); with 0Y(;_); = X, uX;
a smooth monotone Lagrangian correspondence L(Y{;_1y;) C M(X;_1)” x M(Xj) (taking
M (Xp) and M (X}) to be points.) Second, one checks that the basic moves described by Cerf
theory (cancellation or change of order of critical points) change the sequence of Lagrangian
correspondences by replacing adjacent correspondences with an embedded composition, or
vice-versa. In other words, the equivalence class of sequences of Lagrangian correspondences
by embedded compositions [L(Yp1), ..., L(Y(;—1)x)] does not depend on the choice of the
Morse function f. Then the results of this paper provide a group-valued invariant of Y, by
taking the Floer homology of the sequence of Lagrangian correspondences. For example, in
[24] we investigate the theory which uses as symplectic manifolds the moduli spaces of flat
bundles with compact structure group on three-dimensional cobordisms containing tangles.

Notation and Organization: We will frequently refer to the standing assumptions (M1-
2), (L1-3), and (G1-2) that can be found on pages [19]-

Section 21 is a detailed introduction to Lagrangian correspondences, geometric composi-
tion, and sequences of correspondences, which also provides the basic framework for the
sequels [20] [22] to this paper. In Section [3] we generalize gradings to Lagrangian correspon-
dences and establish their behaviour under geometric composition, so that the isomorphism
([B) becomes an isomorphism of graded groups. Section [ provides a review of monotonicity
and Floer cohomology and gives a first definition of the Floer cohomology (Il) by building a
pair of Lagrangians in the product My x My X ... My_1. The latter is however unsatisfactory
since it does not provide an approach to the isomorphism (3]). Section [ gives the general
definition of quilted Floer cohomology (1) and finalizes the proof of the isomorphism (3]).
Finally, Section [0l gives a number of direct symplectic applications of the isomorphism (3)).

We thank Paul Seidel and Ivan Smith for encouragement and helpful discussions.

2. LAGRANGIAN CORRESPONDENCES

Let M be a smooth manifold. A symplectic form on M is a closed, non-degenerate two-
form w. A symplectic manifold is a smooth manifold equipped with a symplectic form. If
(M;,w;) and (My,ws) are symplectic manifolds, then a diffeomorphism ¢ : M} — Mo is a
symplectomorphism if p*wy = wj. Let Symp denote the category whose objects are sym-
plectic manifolds and whose morphisms are symplectomorphisms. The following operations
give Symp a structure similar to that of a tensor category.

(a) (Duals) If M = (M, w) is a symplectic manifold, then M~ = (M, —w) is a symplectic
manifold, called the dual of M.
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(b) (Sums) If M; = (Mj,wj),j = 1,2 are symplectic manifolds, then the disjoint union
M; U Ms equipped with the symplectic structure w; on M; and w2 on My, is a
symplectic manifold. The empty set () is a unit for the disjoint union.

(c) (Products) Let M; = (Mj,w;),j = 1,2 be symplectic manifolds, then the Cartesian
product (M x My, niwi +m3ws) is a symplectic manifold. (Here 7j : My x My — M;
denotes the projections.) The symplectic manifold pt, consisting of a single point,
is a unit for the Cartesian product.

Clearly the notion of symplectomorphism is very restrictive; in particular, the symplectic
manifolds must be of the same dimension. A more flexible notion of morphism is that of
Lagrangian correspondence, defined as follows [27, 26| [7]. Let M = (M, w) be a symplectic
manifold. A submanifold L C M is isotropic, resp. coisotropic, resp. Lagrangian if the
w-orthogonal complement T'L* satisfies T'L¥ C T'L resp. TL¥ O TL resp. TL¥ =TL.

Definition 2.0.1. Let My, M5 be symplectic manifolds. A Lagrangian correspondence from
M to Ms is a Lagrangian submanifold Lo C M; x M.

Ezxample 2.0.2. The following are examples of Lagrangian correspondences:

(a) (Trivial correspondence) The one and only Lagrangian correspondence between
M, = () and any other My is Ly = (.

(b) (Lagrangians) Any Lagrangian submanifold L C M can be viewed both as corre-
spondence L C pt~ xM from the point to M and as correspondence L C M~ X pt
from M to the point.

(c) (Graphs) If p19 : M} — M, is a symplectomorphism then its graph

graph(p12) = {(m1, p12(m1)) | m1 € M1} C My x Mo

is a Lagrangian correspondence.

(d) (Fibered coisotropics) Suppose that ¢ : C'— M is a coisotropic submanifold. Then
the null distribution 7T’C* is integrable, see e.g. [10, Lemma 5.30]. Suppose that
TC% is in fact fibrating, that is, there exists a symplectic manifold (B,wg) and a
fibration 7 : C' — B such that *w is the pull-back 7*wpg. Then

(txm):C— M xB

maps C to a Lagrangian correspondence.

(e) (Level sets of moment maps) Let G be a Lie group with Lie algebra g. Suppose
that G acts on M by Hamiltonian symplectomorphisms generated by a moment
map p : M — g*. (That is p is equivariant and the generating vector fields g —
Vect(M), € — &y satisfy o(Epr)w = —d(p, €).) If G acts freely on z~1(0), then p=1(0)
is a smooth coisotropic fibered over the symplectic quotient MG = u='(0)/G,
which is a symplectic manifold. Hence we have a Lagrangian correspondence

(bxm): p H0) = M~ x (M)G).
The symplectic two-form wysyg on M//G is the unique form on M//G satisfying
Trwyyq = Lrw.
Definition 2.0.3. Let My, My, M2 be symplectic manifolds and Loy C M, x My, Lis C
M x My Lagrangian correspondences.
(a) The dual Lagrangian correspondence of Ly is

(L()l)t = {(ml,mg) | (mo,ml) S L01} C Mf X M.
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(b) The geometric composition of Ly and Ly is

(mo, m1) € Lo

Ly o Lyo ::{(mo,mQ)GMOXMQ dmy € M, : }CMUXMQ.

(m1,mg) € L1

Geometric composition and duals of Lagrangian correspondences satisfy the following:

(a) (Graphs) If g1 : My — M7 and @12 : My — My are symplectomorphisms, then
graph(po1) o graph(ypi2) = graph(ei2 o @o1),

graph(po1)" = graph(eg; ).
(b) (Zero) Composition with () always yields ), that is for any Lagrangian correspondence
Lo1 C My x My we have

0oLy =0, Loy o0 = 0.

(¢) (Identity) If Loy C M x My is a Lagrangian correspondence and A; C M x Mj, j =
0,1 are the diagonals, then

L[]l - Ag O Lo]_ - LOl o} Al.

(d) (Associativity) If Loy C My x My, Lio C My x My, La3 C My x M3 are Lagrangian
correspondences, then

(Lo1 o L12) o L3 = Loy o (L2 o Ly3),

(Lo1 0 L12)" = (L12)" o (Lpn)".
The geometric composition can equivalently be defined as Lg; o L1a = mo2(Lo1 X ar, Li2),
the image under the projection mpo : My x My x M| x My — My x My of

Lo X My L01 = (L01 X ng) N (MO_ X Al X MQ)

Here Ay C M| x M; denotes the diagonal. Lo o Lio C M x M3 is an immersed La-
grangian submanifold if Ly; X Lig intersects M, x A; x My transversally. In general, the
geometric composition of smooth Lagrangian submanifolds may not even be immersed. We
will be working with the following class of compositions, for which the resulting Lagrangian
correspondence is in fact a smooth submanifold, as will be seen in Lemma below.

Definition 2.0.4. We say that the composition Lgy; o L9 is embedded if L12 X, Loy is cut
out transversally (i.e. (Lo X L12) th (M x A; x My)) and the projection myy : Lig X pp, Lor —
Loy o Lys C MU_ X My is injective.

By some authors (e.g. [7]) geometric composition of Lagrangian correspondences is more
generally defined under clean intersection hypotheses. This extension is not needed in the
present paper, because the quilted Floer cohomology is invariant under Hamiltonian isotopy,
and after such an isotopy transversality may always be achieved. However, transverse
intersection only yields an immersed] Lagrangian correspondence, as the following Lemma,
shows.

1One can not necessarily remove all self-intersections of the immersed composition by Hamiltonian isotopy
on one correspondence. A basic example is the composition of transverse Lagrangian submanifolds L, L' C
M. Identifying M = M x {pt} = {pt} x M the projection L xps L' — Lo L' C {pt} x {pt} maps the (finite)
intersection L h L' to a point.
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Lemma 2.0.5. Let Lo C My x My, Lio C M| x My be Lagrangian correspondences such
that the intersection (Loy X Li2) th (M, x Ay x My) is transverse. Then the projection
mo2 : L1 Xpr, Lo1 — Loy o Lo C M, X My is an immersion.

In particular, if the intersection is transverse and the projection is injective, then the
composition Loy o Lo =: Lgo is embedded.

Proof. This is a consequence of the fact that the geometric composition of linear La-
grangian correspondences is always well defined (i.e. yields another linear Lagrangian cor-
respondence). Fix a point z = (xp,z1,z1,22) € Lo Xpr, L12 then we need to check that
ker d,mop = {0} for the projection restricted to Lip Xz, Lo;. In fact, we will show that

TQ(MO X M1 X M1 X MQ)
ng) + (TIOMO X T(

(4) ker d£7r02 =

(T( L01 X T(atl,a;g) )Al X TZ2M2)’

20,21) Z1,%1

which is zero by transversality. To simplify notation we abbreviate Aoy := Ty, 4,)Lo1,
Ay := Ty, 4y L12, and V; := T, M;. Now (@) follows as in [7, Section 4.1]. For completeness
we recall the precise argument: We identify
ker d£71'02 = (Agl X A12) N ({0} X ‘/1 X Vl X {0})
(5) = {’Ul eWn ‘ (0,’01) S A01, (’U1,0) S A12} = kerAgl ﬂkeI‘Alg,
where ker A12 := {v1 € V1| (v1,0) € A2} C Vi and similarly ker Ay, C V4. On the other
hand, we use the symplectic complements with respect to wpi12 := (—wp) w1 B (—w1) B wo
on Vo x Vi x V1 x V5 to identify
(Vo x Vi x Vi x Vi) [ (A1 x Apz) + (Vo x Ay x Va)

o~ (Aﬂl x AlZ)wonz N (VO X AVl x V2)w0112

= {(0,01,01,0) | (0,v1) € AS;“V%" (01, 0) € AG¥VE?}
(6) = (im Agr)“ N (im Afy)“",
where im Ag; := 7y, (A1) C Vi, similarly im A}, C V;, and we used the equivalence

(—wO@wl)((O,Ul),(AU,)\l)) =0 V()\U,)\l) eENpp & wl(vl,Al) =0 V) € 7TV1(A01)-
Now the two vector spaces in (Bl and () are identified by the dualities ker A}, = (im Agy)“*
and ker Ajo = (im A},)*!, which follow from the Lagrangian property of Ag; resp. Al,,
(0,1)1) € Ap1 = (0,1)1) € Aalw[)@wl & U € (im Am)wl.

This proves () and hence finishes the proof of the Lemma. g

Remark 2.0.6. Suppose that the composition Ly, o L1s =: Lgo is embedded.

(a) By the injectivity, for every (zg,z2) € Loy there is a unique solution z; € M; to
(xo,x1,21,22) € Loy X Lig. Due to the transversality assumption, this solution is
given by a smooth map ¢y : Lgs — M;.

(b) If Lp; and Lis are compact, oriented, and equipped with a relative spin structure,
then Lgs is also compact and inherits an orientation and relative spin structure, see
[23]. The orientation is induced from the canonical orientation of the diagonal, see
Remark B.0.5(b), and the splitting

T(Mo X M2 X M1 X Ml) = (TL02 X {0}) ©® ({0} X (TAl)L) @T(Lgl X ng)L.
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(c¢) If w1 (Lo1) and 7 (Lq12) are torsion, then my(Lgg) is torsion. If moreover Mj and
M5 are monotone with the same monotonicity constant, then Ly is monotone, see

Section 411

2.1. Generalized Lagrangian correspondences. A simple resolution of the composition
problem is given by passing to sequences of Lagrangian correspondences and composing
them by concatenation. In [20] we employ these to define a symplectic category containing
all smooth Lagrangian correspondences as composable morphisms, yet retaining geometric
composition in cases where it is well defined.

Definition 2.1.1. Let M, M' be symplectic manifolds. A generalized Lagrangian corre-
spondence L from M to M' consists of

(a) a sequence Ny, ..., N, of any length r+ 1 > 2 of symplectic manifolds with Ny = M
and N, = M'
(b) a sequence Lo, ... s L(r_1), of compact Lagrangian correspondences with L;_1y; C

szlxNj foryj=1,...,r.

Definition 2.1.2. Let L from M to M’ and L' from M’ to M" be two generalized La-
grangian correspondences. Then we define composition

(L; L,) = (L017 - JL(rfl)m 61, - 7L,(r’71)r’)
as a generalized Lagrangian correspondence from M to M". Moreover, we define the dual
t t t
L' := (L{_1ys- -5 Lin)-
as a generalized Lagrangian correspondence from M’ to M.

We conclude this subsection by mentioning special cases of generalized Lagrangian cor-
respondences. The first is the case M = M', which we will want to view separately as a
cyclic correspondence, without fixing the “base point” M.

Definition 2.1.3. A cyclic generalized Lagrangian correspondence L consists of

(a) a cyclic sequence My, My, ..., M,, M, = My of symplectic manifolds of any length
r+12>1,

(b) a sequence Loi,. .., L.(,4+1) of compact Lagrangian correspondences with L;( ;1) C
Mj_ X Mjyq for j =0,...,r.

The second special case is M = {pt}, which generalizes the concept of Lagrangian sub-
manifolds. Namely, note that any Lagrangian submanifold L C M’ can be viewed as
correspondence L C {pt}~ x M'.

Definition 2.1.4. Let M’ be a symplectic manifold. A generalized Lagrangian submanifold
L of M' is a generalized Lagrangian correspondence from a point M = {pt} to M'. That
is, L consists of

(a) asequence N_,,..., Ny of any length r > 0 of symplectic manifolds with N_,, = {pt}
a point and Ny = M’

(b) asequence L(_,)(—41),-- -, L(—1)0 of compact Lagrangian correspondences L;_y); C
N~ 1 X N;.

71—
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3. GRADINGS

The purpose of this section is to review the theory of graded Lagrangians and extend it
to generalized Lagrangian correspondences. It can be skipped at first reading.

Following Kontsevich and Seidel [I5] one can define graded Lagrangian subspaces as
follows. Let V be a symplectic vector space and let Lag(V') be the Lagrangian Grassmannian
of V.. An N-fold Maslov covering for V is a Z y-covering Lag¥ (V') — Lag(V) associated to
the Maslov class in m (Lag(V')). A grading of a Lagrangian subspace A € Lag(V) is a lift
to A € Lag™ (V).

Remark 3.0.5. (a) For any basepoint Ay € Lag(V') we obtain an N-fold Maslov cover
Lag™ (V, Ay) given as the homotopy classes of paths A : [0,1] — Lag(V) with base
point A(0) = Ay, modulo loops of Maslov index N. The covering is A — A(1). The
base point has a canonical grading given by the constant path Ao = Ay. Any path
between basepoints Ag, A} induces an identification Lag™ (V, Ag) — Lag®™ (V, A}).

(b) For the diagonal A C V~ x V we fix a canonical grading and orientation as follows.
We identify the Maslov coverings Lag™ (V= x V,A~ x A) and Lag¥(V~ x V,A) by
concatenation of the paths

(7) (e”'A™ X Meonz, Ltz + Jy,z + tJy)|z,y € A})seo ),

where J € End(V) is an w-compatible complex structure on V (i.e. J2 = —Id and
w(-,J+) is symmetric and positive definite). In particular, this induces the canonical
grading on the diagonal A with respect to any Maslov covering Lag™ (V= xV, A~ xA),
by continuation. Any identification Lag”™ (V~xV, Ay xAg) — Lag™ (V= xV,A] xAq)
induced by a path in Lag™ (V) maps the graded diagonal to the graded diagonal,
since the product v~ x 7y of any loop v : S* — Lag(V) has Maslov index 0. Similarly,
we define a canonical orientation on A by choosing any orientation on A, giving the
product A~ x A the product orientation (which is well defined), and extending the
orientation over the path (7). This is related to the orientation induced by projection
of the diagonal on the second factor by a sign (—1)""~1/2 where dim(M) = 2n.

Let M be a symplectic manifold and let Lag(M) — M be the fiber bundle whose fiber
over m € M is the space Lag(T,, M) of Lagrangian subspaces of T\, M. An N-fold Maslov
covering of M is an N-fold cover Lag’ (M) — Lag(M) whose restriction to each fiber is
an N-fold Maslov covering Lag® (1},M) — Lag(T},M). Any choice of Maslov cover for
R?" induces a one-to-one correspondence between N-fold Maslov covers of M and Sp” (2n)-
structures on M. Here 2n = dim M and Sp” (2n) is the N-fold covering group of Sp(2n)
associated to the Maslov class in 71(Sp(2n)). (Explicitly, this is realized by using the
identity as base point.) An Sp® (2n)-structure on M is an Sp” (2n)-bundle Fr™¥ (M) — M
together with an isomorphism Fr™ (M) XN (2n) SP(2n) =~ Fr(M) to the symplectic frame
bundle of M. It induces the N-fold Maslov covering

Lag" (M) = Fr™ (M) xg 9, Lag™ (R*").

Graded symplectic manifolds (i.e. equipped with Maslov coverings) form a structure similar
to that of a tensor category, that is, the notions of duals, disjoint union, and Cartesian
product extend naturally to the graded setting. The dual Lag” (M ~) of a Maslov covering
Lag) (M) — Lag(M) is the same space with the inverted Zy-action. We denote this
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identification by
(8) LagN (M) — LagN (M~), A~ A,
For Sp™-structures Fr’ (M) and Fr™ (M) the embedding
Sp™ (2n0) xz, SPY (2n1) — SpY (210 + 2n1)
induces an Sp” (21 + 2n1)-structure Fr”™ (My x M) on the product and an equivariant map
(9) Fr¥ (M) x Fr™N (My) — FrV (Mg x M)

covering the inclusion Fr(Mj) x Fr(M;) — Fr(My x M;). The corresponding product of
N-fold Maslov covers on My x M is the N-fold Maslov covering

Lag™ (Mo x My) = (Fr™ (Mo) x Fr™ (M1)) Xgn a0y xsp™ (2ny) Lag™ (RF™ x R2M).

Combining this product with the dual yields a Maslov covering for M x M; which we can
identify with

Lagh (M, x My) = (Fr™ (Mo) x Fr™ (M1)) Xgu¥ (gn0)xsp™ (2ny) Lag™ (B2 x B2 ).
Finally, the inclusion Lag(M) x Lag(M;) — Lag(My x M;) lifts to a map
(10) Lag™ (Mo) x Lag" (My) — Lag" (Mo x My), (Lo, L) = Lo x" L,

with fiber Zy. It is defined by combining the product (@) with the basic product of the
linear Maslov cover Lag™ (R?70) x Lag™ (R?"1) — Lag™ (R?0 x R?™).

Definition 3.0.6. (a) Let My, My be two symplectic manifolds equipped with N-fold
Maslov covers and let ¢ : My — M; be a symplectomorphisms. A grading of
¢ is a lift of the canonical isomorphism Lag(My) — Lag(M;) to an isomorphism
¢V : Lag™ (My) — Lag™ (M), or equivalently, a lift of the canonical isomorphism
Fr(My) — Fr(M;) of symplectic frame bundles to an isomorphism Fr"(My) —
eV (My).

(b) Let L C M be a Lagrangian submanifold and M be equipped with an N-fold Maslov
cover. A grading of L is a lift oY : L — Lag™ (M) of the canonical section oz, : L —
Lag(M).

Remark 3.0.7. (a) The set of graded symplectomorphisms forms a group under compo-
sition. In particular, the identity on M has a canonical grading, given by the identity
on Lag™ (M).

(b) Given a one-parameter family ¢; of symplectomorphisms with ¢y = Id,s, we obtain
a grading of ¢; by continuity.

(c) Any choice of grading on the diagonal A € Lag" (R~ x R2") induces a bijection
between gradings of a symplectomorphism ¢ : My — M; and gradings of its graph
graph(¢) C M x M; with respect to the induced Maslov cover Lag™ (M x My). In-
deed, the graph of the grading, graph(¢") c (Fr™¥ (M) x FrN(Ml))|graph(¢) is a prin-
cipal bundle over graph(¢) with structure group Sp” (2n), 2n = dim My = dim M;.
The graded diagonal descends under the associated fiber bundle construction with
graph(¢™) to a section of Lagh (M x M1)|graph(e) lifting graph(¢). Moreover, this
construction is equivariant for the transitive action of H°(Mjy,Zy) on both the set
of gradings of ¢ and the set of gradings of graph(¢).

We will refer to this as the canonical bijection when using the canonical grading
A € Lag" (R*™~ x R*") in Remark B.0.5 In particular, the diagonal in M~ x M has
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a canonical grading induced by the canonical bijection from the canonical grading
of the identity on M.

(d) Any grading o of a Lagrangian submanifold L C M induces a grading of L C M~
via the diffeomorphism Lag™ (M) — Lag™ (M).

(e) Given graded Lagrangian submanifolds Ly C My, L1y C My, the product Ly x L; C
My x M; inherits a grading from (I0]).

(f) Given a graded symplectomorphism ¢ : My — M; and a graded Lagrangian sub-
manifold L C My, the image ¢(L) C M; inherits a grading by composition aé\E L) =
N o UZLV .

Ezample 3.0.8. (a) Let Lag?(M) be the bundle whose fiber over m is the space of ori-
ented Lagrangian subspaces of T),, M. Then Lag?(M) — Lag(M) is a 2-fold Maslov
covering. A Lag?(M)-grading of a Lagrangian L C M is equivalent to an orientation
on L.

(b) By [15], Section 2], any symplectic manifold M with H'(M) = 0 and minimal Chern
number Ny admits an N-fold Maslov covering Lag”™ (M) iff N divides 2Ny;. Any
Lagrangian with minimal Maslov number N, admits a Lag” (M)-grading iff N di-
vides Np. In particular, if L is simply connected, then N;, = 2Nj; and L admits a
Lag?¥¥ (M) grading.

(c) Suppose that [w] is integral, [w] = (1/l)ci(T'M), and L is a line bundle with con-
nection V and curvature curv(V) = (27 /i)w. This induces a 2[-fold Maslov cover
Lag? (M) — Lag(M), see [I5, Section 2b]. Let L C M be a Bohr-Sommerfeld mono-
tone Lagrangian as in Remark [L.1.4] A grading of £ is equivalent to a choice of (not
necessarily horizontal) section of £|L whose [-th tensor power is d)f; that is, a choice
of the section exp(2mith)¢% in (IR).

Definition 3.0.9. Let Ag,A; C V be a transverse pair of Lagrangian subspaces in a sym-
plectic vector space V and let Ay, A; € Lag”™ (V) be gradings. The degree d(Ag,Ay) € Zy
is defined as follows. Let 79,71 : [0,1] — Lag™ (V) be paths with common starting point

¥0(0) = 71(0) and end points ¥;(1) = A;. Let y; : [0,1] — Lag(V') denote their image under
the projection Lag™ (V) — Lag(V) and define

(11) d([\g,]&l) = %dim(Ao) + I(9,71) mod N,

where I(7yp,v1) denotes the Maslov index for the pair of paths as in [I8] [14].

Let us recall from [14] that the Maslov index for a pair of paths with regular crossings
(in particular with a finite set of crossings C := {s € [0,1] |10 (s) Ny1(s) # {0}}) is given by
the sum of crossing numbers with the endpoints weighted by 1/2,

o) =5 3 sellom )+ Y sienhom, ).

seCn{0,1} seCn(0,1)

Each crossing operator I'(7y,1,s) is defined on v € vy(s) N y1(s) by fixing Lagrangian
complements yy(s)¢, v1(s)¢ of y9(s),71(s) and setting

(12) L(v0,71,8)0 = g |,_ow(v,w(t) — ' (t))

where w(t) € v9(s)¢ such that v+w(t) € yo(s+1t) and w'(t) € y1(s)¢ such that v+w'(s+t) €
M(s).
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Remark 3.0.10. The degree can alternatively be defined by fixing Jy = Ay and choosing
a path 4 : [0,1] — Lag™ (V) from 4(0) = Ag to 4(1) = A; such that the crossing form
I'(7y, Ag, 0) of the underlying path «y : [0, 1] — Lag(V) is positive definite at s = 0. Then the
degree

(Ao, Ay) = %80 4+ 1(Ag,7) = — ) sign(T(y,Ao,8) = —I'(y,A0))  mod N
s€(0,1)
is given by the Maslov index I" of v/ 1y (not counting the endpoints) relative to Ag. Equiv-
alently, we have
d(Ao,[\l) = I’(’Y_I,A[]) mod N
for the reversed path v~ ! : [0,1] — Lag(V) from v 1(0) = A; to v (1) = Ag such that the
crossing form I'(y~!, Ag, 1) is negative definite at s = 1.

Lemma 3.0.11. (Index theorem for once-punctured disks) Let Ao, Ay C V be a transverse
pair of Lagrangian subspaces with gradings Ao, Ay € Lag™ (V). Then for any smooth path
of graded Lagrangian subspaces A : [0,1] — Lag™ (V) with endpoints A(j) = ]Xj, j=0,1 we
have
d(Ag, A1) =Ind(Dy,p) mod N.

Here Dy is any Cauchy-Riemann operator in V' on the disk D with one outgoing strip-
like end (0,00) x [0,1] < D and with boundary conditions given by A (the projection of A
to Lag(V')) such that A(j) = A; is the boundary condition over the boundary components
(0,00) x {4}, 1 =0,1 of the end.

Proof. It suffices to prove the index identity for a fixed path A. Indeed, if A’ is any other path
with the same endpoints then we have Ind(Dvy ) —Ind(Dy,as) = Ind(Dy,a) +1Ind(Dy,_ar) =
Ind(Dy a4 (—ar)) by gluing. Here the last Cauchy-Riemann operator is defined on the disk
with no punctures and with boundary conditions given by the loop A#(—A’). Since the
loop lifts to a loop A#(—A") in Lag™ (V), its Maslov index (and thus index) is 0 modulo N.

By Remark B0.10} the degree can be defined by a path A from Ay to Ay whose projection
A has negative definite crossing form at s = 1. The sum of crossing numbers in d(Ag, A;) =
>sc0,1) Sign(I'(A, Ao, s)) is the Maslov index Iy (A) in [17, Lemma 11.11] and hence equals
to the Fredholm index Ind(Dy ) over the half space, or the conformally equivalent disk
with strip-like end. This conformal isomorphism takes the boundary ends (—oo, —1) resp.
(1,00) in the half space {Imz > 0} (over which A equals to A; resp. Ag) to {1} x (1, 00)
resp. {0} x (1,00) in the strip-like end. O

Lemma 3.0.12. The degree map satisfies the following properties.
(a) (Additivity) If V. =V' x V" then
d(Ay <™ A, Af <™ AY) = d(Ap, A7) + d(AG, AY)
for ]\;, ./13' graded Lagrangian subspaces in V', V" respectively, 7 =0, 1.
(b) (Multiplicativity) For Ay, A1 graded Lagrangian subspaces and any ¢ € Zy
d(Ag,c-Ay) = c+ d(Ag, Ay).
(c) (Skewsymmetry) For Ay, Ay graded Lagrangian subspaces

d(Ao,]\l) + d(Al,Ao) = dlon = d(Ao,]\l) + d(Aa,Al )
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(d) (Diagonal) For a transverse pair Ay, Ay of graded Lagrangian subspaces in V and A
the canonically graded diagonal in V= XV

d(A,Aa XN Al) = d(AU, Al)

Proof. The first three properties are standard, see [I5, Section 2d]. We prove the diag-
onal property to make sure all our sign conventions match up. For that purpose we fix
L € Lag™ (V) and choose the following paths 4. of graded Lagrangian subspaces (with
underlying paths 7. of Lagrangian subspaces):
e 7 : [—1,1] = Lag" (V) from 49(—1) = L to (1) = Ag such that Yolj—1,0] = L,
31 :[-1,1] = Lag™ (V) from 41 (1) = L to 41(1) = Ay, such that y1|(_1/20) = JL th
L and 71|[_1,_1/2} is a smoothing of ¢ — ™I,
e 7:[-1,1] = Lag" (V~ x V) starting with 1,172 = (91 XN%)H 1,—1/2, ending
at Yljo,1) = A, and such that ol 1 o) is a smoothing of ¢ — {((2t+ 1)z + Jy,z+ (2t +
1)Jy)|z,y € L}. (The lift to graded subspaces matches up since y|_; g] is exactly
the path of (7) which defines A by connecting it to L~ x L.)
Note that we have I(yo,’yl)“ 1,0 = —3 1 dim Ag and I(y, vy Xy =100 = L7 570 M=1,0+
I(v0,71)|[=1,0) = — dim Ag since 7| [10] is transverse to L~ x JL. With these preparations
we can calculate

d(Ao, A1) = 3dimAo+1I(v0,7m) = I(v,m)]g
= I(A,’ya Xﬁ)/l)‘[o,l]
= dimAg + I(y,75 x71) = d(A, Ay xN Ay).

Here the identity of the Maslov indices over the interval [0, 1] follows from identifying the
intersections K (s) := v Ny = AN (yy x 1) and the crossing forms I'(s),[(s) : K(s) — R
at regular crossings s € [0, 1] (after a homotopy of the paths to regular crossings). Fix
Lagrangian complements 7 (s)¢ and 7, (s)¢, then for v € K(s) pick w;(t) € 7v;(s)¢ such that
v+ w;(t) € vi(s +t). For the corresponding vector ¢ = (v,v) € AN (y, X 1) we can pick
w(t) = (0,0) € A° satistying o + w(t) € A and @'(t) = (wo,w1) € Yo(s)¢ X y1(s)€ satisfying
04+ w'(t) € (y0 X 71)(s +t) to identify the crossing forms

D(s)d = 4|,_ (—w @ w)(d,b(t) — i (¢))
i (—w(v, —wo(8)) + w(v, —wi (1))
w(v, wo(t) —wi(t)) = L(s)v.

il

dt [t=0 U
If Lo,L; C M are Lag”" (M)-graded Lagrangians and intersect transversally then one

obtains a degree map

I(Lo, L) :=LoNLi —» Zy, x> |z|:=d(o],(2),07, (2)).

More generally, if Ly, L; do not necessarily intersect transversally, then we can pick a
Hamiltonian perturbation H : [0,1] x M — R such that its time 1 flow ¢; : M — M
achieves transversality ¢;(Lg) M Lj. Then the Hamiltonian isotopy and the grading on Ly
induce a grading on ¢;(Ly), which is transverse to L;. The degree map is then defined on
the perturbed intersection points, d : Z(Lg, L1) := ¢1(Lo) N L1 — Zy.
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3.1. Graded generalized Lagrangian correspondences. In this section we extend the
grading and degree constructions to generalized Lagrangian correspondences and discuss
their behaviour under geometric composition and insertion of the diagonal.

Definition 3.1.1. Let M and M’ be symplectic manifolds equipped with N-fold Maslov
coverings. Let L = (Loi,...,L_1);) be a generalized Lagrangian correspondence from

M to M" (i.e. Lij_1); C M;_y x M;j for a sequence M = My,..., M, = M' of symplectic
manifolds). A grading on L consists of a collection of N-fold Maslov covers Lag™ (M;) — M;
and gradings of the Lagrangian correspondences L(; 1); with respect to Lag™ (M o1 X% M;),
where the Maslov covers on M; = M and M, = M' are the fixed ones.

A pair of graded generalized Lagrangian correspondences L; and L, from M to M’
(with fixed Maslov coverings) defines a cyclic Lagrangian correspondence L;#(L,), which
is graded in the following sense.

Definition 3.1.2. Let L = (Loi,---,L,(41)) be a cyclic generalized Lagrangian corre-
spondence (i.e. Ljijs1y C Mj_ X Mj4q for a cyclic sequence My, My,..., M, 1 = My of
symplectic manifolds). An N-grading on L consists of a collection of N-fold Maslov covers
Lag?" (Mj) — M; and gradings of the Lagrangian correspondences Lj(;, 1) with respect to

Lag" (M, x Mj1).

In the following, we will consider a cyclic generalized Lagrangian correspondence L and
assume that it intersects the generalized diagonal transversally, i.e.

(13) (L01 X L12 X ... X Lr(r+1)) h (A&O X A]T/Il X ... X A&T)T,

where A}, C M x M~ denotes the (dual of the) diagonal and Mo x My x My x...x M, —
My x My x ... x M7 x My, Z Z1 is the transposition of the first to the last factor.
In section [4.3] this transversality will be achieved by a suitable Hamiltonian isotopy. It
ensures that the above transverse intersection cuts out a finite set, which we identify with
the generalized intersection points

I(L) = XAy, (Lot Xy, Liz- - Xay, Lyeyr)
= {g = (z0,...,Tr) € My X ... x M, ‘ (xo,x1) € Loty ..., (xp,x0) € Lr(r+1)}-
Remark 3.1.3. Consider two cyclic generalized Lagrangian correspondences
L= (Lo, Lij_1yjs Ljs1)s - - > Lr(rsn))s
L' = (Lo, ... s Lgji—1)j © Li(j+1)s -+ -5 Lr(r41))

such that the composition L; 1); o Lj(j+1) is embedded in the sense of Definition 2.0.41
Then the generalized intersection points

Z(L) ={(--,Tjm1, %), Tjg1, - -) € oo X Mj_y X My X Mjyq ... |
oy (m-1,75) € Lgj—1yj, (%5, j41) € Lj(j41ys-- -}
={(.. zjm1,zjp1,..) €. X Mj_y X My ... |
ey (Ti-1,T541) € Lj—1yj © Lj(j41), - - } =ZI(L)

are canonically identified, since the intermediate point z; € M; with (z;_1,7;) € L(j_1);
and (2j,7;11) € Lj(j41) is uniquely determined by the pair (z; 1,7;11) € L(j_1);j © Lj(j41)-
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Now an N-grading on L induces an N-fold Maslov covering on M := My x M; X ... X
M, x M,” x My and a grading of L := L1 X L1z X ... X Ly(41). In addition, we have a
grading on AT := (AJT/[O XAy XX A;/[T)T from the canonical grading on each factor. In
order to define a degree we then identify generalized intersection points z = (zg, %1, .., ;)
with the actual intersection points « = (xg,z1,21,. .., &, zp, o) € LN AT,

Definition 3.1.4. Let L be a graded cyclic generalized Lagrangian correspondence L that
is transverse to the diagonal (I3)). Then the degree is
I(L) = Zn, x> |z|=d(o] (z),00r (2)).
Lemma 3.1.5. Alternatively, the degree is defined as follows:
(a) Pick any tuple of Lagrangian subspaces A} € Lag(Ty, M;), A} € Lag(Ty,M; ), i =

0,...,7 whose product is transverse to the diagonal, Aj x Aj h Ay, ;. Then there
exists a path (unique up to homotopy) v : [0,1] — Lag(TyM) from ~v(0) = T,L
to y(1) = A x A} x ... x AL x A x Aj that is transverse to the diagonal at all
times, y(t) h T,AT. We lift the grading o (z) € Lag" (T, M) along this path and
pick preimages under the graded product map ([IQ) to define A} € Lag™ (T, M;) and
A € LagN (T, M;"). Then

|z| = Zd (AL, A7)

(b) If L has even length v + 1 € 2N then it defines an N-fold Maslov cover on M =
My x My x My x...x M, and a pair of graded Lagrangian submanifolds,

L(O) = Lgp X Lgg X ... X L(r—l)r - M,
L(l) = (L12 X Lgg X ... X LT(T+1))T C Mi,

where we denote by My X ... x M7 x My — My x M; X ...x M, Z v+ Z* the
transposition of the last to the first factor. If L has odd length r +1 € 2N + 1 we
insert the diagonal Ay C My x My = M, | X My (with its canonical grading) before

T

defining a pair of graded Lagrangian submanifolds as above. By (I3)) the Lagrangians
intersect transversally Loy L(_1)7 and this intersection is canonically identified with

Z(L). Then for z € I(L) corresponding to y € L(g) N L(_l) we have

2| = |yl = (oL, (v), o1y, (4) )

Proof. In (a) we use the fact that the path v has zero Maslov index to rewrite
d(op (z), 0N (z)) = d(Af xN A xV ... xN AL xV Al ~ZFIOM0 xN . oxN AiTMT)
where we moreover transposed the factors. Now by Lemma [3.0.12] the right hand side can

be written as the sum over d(A; xV A, AZFIZ-Mi) =d(A],A]7).
In (b) note that a reordering of the factors identifies the pair of graded Lagrangians
(Loy % L1y, ATM) with (L, AT) for r odd. So Lemma B.0.12] implies

For r even the same argument proves

d(of, v), oL, (1)) = d(0f (@) XV Aryonig, (AT, agy X - X ATy, AT, ag))s
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which equals to d(o] (), 087 (2)) by Lemma B.L18l (b) below. O

The following Lemma, describes the effect of inserting a diagonal on the grading of gener-
alized Lagrangian correspondences. Part (a) addresses noncyclic correspondences, whereas
(b) applies to cyclic correspondences with A = T4 21 2. 00)(Lo1 X L1z X ... X Lyryyy),
K =Tz 0,01,ee) (Bagy X Dpgy X oo X Ay ), Vo = Ty My, and Vi =T oy (M1 X My X

X M, x M).

Lemma 3.1.6. Let Vy, Vi, Vo be symplectic vector spaces.

(a) Let Ay C LagM(Vo), Aoy C LagM(Vy x V1), Ay C LaghN (V™ x Vo), and Ay C
LagN(VQ_) be graded Lagrangian subspaces. If the underlying Lagrangian subspaces
are transverse then

d(Ag xV Ayg, Agy xVN Ay) = d(Ag xVN Ay xN Ay, Ay xV A).

(b) Let A C LagM (Vy x Vi x Vy) and K C Lag™ (Vo x V;~ x Vi) be graded Lagrangian
subspaces. If the underlying Lagrangian subspaces are transverse then

a(h xN Ko, (B x™ A7)T) = a(h, BT,
with the transposition Vo x W — W x Vy, Z — Z1.

Proof. To prove (a) pick a path o112 : [0,1] = Lag(Vpo x Vi x Vi x V") from p112(0) =
Ag; x AL, to a split Lagrangian subspace yo112(1) = Af x A} x A{ x Af that is transverse
to Ag x Ay x Ay at all times and hence has Maslov index I(yp112,Ag X A1 x Ag) = 0. We
can homotope this path with fixed endpoints to yp112 = Y01 X 712 : [0, 1] = Lag(Vp x V]7) x
Lag(V1 x V;7) that may intersect Ag x Ay x Ag but still has vanishing Maslov index. We lift
the grading along the paths vy, and ;2 and pick preimages under the graded product map
(T) to obtain gradings A} € Lag™ (Vp), A} € Lag™ (V;"), A} € Lag™ (V1), A, € Lag™ (V, ).
With these we calculate, using Lemma

d(Ag x™ Mg, Agy xV A7) = d(Ao xN AJ= x™ A7 Ay xV Al xV AS)
= d(Ao, Ap) +d(A] A +d(A; ,A)
= d(Ag, AY) + d(Ay, A} xN AY) + d(Ay, AY)
= d(

Ao xV Ay xNV Ag, Aj xN A} xN AY xN Ab)
=d(Ag xV Ay xV Ay, Ay, xV AL).
The first and last degree identity are due to the vanishing of the Maslov index
0 = I(Ag X Al X AQ,’YOl X ’)/12) = I(AO X 7;2,701 X A;) =0.

The identity of these Maslov indices follows from identifying the intersections K(s) := (Ag X
Tl ())& (o Au<Aa) ) and e xosing o (5, ()< K(5)
R given by (I2) at regular crossings s € [0,1]. Fix Lagrangian complements 7o (s)¢
Vo x Vi~ and yi2(s)¢ C Vi x V5, then for v = (vg,v1,v2) € K(s) we can pick (wl,wg)(t)

Y12(8)¢ such that v 4+ (0,wy,w2)(t) € Ag X y12(s + t) and (wf,w))(t) € Yo1(s)¢ such that
v + (wh, w),0)(t) € Yo1(s +t) x Ag. For the corresponding vector & = (vg,vi,v1,v2) €
(Ao x Ay x A5 )N(7yp1 X712) we have 0+(0,0,0,0) € (Agx Ay xAz) and 04 (w(), w), wi, ws)(t) €
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(701 X 7112)(s +t). With this we identify the crossing forms

f(s)@ = %‘t:o(wo O —w Pw P —wg)(@, (0,0,0,0) — (wg,w'l,wl,wg)(t))
= %‘t:O (—wg(vg,wé) - wl(vl,wl - w'l) + WQ(UQ,’(UQ))

= %‘t:o(wo ® —w  wa) (v, (0, wi, wa)(t) — (wp, wh,0)(t)) =T(s)v.

This proves (a). To prove (b) we pick a path v : [0,1] — Lag(V, x Vi x V) from 7(0) = A
to a split Lagrangian subspace y(1) = Ay x A1 x Aj) € Lag(V,, ) x Lag(V1) x Lag(Vp) that
is transverse to K7 at all times and hence has Maslov index

0=1I(y,K") =1I(y x Ay, (K x A7)Y).

Here the equality of Maslov follows directly from the identification of the trivial intersections
(7 x Ag) N (K x AT =N KT = {0}. Now we can lift the grading along -y to obtain
gradings A € Lag™ (Vp), Ay € Lag™(V1), A € Lag™ (Vp). With these we calculate, using
part (a) and the fact that gradings are invariant under simultaneous transposition of both
factors

d(A xN Ag, (K xN AT =

o

0

In the rest of this section we investigate the effect of geometric composition on the
grading of Lagrangian correspondences. This requires a generalization of Viterbo’s index
calculations [I8].

First, we lift the composition map to Maslov covers. Let My, My, Ms be symplectic
manifolds equipped with N-fold Maslov coverings Lag” (Mj),5 = 0,1,2. We equip the
products M;” x M and My x My x M| x My with the induced Maslov coverings LagN(Mi_ X
M;) resp. Lag™ (M x My x M; x Ms). We denote by

T(My) C Lag(My x My x My~ x MZ)‘MOXAMlxMz
the subbundle whose fibre over (mg,m;, m;, mg) consists of the Lagrangian subspaces
Ao112 C Timgmy ymame) (Mg X My x My~ X Mp) that are transverse to the diagonal Agyp =
Ty My x ATml My X T, My, The linear composition of Lagrangian subspaces extends a
smooth map

o:T(M;) — Lag(M, x My), Ao112 — Taggx s, (Aotrz N Aorrz).
The preimage of 7 (M) in the Maslov cover will be denoted by

TN(Ml) C La,gN(MO_ X My x My~ x MQ)‘MOXAMlxMz'
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Finally, recall that we have a canonical grading of the diagonal Ay, € Lag™ (M x M)
and its dual Ay, € Lag" (M x M, ), and let us denote another exchange of factors by

Lag™ (Mg x My x My x M) — Lag™ (Mg x My x M; x My), A+ A",

Lemma 3.1.7. The linear composition o : T(M;) — Lag(M, x Ms) lifts to a unique
smooth map o™ : TN (M) — Lag™ (M x My) with the property that

(14) oV ((Aog x N AH)T) = d(AH’A&l) . AOZ-

for all graded Lagrangians Mgy € Lagh (Mg x Ms) and A1 € Lagh (M, x MY), such that
the underlying Lagrangian Ayy € Lag(M; x M) is transverse to the diagonal.

Proof. We denote by Lag(R?") the Lagrangian Grassmannian in R?", write dim M; = 2n;,
and abbreviate Ryi1p 1= R2%0:~ x R2™M x R271:~ x R272, Let T C Lag(Ro112) be the subset
of Lagrangian subspaces meeting the diagonal R?"0 x Agan, X R2"2 transversally. The linear
composition map

Lag(Ro112) D T — Lag(R*™0~ x R*"2), A = Tang gens (AN (R2™ x Agen, x R*™ )

is Sp(2n0) x Sp(2n1) x Sp(2ny)-equivariant, and lifts to a unique Sp? (2n9) x Sp™¥ (2n1) x
Sp™ (2ny)-equivariant map

(15) Lag®™ (Ro112) O TV — Lag™ (R*"0:~ x R?™2)

with the property (I4]). On the other hand, the restriction of Fr(My) x Fr(M;) x Fr(M;) x
Fr(Ms) to My x Ay, x My admits a reduction of the structure group to Sp(2ng) x Sp(2n1) X
Sp(2ng), and similarly the restriction

Frfiyy o= (B (M) x Fr™ (M) x B (M1) x B (M) |y ns e

admits a reduction of the structure group to Sp (2ng) x Sp™ (2n1) x SpY (2ny). This group
acts on Lag™ (Ry112) by the diagonal action of Sp™¥(2n;) on R?™ x R?™-~. Finally, we use
the associated fiber bundle construction to identify

Lag™ (Mo x My x My X Ma)|ypon o,

—Fr0112 X SpN (2n0) xSp™N (2n1) xSp¥ (2n1)xSp (2n2) Lag (Ro112)
= (FI'N(MO) X FI'N(MI) x Fr (M2)) XSpN(Zno)XSpN(an)><SpN(2nz La‘g (R0112)
and

LagN(MU_ X M2) = (FI'N(MU_) X FI“N(MQ)) XSpN(2n0)><SpN(2n2) LagN(RZTlo,* X RZTLQ).

Then the forgetful map on the first factor and the equivariant map (I5)) on the second factor
define the unique lift oV, U

Now consider two graded Lagrangian correspondences Loy C M, x My and Lo C M| x
M5 and suppose that the composition LyjoLiz =: Logo C My x M> is smooth and embedded.
The canonical section oy, : Lop — Lag(M, x M) is given by the linear composition o

applied to (or,, X 0L12)|L01><AM1L12' The gradings aﬁn, JILVH induce a grading on Lyg,

N ._ N(_N N
(16) OLp = © (UL01 X ULI?)‘L01><AM1L12’

where the map x?V is defined in (I0) and we identify Lgs = Lo; xa ay L2
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Proposition 3.1.8. Let Ly C My, Lot C My x My, Li2 C M x My, and Ly C M5 be
graded Lagrangians such that the composition Loy o L1ia =: Lgo is embedded. Then, with
respect to the induced grading on Ly, the degree map I(Lg X Lo, Lo2) — Zy is the pull-
back of the degree map Z(Ly X L2, Loy X Lo) — Zy under the canonical zdentzﬁcatzonﬁ of
intersection points.

Proof. Suppose for simplicity that Hamiltonian perturbations have been applied to the
Lagrangians Lg, Lo such that Z(Lg x Lo, Lg2) (and hence also Z(Lg x L2, L1 X L)) is the
intersection of transverse Lagrangians. We need to consider (mg,mi,ms) € (Lo X L12) N
(Lo1 x L9), which corresponds to (mg,my) € (Lo X Lg) N Ly2. We abbreviate the tangent
spaces of the Lagrangians by A; = T),,, Lj, Ajj = Tiom, ,mj)Lij, and Ay = ATml M, and their
graded lifts by A; = UZLV]_ (mj), Nij = U]LVU (mi,m;), and Ay = Aq,, p,- We claim that
d([\g XN Alg, A(ﬁ XN ]\5) = d(AO XN Al XN [\2,[\61 XN A;Z)

(17) =d(Ag xV Ay, Ay, oV AL).

The first identity is Lemma [B.1.6l To prove (7)) we begin by noting the transverse inter-
section Agy M Ag X As. We denote Ags := Agy o Ay (hence A02 = A01 AIQ) and pick a
path Y02 - [0 1] — Lag (TmOM X Tmz Mg) from 4 Y02 (0) A[] X A2 to ’)/02( ) = A[;Q whose
crossing form with Ay X Ay at s = 0 is positive definite and hence by Remark B.0.10]

d(]\o XN 1{2,]\62) = —I’(’)’UQ,AO X Ag)
Here I' denotes the Maslov index of a pair of paths (the second one is constant), not counting

crossings at the endpoints. Next, fix a complement L1; € Lag(T(, m,)M1 X M) of the
diagonal. Then both (Aga xV L11)T and Ag; x A1 are transverse to Ty, Mo x A1 X Tpy, Mo
and their composition is Aps. By Lemma B.1.9] below we then find a path Yo112 and lift it to
Yo112 = [0,1] — LagN(T(mo mumima) Mg X My x M~ x My) from 4112(0) = [Agg x™ Lyi]"
to Jo112(1) = A1 x& Ay5 whose composition o(yp112) = Aoz is constant and that has no
crossings with Ag x Ay x Ag (by the transversality yp112 N (A() X Aq X A2) Ago N (AO X Ag)
{0}). Here the grading of L;; is determined by continuation along this path. Since the
composition o(7yp112) is constant this continuation yields

Agz = o™ (Fo112) = o™ ((Agz xV L11)") = d(L11, AT) - Agp.
Here we also used (I4), and we deduce that d(L;;, A7) = 0 mod N. Furthermore, we fix

a path 11 : [0,1] = Lag" (T, myM; x My) from 511(0) = A; to F11(1) = Lj; whose
crossing form with A; at s = 0 is positive definite, and thus

~I'(y11, A1) = d(Ay, Lyy) = d(L11,A7) =0 mod N.
Now the concatenated path (Y2 X J11)T #7p;12 connects Ao xV Ay xN Ay to ]\51 xNV AL,
with positive definite crossing form at s = 0, and (I7)) can be verified,
d(Ao x™ Ay x™ Ag, Agy x™N AL) = —T'((vo2 % 711) " #75112: Mo X A1 x Ag)
= —I'(y02, Ao x A2) — I'(m11, A1) — I' (79119, Mo X A1 X Ag)
= —I'(y02, Ao x Az) = d(Ag x™¥ Ag, Ay). N
2 Here it suffices to allow for Hamiltonian perturbation on My and My, i.e. replacing Lo, L with Lj :=

P (Lo), Lh := (¢2)"1(Ls). Then for every (mo,ms2) € (Lh x L) N Los there is a unique mi € M, such
that (mo, m1) € Lo1, (m1, m2) € L12, and hence (mo, m1, m2) € (Ly x Li2) N (Lo1 x Lb).
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Lemma 3.1.9. Let Vp, V1, Vo be symplectic vector spaces, Aoa C V;~ X Vo a Lagrangian
subspace, and denote by

Tau C Lag(Vy™ x Vi x Vi x V)
the subset of Lagrangian subspaces A C Vi~ x Vi x Vi x Vo with A th (Vo X Ay, x Vo) =: Moo
and Wog(Aog) = No2. Then Th,, is contractible.

Proof. We fix metrics on Vp, V1, and V2. Then we will construct a contraction (pt)sco,1),
Pt Thgs — Thgy With po =1Id and p; = U(Ago x (A1)1), where U : V. x Vo x Vi x V| —
Vi~ x Vi x Vi x V5 exchanges the factors. To define p;(A) we write A = Aoz ® Ay, where
AH is the orthogonal complement of AUQ in A. Now Aog is the image of (Idy;,1,41,1dy,) :
Aoz — Vg x Vi x V7 x Vo for a linear map 41 : Agp — Vi and AH is the image of
(jo, Idv; + 51, —Idvy +41,42) : Vi — Vg~ x Vi x V| x Vi for linear maps j; : V4 — V;. One
can check that
pe(A) == im(Idvg, - i1, ¢ - iy, Idy, ) @ im( - jo, Iy, + ¢ - ji, —Idv, + 82 - j1, ¢ - jo)

is an element of Ty, for all ¢ € [0, 1] and defines a smooth contraction. O

4. FLOER COHOMOLOGY

The main content of this section is a review of the construction of graded Floer cohomol-
ogy for pairs of Lagrangian submanifolds in monotone and exact cases by Floer, Oh, and
Seidel. In[43lwe then extend Floer cohomology to generalized Lagrangian correspondences,
which in Section Bl will be reformulated in terms of pseudoholomorphic quilts.

4.1. Monotonicity. Let (M,w) be a symplectic manifold. Let J(M,w) denote the space
of compatible almost complex structures on (M,w). Any J € J(M,w) gives rise to a
complex structure on the tangent bundle T'M; the first Chern class ¢, (TM) € H?(M,Z) is
independent of the choice of J. Throughout, we will use the following standing assumptions
on all symplectic manifolds:

(M1): (M,w) is monotone, that is for some 7 > 0
w] =7c1(TM).
(M2): If 7 > 0 then M is compact. If 7 = 0 then M is (necessarily) noncompact but
satisfies “bounded geometry” assumptions as in [17].

Note here that we treat the exact case [w] = 0 as special case of monotonicity (with
7 =0). Next, we denote the index map by

¢ (M) = Z, urs (c1,u.]S?).

The minimal Chern number Ny € N is the positive generator of its image.
Associated to a Lagrangian submanifold L C M are the Maslov index and action (i.e.
symplectic area) maps

I:my(M,L) — Z, A: m(M,L) — R
Our standing assumptions on all Lagrangian submanifolds are the following:
(L1): L is monotone, that is
2A(u) = 71(u) VYu € m(M,L)
where the 7 > 0 is (necessarily) that from (M1).
(L2): L is compact and oriented.
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Any homotopy class [u] € mo(M, L) that is represented by a nontrivial J-holomorphic disk
u: (D,0D) — (M, L) has positive action A([u]) = [w*w > 0. Monotonicity with 7 > 0 then
implies that the index is also positive. So, for practical purposes, we define the (effective)
minimal Maslov number Ni, € N as the generator of I({[u] € m2(M, L)|A([u]) > 0}) C N.
If M and L are exact (7 = 0), then A =0, so we have N, = cc.

If the Lagrangian submanifold L is oriented then I(u) is always even since it is the Maslov
index of a loop of oriented Lagrangian subspaces. So the orientation and monotonicity
assumption on L imply N; > 2, i.e. any nontrivial holomorphic disk must have I(u) > 2,
which excludes disk bubbling in transverse moduli spaces of index 0 and 1.

In order for the Floer cohomology groups to be well defined we will also have to make
the following additional assumption.

(L3): L has minimal Maslov number Ny, > 3.

Moreover, we will restrict our considerations to Maslov coverings and gradings that are
compatible with orientations, that is we make the following additional assumptions on the
grading of the symplectic manifolds M and Lagrangian submanifolds L C M. (In the case
N = 2 these assumptions reduce to (L2).)

(G1): M is equipped with a Maslov covering Lag” (M) for N even, and the induced 2-fold
Maslov covering Lag?(M) is the one described in Example B.0.8] (i).

(G2): L is equipped with a grading o : L — Lag" (M), and the induced 2-grading
L — Lag?(M) is the one given by the orientation of L.

In the following we discuss topological situations which ensure monotonicity.

Lemma 4.1.1. Suppose that M is monotone and L C M is a Lagrangian such that (L)
is torsion (that is, every element has finite order). Then L is monotone and the minimal
Maslov number is at least 2Ny /k where k is the mazimum of orders of elements of w1 (L).

Proof. Let u : (D,0D) — (M, L) and let k(u) be the order of the restriction of u to
the boundary in m(L). After passing to a k(u)-fold cover @, we may assume that the
restriction of 4 to dD is homotopically trivial in L. By adding the homotopy we obtain
a sphere v : S — M with k(u)I(u) = I(@) = 2¢;(v) divisible by 2N);. For the relation
between the first Chern class and the Maslov index see e.g. [10, Appendix]. The similar
identity for the actions (due to w|;, = 0) completes the proof. O

In practice, we will need the action-index relation not only for disks as in (L1) but also for
other surfaces with several boundary components mapping to several Lagrangians. (This
really only becomes relevant in [22] for the definition of relative invariants from surfaces
with striplike ends.) In particular, to define Floer cohomology for a pair of Lagrangians
(and especially later to prove the isomorphism (3))) we need the action-index for annuli
between the two Lagrangians. This provides the energy-index relation in Remark In
fact, it also implies monotonicity (L1) for both Lagrangians as long as M is connected.

Definition 4.1.2. (a) We say that a tuple (L¢)ece is monotone with monotonicity con-
stant 7 > 0 if the following holds: Let X be any connected compact surface with
nonempty boundary 0% = UecgC, (with C, possibly empty or disconnected). Then
for every map u : X — M satisfying u(Ce) C L, we have the action-index relation

e L
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where I is the sum of the Maslov indices of the totally real subbundles (u|c,)*T L,
in some fixed trivialization of u*T'M.

(b) We say that a pair (Lo, L1) is monotone for Floer theory if (a) holds for the annulus
¥ =1[0,1] x S* and every map u with boundary values u({j} x S*) C L; for j = 0, 1.

The following is a minor generalization of [11, Proposition 2.7].

Lemma 4.1.3. Suppose that M is monotone.

(a) If each L, C M is monotone, and the image of each m (Le) in wi (M) is torsion,
then the tuple (L¢)ecs is monotone.

(b) If both Lo,Ly C M are monotone, and the image of m(Lo) or m(Ly) in m (M) is
torsion, then the pair (Lg, L1) is monotone for Floer theory.

Proof. To check (a) consider u : ¥ — M satisfying u(C,) C L. By assumption we have
integers N, € N such that Nu|c, is contractible in M. Let N =[] c¢ Ne, so that Nu|c, is
contractible for all boundary components C, of . Let ¥ — ¥ be a finite N-cover defined
by a representation p : 71 (X) — Zy with p([C,]) = [N/Ne], so that each component of the
inverse image C. of C, is an N,-fold cover. The pull-back @ : > — M of u : ¥ — M has
restrictions to the boundary ﬂ|ée that are homotopically trivial in M. Thus @ is homotopic
to the union of some maps v, : (D,0D) — (M,L.) and a map v : S — M on a closed
surface S. We can now use the closedness of w and the monotonicity of M and each L, to

deduce
2N/u*w =2/ﬂ*w= 2/v*w+z2/v;w

ec&

= 27 (V' TM) + ) 7I(ve) = 7I(i)) = TNI(u),
ec

using properties of the Maslov index explained in [10, Appendix].

In the case of (b) we can take a multiple cover of the annulus such that one boundary
loop is contractible in M, and hence the multiply covered annulus is homotopic to two disks
to which we can apply monotonicity of the single Lagrangians. O

In the exact case, with w = d\, any tuple of exact Lagrangians (L¢)ece, that is with
AlL.] = 0 € HY(L,), is automatically monotone. Moreover, note that monotonicity is
invariant under Hamiltonian isotopies of one or several Lagrangians.

Remark 4.1.4. Another situation in which one naturally has monotonicity is the Bohr-
Sommerfeld setting, as pointed out to us by P. Seidel. Suppose that the cohomology class [w]
is integral. Let (£,V) — (M,w) be a unitary line-bundle-with-connection having curvature
(2m/t)w. The restriction of (£, V) to any Lagrangian L C M is flat. L is Bohr-Sommerfeld
if the restriction of (£, V) to L is trivial, that is, there exists a non-zero horizontal section
¢%. The section ¢% is unique up to a collection of phases U(1)™(), Suppose that M
is monotone, [w] = Acy(M) for some A > 0. Since ¢;(M) and [w] are integral, we must
have A = k/I for some integers k,I > 0. Let X~! — M denote the anticanonical bundle,
KL= A(tcOp (T M), which satisfies ke, (K1) = l%[curv(V)] = lc1(L). Hence there exists
an isomorphism

O (K™HF — L%
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Let L C M be an oriented Lagrangian submanifold. The restriction of X! to L has a
natural non-vanishing section d)f given by the orientation and the isomorphisms

ARPTL — APTO M|, v Ao Avg = (v1 4+ 0do) Ao A (v +idop).

We say that L is Bohr-Sommerfeld monotone with respect to (£, V, ®) if the sections (¢4)®'
and ¢ o (d)f)@k are homotopic, that is, there exists a function 9 : L — R such that

(18) (exp(2mith)p7)®" = @ o (¢)=".

Lemma 4.1.5. Let (L¢)ece be a collection of Lagrangians such that each is Bohr-Sommerfeld
monotone with respect to (L,V,®). Then (Le)ece is monotone.

Proof. Let ¥ be a compact Riemann surface with boundary components (Ce¢)ece. Let
u: X — M be a map with boundary u(Ce) C Le. The index I(u) is the sum of Maslov
indices of the bundles (u|c, )*T L, with respect to some fixed trivialization of u*T'M. Equiv-
alently, I(u) is the sum of winding numbers of the sections ¢>’LCS with respect to the induced
trivialization of u*/C~!. Since each L, is Bohr-Sommerfeld, kI(u) is the sum of the winding
numbers of the sections (¢fe)®l, with respect to the induced trivialization of u*£%!. Write
uw*V® = d + « for some o € Q1(X) in this trivialization, so that u* curv(V®!) = da. Since
the sections are horizontal, we have

kI(u) = (i/27) / _a=(i/2m) /Z u* curv(VE) = [A(w).

0
g

4.2. Graded Floer cohomology for pairs of Lagrangians. Let Ly, L; C M be compact
Lagrangian submanifolds. For a time-dependent Hamiltonian H € C*([0,1] x M) let
(X¢)ie[o,1) denote the family of Hamiltonian vector fields for (H¢);e(o,1], and let ¢y, ¢, : M —
M denote its flow. (That is, ¢4, (y) = z(t1), where z : [0,1] — M satisfies © = X;(x),
z(tg) = y.) We will abbreviate ¢ := ¢o1 for the time 1 flow from to = 0 to t; = 1. Let
Ham(Ly, L1) be the set of H € C*°([0, 1] x M) such that ¢1(Ly) intersects L, transversally.
Then we have a finite set of perturbed intersection points

I(Lo, L) := {7 :[0,1] = M |(t) = $o,t(7(0)), ¥(0) € Lo, (1) € L1}

It is isomorphic to the intersection ¢, (Lgy) rh L. If we assume that M and Ly, L, are graded
as in (G1-2), then we obtain a degree map from Section [3]

Z(Ly,L1) = Zn, x> |z| = d(a]LVO(sc),aI]Yl (z)).

Since N is even the sign (—1)?l is well-defined. It agrees with the usual sign in the inter-
section number, given by the orientations of ¢1(Lgy) and L;, which also determine the mod
2 grading by assumption.
Next, we denote the space of time-dependent w-compatible almost complex structures by
Jy(M,w) := C>*([0,1], T (M, w)).
For any J € J;(M,w) and H € Ham(Lg, L1) we say that a map u : R x [0,1] — M is
(J, H)-holomorphic with Lagrangian boundary conditions if

(19) EJ,HU’ = 85“(57 t) + Jt,u(s,t) (8?5“(57 t) - Xt(u(37 t))) = 07

(20) U(R, 0) C Ly, U(R, 1) C L.
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The (perturbed) energy of a solution is

Ep(u):= / |05u)? = / uw*w + d(H (u)dt).
Rx[0,1] Rx[0,1]

The following exponential decay lemma will be needed later and is part of the proof of
Theorem [£.2.3] below.

Lemma 4.2.1. Let H € Ham(Lg, L1) and J € J,(M,w). Then for any (J, H)-holomorphic
strip u : R x [0,1] — M with Lagrangian boundary conditions in Lo, L1 the following are
equivalent:

(a) w has finite energy Ey(u) = fo[O,l] |0sul? < oo;
(b) There exist x+ € Z(Lo,L1) such that u(s,-) converges to xy exponentially in all
derivatives as s — oo .

For any x4 € Z(Lg, L1) we denote by
M@z zq):={u:Rx[0,1] = M| [@), R0), By (u) < oo, lim u(s,-) =z+}/R
s—Fo0

the space of finite energy (J, H)-holomorphic maps modulo translation in s € R. It is iso-
morphic to the moduli space of finite energy J’-holomorphic maps with boundary conditions
in ¢1(Lg) and Ly, and without Hamiltonian perturbation. Here J' € J;(M,w) arises from
J by pullback with ¢; ;.

Remark 4.2.2. Suppose that the pair (Lg, L1) is monotone, then for any zy € Z(Lg, L)
there exists a constant ¢(x_, z4) such that for all u € M(z_, z) the energy-index relation
holds:

(21) 2FEp(u) = 7 - Ind(Dy) + c(z—,x4),

where D,, denotes the linearized operator at u of the Cauchy-Riemann equation (I9]) on the
space of sections of w*T'M satisfying the linearized Lagrangian boundary conditions from
20)). Its Fredholm index is given by the Maslov-Viterbo index of u. This monotonicity
ensures energy bounds for the moduli spaces of fixed index and thus compactness up to
bubbling.

Theorem 4.2.3. (Floer,0Oh) Let Ly, Ly C M be a monotone pair of Lagrangian subman-
ifolds satisfying (L1-2) and (M1-2). For any H C Ham(Lg,L1), there exists a subset
J; 8 (Lo, L1; H) C Ji(M,w) of Baire second category, such that the following holds for all
T4+ € I(Lg,Ll).
(a) M(z_,z4) is a smooth manifold whose dimension near a nonconstant solution u is
given by the formal dimension Ind(D,) — 1.
(b) The component M(z_,x4)o C M(z_,x+) of formal dimension zero is finite.
(¢) Suppose that Ly and Ly have minimal Maslov numbers Ny, > 3. Then the one-
dimensional component M(z_,z4)1 C M(z_,x1) has a compactification as one-
dimensional manifold with boundary

(22) OM(z_, 24 )1 = U M(z—,z)o x M(z,24)0
xEI(Lo,Ll)
(d) If (Lo, L1) is relatively spin (as defined in e.g. [23]), then there exists a coherent set

of orientations on M(x_, x4 )9, M(x_,x4)1 for all xy € Z(Ly, Ly), that is, orienta-
tions compatible with (22]).
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For the proofs of (a-c) we refer to Oh’s paper [I1] and the clarifications [12], [9]. For the
exact case see [I7]. The proof of (d) is contained in [23] loosely following [5]. From (d) we
obtain a map

e: M(z_,zq)0 — {£1}
defined by comparing the given orientation to the canonical orientation of a point.

Now let M be a monotone symplectic manifold satisfying (M1-2) and equipped with
an N-fold Maslov covering. Let Lg,L; C M be a monotone, relative spin pair of graded
Lagrangian submanifolds satisfying (L1-3), and let H € Ham(Lo, L1). The Floer cochain
group is the Z y-graded group

CF(Lo,L1) = @ CF%Lo,L1), CFLo,L)= B  Zz),
deZn J?EI(Lo,Ll),‘:E‘:d
and the Floer coboundary operator is the map of degree 1,

0. CFYLy, L)) — CF4(Lg, Ly),

Mo )= > ( 3y e(u))(x+).

x4 €Z(Lo,L1) ueM(z_,xy)o

defined by

reg

Here we choose some J € J; °(Lo, L1; H). If an isolated trajectory u € M(z_,z4)o exists,
then the degree identity |z4| = |z_| + 1 can be seen by concatenating the paths ~y,v; of
graded Lagrangians in the definition of |z_| with the unique graded lifts of «*T Lo, w*T L,
to obtain paths of graded Lagrangians defining |z | (using a trivialization of w*T M over
the strip, compactified to a disk). By additivity of the Maslov index this shows |z| =
|z + I(u*T Lo,u*TLy) = |x_| + 1. It follows from Theorem 23] that 6 = 0. Now the
Floer cohomology

HF(Ly,L1) == @ HF(Lo,L1),  HF(Lo, L) := ker(9) /im(0" )
deL N

is Zn-graded. It is independent of the choice of H and J; a generalization of this fact is
proved in Section [5.3] below. If the gradings moreover satisfy (G1-2), then we have a well
defined splitting

HF(Ly, L1) = HF®*"(Ly, L) ® HF°Y(Ly, Ly).

Remark 4.2.4. In a suitable derived sense the Floer cohomology H F (L1, Ly) for the switched
pair is the dual space Hom(H F'(Lg, L1),Z), see [25] for details.

4.3. Floer cohomology for generalized Lagrangian correspondences. The goal of
this section is to define a first version of Floer cohomology for a cyclic generalized La-
grangian correspondence L as in Definition .13l So we consider L = (Lo, . .., Ly(r41)), 2
sequence of smooth Lagrangian correspondences L(;_1y; C M o1 X Mj between a sequence
My, My, ..., M,+1 = My of symplectic manifolds. For example, we could consider a non-
cyclic sequence of Lagrangians Ly, C M, (L(i,l)i CM,_; x Mi)i:2,...,r’ L.y C M,”, which
is a special case of the cyclic setup with My = {pt}. The usual Floer cohomology for pairs
of Lagrangians fits into this case with 7 = 1 and Lagrangian submanifolds Loy, L1g C M.

3Note that our conventions differ from Seidel’s definition of graded Floer cohomology in [I5] in two points
which cancel each other: The roles of x_ and x4 are interchanged and we switched the sign of the Maslov
index in the definition of the degree (IIJ).
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We assume that L satisfies (M1-2,L.1-3), i.e. each M; satisfies (M1-2) and each L(;_yy;
satisfies (L1-3) with a fixed monotonicity constant 7 > 0. We moreover assume that L is
graded in the sense of Definition and equipped with a relative spin structure in the
following sense.

Definition 4.3.1. Let L = (Loi,---,Ly41)) be a cyclic generalized Lagrangian corre-
spondence (i.e. Ljijs1y C Mj* X Mjqq for a cyclic sequence My, My,..., M, 1 = My of
symplectic manifolds). A relative spin structure on L consists of a collection of background
classes b; € H*(Mj,Zs) for j = 0,...,7 + 1 and relative spin structures on Ljj41) with
background classes —W;fbj + 7r;-‘ 41bj+1. The cyclic requirement on the background classes
by € H?(My,Zs) and b1 € H?(M,y1,Z2) = H?*(My,Zs) is bpr1 = by for r odd and
by11 = by + wa(My) for r even

Eventually, in Section [5, we will define the Floer cohomology HF'(L) directly, using
“quilts of pseudoholomorphic strips”. In this section however we define HF'(L) as a special
case of the Floer cohomology for pairs of Lagrangian submanifolds — which are constructed
from the sequence L as follows. If L has even length r + 1 € 2N we define a pair of graded
Lagrangian submanifolds,

L(O) = (L01 X L23 X ... X L(rfl)r)

)T - MO_><M1><M2_><...><MT=:M.

L(l) = (L12 X L3g X ... X LT(T+1)
Here we denote by M| x ... x M x My — My x My x...xM,, Z Z" the transposition
of the last to the first factor, combined with an overall sign change in the symplectic form.
If L has odd length  + 1 € 2N + 1 we insert the diagonal Ay C M; x My = M, x My
(equipped with its canonical grading) into L before arranging it into a pair of Lagrangian
submanifolds as above, yielding
Ly = (Lo1 X Loz X ... X Ly(41)) _ _ —~
o C My XMy x...x M- XM =M
L(l) = (L12 X L34 X ... X L(r—l)r X Ag)

In the case of a noncyclic correspondence with My = M, 1 = {pt} the transposition as well
as insertion of the diagonal are trivial operations. Note that, beyond the grading, also the
monotonicity, compactness, and orientation assumptions (L1-2) on L transfer directly to
properties (L1-2) for L) and L(y. Similarly, a relative spin structure on L induces compat-
ible relative spin structures on Lg) and L), see [23]. Moreover, we say that L is monotone
if the pair of Lagrangians (L(g), L(1)) is monotone in the sense of Definition £.1.2(b). If this
is the case, then a graded Floer cohomology for L can be defined by

HF(L) := HF (L), L1))-

Remark 4.3.2. To see that HF(L(q), L)) is well defined we need to make sure that L
and L1y also satisfy (L3), or that the bubbling of holomorphic discs is otherwise excluded.
Note that the assumption (L3) on the factors of L does not directly transfer to the product
Lagrangians L) and Ly since a difference of Maslov numbers greater than 3 could give
a total Maslov number less than 3. However, if we use a split almost complex structure
J = Jo®...d J. on M, induced from compatible almost complex structures Jj, on each
M, then any nonconstant holomorphic disc in M with boundary on L) or L1y will simply

4 This shift is necessary in order to fit in the canonical relative spin structure for the diagonal Ay, see
[20] for details.
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be a product of Ji-holomorphic discs. Pairs of these discs take boundary values in the
Lagrangian correspondences L _1), which satisfy the monotonicity assumptions as well as
(L3). Hence each of these double discs must have nonnegative area and hence index, and
at least one of them has positive area and hence Maslov index at least 3.

The proof that transversality can be achieved with an almost complex structure (and also
Hamiltonian perturbation) of split type can be found in Theorem [(5.2.3land Proposition 52T
below. This excludes bubbling such that 9% = 0 for this specific choice of perturbation data
(and hence for any other choice of regular perturbation data). So the Floer cohomology
HF (L), L(1)) is indeed well defined.

In the case of a non-cyclic sequence the Floer cohomology HF (L) specializes to
HF(Ll,LIQ,. .. 7L(r—1)raLr) = HF(L1 X L23 X oo, ,L12 X L34 X .. )
In particular we reproduce the definition of Floer cohomology for a pair of Lagrangians

Ly, L; C M, viewed as cyclic correspondence {pt.} Lo,y Ly {pt.}. We moreover define
a Floer cohomology for any Lagrangian L C M~ x M, viewed as cyclic correspondence
ML m , in particular for graphs L = graph(¢) of symplectomorphisms ¢ : M — M. By
definition, this invariant is HF'(L) := HF (L, As), which reproduces the Floer cohomology
HF(graph(¢)) = HF(graph(¢), Ayr) = HF(¢) of a symplectomorphism.

5. QUILTED FLOER COHOMOLOGY

The purpose of this section is to reformulate the definition of Floer cohomology for
generalized Lagrangian correspondences in terms of quilted surfaces (consisting of strips).
As in Section [4.3] consider a cyclic generalized Lagrangian correspondence L, that is, a
sequence of symplectic manifolds My, M1, ..., M,, M, with My = M, for r > 0, and a
sequence of Lagrangian correspondences

Ly C M(; X My, L3 C Mf X My, ..., Lr(r+1) C M, X Myy.

5.1. Unfolding of Floer cohomology in products. We defined the Floer cohomology
HF(L) as the standard Floer cohomology in the product manifold M = M, x My x M, x...
of a pair of Lagrangians L), L(1) that is built from the cyclic sequence L. We will show
how quilts arise naturally from ”unfolding” this construction and phrasing it in terms of
tuples of holomorphic curves in the M;.

Informally, HF(L) can be viewed as the Morse homology on the path space

P(Loy, Lry)) = {y : 10,1] = M |y(0) € L), y(1) € Ly}

of the (potentially multivalued) symplectic action functional

1
As(y) = / vwe ot / H(t,y(1))dt.
[0,1]x[0,1] 0

Here v : [0,1] = P(L(g), L(1)) is a smooth homotopy from a fixed v(0) = yo € P (L), L(1))
(in a given connected component) to v(1) = y, which can also be viewed as map v :
[0,1] x[0,1] — M satisfying Lagrangian boundary conditions on {0} x[0,1] and {1} x [0, 1].

Suppose for now that 7 is odd, then the path space can be identified with the set of tuples
of paths in the manifolds M, connected via Lj;,)-matching conditions at the ends,

P(L) = {z = (2;: [0,1] = Mj) ;. [(2;(1),2551(0) € Lj(jam) }-
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Here and throughout we will use the index j € {0,...,r} modulo r+1, so e.g. 41 := zp and
the matching condition for j = r+ 1 is (2,(1),29(0)) € L, 41)- We make the identification
with P (L, L)) by y(t) = (zo(1 — t),x1(¢),2(1 — ¢),...,z.(t)), then the unperturbed
(H = 0) symplectic action functional on P(L) becomes

Ao(z) = / viwp,.
o) ]z:% 0,1]x[0,1] ° Mi

Here vj : [0,1] x [0,1] — M; interpolate between fixed paths v;(0,-) and v;(1,:) = z;, and
satisfy what we will call "seam conditions” (v;(s,1),vj11(s,0)) € Lj¢41) for all s € [0,1].
Next, assume that the almost complex structure on M is of time-independent split form
J=(-J)® 1 ®(=J) ... ® J,, given by a tuple J; € J(M;,w;) of almost complex
structures on the factors of M. This defines a metric on the path space, and the gradient
flow lines, viewed as PDE’s are the J-holomorphic strips w : R x [0,1] — M with boundary
values in L) and L(;). They are in one-to-one correspondence with (r + 1)-tuples of J;-
holomorphic maps u; : R x [0, 1] — M; satisfying the seam conditions

(uj(s,1),u541(5,0)) € Ljij41), forallj =0,...,r, s€R.

Here we again use cyclic notation u,41 := ug, and the correspondence is given by w(s,t) =
(UO(SJ L —1t),ui(s,t),uz(s,1 —1),... ,UT(S,t))-

For r even there is a slight modification of the previous correspondence. The product
manifold M has two factors My and M,41 = My matched up via the diagonal. So the
path space can be identified with the generalized path space P(L) as above with the ex-
ception that the path zg : [0,2] - My in My = M, is parametrized by an interval of
length 2 and satisfies the matching condition (z¢(2),z1(0) € Lo at its end. Similarly, a J-
holomorphic strip w : Rx[0,1] — M corresponds via w(s,t) = (uo(s, 2—t),u1(s,t),us(s,1—
t) ... up(s,l —1t),uo(s, t)) to a tuple of Jj-holomorphic strips as above, with the exception
that the strip wp : R x [0,2] — My has width 2. This tuple (u;)j—o,.. , is the first instance
of a nontrivial pseudoholomorphic quilt — containing strips of different widths.

When r is even, the Floer trajectories of the pair L(q), L(1) in fact cannot be identified with
an (r + 1)-tuple of pseudoholomorphic maps, all defined on strips of width 1, with seam
conditions in Lj(j;1). Conformal rescaling tg(s,t) := uo(2s,2t) would result in a ”time-
shifted” matching condition (ug(s, 1), u1(2s,0)) € Lo unless u; is rescaled, too, which would
result in %o having width 1 but all other strips having width % In fact, only simultaneous
rescaling of all components in these pseudoholomorphic quilts preserves holomorphicity and
seam conditions (unless the Lagrangian correspondences are of split type, e.g. Loy = Lo x Ly
for Lagrangians L; C M;). It cannot change the relative widths of strips.

By a reparametrization of the path in My, one could identify P(L(O),L(l)) and the action
functional with the generalized path space P(L) and a corresponding action functional,
where all paths are parametrized by [0, 1]. However, the reparametrized g (s,t) := ug(s, 2t)
now satisfies 0,4 + %Jg@tﬂg = 0 with a no longer complex structure %Jo that squares to
—%. This is due to the fact that the pullback of the metric on P(L gy, L(1)) to P(L) is the
L?-metric on each factor with respect to w;(-, J;-) for j = 1,...,r but %wo(-, Jo-) on My. We
could drop the factor % in the metric on My to obtain Jj-holomorphic strips of width 1 in
each factor as trajectories, however these would be the ”gradient flow lines” with respect to
a different metric. In general, it is not know how Floer homology behaves under a change of
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metric. However, we will show that it is independent of the choice of weights 5]-_1wj(-, Jj+)

in the L?-metric on P(L). This setup is equivalent to defining the generalized path space
with varying widths «; : [0, ;] — M; but fixing the standard L?-metric induced by wj and
J;j on each factor.

5.2. Construction of quilted Floer cohomology. In the quilted setup for HF (L) we
fix widths 0 = (6; > 0);—o,..., and consider the generalized path space

P(L) = A{z = (2 : [0,0;] = M), [(i(8;),241(0)) € Ljj11) }-
We define a perturbed symplectic action functional on P(L) by picking a homotopy v =
(vj)j=o0,...r : [0,1] = P(L) from a fixed v(0) to v(1) = z and setting
r 6]
An@) =Y ([ o+ [ (e as0)ar)
j:O [O,I]X[U,(Sj} 0
using a tuple of Hamiltonian functions

H = (Hj € C™([0, ;] x Mj))j:[],...,r'

By folding and rescaling as in the previous section, this is equivalent to the path space
P(L(O), L(l)) with symplectic action functional perturbed by a Hamiltonian of split type,
eg H= Z;ZO(—l)j+16jﬁj for r odd, where H,(t,x) = H;(3;t,z) for j odd and H;(t,z) =
H;(6;(1—t),z) for j even. Here the critical points correspond to the perturbed intersection
points quI(L(O)) N L), where #1! is the time-one flow of H. In the quilted setup, the critical
points of Ay are tuples of Hamiltonian chords,

j(t) = X, (z;(t)),
Z(L) = {z = (z; :[0,0;] = Mj) ., (#(5,), 2741(0)) € Ljj) } :

Z(L) is canonically identified with x

4110 (L01 X i Lisg... X¢§“ LT(TH)), the set of points
41 T

%0
H.
{(mo,...,m;) € My x ... x M,| (¢5," (), mjg1) € Li(is1) }

where nggj is the time 0; flow of the Hamiltonian H;. In this setting we can check that
Hamiltonians of split type suffice to achieve transversality for the intersection points.

Proposition 5.2.1. There is a dense open subset Ham(L) C @5_oC*([0,d;] x M;) such

that for every (Hy, ..., H,) € Ham(L) the set X 5o (L01 X s Liy... X yHr Lr(r+1)) is smooth
do 41 [

and finite, that is, the defining equations are transversal.

Proof. By assumption Lj(;;1) is an embedded submanifold of Mj; ) := M; x Mjy, and
so locally Lj(j1) is the zero set of a submersion ;1) : Mj(j1) = R *7j+1, The defining
equations for X¢g)0 (L01 X¢§{11 L12 . X‘i’f;{: Lr(r+1)) are

(23) Yii+1) (¢g] (m;), mj_|_1) =0 forallj =0,...,r

Consider the universal moduli U/ space of data (Hy,..., H,,mg,...,m,) satisfying (23),
where now each H; has class C* for some ¢ > 2. The linearized equations for I are

H; .
(24) D¢j(j+1)(D¢§j] (hj, ’Uj), ’Uj+1) =0 for all ] = 0, ey T
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for v; € Ty, M (with vy 41 :=vg) and h; € C*([0,1] x M;). The map

CH([0,1] x My) = T,u; My, by~ Dy (hy,0)
S

s (my)

is surjective, which shows that the product of the operators on the left-hand side of (24))
is also surjective. By the implicit function theorem ¢/ is a smooth Banach manifold, and
we consider its projection to GBZZOCZ([O, dk] X My). By the Sard-Smale theorem, the set of
regular values (the set of functions H = (Hy,..., H,) such that the perturbed intersection
is transversal) is dense in ®_,C*([0,8;] x Mg). On the other hand, the set of regular
values is clearly open. Hence the set of smooth functions that are regular values is open
and dense. 0

With this split Hamiltonian perturbation we have a canonical bijection of critical points
¢t (L(o))NL(1) = Z(L), and hence the (graded) Floer chain group CF(L(g), L)) is identified

with
CF(L):= @ crir), CcriL:= @ z@).
d€Z N 2€I(L),|lz|=d
The grading is defined as in Section B.1]
(L) = ¢ (L)) N Ly = Zn, 2=y Jyl = |z,
Next, fix a tuple of almost complex structures
I = (Jj)j=0,..r € ®j=oC™([0,9;], T (Mj,w;)) =: Ji(L)

and equip P(L) with the L?-metric induced by the t-dependent metric w;(-,J;-) on each
factor M;. Then the Floer trajectories (obtained by reformulating the gradient flow as
PDE) are (r 4 1)-tuples of maps u; : R x [0,d;] — M; that are (J;, H;)-holomorphic,

(25) gjj’H]-Uj =85Uj+Jj(8tUj —XH].(UJ')) =0 Vi=0,...r
and satisfy the seam conditions
(26) (uj(s,05),uj+1(5,0)) € L) Vi=0,...r, seR

For a Floer trajectory to be counted towards the differential between critical points z* €
Z(L) we moreover require finite energy and limits

27) E(u) := / wiw;i+d(H;(u;)dt) < oo, lim w;(s,")=xF Vj=0,...,r
o) Bi= Y [ o) lim_uy(s,) = o3
L.
)
L(rfl)r ________________ _E%
— . — =00
Lr(r—i—l)
112 t
________________ Lt
T (r—2)(r-1)
7

FIGURE 1. Quilted Floer trajectories for My = {pt} and in general
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As in standard Floer theory, the moduli spaces of ”quilted holomorphic strips”
M(z™,z") = {u= (v : Rx[0,6;] = My),_, | (@5), @6), 2D}/R

arise from quotienting out by simultaneous R-shift in all components uj. (Separate shifts
will not preserve the seam condition unless the correspondences are of split type.) We will
see that they have the same Fredholm, exponential decay, and compactness properties as
usual for Floer trajectories. For that purpose we restrict ourselves to the monotone case.

Remark 5.2.2. The "monotonicity for Floer theory” assumption for the pair (L, L(1)) in
Definition [4.1.2] can be phrased directly for L in the language of [22]: ”L is a monotone
boundary condition for the quilted cylinder”. That is, the action-index relation

2Z/u;fwj=r-1((u;TMj)j_0, o (855G T L 41)) =0, )
=0

holds for each tuple of maps u; : S' x [0,0;] — M; that satisfies the seam conditions
SiG+1)(8) = (uj(s,05),u5+1(8,0)) € Ljj41) for j = 0,...,r. Here the topological index I
is defined by choosing a trivialization for each ujT'M; and then summing over the Maslov
indices of the loops s* i TLj(j41) of Lagrangian subspaces with respect to these trivial-
izations.

Note that the monotonicity condition for L is independent of the width ¢; of the annuli
that parametrize the maps u;. Moreover, it implies monotonicity for the sequence L' =
(Lots -5 Lgj—1)j © Ljj+1)s - - - » Lyp(r41)) Obtained from an embedded composition L;_;

J+1)

)i ©
Lj(j41)- To see the latter note that any seam condition s(;_1)(jy1) St — Lii—1y; ° Lji+)
induces a smooth map u; : ! x[0,1] — M; that is constant in [0, 1], fits the seam conditions
for L, but contributes zero to both energy and Maslov index. Hence the action index relation

for L implies the same relation for L'.

Theorem 5.2.3. Suppose that the symplectic manifolds M; satisfy (M1-2) with the same
value of the monotonicity constant 7, the Lagrangian correspondences Lj(;j 1y satisfy (L1-2),
and L satisfies the monotonicity assumption of Remark [5.2.2.

For any choice of widths § and regular Hamiltonian perturbations H C Ham(L), there
exists a subset J;®(L; H) C Jy(L) of Baire second category, such that the following holds
forallz, € Z(L).

(a) M(z_,z,) is a smooth manifold whose dimension near a nonconstant solution u
is given by the formal dimension, equal to Ind(D,) — 1. Here D,, is the linearized
operator at u of (28)) on the space of sections satisfying the linearized boundary- and
seam conditions of (28]).

(b) The component M(z_,z,)o C M(z_,z,) of formal dimension zero is finite.

(c) Suppose that each L1y has minimal Maslov number Nrjiy 2 3 Then the
one-dimensional component M(z_,z,)1 C M(z_,z,) has a compactification as
one-dimensional manifold with boundary

(28) OM(z_z ) = | Mlz_,2)ox M(z,z,)
z€Z(L)

(d) If L is relatively spin (as defined in Definition[{.53.1)), then there ezists a coherent set
of orientations on M(z_,z_)o, M(z_,z )1 for all z € Z(L), that is, orientations
compatible with (28]).
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Proof. Suppose for simplicity that r is odd. (For even r we can insert a diagonal into

the sequence L, then the quilted holomorphic strips of widths § can be identified with

quilted holomorphic strips for the new sequence with widths (%0,51,...,&, %0)) Then

the quilted moduli space M(z_,z +) is canonically identified with the moduli space of

(Js, H)-holomorphic maps w : R x [0,1] — M with boundary conditions w(R,0) C L),

w(R, 1) C Ly, finite energy Ey(w) < oo, and limits lims 100 w(s, ) = 24 € Z(L(g), L1))-
The correspondence is by

w(s,t) = (uo(s, do(1 = 1)), ur(s,d1t),u2(s,da(1 —1)),...,u.(s, 5rt)),
where H = Z;ZO(—l)jH&jﬁIj as above and
Js = (=05 "Jo(So(1 = ), 6, "1 (01t),. .., 6, (6,1))

satisfies all properties of a {-dependent wy;-compatible almost complex structure except that
it squares to the negative definite diagonal matrix J2 = — (3, *Idra, @ ... ® 6, 21drar, ).
This still presents an elliptic boundary value problem of the form 0, + D, where the
linearizations of D are self-adjoint operators. Hence the Fredholm property, energy-index
relation, exponential decay, compactuness, and gluing properties carry over directly from the
case of holomorphic curves. One crucial component is the spectrum of the operator Js0; on

L?([0,1],TM) with boundary conditions in Td){{(L(O)),TL(l). Since the boundary condi-
tions are transverse on the ends, we have a spectral gap ensuring exponential decay. In fact,
the decay rate is uniform for bounded (but possibly small) widths, as proven in [21]. Spec-
tral crossings correspond to intersections of the Lagrangian subspaces, as in the standard
case, and hence index calculations reproduce the Maslov index. For the compactness of
index 0 and 1 moduli spaces it suffices to exclude bubbling by considering a single blow-up
point for the gradient. This analysis is local, in the interior of one component u; (leading to
a Jj-holomorphic sphere in M;) or near a seam, where we can consider u;(s, —t) X uj41(s,1)
as (—Jj) ® Jj41-holomorphic curve with boundary condition in Lj¢j+1)- The latter type of
bubbling hence leads to a holomorphic disc in M ;X Mjp with boundary on Lj;(;,1), which
are excluded by our assumptions on the minimal Maslov index.

To see that there exist regular ”deformed complex structures” Js € J;“ (L(O),L(l); H)
of split form, arising from a choice of J, we note that the unique continuation theorem [4,
Theorem 4.3] applies to the interior of every single nonconstant strip u; : R x (0,0;) — M;.
It implies that the set of regular points, (sg,tp) € R x (0,9;) with dsu;(so,t0) # 0 and
uj_l(uj (RU{£00}),t0) = {(s0,%0)}, is open and dense. These points can be used to prove
surjectivity of the linearized operator for a universal moduli space of solutions with respect
to split almost complex structures. (The constant solutions are automatically transverse
due to the previously ensured transversality of the intersection points ¢ (Loy) M Lyy.) The
existence of a Baire second category set of regular J then follows from the usual Sard-Smale
argument as in [10].

Orientations can be defined as in the standard Floer theory since the linearized op-
erator canonically deforms through Fredholm operators to a standard Cauchy-Riemann
operator. The deformation transfers to the setup with H = 0 (changing L) and also
Js by a Hamiltonian transformation) and then deforms Js through the endomorphisms
(exp(T Indp)Idrpsy, - - - ,exp(7In 6T)IdTMT) o J;s to a true almost complex structure at 7 = 1.

O
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Now, assuming monotonicity and choosing regular H and J we can define the Floer ho-
mology H F(L) just as in the standard case: The Floer coboundary operator 0% : CF%(L) —
CF4*L(L) is defined by

e )= Y (X ew)i),

2, €I(L) ueEM(z_,z )0

where the signs € : M(z_,z,)o — {£1} are defined by comparing the given orientation to
the canonical orientation of a point. It follows from Theorem 5.2.3] (¢) that 9% = 0, and 0
is a map of degree 1 by index calculations as in the standard case. This defines the quilted
Floer cohomology

HF(L):= @ HF' (L), HFL):=ker(0")/im(0* ")
d€Z N

as Zn-graded group. It is independent of the choice of H and J by a standard construction
of continuation maps. The same construction also allows for a deformation of the widths
d, in the folded setup of the above proof, where the d; are merely scale factors in the
endomorphism Js. For a more conceptional proof based on quilts interpolating between
strips of different widths see Section [£.3] below.

Remark 5.2.4. One can also allow the sequence L to have length zero (that is, the empty
sequence) as a generalized correspondence from M to M; this is the case r = —1 in the pre-
vious notation. In this case we define HF (L) = HF(I1dyy), the cylindrical Floer homology.
This would be the case without seams in Figure [l

5.3. Invariance of quilted Floer cohomology and relative quilt invariants. The
purpose of this section is to prove the independence of quilted Floer cohomology from the
choice of perturbation data, in particular the choice of widths.

Consider a cyclic generalized Lagrangian correspondence L = (Lk(k +1)) k=o0,...r Satisfying
the monotonicity conditions of Theorem [5.2.3l Fix a tuple of widths 0 = (6x)k—o,.. . Then
Proposition 5.2.1] and Theorem [5.2.3] provide tuples of Hamiltonians H = (Hy)g=o..., and
almost complex structures J = (J;)k=o,..., such that the Floer homology HF(L) can be de-
fined by counting quilted Floer trajectories u € M(z~,z") between generalized intersection
points z* € Z(L).

In the language of quilted surfaces developed in [22] the Floer trajectories correspond
to the holomorphic quilted cylinders u € Mg(z~,z") with K = (Hpdt)g=,. , and J =
(Jk)k=0,...r- Here the quilted surface is the quilted cylinder Z whose patches are strips (S =
R x [0, 6%])k=0,...r of the given widths with the canonical complex structure and the obvious
(up to a shift chosen as £1) ends €, : R x [0,6;] — Sk, (s,t) — (s,£1 +t). The seams
are o = {(k,R x {d;}),(k +1,R x {0})} for £ =0,...,r modulo (r + 1), with seam maps
by, 2 OSk D (8,0k) = (5,0) C OSk41. This quilted surface is shown on the right in Figure[Il
There are no remaining boundary components except for in the special case of a noncyclic
sequence with My = {pt}, which is indicated on the left in Figure[Il In that case Z has no
seam o, between S, and Sy but true boundary components (0, R x {0}) and (r,R x {d,}).
The ends of the quilted surface are the incoming e = ((0, e_),(L,e_),...,(r e,)) and
the outgoing e, = ((0, er), (Leq),...,(r e+)). Note however that the perturbation data
(J, K) is R-invariant and the count for the Floer differential is modulo simultaneous R-shift
of all maps ug. That is, unlike in the definition of relative quilt invariants in [22], where no
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symmetries are divided out and index 0 solutions are counted, we here count the isolated
solutions M(z~,z")p = My(z~,z")1/R, which are pseudoholomorphic quilts of index 1.

The proof of independence of Floer cohomology from the choice of perturbations and
particularly the widths goes somewhat beyond the proof for standard Floer theory. It is
best formulated by using quilted surfaces that are not obtained by "unfolding of strips”.
With Proposition 5.3.1] below in place we can in particular identify the two definitions of
Floer cohomology HF (L) = HF (L), L)) for a cyclic sequence in Sections {.3] and
For that purpose one chooses special widths in the quilted setup of Section 5.2 namely
those that correspond by the discussion in Section [5.1] to the ”folded” Floer trajectories of
HF (L), L(1))- The proof of the Proposition however uses the notation and construction
of relative quilt invariants in [22].

Proposition 5.3.1. HF(L) is independent, up to isomorphism of Zy-graded groups, of
the choice of perturbation data (H,J) and widths § of the strips.

Proof. Suppose that (H?,J¢,8%) are two different choices for i = 0,1. For {i,l} = {0,1}
let Z; be the quilted cylinder as before, but with complex structures j; on each strip
Sk = R x [0,1] that interpolate between the two widths ¢ at the end (k,e_) and 4} at
the end (k,e;). In order for the seams to be real analytic we pick the standard complex
structure near the boundary components R x {0,1} C 0S; and only in the interior of Sy
scale to the appropriate width and interpolate. Figure [2l shows the example for » = 3 and
My = My = {pt}. We moreover interpolate the perturbation data on the two ends by

3

=
Itetely
b
Seleteleled

W o
=
S S e
KR R A R A R K R i Rt 3
e
K PRI I S M X ey
0

25
25
35

v
(00
40505

e
:’:2:2:2:2:?:?:020202.?&‘0‘ patars

A

[
2
B

FiGURE 2. Interpolating between two widths

some regular (K, J;) on Z;. The relative invariants, constructed in [22] from the zero-
dimensional moduli spaces, then provide maps between the corresponding Floer cohomology
groups
®y HF(L) —» HF(L)', ®y  HF(L)' - HF(L)".

The surface Zy#Z;, that is glued at {e_} = £ (Zy;) and {e,} = 1(Z;y) can be de-
formed with fixed ends to the infinite strip with translationally invariant perturbation data
(H',J',6). The invariant defined by the latter is the identity on HF (L)' since only con-
stant strips can contribute (all nonconstant solutions lie in at least 1-dimensional moduli
spaces due to the nontriviality of the R-action). Since the relative quilt invariants are in-
dependent of the above choices, the relative invariant ® 47 is the identity on HF (L)*
(and similarly for @7 7 ). Then by the gluing theorem for relative quilt invariants [22]
(where the sign is positive) we have

q)zm °© (I)Zlo = (I)Zm#glo = Id’ (I)Zlo °© q)zm = @510#501 = Id.

This proves that the Floer cohomology groups HF(L)? and HF(L)' arising from the dif-
ferent choices of data are isomorphic. O
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5.4. Geometric composition and quilted Floer cohomology. In this section we prove
and discuss the isomorphism (3]), more precisely stated as follows.

Theorem 5.4.1. Let L = (Lo, ... ,LT(H_I)) be a cyclic sequence of Lagrangian correspon-
dences between symplectic manifolds My, ..., M,11 = My as in Definition [2Z.1.3. Suppose

(a) the symplectic manifolds all satisfy (M1-2) with the same monotonicity constant T,
(b) the Lagrangian correspondences all satisfy (L1-3),

(c) the sequence L is monotone, relatively spin, and graded in the sense of Section [[.3,
(d) the composition L;_1); o Ljj11y is embedded in the sense of Definition [2.0.4)

Then with respect to the induced relative spin structure, orientation, and gmdingﬁ on the
modified sequence L' = (Lo, . .. s Lij—nyj o Ly - - - 7Lr(r+1)) there exists a canonical iso-
morphism of graded groups

HF(L) = HF\(... Lj_1)j; Lij41)---) — HF(... Lj_yyj © Lj(j41)...) = HF (L),
induced by the canonical identification of intersection points in Remark [3.1.3.
Before summarizing the proof let us mention the (im)possibility of various generalizations.

Remark 5.4.2. (a) The relative spin structures are only needed to define the Floer co-
homology groups with Z coefficients. Here we only prove the isomorphism with Zo
coefficients. The full result then follows from a comparison of signs in [23].

(b) There should also be versions of this result for Floer cohomology with coefficients
in flat vector bundles, and Novikov rings, using an understanding of their behaviour
under geometric composition, similar to the theory presented here for gradings. The
gradings on the Lagrangians can be dropped if one wants only an isomorphism of
ungraded groups.

(c) Note that the geometric composition L(;_yy;o Lj(j41) could be a smooth Lagrangian
despite the composition not being embedded. If this failure is in the transversality,
then our approach does not apply (as e.g. for a G-invariant Lagrangian L C p~*(0) in
the zero set of the moment map, whose composition with 3, is the smooth projection
Lo¥, = m(L) despite L not being transverse to u~'(0)). (For such Lagrangians one
would expect a correspondence between holomorphic curves in M /G and symplectic
vortices in M, in the spirit of [6] and the Lagrangian version of the Atiyah-Floer
conjecture [19].) However, when L(;_1); X a; Lj(j41) is transverse but a k-fold cover
of L(;_1)j © Lj(j+1), then the map of intersection points Z(L) — Z(L') is a k-to-1
map as well. In this case our analysis still applies and gives a k-to-1 map of moduli
spaces. This may lead to further calculation tools for Floer cohomology but needs
to be investigated on a case-by-case basis.

(d) The assumption (L3) on the minimal Maslov numbers is needed only to achieve
0? = 0 and thus make the Floer cohomology well-defined. In the absence of (L3)
we have 9% = wld, where w = w(Lo1) + ... + w(Ly(;41)) is the sum of numbers of
pseudoholomorphic disks through a generic point on each Lagrangian. So instead
of (L3), which implies w(L(;_yy;) = 0 for each j, we could assume w = 0. In case
w # 0, Theorem [5.4.1] generalizes to an isomorphism in the derived category of
matrix factorization, see [25].

5 The grading of L¢;_1y(j+1) is given by (I8), the orientation is given by Remark ZI6(b), and for the
relative spin structure see [23].
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(e) The monotonicity assumptions (M1) and (L1) cannot simply be replaced by other
tools which allow the definition of Floer cohomology (such as Novikov rings, twisted
coefficients, obstructions, or deformations). This is since a new type of bubbling
can occur in the strip shrinking that we use to prove the isomorphism. We have
called it the "figure eight bubble” and describe it in [2I]. However, we are lacking
the construction of a moduli space of figure eight bubbles. Our present method for
excluding these bubbles hinges on strict monotonicity with nonnegative constant
7 > 0 as well as the 2-grading assumption implied by orientations. In general, we
expect figure eight bubbles to be a codimension 1 phenomenon in a l-parameter
family of strip widths approaching zero. We hence expect the isomorphism to fail
in more general settings, except for special topological assumptions restricting the
expected dimension of figure eight bubbles. Eventually, we expect to construct
obstruction classes and an A.-type structure from moduli spaces of figure eight
bubbles, and to replace the isomorphism by a morphism of A,,-modules. However,
all of this depends on a basic removable singularity result for figure eight bubbles,
which has not yet been accomplished.

Theorem [£.4.1] is fairly obvious if one of the composed Lagrangians correspondences is
the graph of a symplectomorphism. It suffices to observe that symplectomorphisms map
pseudoholomorphic curves to pseudoholomorphic curves. However, there is no correspond-
ing effect for more general Lagrangian correspondences. Here the natural approach to
a proof is to degenerate the holomorphic curve equation in M; until solutions become
constant across the strip (or, equivalently, shrink the width of that strip to zero). This
limit corresponds to geometric composition of the two Lagrangian correspondences at-
tached to the strip. Clearly, most difficulties in this proof are localized near the degen-
erating strip. We thus banished the analysis to [2I], where we prove the special case
HF (Lo, Lo1, L12,Lo) = HF(Lg, Loy o L12, L2) of Theorem [5.4.1] by establishing a bijec-
tion between the Floer trajectories for (Lo, L2, L2) on strips of width (1,1) and those for
(Lo, Lo1, L12, Lo) on strips of width (1,6,1) for sufficiently small width ¢ of the middle
strip. These quilted Floer trajectories are shown in Figure Bl The missing piece of proof in

L;

FI1GURE 3. Shrinking the middle strip

[21] is the independence of the Floer cohomology from the choice of 6 > 0, which we here
established in Proposition [5.3.11

Summoary of proof of Theorem [5.4.1 For a start, the assumptions of the Theorem only
guarantee that HF'(L) is well-defined. By Remark [5.2.2] the monotonicity of L also im-
plies monotonicity of L’ and hence monotonicity in the sense of (L1) for L¢j—1yj © Lj(j41)-
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(Assuming the symplectic manifolds to be connected, any disk can be extended to a quilted
cylinder.) Compactness and orientation (L2) also holds for the composed correspondence,
but the minimal Maslov index condition (L3) may not. However, this only affects the ques-
tion whether w = 0 in 0? = wld on the Floer chain group for L'. To define the latter we
choose some widths §', Hamiltonian perturbations H' to make the intersection Z(L') trans-
verse, and almost complex structures J' to make the moduli spaces of Floer trajectories for
L' regular. Thanks to Proposition [5.3.1] we may then choose the same widths J except for
some small §; > 0, the same Hamiltonian perturbations H except for the additional H; = 0,
and the same almost complex structures J except for some additional time-independent
Jj € J(Mj,wj), to define HF(L). We only need to make sure that this choice makes the
intersection points Z(L) and the moduli spaces of Floer trajectories for L regular. The first
is automatically the case by the transversality assumption for L(;_1); Xar; Lj(j11), the latter
is true for d; > 0 sufficiently small and is proven as part of the adiabatic limit analysis [21].
(Actually, precisely following the constructions of [21], we can achieve transversality for L'
with Ji_; and Ji,, being time-independent near the seam; then J;_; and J;;; are obtained
by a slight linear dilation and constant extension near the new seams.) With these choices,
the Maslov index assumptions imply 0 = 0 on CF(L). Next, the injectivity assumption
for the composition L;_1y; Xn; Lj(j41) provides a canonical bijection of generalized inter-
section points Z(L') = Z(L) as in Remark B.1.3] In [21] we establish bijections between the
corresponding moduli spaces of Floer trajectories for d; > 0 sufficiently small. This means
that the Floer differentials on CF(L’) and CF(L) agree under the canonical identification
of generators. In particular that implies 9> = 0 on CF(L'). Hence both Floer cohomologies
are well-defined and isomorphic as claimed. O

Remark 5.4.3. To see that the assumption that the composition L(; _1y;0L;(;41) is embedded
is necessary, consider the case that r = 2 and My, My are points. In this case, if v :
R x [0,1] — M, is a Floer trajectory of index one with limits z* # 2~, we can consider the
rescaled maps vs : Rx [0,0] — M. In this case a figure eight bubble always develops in the
limit 6 — 0. This shows that the bijection between trajectories fails in this case.

6. APPLICATIONS
6.1. Direct computation of Floer cohomology.

Theorem 6.1.1. Let Loy C M, x My be a Lagrangian correspondence and suppose that the
Lagrangian submanifolds Ly C My and Ly C My are such that both Ly o Loy and Loy o Ly
are embedded compositions. Assume that My, My satisfy (M1-2), Lo, L1, Loy satisfy (L1-3),
and (Lo % Ly, Lo1) is a monotone pair in the sense of Definition[{.1.9 (b). Then there exists
a canonical isomorphism

HF(LU OLOlaLl) L) HF(L(),L(n OLl).

Proof. By Theorem [5.4.1] both Floer cohomologies are isomorphic to the quilted Floer co-
homology HF(Lo,Lgl,Ll) ZHF(LO XLl,L()l). O

Ezample 6.1.2. We begin with a “warm-up” example. Let N be a compact, simply-
connected, monotone symplectic manifold. The submanifold A;; := {(z1, 22, x3, 24)|z; =
zj} C N~ x N x N~ x N is coisotropic for appropriate choices of 1 <14 < j < 4. Then we
can identify

(29) HF(A14QA23,A12QA34) gHF(AN,AN) gH(N)
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with the homology of N. This follows from Theorem BT Tlapplied to Lo = Ay C N~ xN =
My, Ly = A12NA34s CN  XNXN~ xN = My, and Loy = {(w, z;w, z,z, 2)|w,z,2 € N} C
M, x M. Then the compositions Ly o Ly; = A4 N Az and Ly; o Ly = Ay are clearly
embedded. Monotonicity together with simply connectedness ensures the monotonicity of
all the Lagrangians and pairs of Lagrangians. Since N is orientable, all minimal Maslov
indices are at least 2. The reader can easily verify the identification ([29) using the fact that
the components of a holomorphic trajectory for (Ajq N Agg, Ajo N Agy) fit together to a
holomorphic cylinder v : S' x [0,1] — N.

The following is a more non-trivial example of Theorem [6.1.1]

Example 6.1.3. Let M, be the moduli space of Euclidean n-gons of edge length 1, as in for
example Kirwan [§]:

My, = (S2)")SO() = {(v1, -, va) € (S)"[o1 + ... + v, = 0}/SO(3).
We take on S? the standard symplectic form w with volume 47 so that ¢;(S?) = [w]. For
n > 5 odd M, is a monotone symplectic manifold with minimal Chern number 1 and
monotonicity constant 1. For example, M3 is a point and Mj5 is diffeomorphic to the fourth
del Pezzo surface, given by blowing-up of P? at four points [25]. For i # j the submanifold
Aij = {[v1,...,v,] € M, |v; = —vj} is a coisotropic, spherically fibered over M, _, by the
map that forgets v;,v;. The image of A;; in M, X M, is a Lagrangian correspondence,
also denoted A;;. For 4,7, k distinct the composition A;; o A;- i 1s embedded and yields the
graph of a permutation on M,,_s. For k =4+£1 or for 4,k = 7+ 1 this permutation is trivial,
so we have
Ajjo Al = Arsy  Agan); © Abjzr) = Aty

Now let L C M, 5 be a compact, oriented, monotone Lagrangian, and L;; = L o A;; be
its inverse image in M,. This composition is embedded and we can also identify it with
Lij = Afj o L. The latter allows to calculate

Aijoij; :Ai]’OA;kOL:
For i, j, k distinct it is an embedded composition, which yields the image of L under permu-

tation. Suppose that the pair (L, L) is monotone, so that HF (L, L) is well-defined. Using
Theorem [6.1.T] we can also (define and) calculate

HF(Lij, Lj+1)) = HF (L o Aij, Ljit1y) = HF (L, Ajj o Lji_y)) = HF(L, L).
and similarly HF(L(]il)], L_’](y¥l)) = HF(L, L) .
The papers [24], [25] give many other similar examples.

6.2. Computations in CP". In this section we demonstrate, at the example of CP", how
some Floer cohomologies in toric symplectic varieties can be calculated by reduction. We
equip CP" = {[z] = [20 : z1 : ... : z,]} with Fubini-Study symplectic form and moment
maps u;([z]) = 7|z;|*/|z|* for j = 1,...,n. We denote by

Zj = {([---Zj—l DRt ], [ZO el Zn]) ‘,U*j([ZO el Zn]) = nLH} C ((C]P)n_l)_ x CP"

the Lagrangian sphere arising from reduction at the level set
-1 2
14 (nL_i.l)z{[Zo1---12n]‘2j=\/%+172i¢j|2i| =nL+1}

Note that the reduced space, e.g. p, ' (757)/S" = {[20 : - zn—1] | >zl = /St for
j =mn, is CP"! with Fubini-Study form scaled by 747> hence has the same monotonicity
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constant 7 = n*1% = (n+ 1)"'7 as CP". (Recall that the generator CP! C CP" of

72 (CP™) has Fubini-Study symplectic area 7 and Chern number n + 1.)
More generally, for each 1 < k < n a Lagrangian correspondence

Sy = {20 - znal 20 st 2]) [ () = 5 W9 2 k) € (CPPY) ™ x CP™
arises from reduction at the level set
k—1
(e % X i) Mo 5) = {12 | ok = el = = Janl = e 3l = 5 |
i=0
Here again the reduced spaces CP* ' = {[z) : ... : zp_1]| 3 |zil? = niﬂ}/S1 carry scaled

Fubini-Study forms with monotonicity constant 7 = 7. Moreover, note that X ),
diffeomorphic to the product of an (n — k)-torus with a (2k — 1)-sphere, can be viewed
as Lagrangian embedded in (CP¥~!)~ x CP™ and also as coisotropic submanifold of CP".
One can check explicitly that the Lagrangians ¥ ) are monotone, and we will see in
Corollary below that they are nondisplaceable by Hamiltonian diffeomorphisms. The
reason is that as coisotropic they contain the nondisplaceable Clifford torus

™ 1

T&:(mx...un)_l(n—ﬂ,...,niﬂ):{[g]‘z0:|z1|:...:|zn|: n+1}C(CIP>”.

That T is the only nondisplaceable fibre of the torus fibration is known by e.g. [2]. Its Floer
cohomology was calculated by Cho [3] with all possible spin structures. Here we reproduce
this calculation for the standard spin structure, employing the above Lagrangian correspon-
dences and the isomorphism of Floer cohomology under embedded geometric composition
(Theorem [5.4.T]). This approach also allows for a direct computation of Floer cohomology
for any pair of nonstandard spin structures on 7%, which we will discuss in[23].

Theorem 6.2.1. [3] For any n € N with the standard spin structure (given by [3, Prp.8.1])
HF(TY, TY) = H,(T") = 7.2
Proof. The isomorphism between the Floer cohomology and the homology of the Clifford
n-torus follows inductively from the following chain of isomorphisms:
HF (T8, Tth) = HF (T 0 S, ), B1 0 TG )

=~ HF(T&, S, ), S5LTE)
(30) = HF(Té), B(a,...m) © 21,10y 1)

> HF (T, Toy < T L TE

=~ HF(Tq, Th) @ HF(TET TE.
Let us go through this step by step: The geometric composition Tél o X,.n) = I I8
the preimage of T}, under the projection (2 X ... x ,un)*l(nLH, i) & CP!, hence
automatically embedded in the sense of Definition .04l Similarly, T3, Loy, = T¢, is the

™

preimage of 77! under the projection ,ul_l(n—ﬂ) — CP"!, and by transposition we obtain

the embedded composition X o T L= T, Finally, the intersection

t ~ —1 -1
B ¥een B ¥ (02 % o) 7 (G0 7)) O (75) = TG € CPT
is transverse and embeds to

2(2,“%) o Zi = {([zo cz1),[z0 t 22 zn]) ‘ [z] € T&} = Tél X Tgfl c CP! x Cp™—1.



QUILTED FLOER COHOMOLOGY 39

To make sure that Theorem [(.4.1]indeed implies all the above isomorphisms of Floer coho-
mology, it remains to ensure that the maximally decomposed tuple (T}, X(2,.n) Z;, Too o)
is monotone. That follows from the monotonicity of all factors together with the torsion
fundamental groups of the symplectic manifolds involved. Moreover, it turns out that we
need not worry about the minimal Maslov indices 2. This is since the proof of Theorem [5.4.1]
provides, for certain choices of perturbations, a canonical identification of the Floer chain
group CF (T, T¢)) with each of the other chain groups in (B0), under which the Floer dif-
ferentials agree. Since we have 9 = 0 on the first chain group (see [L1]), the differentials on
all the other chain groups also square to zero, making the Floer cohomologies well defined.
So, strictly speaking, our calculation uses the derived version of Theorem [(.4.11

Moreover, we need to fix spin structures on 75 Land ¥, as well as on Tél and Xz, )
such that the induced spin structure on the composition, T{} is the standard one. For the
Clifford tori we pick the standard spin structure given by the trivialization of TT@1 c CFin

the coordinate chart CF = {2, = \/%H} C CP*. On the sphere ¥; C CP™ we fix the spin
structure given by the standard orientation in the chart {z; = \/%4—1} (The orientation
provides a trivialization over the 0-skeleton, which coincides with the 1- and 2-skeleton of
this sphere of dimension > 3; see [3] or [23] for more details on spin structures.) We can

read off the standard spin structure induced on T3 from the identification
TTY = pr*TTH '@ B,  E= (pr*TCP" )" C TSy|m,.

Here TCP" ™| 1 = TT&_1 ©ITTE !inherits a trivialization from Tgl_l, so the orientation
Cl

of ¥; induces a trivialization of the line bundle E (given by the linearized action of ;).
For the spin structure on Xy ) C CP"we identify X ) = T2 . 83 with the orbit

3 _ RV S .1 2 2 _ 2
of the sphere S = {[z : 2 : VoS m] ‘ |z0]” + |z1]” = n—-l-l} C CP™ under the
action of the torus 772 C C"2 in the z3,...,z,-coordinates. If we pick the standard

trivialization of 772 and the standard orientation of S* C C? in the above chart, then
again the standard spin structure is induced on T, by the identification

T TH = T T © To(T"7%2) @ Fiap ), F = (pr*TCPY) C TS| .

Here T(CIE’>1|T(1jl = TT}, ® iTTY, inherits a trivialization from T}, so the orientation of S*
induces a trivialization of the line bundle F'.

Finally, we know from elementary curve counts (see e.g. [3]) that, with the standard spin
structure on both factors, HF (T}, TL) = Z® Z = H.(S' = T'). Since the homology
H,(T™) satisfies the same inductive relation (30) as the Floer cohomology that proves the
theorem. 0

This Floer cohomology calculation directly generalizes when replacing Tél C CP! with
another Lagrangian submanifold in a possibly higher dimensional complex projective space.

Theorem 6.2.2. Let 1 < k < n and let L C CP* be an oriented, monotone Lagrangian
submanifold. Denote by pr : (pgr1 X ... X ,un)*l(niﬂ,...,niﬂ) — CP* the reduction of

CP" by the (S*)" *-action at the monotone level set. Then pr—'(L) C CP" is a monotone
Lagrangian submanifold and
HF(pr\(L), T8) = HF(L, Th) @ H,(T").

Here we assume that 0° =0 on CF(L,T(ISI); otherwise the above isomorphism holds in the
category of derived matriz factorizations, see [25].
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Proof. Denote by % ) C (CP™*)~ x CP™ the Lagrangian correspondence arising from

reduction at the level set (u; x ... X uk)_l(nLH, ooy 747) C CP". Then

B(kt1,...n) X 2?1,...,1@ 2 (fhpg1 X - i) G ) O (X i) T G ) = T

is transverse and embeds to X1 ) © Z'El k) = T(’j“l X Tgfk C CP¥ x CP"*. Now in
complete analogy to the proof of Theorem [6.2.T] above, we have a chain of isomorphisms

HF(pr (L), T8) = HF(L o S411,..n), S, k) © 757"

= HF(L, X (k41,...n)» 2%1,...,k)’Tgfk)

= HF(L, X (k41,..m) © 201, gy T01 ")

= HF(L,TE x To 5 1o ’“)

=~ HF(L,TE) ® HF (T F, 187F).

This finishes the proof since HF (T{ k IO Y =~ H,(T™ %) by [3] or Theorem G211 O

Theorem [B.2.2] applies, for example, to RP! ¢ CP! and yields another Lagrangian torus
pr~ ! (RP!) ¢ CP" with

HEF(pr™ (RPY), T8) = HF(RP, Th) ® H,(T"~") = H,(T™).

More generally, Theorem [6.2.2] applies to odd real projective spaces RP¥ ¢ CP* for k =
20 — 1 > 3 with Zo-coefficients. @pBy explicit calculation due to Alston [I] the underlying
Floer cohomology is

HF(RP?H 1201 = 72

Now our calculations in Theorem [6.2.2] provide with Zg-coefficients
£ _
HF(pr—l(Rﬂpﬂ—l),T(ijfl) ~ HF(R]P)N—l,T(ijfl) ® H, (T8172l+1) o Zg +2(n 2[+1)'

6.3. Detecting nontrivial Floer cohomology of a Lagrangian correspondence. In
this section we provide a tool for deducing nontriviality of Floer cohomology and hence
nondisplaceability of a Lagrangian correspondence itself (as Lagrangian submanifold).

Theorem 6.3.1. Let Loy C M, x M; be a Lagrangian correspondence. Suppose that
there exists a Lagrangian submanifold Ly C My such that Ly := Loy o Ly is an embedded
composition and HF (Lgy, Ly) # 0. Assume that My, My satisfy (M1-2), Ly, L1, Loy satisfy
(L1-8), and (Lo x L1, Lo1) is a monotone pair in the sense of Definition [{.1.9 (b). Then
the Lagrangian Loy C My x My has nonzero Floer cohomology HF (Lo, Lo1) # 0.

Proof. The assumptions guarantee that H F'(Lg, Ly) = HF (L, Loy, L1) = HF (Lyx Ly, Lo;)
are all well-defined and isomorphic, hence nonzero. Now H F(Ly x L1, L¢1) is a module over
HF(Ly1, Lo1), where the multiplication is defined by counting pseudoholomorphic 3-gons,
see e.g. [17] or [20]. The unit 15, € HF (Lo, Lo1) is defined by counting pseudoholomorphic
1-gons; it is nontrivial since it acts as identity on a nontrivial group. Hence H F(Lg1, Lo1)
contains a nonzero element, as claimed. [l

6 The number of holomorphic discs through a generic point is 0 for RP* (which has minimal Maslov
number k41 > 3 for k > 2) and it is k + 1 for T& by [3], hence 8 = 0 on CF(RP*, TE,) only holds for odd
k and with Z» coefficients.
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Corollary 6.3.2. Let X C M be the level set of the moment map of o Hamiltonian G-
action. Suppose that X contains a G-invariant Lagrangian submanifold L C M such that
HF(L,L) #0 and pr(L) C ¥/G = MJ/G is smooth. Assume that M, M |G satisfy (M1-2),
Y, L,pr(L) satisfy (L1-3), and (pr(L) x L,X) is a monotone pair in the sense of Defini-
tion[{-1.2 (b). Then HF(¥,%) # 0.

Proof. This is a case of Theorem [6.3.1] where Ly = pr(L), and the composition X o pr(L) =
pr!(pr(L)) = L is automatically embedded. O

The following example in case k = n = 2 was initially pointed out to us in 2006 by
Paul Seidel; we since learned of alternative proof methods by Biran-Cornea and Fukaya-
Oh-Ono-Ohta. We use the notation of Section 6.2} in particular ¥,y C (CP"=1)~ x CP™ is
a Lagrangian 2n — 1-sphere arising from reduction at the level set p 1(RLH)

Corollary 6.3.3. For every 2 < k < n the Lagrangian embedding Yy, . ) C ((CIP’k_l)_ X
CP"™ of (S)"F x S%k=1 is Hamiltonian non-displaceable.

Proof. By construction X ) is the correspondence arising from the level set of uj x ... %
pn at the level (77, . .., 777) which contains the nondisplaceable Clifford torus Tty C CP™.
The projection pr(1¢)) = T¢ o Xx,...n) is the Clifford torus Tgl_l C CPF~!. The Clifford
tori as well as ¥4 ,) are monotone with minimal Maslov number 2 (except for k = n
when %, is simply connected), but as in Section we need not worry about its minimal
Maslov index or Oh’s number of disks through a generic point. The derived version of
Theorem [(5.4.Tl provides an isomorphism between H F (Tgf L Ek,..n), Tey) and HF (T, TE),
which is well defined by [11] and nonzero by [3] or our calculation in Section[6.2] This proves
that HF(T&_I, S(k,...n), Ty) # 0 is well defined; now the rest of the proof proceeds as in
Theorem O

6.4. Gysin sequence for spherically fibered Lagrangian correspondence. In this
section, we give a conjectural relation between Floer cohomology HF(L, L) for L, L' C M,
and the Floer cohomology H F(Lgi oL, LyioL') for the images in M; under a correspondence
Ly1 C My x M. Results of this type can be viewed as transfer of non-displaceability results,
in the sense that non-triviality of HF(L, L") implies non-triviality of HF(Lg; o L, Lo o L")
and hence non-displaceability of Ly; o L from Lg; o L' by Hamiltonian perturbation.

In our example, the Lagrangian correspondence arises from a spherically fibered coisotropic
t: C — M with projection 7 : C — B. The image of C under ¢« x 7 is a Lagrangian cor-
respondence from M to B, also denoted C. Our standing assumptions are compactuness,
orientability, and monotonicity, i.e. M, B, and C satisfy (M1-2) and (L1-2) with a fixed
7 > 0. Perutz [13] proved the following analogue of the Gysin sequence.

Theorem 6.4.1. Suppose that the minimal Maslov number of C is at least codim(C C
M) + 2. Then there exists a long exzact sequence

...~ HF(C,C)— HF(Id) - HF(Id) - HF(C,C) — ...
where the map HF (1d) — HF(1d) is quantum multiplication by the Euler class of .

One naturally conjectures the following relative version (for example, compare the Seidel
triangle in [16] with the relative version in [16].)
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Conjecture 6.4.2. Let Lo, Ly C B be a monotone pair of Lagrangian submanifolds satis-
fying (L1-3). Suppose that the minimal Maslov number of C is at least codim(C C M) + 2
Then there exists a long exact sequence

.e.— HF(Lg,C",C,Ly) = HF (Lo, L1) = HF (Lo, L1) = HF(Ly,C",C, Ly) — ...
where the middle map is Floer theoretic multiplicationm by the Fuler class of m.

The compositions C o Ly and Ly o C* = (C o Lg)* are clearly embedded. Hence Conjec-
ture [6.4.2] together with Theorem [B.4.1] implies the following.

Corollary 6.4.3. Under the same assumptions as in Conjecture [6.4.2 there exists a long
exact sequence

—)HF(COLU,COLl) — HF(Lo,Ll) —)HF(LU,Ll) —)HF(COLo,COLl) — ...
In particular, we obtain a transfer of non-displaceability’ result if the Fuler class vanishes.

Corollary 6.4.4. With the same assumptions as in Corollary [6.4.3, if the Euler class of
7w :C — B is zero, then HF(C o Ly,C o Ly) is isomorphic to two copies of HF (Lg, Ly).

Ezample 6.4.5. Suppose that M is a monotone Hamiltonian G = SU(2) manifold, with
moment map ®, and ®1(0) is an SU(2)-bundle over the symplectic quotient M //G.

Let (Lo, L;) be a monotone pair of G-invariant Lagrangians contained in the zero level
set and with minimal Maslov number at least three. Necessarily each L; is a principal
SU(2) bundle over L;j/G C M//G. Suppose that the minimal Maslov number of ®1(0),
considered as a Lagrangian in M~ x M //G, is at least 5. Then there is a long exact sequence

—)HF(Lo,Ll) —)HF(LU/G,LI/G) —)HF(LU/G,Ll/G) —)HF(L(),LI) — ...

In particular, if M — M//G is a trivial G-bundle, then HF(Lg, L) is isomorphic to two
copies of HF(Ly/G, L, /G).
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