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QUILTED FLOER COHOMOLOGYKATRIN WEHRHEIM AND CHRIS T. WOODWARDAbstrat. We generalize Lagrangian Floer ohomology to sequenes of Lagrangian or-respondenes. For sequenes related by the geometri omposition of Lagrangian orre-spondenes we establish an isomorphism of the Floer ohomologies. We give appliationsto alulations of Floer ohomology, displaeability of Lagrangian orrespondenes, andtransfer of displaeability under geometri omposition.Contents1. Introdution 12. Lagrangian orrespondenes 32.1. Generalized Lagrangian orrespondenes 73. Gradings 83.1. Graded generalized Lagrangian orrespondenes 134. Floer ohomology 194.1. Monotoniity 194.2. Graded Floer ohomology for pairs of Lagrangians 224.3. Floer ohomology for generalized Lagrangian orrespondenes 245. Quilted Floer ohomology 265.1. Unfolding of Floer ohomology in produts 265.2. Constrution of quilted Floer ohomology 285.3. Invariane of quilted Floer ohomology and relative quilt invariants 325.4. Geometri omposition and quilted Floer ohomology 346. Appliations 366.1. Diret omputation of Floer ohomology 366.2. Computations in C Pn 376.3. Deteting nontrivial Floer ohomology of a Lagrangian orrespondene 406.4. Gysin sequene for spherially �bered Lagrangian orrespondene 41Referenes 421. IntrodutionLagrangian Floer ohomology assoiates to a pair of Lagrangian manifolds a hain om-plex whose di�erential ounts pseudoholomorphi strips with boundary values in the givenLagrangians. In this paper we generalize Floer ohomology to inlude Lagrangian orrespon-denes. Reall that if (M0; !0) and (M1; !1) are sympleti manifolds, then a Lagrangianorrespondene L01 from M0 to M1 is a Lagrangian submanifold L01 � M�0 �M1, whereM�0 := (M0;�!0). These were introdued by Weinstein [26℄ in an attempt to reate asympleti ategory with morphisms between not neessarily sympletomorphi manifolds.So we also denote a Lagrangian orrespondene by M0 L01�!M1. With this notation we an1
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2 KATRIN WEHRHEIM AND CHRIS T. WOODWARDview a pair of Lagrangian submanifolds L;L0 � M as sequene of Lagrangian orrespon-denes pt L�! M L0�! pt from the point via M bak to the point. This is a speial ase ofa yli sequene of Lagrangian orrespondenesM0 L01�!M1 L12�!M2 : : : Mr Lr(r+1)�! Mr+1 =M0;for whih we will de�ne a quilted Floer ohomology(1) HF (L01; L12; : : : ; Lr(r+1)):The quilted di�erential ounts tuples of pseudoholomorphi strips (uj : R�[0; 1℄ !Mj)j=0;:::;rwhose boundaries math up via the Lagrangian orrespondenes, (uj(s; 1); uj+1(s; 0)) 2Lj(j+1) for j = 0; : : : ; r. These tuples are examples of pseudoholomorphi quilts with thestrips thought of as pathes and the boundary mathing onditions thought of as seams.The theory of quilts is developed in higher generality in [22℄.In this paper, we next investigate the e�et of geometri omposition on Floer oho-mology. The geometri omposition of two Lagrangian orrespondenes L01 � M�0 �M1,L12 �M�1 �M2 is(2) L01 Æ L12 := �(x0; x2) 2M0 �M2 ��9x1 : (x0; x1) 2 L01; (x1; x2) 2 L12	:In general, this will be a singular subset ofM�0 �M2, with isotropi tangent spaes. However,if we assume transversality of the intersetion L01�M1L12 := �L01�L12�\�M�0 ��M1�M2�,then the restrition of the projetion �02 :M�0 �M1�M�1 �M2 !M�0 �M2 to L01�M1L12is automatially an immersion. We will study the lass of embedded geometri ompositions,for whih in addition �02 is injetive, and hene L01 Æ L12 is a smooth Lagrangian orre-spondene. If the omposition L(`�1)` Æ L`(`+1) is embedded, then we obtain under suitablemonotoniity assumptions a anonial isomorphism(3) HF (: : : ; L(`�1)`; L`(`+1); : : :) �= HF (: : : ; L(`�1)` Æ L`(`+1); : : :):For the preise monotoniity and admissibility onditions see Setion 5.4. The proof pro-eeds in two steps. First, we allow for varying widths (Æj > 0)j=0;:::;k�1 of the pseudoholo-morphi strips (uj : R � [0; Æj ℄! Mj)j=0;:::;k�1 de�ning the di�erential. Setion 5.3 of thispaper shows that Floer ohomology is independent of the hoie of widths. (These domainsare not onformally equivalent due to the identi�ation between boundary omponents thatis impliit in the seam onditions.) The seond (hard analyti) part is to prove that withthe width Æ` > 0 suÆiently lose to zero, the k-tuples of holomorphi strips with seam on-ditions in (: : : ; L(`�1)`; L`(`+1); : : :) are in one-to-one orrespondene with the (k� 1)-tuplesof holomorphi strips with seam onditions in (: : : ; L(`�1)` Æ L`(`+1); : : :). This analysis isompletely analogous to [21℄, where we establish the bijetion for the Floer trajetories ofthe speial yli sequene pt L0�! M0 L01�! M1 L12�! M2 L2�! pt when Æ1 ! 0. The mono-toniity assumptions are ruial for this part sine the exlusion of a novel "�gure eightbubble" in [21℄ hinges on a strit energy-index proportionality.In setion 6 we provide a number of new tools for the alulation of Floer ohomology(and hene detetion of non-displaeability), arising as diret onsequenes of (3) or froma onjetural generalization of Perutz' long exat Gysin sequene [13℄. As �rst spei�example we on�rm the alulation HF (T nCl; T nCl) �= H�(T n) of Cho [3℄ for the Cli�ord torusin C Pn, and we alulate some further Floer ohomologies in CP n using redution at pairsof transverse level sets. Next, we prove Hamiltonian non-displaeability of the Lagrangian



QUILTED FLOER COHOMOLOGY 33-sphere � � (C P1)� � C P2 arising from redution at the level set of an S1 ation on C P2ontaining TCl. The latter follows from the nontriviality of HF (T 2Cl; T 2Cl) together with ourisomorphism HF (S1 � TCl;�) �= HF (TCl; TCl):Finally, we generalize this non-displaeability result to ertain Lagrangian embeddings � �(C Pk�1)� � C Pn of (S1)n�k � S2k�1 for any 2 � k � n.Another onsequene of our results is a general presription for de�ning topologial in-variants by deomposing into simple piees. For example, let Y be a ompat manifold andf : Y ! R a Morse funtion giving a deomposition Y = Y01[: : :[Y(k�1)k into simple obor-disms by utting along non-ritial level sets X1; : : : ;Xk�1. First one assoiates to eah Xja monotone sympleti manifold M(Xj), and to eah Y(j�1)j with �Y(j�1)j = X�j�1 t Xja smooth monotone Lagrangian orrespondene L(Y(j�1)j) � M(Xj�1)� �M(Xj) (takingM(X0) andM(Xk) to be points.) Seond, one heks that the basi moves desribed by Cerftheory (anellation or hange of order of ritial points) hange the sequene of Lagrangianorrespondenes by replaing adjaent orrespondenes with an embedded omposition, orvie-versa. In other words, the equivalene lass of sequenes of Lagrangian orrespondenesby embedded ompositions [L(Y01); : : : ; L(Y(k�1)k)℄ does not depend on the hoie of theMorse funtion f . Then the results of this paper provide a group-valued invariant of Y , bytaking the Floer homology of the sequene of Lagrangian orrespondenes. For example, in[24℄ we investigate the theory whih uses as sympleti manifolds the moduli spaes of atbundles with ompat struture group on three-dimensional obordisms ontaining tangles.Notation and Organization: We will frequently refer to the standing assumptions (M1-2), (L1-3), and (G1-2) that an be found on pages 19 - 20.Setion 2 is a detailed introdution to Lagrangian orrespondenes, geometri omposi-tion, and sequenes of orrespondenes, whih also provides the basi framework for thesequels [20, 22℄ to this paper. In Setion 3 we generalize gradings to Lagrangian orrespon-denes and establish their behaviour under geometri omposition, so that the isomorphism(3) beomes an isomorphism of graded groups. Setion 4 provides a review of monotoniityand Floer ohomology and gives a �rst de�nition of the Floer ohomology (1) by building apair of Lagrangians in the produtM0�M1�: : :Mk�1. The latter is however unsatisfatorysine it does not provide an approah to the isomorphism (3). Setion 5 gives the generalde�nition of quilted Floer ohomology (1) and �nalizes the proof of the isomorphism (3).Finally, Setion 6 gives a number of diret sympleti appliations of the isomorphism (3).We thank Paul Seidel and Ivan Smith for enouragement and helpful disussions.2. Lagrangian orrespondenesLet M be a smooth manifold. A sympleti form on M is a losed, non-degenerate two-form !. A sympleti manifold is a smooth manifold equipped with a sympleti form. If(M1; !1) and (M2; !2) are sympleti manifolds, then a di�eomorphism ' :M1 !M2 is asympletomorphism if '�!2 = !1. Let Symp denote the ategory whose objets are sym-pleti manifolds and whose morphisms are sympletomorphisms. The following operationsgive Symp a struture similar to that of a tensor ategory.(a) (Duals) IfM = (M;!) is a sympleti manifold, thenM� = (M;�!) is a sympletimanifold, alled the dual of M .



4 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(b) (Sums) If Mj = (Mj ; !j); j = 1; 2 are sympleti manifolds, then the disjoint unionM1 [ M2 equipped with the sympleti struture !1 on M1 and !2 on M2, is asympleti manifold. The empty set ; is a unit for the disjoint union.() (Produts) Let Mj = (Mj ; !j); j = 1; 2 be sympleti manifolds, then the Cartesianprodut (M1�M2; ��1!1+��2!2) is a sympleti manifold. (Here �j :M1�M2 !Mjdenotes the projetions.) The sympleti manifold pt, onsisting of a single point,is a unit for the Cartesian produt.Clearly the notion of sympletomorphism is very restritive; in partiular, the sympletimanifolds must be of the same dimension. A more exible notion of morphism is that ofLagrangian orrespondene, de�ned as follows [27, 26, 7℄. Let M = (M;!) be a sympletimanifold. A submanifold L � M is isotropi, resp. oisotropi, resp. Lagrangian if the!-orthogonal omplement TL! satis�es TL! � TL resp. TL! � TL resp. TL! = TL.De�nition 2.0.1. LetM1;M2 be sympleti manifolds. A Lagrangian orrespondene fromM1 to M2 is a Lagrangian submanifold L12 �M�1 �M2.Example 2.0.2. The following are examples of Lagrangian orrespondenes:(a) (Trivial orrespondene) The one and only Lagrangian orrespondene betweenM1 = ; and any other M2 is L12 = ;.(b) (Lagrangians) Any Lagrangian submanifold L � M an be viewed both as orre-spondene L � pt��M from the point to M and as orrespondene L � M� � ptfrom M to the point.() (Graphs) If '12 :M1 !M2 is a sympletomorphism then its graphgraph('12) = f(m1; '12(m1)) j m1 2M1g �M�1 �M2is a Lagrangian orrespondene.(d) (Fibered oisotropis) Suppose that � : C ! M is a oisotropi submanifold. Thenthe null distribution TC! is integrable, see e.g. [10, Lemma 5.30℄. Suppose thatTC! is in fat �brating, that is, there exists a sympleti manifold (B;!B) and a�bration � : C ! B suh that ��! is the pull-bak ��!B . Then(�� �) : C !M� �Bmaps C to a Lagrangian orrespondene.(e) (Level sets of moment maps) Let G be a Lie group with Lie algebra g. Supposethat G ats on M by Hamiltonian sympletomorphisms generated by a momentmap � : M ! g�. (That is � is equivariant and the generating vetor �elds g !Vet(M); � 7! �M satisfy �(�M )! = �d(�; �).) If G ats freely on ��1(0), then ��1(0)is a smooth oisotropi �bered over the sympleti quotient M==G = ��1(0)=G,whih is a sympleti manifold. Hene we have a Lagrangian orrespondene(�� �) : ��1(0)!M� � (M==G):The sympleti two-form !M==G on M==G is the unique form on M==G satisfying��!M==G = ��!.De�nition 2.0.3. Let M0;M1;M2 be sympleti manifolds and L01 �M�0 �M1, L12 �M�1 �M2 Lagrangian orrespondenes.(a) The dual Lagrangian orrespondene of L01 is(L01)t := f(m1;m0) j (m0;m1) 2 L01g �M�1 �M0:



QUILTED FLOER COHOMOLOGY 5(b) The geometri omposition of L01 and L12 isL01 Æ L12 := ((m0;m2) 2M�0 �M2 �����9m1 2M1 : (m0;m1) 2 L01(m1;m2) 2 L12) �M�0 �M2:Geometri omposition and duals of Lagrangian orrespondenes satisfy the following:(a) (Graphs) If '01 :M0 !M1 and '12 :M1 !M2 are sympletomorphisms, thengraph('01) Æ graph('12) = graph('12 Æ '01);graph('01)t = graph('�101 ):(b) (Zero) Composition with ; always yields ;, that is for any Lagrangian orrespondeneL01 �M�0 �M1 we have; Æ L01 = ;; L01 Æ ; = ;:() (Identity) If L01 �M�0 �M1 is a Lagrangian orrespondene and �j �M�j �Mj; j =0; 1 are the diagonals, thenL01 = �0 Æ L01 = L01 Æ�1:(d) (Assoiativity) If L01 �M�0 �M1; L12 �M�1 �M2; L23 �M�2 �M3 are Lagrangianorrespondenes, then(L01 Æ L12) Æ L23 = L01 Æ (L12 Æ L23);(L01 Æ L12)t = (L12)t Æ (L01)t:The geometri omposition an equivalently be de�ned as L01 ÆL12 = �02(L01 �M1 L12),the image under the projetion �02 :M�0 �M1 �M�1 �M2 !M�0 �M2 ofL12 �M1 L01 := (L01 � L12) \ (M�0 ��1 �M2):Here �1 � M�1 �M1 denotes the diagonal. L01 Æ L12 � M�0 �M2 is an immersed La-grangian submanifold if L01 � L12 intersets M�0 ��1 �M2 transversally. In general, thegeometri omposition of smooth Lagrangian submanifolds may not even be immersed. Wewill be working with the following lass of ompositions, for whih the resulting Lagrangianorrespondene is in fat a smooth submanifold, as will be seen in Lemma 2.0.5 below.De�nition 2.0.4. We say that the omposition L01 ÆL12 is embedded if L12�M1 L01 is utout transversally (i.e. (L01�L12) t (M�0 ��1�M2)) and the projetion �02 : L12�M1L01 !L01 Æ L12 �M�0 �M2 is injetive.By some authors (e.g. [7℄) geometri omposition of Lagrangian orrespondenes is moregenerally de�ned under lean intersetion hypotheses. This extension is not needed in thepresent paper, beause the quilted Floer ohomology is invariant under Hamiltonian isotopy,and after suh an isotopy transversality may always be ahieved. However, transverseintersetion only yields an immersed1 Lagrangian orrespondene, as the following Lemmashows.1One an not neessarily remove all self-intersetions of the immersed omposition by Hamiltonian isotopyon one orrespondene. A basi example is the omposition of transverse Lagrangian submanifolds L;L0 �M . IdentifyingM �=M �fptg �= fptg�M the projetion L�M L0 ! LÆL0 � fptg�fptg maps the (�nite)intersetion L t L0 to a point.



6 KATRIN WEHRHEIM AND CHRIS T. WOODWARDLemma 2.0.5. Let L01 �M�0 �M1, L12 �M�1 �M2 be Lagrangian orrespondenes suhthat the intersetion (L01 � L12) t (M�0 � �1 �M2) is transverse. Then the projetion�02 : L12 �M1 L01 ! L01 Æ L12 �M�0 �M2 is an immersion.In partiular, if the intersetion is transverse and the projetion is injetive, then theomposition L01 Æ L12 =: L02 is embedded.Proof. This is a onsequene of the fat that the geometri omposition of linear La-grangian orrespondenes is always well de�ned (i.e. yields another linear Lagrangian or-respondene). Fix a point x = (x0; x1; x1; x2) 2 L01 �M1 L12 then we need to hek thatker dx�02 = f0g for the projetion restrited to L12 �M1 L01. In fat, we will show that(4) ker dx�02 �= Tx(M0 �M1 �M1 �M2)(T(x0 ;x1)L01 � T(x1;x2)L12) + (Tx0M0 � T(x1;x1)�1 � Tx2M2) ;whih is zero by transversality. To simplify notation we abbreviate �01 := T(x0;x1)L01,�12 := T(x1;x2)L12, and Vi := TxiMi. Now (4) follows as in [7, Setion 4.1℄. For ompletenesswe reall the preise argument: We identifyker dx�02 = (�01 �V1 �12) \ (f0g � V1 � V1 � f0g)�= �v1 2 V1 �� (0; v1) 2 �01; (v1; 0) 2 �12	 = ker �t01 \ ker�12;(5)where ker �12 := fv1 2 V1 j (v1; 0) 2 �12g � V1 and similarly ker �t01 � V1. On the otherhand, we use the sympleti omplements with respet to !0112 := (�!0)�!1� (�!1)�!2on V0 � V1 � V1 � V2 to identify(V0 � V1 � V1 � V2) = (�01 � �12) + (V0 ��V1 � V2)�= (�01 � �12)!0112 \ (V0 ��V1 � V2)!0112= �(0; v1; v1; 0) �� (0; v1) 2 �(�!0)�!101 ; (v1; 0) 2 �(�!1)�!212 	�= (im�01)!1 \ (im�t12)!1 ;(6)where im�01 := �V1(�01) � V1, similarly im�t12 � V1, and we used the equivalene(�!0 � !1)((0; v1); (�0; �1)) = 0 8(�0; �1) 2 �01 , !1(v1; �1) = 0 8�1 2 �V1(�01):Now the two vetor spaes in (5) and (6) are identi�ed by the dualities ker �t01 = (im�01)!1and ker�12 = (im�t12)!1 , whih follow from the Lagrangian property of �01 resp. �t12,(0; v1) 2 �01 , (0; v1) 2 ��!0�!101 , v1 2 (im�01)!1 :This proves (4) and hene �nishes the proof of the Lemma. �Remark 2.0.6. Suppose that the omposition L01 Æ L12 =: L02 is embedded.(a) By the injetivity, for every (x0; x2) 2 L02 there is a unique solution x1 2 M1 to(x0; x1; x1; x2) 2 L01 � L12. Due to the transversality assumption, this solution isgiven by a smooth map `1 : L02 !M1.(b) If L01 and L12 are ompat, oriented, and equipped with a relative spin struture,then L02 is also ompat and inherits an orientation and relative spin struture, see[23℄. The orientation is indued from the anonial orientation of the diagonal, seeRemark 3.0.5(b), and the splittingT (M0 �M2 �M1 �M1) = �TL02 � f0g�� �f0g � (T�1)?�� T (L01 � L12)?:



QUILTED FLOER COHOMOLOGY 7() If �1(L01) and �1(L12) are torsion, then �1(L02) is torsion. If moreover M0 andM2 are monotone with the same monotoniity onstant, then L02 is monotone, seeSetion 4.1.2.1. Generalized Lagrangian orrespondenes. A simple resolution of the ompositionproblem is given by passing to sequenes of Lagrangian orrespondenes and omposingthem by onatenation. In [20℄ we employ these to de�ne a sympleti ategory ontainingall smooth Lagrangian orrespondenes as omposable morphisms, yet retaining geometriomposition in ases where it is well de�ned.De�nition 2.1.1. Let M;M 0 be sympleti manifolds. A generalized Lagrangian orre-spondene L from M to M 0 onsists of(a) a sequene N0; : : : ; Nr of any length r+1 � 2 of sympleti manifolds with N0 =Mand Nr =M 0 ,(b) a sequene L01; : : : ; L(r�1)r of ompat Lagrangian orrespondenes with L(j�1)j �N�j�1 �Nj for j = 1; : : : ; r.De�nition 2.1.2. Let L from M to M 0 and L0 from M 0 to M 00 be two generalized La-grangian orrespondenes. Then we de�ne omposition(L;L0) := �L01; : : : ; L(r�1)r; L001; : : : ; L0(r0�1)r0�as a generalized Lagrangian orrespondene from M to M 00. Moreover, we de�ne the dualLt := �Lt(r�1)r; : : : ; Lt01�:as a generalized Lagrangian orrespondene from M 0 to M .We onlude this subsetion by mentioning speial ases of generalized Lagrangian or-respondenes. The �rst is the ase M = M 0, whih we will want to view separately as ayli orrespondene, without �xing the \base point" M .De�nition 2.1.3. A yli generalized Lagrangian orrespondene L onsists of(a) a yli sequene M0;M1; : : : ;Mr;Mr+1 =M0 of sympleti manifolds of any lengthr + 1 � 1,(b) a sequene L01; : : : ; Lr(r+1) of ompat Lagrangian orrespondenes with Lj(j+1) �M�j �Mj+1 for j = 0; : : : ; r.The seond speial ase is M = fptg, whih generalizes the onept of Lagrangian sub-manifolds. Namely, note that any Lagrangian submanifold L � M 0 an be viewed asorrespondene L � fptg� �M 0.De�nition 2.1.4. LetM 0 be a sympleti manifold. A generalized Lagrangian submanifoldL of M 0 is a generalized Lagrangian orrespondene from a point M = fptg to M 0. Thatis, L onsists of(a) a sequene N�r; : : : ; N0 of any length r � 0 of sympleti manifolds with N�r = fptga point and N0 =M 0,(b) a sequene L(�r)(�r+1); : : : ; L(�1)0 of ompat Lagrangian orrespondenes L(i�1)i �N�i�1 �Ni.



8 KATRIN WEHRHEIM AND CHRIS T. WOODWARD3. GradingsThe purpose of this setion is to review the theory of graded Lagrangians and extend itto generalized Lagrangian orrespondenes. It an be skipped at �rst reading.Following Kontsevih and Seidel [15℄ one an de�ne graded Lagrangian subspaes asfollows. Let V be a sympleti vetor spae and let Lag(V ) be the Lagrangian Grassmannianof V . An N -fold Maslov overing for V is a ZN-overing LagN (V )! Lag(V ) assoiated tothe Maslov lass in �1(Lag(V )). A grading of a Lagrangian subspae � 2 Lag(V ) is a liftto ~� 2 LagN (V ).Remark 3.0.5. (a) For any basepoint �0 2 Lag(V ) we obtain an N -fold Maslov overLagN (V;�0) given as the homotopy lasses of paths ~� : [0; 1℄ ! Lag(V ) with basepoint ~�(0) = �0, modulo loops of Maslov index N . The overing is ~� 7! ~�(1). Thebase point has a anonial grading given by the onstant path ~�0 � �0. Any pathbetween basepoints �0;�00 indues an identi�ation LagN (V;�0)! LagN (V;�00).(b) For the diagonal � � V � � V we �x a anonial grading and orientation as follows.We identify the Maslov overings LagN (V � � V;�� � �) and LagN (V � � V;�) byonatenation of the paths(7) (eJt�� � �)t2[0;�=2℄; (f(tx+ Jy; x+ tJy)jx; y 2 �g)t2[0;1℄;where J 2 End(V ) is an !-ompatible omplex struture on V (i.e. J2 = � Id and!(�; J �) is symmetri and positive de�nite). In partiular, this indues the anonialgrading on the diagonal � with respet to any Maslov overing LagN (V ��V;����),by ontinuation. Any identi�ation LagN (V ��V;��0 ��0)! LagN (V ��V;��1 ��1)indued by a path in LagN (V ) maps the graded diagonal to the graded diagonal,sine the produt �� of any loop  : S1 ! Lag(V ) has Maslov index 0. Similarly,we de�ne a anonial orientation on � by hoosing any orientation on �, giving theprodut �� � � the produt orientation (whih is well de�ned), and extending theorientation over the path (7). This is related to the orientation indued by projetionof the diagonal on the seond fator by a sign (�1)n(n�1)=2, where dim(M) = 2n.Let M be a sympleti manifold and let Lag(M) ! M be the �ber bundle whose �berover m 2 M is the spae Lag(TmM) of Lagrangian subspaes of TmM . An N -fold Maslovovering of M is an N -fold over LagN (M) ! Lag(M) whose restrition to eah �ber isan N -fold Maslov overing LagN (TmM) ! Lag(TmM). Any hoie of Maslov over forR2n indues a one-to-one orrespondene between N -fold Maslov overs ofM and SpN (2n)-strutures on M . Here 2n = dimM and SpN (2n) is the N -fold overing group of Sp(2n)assoiated to the Maslov lass in �1(Sp(2n)). (Expliitly, this is realized by using theidentity as base point.) An SpN (2n)-struture on M is an SpN (2n)-bundle FrN (M) ! Mtogether with an isomorphism FrN (M) �SpN (2n) Sp(2n) ' Fr(M) to the sympleti framebundle of M . It indues the N -fold Maslov overingLagN (M) = FrN (M)�SpN (2n) LagN (R2n):Graded sympleti manifolds (i.e. equipped with Maslov overings) form a struture similarto that of a tensor ategory, that is, the notions of duals, disjoint union, and Cartesianprodut extend naturally to the graded setting. The dual LagN (M�) of a Maslov overingLagN (M) ! Lag(M) is the same spae with the inverted ZN-ation. We denote this



QUILTED FLOER COHOMOLOGY 9identi�ation by(8) LagN (M)! LagN (M�); ~� 7! ~��:For SpN -strutures FrN (M0) and FrN (M1) the embeddingSpN (2n0)�ZN SpN (2n1)! SpN (2n0 + 2n1)indues an SpN (2n0+2n1)-struture FrN (M0�M1) on the produt and an equivariant map(9) FrN (M0)� FrN (M1)! FrN (M0 �M1)overing the inlusion Fr(M0) � Fr(M1) ! Fr(M0 �M1). The orresponding produt ofN -fold Maslov overs on M0 �M1 is the N -fold Maslov overingLagN (M0 �M1) := �FrN (M0)� FrN (M1)��SpN (2n0)�SpN (2n1) LagN (R2n0 � R2n1 ):Combining this produt with the dual yields a Maslov overing for M�0 �M1 whih we anidentify withLagN (M�0 �M1) = �FrN (M0)� FrN (M1)��SpN (2n0)�SpN (2n1) LagN (R2n0 ;� � R2n1 ):Finally, the inlusion Lag(M0)� Lag(M1)! Lag(M0 �M1) lifts to a map(10) LagN (M0)� LagN (M1)! LagN (M0 �M1); (~L0; ~L1) 7! ~L0 �N ~L1with �ber ZN. It is de�ned by ombining the produt (9) with the basi produt of thelinear Maslov over LagN (R2n0 )� LagN (R2n1 )! LagN (R2n0 � R2n1 ).De�nition 3.0.6. (a) Let M0, M1 be two sympleti manifolds equipped with N -foldMaslov overs and let � : M0 ! M1 be a sympletomorphisms. A grading of� is a lift of the anonial isomorphism Lag(M0) ! Lag(M1) to an isomorphism�N : LagN (M0) ! LagN (M1), or equivalently, a lift of the anonial isomorphismFr(M0) ! Fr(M1) of sympleti frame bundles to an isomorphism FrN (M0) !FrN (M1).(b) Let L �M be a Lagrangian submanifold andM be equipped with an N -fold Maslovover. A grading of L is a lift �NL : L! LagN (M) of the anonial setion �L : L!Lag(M).Remark 3.0.7. (a) The set of graded sympletomorphisms forms a group under ompo-sition. In partiular, the identity onM has a anonial grading, given by the identityon LagN (M).(b) Given a one-parameter family �t of sympletomorphisms with �0 = IdM , we obtaina grading of �t by ontinuity.() Any hoie of grading on the diagonal ~� 2 LagN (R2n;� � R2n) indues a bijetionbetween gradings of a sympletomorphism � : M0 ! M1 and gradings of its graphgraph(�) �M�0 �M1 with respet to the indued Maslov over LagN (M�0 �M1). In-deed, the graph of the grading, graph(�N ) � (FrN (M0)�FrN (M1))jgraph(�) is a prin-ipal bundle over graph(�) with struture group SpN (2n), 2n = dimM0 = dimM1.The graded diagonal desends under the assoiated �ber bundle onstrution withgraph(�N ) to a setion of LagN (M�0 �M1)jgraph(�) lifting graph(�). Moreover, thisonstrution is equivariant for the transitive ation of H0(M0;ZN) on both the setof gradings of � and the set of gradings of graph(�).We will refer to this as the anonial bijetion when using the anonial grading~� 2 LagN (R2n;��R2n) in Remark 3.0.5. In partiular, the diagonal inM��M has



10 KATRIN WEHRHEIM AND CHRIS T. WOODWARDa anonial grading indued by the anonial bijetion from the anonial gradingof the identity on M .(d) Any grading �NL of a Lagrangian submanifold L �M indues a grading of L �M�via the di�eomorphism LagN (M�)! LagN (M).(e) Given graded Lagrangian submanifolds L0 � M0; L1 � M1, the produt L0 � L1 �M0 �M1 inherits a grading from (10).(f) Given a graded sympletomorphism � : M0 ! M1 and a graded Lagrangian sub-manifold L � M0, the image �(L) � M1 inherits a grading by omposition �N�(L) =�N Æ �NL .Example 3.0.8. (a) Let Lag2(M) be the bundle whose �ber over m is the spae of ori-ented Lagrangian subspaes of TmM . Then Lag2(M)! Lag(M) is a 2-fold Maslovovering. A Lag2(M)-grading of a Lagrangian L �M is equivalent to an orientationon L.(b) By [15, Setion 2℄, any sympleti manifoldM with H1(M) = 0 and minimal Chernnumber NM admits an N -fold Maslov overing LagN (M) i� N divides 2NM . AnyLagrangian with minimal Maslov number NL admits a LagN (M)-grading i� N di-vides NL. In partiular, if L is simply onneted, then NL = 2NM and L admits aLag2NM (M) grading.() Suppose that [!℄ is integral, [!℄ = (1=l)1(TM), and L is a line bundle with on-netion r and urvature urv(r) = (2�=i)!. This indues a 2l-fold Maslov overLag2l(M)! Lag(M), see [15, Setion 2b℄. Let L �M be a Bohr-Sommerfeld mono-tone Lagrangian as in Remark 4.1.4. A grading of L is equivalent to a hoie of (notneessarily horizontal) setion of LjL whose l-th tensor power is �KL ; that is, a hoieof the setion exp(2�i )�LL in (18).De�nition 3.0.9. Let �0;�1 � V be a transverse pair of Lagrangian subspaes in a sym-pleti vetor spae V and let ~�0; ~�1 2 LagN (V ) be gradings. The degree d(~�0; ~�1) 2 ZNis de�ned as follows. Let ~0; ~1 : [0; 1℄ ! LagN (V ) be paths with ommon starting point~0(0) = ~1(0) and end points ~j(1) = ~�j . Let j : [0; 1℄! Lag(V ) denote their image underthe projetion LagN (V )! Lag(V ) and de�ne(11) d(~�0; ~�1) := 12 dim(�0) + I(0; 1) mod N;where I(0; 1) denotes the Maslov index for the pair of paths as in [18, 14℄.Let us reall from [14℄ that the Maslov index for a pair of paths with regular rossings(in partiular with a �nite set of rossings C := fs 2 [0; 1℄ j 0(s)\ 1(s) 6= f0gg) is given bythe sum of rossing numbers with the endpoints weighted by 1=2,I(0; 1) = 12 Xs2C\f0;1g sign(�(0; 1; s)) + Xs2C\(0;1) sign(�(0; 1; s)):Eah rossing operator �(0; 1; s) is de�ned on v 2 0(s) \ 1(s) by �xing Lagrangianomplements 0(s), 1(s) of 0(s); 1(s) and setting(12) �(0; 1; s)v = ddt ��t=0!(v; w(t) � w0(t))where w(t) 2 0(s) suh that v+w(t) 2 0(s+t) and w0(t) 2 1(s) suh that v+w0(s+t) 21(s).



QUILTED FLOER COHOMOLOGY 11Remark 3.0.10. The degree an alternatively be de�ned by �xing ~0 � ~�0 and hoosinga path ~ : [0; 1℄ ! LagN (V ) from ~(0) = ~�0 to ~(1) = ~�1 suh that the rossing form�(;�0; 0) of the underlying path  : [0; 1℄! Lag(V ) is positive de�nite at s = 0. Then thedegreed(~�0; ~�1) = dim�02 + I(�0; ) = � Xs2(0;1) sign(�(;�0; s)) = �I 0(;�0) mod Nis given by the Maslov index I 0 of j(0;1) (not ounting the endpoints) relative to �0. Equiv-alently, we have d(~�0; ~�1) = I 0(�1;�0) mod Nfor the reversed path �1 : [0; 1℄! Lag(V ) from �1(0) = �1 to �1(1) = �0 suh that therossing form �(�1;�0; 1) is negative de�nite at s = 1.Lemma 3.0.11. (Index theorem for one-puntured disks) Let �0;�1 � V be a transversepair of Lagrangian subspaes with gradings ~�0; ~�1 2 LagN (V ). Then for any smooth pathof graded Lagrangian subspaes ~� : [0; 1℄! LagN (V ) with endpoints ~�(j) = ~�j, j = 0; 1 wehave d(~�0; ~�1) = Ind(DV;�) mod N:Here DV;� is any Cauhy-Riemann operator in V on the disk D with one outgoing strip-like end (0;1) � [0; 1℄ ,! D and with boundary onditions given by � (the projetion of ~�to Lag(V )) suh that �(j) = �j is the boundary ondition over the boundary omponents(0;1) � fjg, j = 0; 1 of the end.Proof. It suÆes to prove the index identity for a �xed path ~�. Indeed, if ~�0 is any other pathwith the same endpoints then we have Ind(DV;�)�Ind(DV;�0) = Ind(DV;�)+Ind(DV;��0) =Ind(DV;�#(��0)) by gluing. Here the last Cauhy-Riemann operator is de�ned on the diskwith no puntures and with boundary onditions given by the loop �#(��0). Sine theloop lifts to a loop ~�#(�~�0) in LagN (V ), its Maslov index (and thus index) is 0 modulo N .By Remark 3.0.10, the degree an be de�ned by a path ~� from ~�1 to ~�0 whose projetion� has negative de�nite rossing form at s = 1. The sum of rossing numbers in d(~�0; ~�1) =Ps2(0;1) sign(�(�;�0; s)) is the Maslov index IH(�) in [17, Lemma 11.11℄ and hene equalsto the Fredholm index Ind(DV;�) over the half spae, or the onformally equivalent diskwith strip-like end. This onformal isomorphism takes the boundary ends (�1;�1) resp.(1;1) in the half spae fIm z � 0g (over whih � equals to �1 resp. �0) to f1g � (1;1)resp. f0g � (1;1) in the strip-like end. �Lemma 3.0.12. The degree map satis�es the following properties.(a) (Additivity) If V = V 0 � V 00 thend(~�00 �N ~�000 ; ~�01 �N ~�001) = d(~�00; ~�01) + d(~�000 ; ~�001)for ~�0j; ~�00j graded Lagrangian subspaes in V 0; V 00 respetively, j = 0; 1.(b) (Multipliativity) For ~�0; ~�1 graded Lagrangian subspaes and any  2 ZNd(~�0;  � ~�1) = + d(~�0; ~�1):() (Skewsymmetry) For ~�0; ~�1 graded Lagrangian subspaesd(~�0; ~�1) + d(~�1; ~�0) = dim�0 = d(~�0; ~�1) + d(~��0 ; ~��1 ):



12 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(d) (Diagonal) For a transverse pair ~�0; ~�1 of graded Lagrangian subspaes in V and ~�the anonially graded diagonal in V � � Vd( ~�; ~��0 �N ~�1) = d(~�0; ~�1):Proof. The �rst three properties are standard, see [15, Setion 2d℄. We prove the diag-onal property to make sure all our sign onventions math up. For that purpose we �x~L 2 LagN (V ) and hoose the following paths ~:: of graded Lagrangian subspaes (withunderlying paths :: of Lagrangian subspaes):� ~0 : [�1; 1℄! LagN (V ) from ~0(�1) = ~L to ~0(1) = ~�0 suh that ~0j[�1;0℄ � ~L,� ~1 : [�1; 1℄! LagN (V ) from ~1(�1) = ~L to ~1(1) = ~�1, suh that 1j[�1=2;0℄ � JL tL and 1j[�1;�1=2℄ is a smoothing of t 7! e�(1+t)JL.� ~ : [�1; 1℄! LagN (V � � V ) starting with ~j[�1;�1=2℄ = (~�1 �N ~0)j[�1;�1=2℄, endingat ~j[0;1℄ � ~�, and suh that j[� 12 ;0℄ is a smoothing of t 7! f((2t+1)x+Jy; x+(2t+1)Jy)jx; y 2 Lg. (The lift to graded subspaes mathes up sine j[�1;0℄ is exatlythe path of (7) whih de�nes ~� by onneting it to ~L� � ~L.)Note that we have I(0; 1)j[�1;0℄ = �12 dim�0 and I(; �0 �1)j[�1;0℄ = I(�1 ; �0 )j[�1;0℄+I(0; 1)j[�1;0℄ = �dim�0 sine j[� 12 ;0℄ is transverse to L� � JL. With these preparationswe an alulate d(~�0; ~�1) = 12 dim�0 + I(0; 1) = I(0; 1)��[0;1℄= I(�; �0 � 1)��[0;1℄= dim�0 + I(; �0 � 1) = d( ~�; ~��0 �N ~�1):Here the identity of the Maslov indies over the interval [0; 1℄ follows from identifying theintersetions K(s) := 0 \ 1 �= �\ (�0 � 1) and the rossing forms �(s); �̂(s) : K(s)! Rat regular rossings s 2 [0; 1℄ (after a homotopy of the paths to regular rossings). FixLagrangian omplements 0(s) and 1(s), then for v 2 K(s) pik wi(t) 2 i(s) suh thatv + wi(t) 2 i(s+ t). For the orresponding vetor v̂ = (v; v) 2 � \ (�0 � 1) we an pikŵ(t) = (0; 0) 2 � satisfying v̂ + ŵ(t) 2 � and ŵ0(t) = (w0; w1) 2 0(s) � 1(s) satisfyingv̂ + ŵ0(t) 2 (0 � 1)(s+ t) to identify the rossing forms�̂(s)v̂ = ddt ��t=0(�! � !)(v̂; ŵ(t)� ŵ0(t))= ddt ��t=0��!(v;�w0(t)) + !(v;�w1(t))�= ddt ��t=0!(v; w0(t)� w1(t)) = �(s)v: �If L0; L1 � M are LagN (M)-graded Lagrangians and interset transversally then oneobtains a degree mapI(L0; L1) := L0 \ L1 ! ZN; x 7! jxj := d(�NL0(x); �NL1(x)):More generally, if L0; L1 do not neessarily interset transversally, then we an pik aHamiltonian perturbation H : [0; 1℄ � M ! R suh that its time 1 ow �1 : M ! Mahieves transversality �1(L0) t L1. Then the Hamiltonian isotopy and the grading on L0indue a grading on �1(L0), whih is transverse to L1. The degree map is then de�ned onthe perturbed intersetion points, d : I(L0; L1) := �1(L0) \ L1 ! ZN.



QUILTED FLOER COHOMOLOGY 133.1. Graded generalized Lagrangian orrespondenes. In this setion we extend thegrading and degree onstrutions to generalized Lagrangian orrespondenes and disusstheir behaviour under geometri omposition and insertion of the diagonal.De�nition 3.1.1. Let M and M 0 be sympleti manifolds equipped with N -fold Maslovoverings. Let L = (L01; : : : ; L(r�1)r) be a generalized Lagrangian orrespondene fromM to M 0 (i.e. L(j�1)j � M�j�1 �Mj for a sequene M = M1; : : : ;Mr = M 0 of sympletimanifolds). A grading on L onsists of a olletion of N -fold Maslov overs LagN (Mj)!Mjand gradings of the Lagrangian orrespondenes L(j�1)j with respet to LagN (M�j�1�Mj),where the Maslov overs on M1 =M and Mr =M 0 are the �xed ones.A pair of graded generalized Lagrangian orrespondenes L1 and L2 from M to M 0(with �xed Maslov overings) de�nes a yli Lagrangian orrespondene L1#(L2)t, whihis graded in the following sense.De�nition 3.1.2. Let L = (L01; : : : ; Lr(r+1)) be a yli generalized Lagrangian orre-spondene (i.e. Lj(j+1) � M�j � Mj+1 for a yli sequene M0;M1; : : : ;Mr+1 = M0 ofsympleti manifolds). An N -grading on L onsists of a olletion of N -fold Maslov oversLagN (Mj) ! Mj and gradings of the Lagrangian orrespondenes Lj(j+1) with respet toLagN (M�j �Mj+1).In the following, we will onsider a yli generalized Lagrangian orrespondene L andassume that it intersets the generalized diagonal transversally, i.e.(13) �L01 � L12 � : : : � Lr(r+1)� t ���M0 ���M1 � : : : ���Mr�T ;where ��M �M �M� denotes the (dual of the) diagonal andM0�M�0 �M1� : : :�M�r !M�0 �M1 � : : : �M�r �M0, Z 7! ZT is the transposition of the �rst to the last fator.In setion 4.3 this transversality will be ahieved by a suitable Hamiltonian isotopy. Itensures that the above transverse intersetion uts out a �nite set, whih we identify withthe generalized intersetion pointsI(L) := ��M0�L01 ��M1 L12 : : :��Mr Lr(r+1)�= �x = (x0; : : : ; xr) 2M0 � : : :�Mr �� (x0; x1) 2 L01; : : : ; (xr; x0) 2 Lr(r+1)	:Remark 3.1.3. Consider two yli generalized Lagrangian orrespondenesL = (L01; : : : ; L(j�1)j ; Lj(j+1); : : : ; Lr(r+1));L0 = (L01; : : : ; L(j�1)j Æ Lj(j+1); : : : ; Lr(r+1))suh that the omposition L(j�1)j Æ Lj(j+1) is embedded in the sense of De�nition 2.0.4.Then the generalized intersetion pointsI(L) = �(: : : ; xj�1; xj ; xj+1; : : :) 2 : : :�Mj�1 �Mj �Mj+1 : : : ��: : : ; (xj�1; xj) 2 L(j�1)j; (xj ; xj+1) 2 Lj(j+1); : : :	= �(: : : ; xj�1; xj+1; : : :) 2 : : :�Mj�1 �Mj+1 : : : ��: : : ; (xj�1; xj+1) 2 L(j�1)j Æ Lj(j+1); : : :	 = I(L0)are anonially identi�ed, sine the intermediate point xj 2 Mj with (xj�1; xj) 2 L(j�1)jand (xj ; xj+1) 2 Lj(j+1) is uniquely determined by the pair (xj�1; xj+1) 2 L(j�1)j ÆLj(j+1).



14 KATRIN WEHRHEIM AND CHRIS T. WOODWARDNow an N -grading on L indues an N -fold Maslov overing on M := M�0 �M1 � : : : �Mr �M�r �M0 and a grading of L := L01 � L12 � : : : � Lr(r+1). In addition, we have agrading on �T := (��M0���M1� : : :���Mr)T from the anonial grading on eah fator. Inorder to de�ne a degree we then identify generalized intersetion points x = (x0; x1; : : : ; xr)with the atual intersetion points x = (x0; x1; x1; : : : ; xr; xr; x0) 2 L \�T .De�nition 3.1.4. Let L be a graded yli generalized Lagrangian orrespondene L thatis transverse to the diagonal (13). Then the degree isI(L)! ZN; x 7! jxj = d(�NL (x); �N�T (x)):Lemma 3.1.5. Alternatively, the degree is de�ned as follows:(a) Pik any tuple of Lagrangian subspaes �0i 2 Lag(TxiMi), �00i 2 Lag(TxiM�i ), i =0; : : : ; r whose produt is transverse to the diagonal, �0i � �00i t �TxiMi. Then thereexists a path (unique up to homotopy)  : [0; 1℄ ! Lag(TxM) from (0) = TxLto (1) = �000 � �01 � : : : � �0r � �00r � �00 that is transverse to the diagonal at alltimes, (t) t Tx�T . We lift the grading �NL (x) 2 LagN (TxM) along this path andpik preimages under the graded produt map (10) to de�ne ~�0i 2 LagN (TxiMi) and~�00i 2 LagN (TxiM�i ). Then jxj = rXi=0 d(~�0i; ~�00�i ):(b) If L has even length r + 1 2 2N then it de�nes an N -fold Maslov over on fM :=M�0 �M1 �M�2 � : : :�Mr and a pair of graded Lagrangian submanifolds,L(0) := L01 � L23 � : : : � L(r�1)r � fM;L(1) := (L12 � L34 � : : :� Lr(r+1))T � fM�;where we denote by M�1 � : : : �M�r �M0 ! M0 �M�1 � : : : �M�r , Z 7! ZT thetransposition of the last to the �rst fator. If L has odd length r + 1 2 2N + 1 weinsert the diagonal �M0 �M�0 �M0 =M�r+1�M0 (with its anonial grading) beforede�ning a pair of graded Lagrangian submanifolds as above. By (13) the Lagrangiansinterset transversally L(0) t L�(1), and this intersetion is anonially identi�ed withI(L). Then for x 2 I(L) orresponding to y 2 L(0) \ L�(1) we havejxj = jyj = d(�NL(0)(y); �NL(1)(y)�):Proof. In (a) we use the fat that the path  has zero Maslov index to rewrited(�NL (x); �N�T (x)) = d(~�00 �N ~�000 �N : : :�N ~�0r �N ~�00r ; ~��Tx0M0 �N : : :�N ~��TxrMr);where we moreover transposed the fators. Now by Lemma 3.0.12 the right hand side anbe written as the sum over d(~�0i �N ~�00i ; ~��TxiMi) = d(~�0i; ~�00�i ).In (b) note that a reordering of the fators identi�es the pair of graded Lagrangians(L(0) � L(1);��fM ) with (L;�T ) for r odd. So Lemma 3.0.12 impliesd(�NL (x); �N�T (x)) = d(�NL(0)(y)�N �NL(1)(y); ~��T(y;y)fM ) = d(�NL(0)(y); �NL(1)(y)�):For r even the same argument provesd(�NL(0)(y); �NL(1)(y)�) = d��NL (x)�N ~�Tx0M0 ; ( ~��Tx0M0 � : : : � ~��TxrMr � ~��Tx0M0)T );



QUILTED FLOER COHOMOLOGY 15whih equals to d(�NL (x); �N�T (x)) by Lemma 3.1.6 (b) below. �The following Lemma desribes the e�et of inserting a diagonal on the grading of gener-alized Lagrangian orrespondenes. Part (a) addresses nonyli orrespondenes, whereas(b) applies to yli orrespondenes with � = T(x0;x1;:::;xr;x0)(L01 � L12 � : : : � Lr(r+1)),K = T(x0;x0;x1;:::;xr)(��M0 ���M1 � : : :���Mr), V0 = Tx0M0, and V1 = T(x1;:::;xr)(M1�M�1 �: : :�Mr �M�r ).Lemma 3.1.6. Let V0; V1; V2 be sympleti vetor spaes.(a) Let ~�0 � LagN (V0), ~�01 � LagN (V �0 � V1), ~�12 � LagN (V �1 � V2), and ~�2 �LagN (V �2 ) be graded Lagrangian subspaes. If the underlying Lagrangian subspaesare transverse thend(~�0 �N ~�12; ~��01 �N ~��2 ) = d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12):(b) Let ~� � LagN (V �0 � V1 � V0) and ~K � LagN (V0 � V �0 � V1) be graded Lagrangiansubspaes. If the underlying Lagrangian subspaes are transverse thend(~��N ~�0; ( ~K �N ~��0 )T ) = d(~�; ~KT );with the transposition V0 �W !W � V0, Z 7! ZT .Proof. To prove (a) pik a path 0112 : [0; 1℄ ! Lag(V0 � V �1 � V1 � V �2 ) from 0112(0) =��01 � ��12 to a split Lagrangian subspae 0112(1) = �00 � �01 � �001 � �02 that is transverseto �0 ��1 � �2 at all times and hene has Maslov index I(0112;�0 ��1 � �2) = 0. Wean homotope this path with �xed endpoints to 0112 = 01� 12 : [0; 1℄! Lag(V0�V �1 )�Lag(V1�V �2 ) that may interset �0��1��2 but still has vanishing Maslov index. We liftthe grading along the paths 01 and 12 and pik preimages under the graded produt map(10) to obtain gradings ~�00 2 LagN (V0), ~�01 2 LagN (V �1 ), ~�001 2 LagN (V1), ~�02 2 LagN (V �2 ).With these we alulate, using Lemma 3.0.12d(~�0 �N ~�12; ~��01 �N ~��2 ) = d(~�0 �N ~�00�1 �N ~�0�2 ; ~�00 �N ~�01 �N ~��2 )= d(~�0; ~�00) + d(~�00�1 ; ~�01) + d(~�0�2 ; ~��2 )= d(~�0; ~�00) + d( ~�1; ~�01 �N ~�001) + d(~�2; ~�02)= d(~�0 �N ~�1 �N ~�2; ~�00 �N ~�01 �N ~�001 �N ~�02)= d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12):The �rst and last degree identity are due to the vanishing of the Maslov index0 = I(�0 ��1 � �2; 01 � 12) = I(�0 � �12; 01 � ��2 ) = 0:The identity of these Maslov indies follows from identifying the intersetionsK(s) := (�0��12(s))\(01(s)���2 ) �= (�0��1��2)\(01�12) and the rossing form �(s); �̂(s) : K(s)!R given by (12) at regular rossings s 2 [0; 1℄. Fix Lagrangian omplements 01(s) �V0 � V �1 and 12(s) � V1 � V �2 , then for v = (v0; v1; v2) 2 K(s) we an pik (w1; w2)(t) 212(s) suh that v + (0; w1; w2)(t) 2 �0 � 12(s + t) and (w00; w01)(t) 2 01(s) suh thatv + (w00; w01; 0)(t) 2 01(s + t) � �2. For the orresponding vetor v̂ = (v0; v1; v1; v2) 2(�0��1���2 )\(�01��12) we have v̂+(0; 0; 0; 0) 2 (�0��1��2) and v̂+(w00; w01; w1; w2)(t) 2



16 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(01 � 12)(s+ t). With this we identify the rossing forms�̂(s)v̂ = ddt ��t=0(!0 ��!1 � !1 ��!2)�v̂; (0; 0; 0; 0) � (w00; w01; w1; w2)(t)�= ddt ��t=0��!0(v0; w00)� !1(v1; w1 � w01) + !2(v2; w2)�= ddt ��t=0(!0 ��!1 � !2)�v; (0; w1; w2)(t)� (w00; w01; 0)(t)� = �(s)v:This proves (a). To prove (b) we pik a path  : [0; 1℄! Lag(V �0 � V1 � V0) from (0) = �to a split Lagrangian subspae (1) = ��0 � �1 � �00 2 Lag(V �0 )� Lag(V1)� Lag(V0) thatis transverse to KT at all times and hene has Maslov index0 = I(;KT ) = I( ��0; (K ���0 )T ):Here the equality of Maslov follows diretly from the identi�ation of the trivial intersetions( � �0) \ (K � ��0 )T �=  \ KT = f0g. Now we an lift the grading along  to obtaingradings ~�0 2 LagN (V0), ~�1 2 LagN (V1), ~�00 2 LagN (V0). With these we alulate, usingpart (a) and the fat that gradings are invariant under simultaneous transposition of bothfators d(~��N ~�0; ( ~K �N ~��0 )T ) = d(~��0 �N ~�1 �N ~�00 �N ~�0; ( ~K �N ~��0 )T )= d(~�00 �N ~�0 �N ~��0 �N ~�1; ~��0 �N ~K)= d(~�00 �N ~K�; ~��0 �N (~��0 �N ~�1)�)= d( ~�0 �N (~��0 �N ~�1); ~�0�0 �N ~K)= d( ~K�; ~�0�0 �N (~��0 �N ~�1)�)= d(~�00 �N ~��0 �N ~�1; ~K)= d(~��0 �N ~�1 �N ~�00; ~KT ) = d(~�; ~KT ) �In the rest of this setion we investigate the e�et of geometri omposition on thegrading of Lagrangian orrespondenes. This requires a generalization of Viterbo's indexalulations [18℄.First, we lift the omposition map to Maslov overs. Let M0;M1;M2 be sympletimanifolds equipped with N -fold Maslov overings LagN (Mj); j = 0; 1; 2. We equip theprodutsM�i �Mj andM�0 �M1�M�1 �M2 with the indued Maslov overings LagN (M�i �Mj) resp. LagN (M�0 �M1 �M�1 �M2). We denote byT (M1) � Lag(M�0 �M1 �M�1 �M2)��M0��M1�M2the subbundle whose �bre over (m0;m1;m1;m2) onsists of the Lagrangian subspaes�0112 � T(m0;m1;m1;m2)(M�0 �M1�M�1 �M2) that are transverse to the diagonal �0112 :=Tm0M0 � �Tm1M1 � Tm2M2. The linear omposition of Lagrangian subspaes extends asmooth mapÆ : T (M1)! Lag(M�0 �M2); �0112 7! �M0�M2��0112 \�0112�:The preimage of T (M1) in the Maslov over will be denoted byT N (M1) � LagN (M�0 �M1 �M�1 �M2)��M0��M1�M2 :



QUILTED FLOER COHOMOLOGY 17Finally, reall that we have a anonial grading of the diagonal ~�M1 2 LagN (M�1 �M1)and its dual ~��M1 2 LagN (M1 �M�1 ), and let us denote another exhange of fators byLagN (M�0 �M2 �M1 �M�1 )! LagN (M�0 �M1 �M�1 �M2), ~� 7! ~�T .Lemma 3.1.7. The linear omposition Æ : T (M1) ! Lag(M�0 � M2) lifts to a uniquesmooth map ÆN : T N (M1)! LagN (M�0 �M2) with the property that(14) ÆN ��~�02 �N ~�11�T � = d(~�11; ~��M1) � ~�02:for all graded Lagrangians ~�02 2 LagN (M�0 �M2) and ~�11 2 LagN (M1 �M�1 ), suh thatthe underlying Lagrangian �11 2 Lag(M1 �M�1 ) is transverse to the diagonal.Proof. We denote by Lag(R2n) the Lagrangian Grassmannian in R2n , write dimMi = 2ni,and abbreviate R0112 := R2n0 ;� � R2n1 � R2n1 ;� � R2n2 . Let T � Lag(R0112 ) be the subsetof Lagrangian subspaes meeting the diagonal R2n0 ��R2n1 �R2n2 transversally. The linearomposition mapLag(R0112) � T ! Lag(R2n0 ;� � R2n2 ); � 7! �R2n0�R2n2 �� \ (R2n0 ��R2n1 � R2n2 )�is Sp(2n0) � Sp(2n1) � Sp(2n2)-equivariant, and lifts to a unique SpN (2n0) � SpN (2n1) �SpN (2n2)-equivariant map(15) LagN (R0112) � T N ! LagN (R2n0 ;� � R2n2 )with the property (14). On the other hand, the restrition of Fr(M0)�Fr(M1)�Fr(M1)�Fr(M2) toM0��M1�M2 admits a redution of the struture group to Sp(2n0)�Sp(2n1)�Sp(2n2), and similarly the restritionFrN0112 := �FrN (M0)� FrN (M1)� FrN (M1)� FrN (M2)���M0��M1�M2admits a redution of the struture group to SpN (2n0)�SpN (2n1)�SpN (2n2). This groupats on LagN (R0112 ) by the diagonal ation of SpN (2n1) on R2n1 � R2n1 ;�. Finally, we usethe assoiated �ber bundle onstrution to identifyLagN (M�0 �M1 �M�1 �M2)��M0��M1�M2�= FrN0112�SpN (2n0)�SpN (2n1)�SpN (2n1)�SpN (2n2) LagN (R0112)�= �FrN (M0)� FrN (M1)� FrN (M2)��SpN (2n0)�SpN (2n1)�SpN (2n2) LagN (R0112)andLagN (M�0 �M2) = �FrN (M�0 )� FrN (M2)��SpN (2n0)�SpN (2n2) LagN (R2n0 ;� � R2n2 ):Then the forgetful map on the �rst fator and the equivariant map (15) on the seond fatorde�ne the unique lift ÆN . �Now onsider two graded Lagrangian orrespondenes L01 �M�0 �M1 and L12 �M�1 �M2 and suppose that the omposition L01ÆL12 =: L02 �M�0 �M2 is smooth and embedded.The anonial setion �L02 : L02 ! Lag(M�0 �M2) is given by the linear omposition Æapplied to (�L01 � �L12)jL01��M1L12 . The gradings �NL01 , �NL12 indue a grading on L02,(16) �NL02 := ÆN��NL01 �N �NL12���L01��M1L12 ;where the map �N is de�ned in (10) and we identify L02 �= L01 ��M1 L12.



18 KATRIN WEHRHEIM AND CHRIS T. WOODWARDProposition 3.1.8. Let L0 � M0, L01 � M�0 �M1, L12 � M�1 �M2, and L2 � M�2 begraded Lagrangians suh that the omposition L01 Æ L12 =: L02 is embedded. Then, withrespet to the indued grading on L02, the degree map I(L0 � L2; L02) ! ZN is the pull-bak of the degree map I(L0 � L12; L01 � L2)! ZN under the anonial identi�ation 2 ofintersetion points.Proof. Suppose for simpliity that Hamiltonian perturbations have been applied to theLagrangians L0; L2 suh that I(L0�L2; L02) (and hene also I(L0 �L12; L01 �L2)) is theintersetion of transverse Lagrangians. We need to onsider (m0;m1;m2) 2 (L0 � L12) \(L01 � L2), whih orresponds to (m0;m2) 2 (L0 � L2) \ L02. We abbreviate the tangentspaes of the Lagrangians by �j = TmjLj, �ij = T(mi ;mj)Lij, and �1 = �Tm1M1 and theirgraded lifts by ~�j = �NLj (mj), ~�ij = �NLij (mi;mj), and ~�1 = ~�Tm1M1 . We laim thatd(~�0 �N ~�12; ~��01 �N ~��2 ) = d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12)= d(~�0 �N ~�2; ~��01 ÆN ~��12):(17)The �rst identity is Lemma 3.1.6. To prove (17) we begin by noting the transverse inter-setion �02 t �0 � �2. We denote ~�02 := ~�01 ÆN ~�12 (hene ~��02 = ~��01 ÆN ~��12) and pik apath ~02 : [0; 1℄! LagN (Tm0M�0 � Tm2M2) from ~02(0) = ~�0 �N ~�2 to ~02(1) = ~��02 whoserossing form with �0 � �2 at s = 0 is positive de�nite and hene by Remark 3.0.10d(~�0 �N ~�2; ~��02) = �I 0(02;�0 � �2):Here I 0 denotes the Maslov index of a pair of paths (the seond one is onstant), not ountingrossings at the endpoints. Next, �x a omplement L11 2 Lag(T(m1;m1)M1 �M�1 ) of thediagonal. Then both (�02 �N L11)T and �01��12 are transverse to Tm0M0��1� Tm2M2and their omposition is �02. By Lemma 3.1.9 below we then �nd a path 0112 and lift it to~0112 : [0; 1℄ ! LagN (T(m0;m1;m1;m2)M�0 �M1 �M�1 �M2) from ~0112(0) = [~�02 �N ~L11℄Tto ~0112(1) = ~�01 �N ~�12 whose omposition Æ(0112) = �02 is onstant and that has norossings with �0��1��2 (by the transversality 0112\(�0��1��2) = �02\(�0��2) =f0g). Here the grading of ~L11 is determined by ontinuation along this path. Sine theomposition Æ(0112) is onstant this ontinuation yields~�02 = ÆN (~0112) = ÆN ((~�02 �N ~L11)T ) = d(~L11; ~��1 ) � ~�02:Here we also used (14), and we dedue that d(~L11; ~��1 ) = 0 mod N . Furthermore, we �xa path ~11 : [0; 1℄ ! LagN (T(m1;m1)M�1 �M1) from ~11(0) = ~�1 to ~11(1) = ~L�11 whoserossing form with �1 at s = 0 is positive de�nite, and thus�I 0(11;�1) = d( ~�1; ~L�11) = d(~L11; ~��1 ) = 0 mod N:Now the onatenated path (~02 � ~11)T#~�0112 onnets ~�0 �N ~�1 �N ~�2 to ~��01 �N ~��12with positive de�nite rossing form at s = 0, and (17) an be veri�ed,d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12) = �I 0((02 � 11)T#�0112;�0 ��1 � �2)= �I 0(02;�0 � �2)� I 0(11;�1)� I 0(�0112;�0 ��1 � �2)= �I 0(02;�0 � �2) = d(~�0 �N ~�2; ~��02): �2 Here it suÆes to allow for Hamiltonian perturbation on M0 and M2, i.e. replaing L0; L2 with L00 :=�H01 (L0), L02 := (�H21 )�1(L2). Then for every (m0; m2) 2 (L00 � L02) \ L02 there is a unique m1 2 M1 suhthat (m0;m1) 2 L01, (m1;m2) 2 L12, and hene (m0;m1; m2) 2 (L00 � L12) \ (L01 � L02).



QUILTED FLOER COHOMOLOGY 19Lemma 3.1.9. Let V0; V1; V2 be sympleti vetor spaes, �02 � V �0 � V2 a Lagrangiansubspae, and denote by T�02 � Lag(V �0 � V1 � V �1 � V2)the subset of Lagrangian subspaes � � V �0 �V1�V �1 �V2 with � t (V0��V1 �V2) =: �̂02and �02(�̂02) = �02. Then T�02 is ontratible.Proof. We �x metris on V0, V1, and V2. Then we will onstrut a ontration (�t)t2[0;1℄,�t : T�02 ! T�02 with �0 = Id and �1 � 	(�02 � (�1)?), where 	 : V �0 � V2 � V1 � V �1 !V �0 � V1 � V �1 � V2 exhanges the fators. To de�ne �t(�) we write � = �̂02 � �̂11, where�̂11 is the orthogonal omplement of �̂02 in �. Now �̂02 is the image of (IdV0 ; i1; i1; IdV2) :�02 ! V �0 � V1 � V �1 � V2 for a linear map i1 : �02 ! V1 and �̂11 is the image of(j0; IdV1 + j1;�IdV1 + j1; j2) : V1 ! V �0 � V1 � V �1 � V2 for linear maps ji : V1 ! Vi. Onean hek that�t(�) := im�IdV0 ; t � i1; t � i1; IdV2�� im�t � j0; IdV1 + t2 � j1;�IdV1 + t2 � j1; t � j2�is an element of T�02 for all t 2 [0; 1℄ and de�nes a smooth ontration. �4. Floer ohomologyThe main ontent of this setion is a review of the onstrution of graded Floer ohomol-ogy for pairs of Lagrangian submanifolds in monotone and exat ases by Floer, Oh, andSeidel. In 4.3 we then extend Floer ohomology to generalized Lagrangian orrespondenes,whih in Setion 5 will be reformulated in terms of pseudoholomorphi quilts.4.1. Monotoniity. Let (M;!) be a sympleti manifold. Let J (M;!) denote the spaeof ompatible almost omplex strutures on (M;!). Any J 2 J (M;!) gives rise to aomplex struture on the tangent bundle TM ; the �rst Chern lass 1(TM) 2 H2(M;Z) isindependent of the hoie of J . Throughout, we will use the following standing assumptionson all sympleti manifolds:(M1): (M;!) is monotone, that is for some � � 0[!℄ = �1(TM):(M2): If � > 0 then M is ompat. If � = 0 then M is (neessarily) nonompat butsatis�es \bounded geometry" assumptions as in [17℄.Note here that we treat the exat ase [!℄ = 0 as speial ase of monotoniity (with� = 0). Next, we denote the index map by1 : �2(M)! Z; u 7! (1; u�[S2℄):The minimal Chern number NM 2 N is the positive generator of its image.Assoiated to a Lagrangian submanifold L � M are the Maslov index and ation (i.e.sympleti area) maps I : �2(M;L)! Z; A : �2(M;L)! R:Our standing assumptions on all Lagrangian submanifolds are the following:(L1): L is monotone, that is2A(u) = �I(u) 8u 2 �2(M;L)where the � � 0 is (neessarily) that from (M1).(L2): L is ompat and oriented.



20 KATRIN WEHRHEIM AND CHRIS T. WOODWARDAny homotopy lass [u℄ 2 �2(M;L) that is represented by a nontrivial J -holomorphi disku : (D; �D)! (M;L) has positive ation A([u℄) = R u�! > 0. Monotoniity with � > 0 thenimplies that the index is also positive. So, for pratial purposes, we de�ne the (e�etive)minimal Maslov number NL 2 N as the generator of I(f[u℄ 2 �2(M;L)jA([u℄) > 0g) � N.If M and L are exat (� = 0), then A � 0, so we have NL =1.If the Lagrangian submanifold L is oriented then I(u) is always even sine it is the Maslovindex of a loop of oriented Lagrangian subspaes. So the orientation and monotoniityassumption on L imply NL � 2, i.e. any nontrivial holomorphi disk must have I(u) � 2,whih exludes disk bubbling in transverse moduli spaes of index 0 and 1.In order for the Floer ohomology groups to be well de�ned we will also have to makethe following additional assumption.(L3): L has minimal Maslov number NL � 3.Moreover, we will restrit our onsiderations to Maslov overings and gradings that areompatible with orientations, that is we make the following additional assumptions on thegrading of the sympleti manifolds M and Lagrangian submanifolds L �M . (In the aseN = 2 these assumptions redue to (L2).)(G1): M is equipped with a Maslov overing LagN (M) for N even, and the indued 2-foldMaslov overing Lag2(M) is the one desribed in Example 3.0.8 (i).(G2): L is equipped with a grading �NL : L ! LagN (M), and the indued 2-gradingL! Lag2(M) is the one given by the orientation of L.In the following we disuss topologial situations whih ensure monotoniity.Lemma 4.1.1. Suppose that M is monotone and L �M is a Lagrangian suh that �1(L)is torsion (that is, every element has �nite order). Then L is monotone and the minimalMaslov number is at least 2NM=k where k is the maximum of orders of elements of �1(L).Proof. Let u : (D; �D) ! (M;L) and let k(u) be the order of the restrition of u tothe boundary in �1(L). After passing to a k(u)-fold over ~u, we may assume that therestrition of ~u to �D is homotopially trivial in L. By adding the homotopy we obtaina sphere v : S2 ! M with k(u)I(u) = I(~u) = 21(v) divisible by 2NM . For the relationbetween the �rst Chern lass and the Maslov index see e.g. [10, Appendix℄. The similaridentity for the ations (due to !jL = 0) ompletes the proof. �In pratie, we will need the ation-index relation not only for disks as in (L1) but also forother surfaes with several boundary omponents mapping to several Lagrangians. (Thisreally only beomes relevant in [22℄ for the de�nition of relative invariants from surfaeswith striplike ends.) In partiular, to de�ne Floer ohomology for a pair of Lagrangians(and espeially later to prove the isomorphism (3)) we need the ation-index for annulibetween the two Lagrangians. This provides the energy-index relation in Remark 4.2.2. Infat, it also implies monotoniity (L1) for both Lagrangians as long as M is onneted.De�nition 4.1.2. (a) We say that a tuple (Le)e2E is monotone with monotoniity on-stant � � 0 if the following holds: Let � be any onneted ompat surfae withnonempty boundary �� = te2ECe (with Ce possibly empty or disonneted). Thenfor every map u : �!M satisfying u(Ce) � Le we have the ation-index relation2Z u�! = � � I(u�TM; (u�TLe)e2E );



QUILTED FLOER COHOMOLOGY 21where I is the sum of the Maslov indies of the totally real subbundles (ujCe)�TLein some �xed trivialization of u�TM .(b) We say that a pair (L0; L1) is monotone for Floer theory if (a) holds for the annulus� = [0; 1℄�S1 and every map u with boundary values u(fjg�S1) � Lj for j = 0; 1.The following is a minor generalization of [11, Proposition 2.7℄.Lemma 4.1.3. Suppose that M is monotone.(a) If eah Le � M is monotone, and the image of eah �1(Le) in �1(M) is torsion,then the tuple (Le)e2E is monotone.(b) If both L0; L1 � M are monotone, and the image of �1(L0) or �1(L1) in �1(M) istorsion, then the pair (L0; L1) is monotone for Floer theory.Proof. To hek (a) onsider u : � ! M satisfying u(Ce) � Le. By assumption we haveintegers Ne 2 N suh that NeujCe is ontratible in M . Let N =Qe2E Ne, so that NujCe isontratible for all boundary omponents Ce of �. Let ~�! � be a �nite N -over de�nedby a representation � : �1(�)! ZN with �([Ce℄) = [N=Ne℄, so that eah omponent of theinverse image ~Ce of Ce is an Ne-fold over. The pull-bak ~u : ~� ! M of u : � ! M hasrestritions to the boundary ~uj ~Ce that are homotopially trivial inM . Thus ~u is homotopito the union of some maps ve : (D; �D) ! (M;Le) and a map v : S ! M on a losedsurfae S. We an now use the losedness of ! and the monotoniity of M and eah Le todedue 2N Z u�! = 2Z ~u�! = 2Z v�! +Xe2E 2Z v�e!= 2�1(v�TM) +Xe2E �I(ve) = �I(~u) = �NI(u);using properties of the Maslov index explained in [10, Appendix℄.In the ase of (b) we an take a multiple over of the annulus suh that one boundaryloop is ontratible inM , and hene the multiply overed annulus is homotopi to two disksto whih we an apply monotoniity of the single Lagrangians. �In the exat ase, with ! = d�, any tuple of exat Lagrangians (Le)e2E , that is with[�jLe ℄ = 0 2 H1(Le), is automatially monotone. Moreover, note that monotoniity isinvariant under Hamiltonian isotopies of one or several Lagrangians.Remark 4.1.4. Another situation in whih one naturally has monotoniity is the Bohr-Sommerfeld setting, as pointed out to us by P. Seidel. Suppose that the ohomology lass [!℄is integral. Let (L;r)! (M;!) be a unitary line-bundle-with-onnetion having urvature(2�=i)!. The restrition of (L;r) to any Lagrangian L �M is at. L is Bohr-Sommerfeldif the restrition of (L;r) to L is trivial, that is, there exists a non-zero horizontal setion�LL. The setion �LL is unique up to a olletion of phases U(1)�0(L). Suppose that Mis monotone, [!℄ = �1(M) for some � > 0. Sine 1(M) and [!℄ are integral, we musthave � = k=l for some integers k; l > 0. Let K�1 ! M denote the antianonial bundle,K�1m = �topC (T 0;1m M), whih satis�es k1(K�1) = l i2� [urv(r)℄ = l1(L). Hene there existsan isomorphism � : (K�1)
k ! L
l:



22 KATRIN WEHRHEIM AND CHRIS T. WOODWARDLet L � M be an oriented Lagrangian submanifold. The restrition of K�1 to L has anatural non-vanishing setion �KL given by the orientation and the isomorphisms�topR TL! �topC T 0;1M jL; v1 ^ : : : ^ vn 7! (v1 + iJv1) ^ : : : ^ (vn + iJvn):We say that L is Bohr-Sommerfeld monotone with respet to (L;r;�) if the setions (�LL)
land � Æ (�KL )
k are homotopi, that is, there exists a funtion  : L! R suh that(18) (exp(2�i )�LL)
l = � Æ (�KL)
k:Lemma 4.1.5. Let (Le)e2E be a olletion of Lagrangians suh that eah is Bohr-Sommerfeldmonotone with respet to (L;r;�). Then (Le)e2E is monotone.Proof. Let � be a ompat Riemann surfae with boundary omponents (Ce)e2E . Letu : � ! M be a map with boundary u(Ce) � Le. The index I(u) is the sum of Maslovindies of the bundles (ujCe)�TLe, with respet to some �xed trivialization of u�TM . Equiv-alently, I(u) is the sum of winding numbers of the setions �KLe with respet to the induedtrivialization of u�K�1. Sine eah Le is Bohr-Sommerfeld, kI(u) is the sum of the windingnumbers of the setions (�LLe)
l, with respet to the indued trivialization of u�L
l. Writeu�r
l = d + � for some � 2 
1(�) in this trivialization, so that u� urv(r
l) = d�. Sinethe setions are horizontal, we havekI(u) = (i=2�)Z�� � = (i=2�)Z� u� urv(r
l) = lA(u): �4.2. Graded Floer ohomology for pairs of Lagrangians. Let L0; L1 �M be ompatLagrangian submanifolds. For a time-dependent Hamiltonian H 2 C1([0; 1℄ � M) let(Xt)t2[0;1℄ denote the family of Hamiltonian vetor �elds for (Ht)t2[0;1℄, and let �t0;t1 :M !M denote its ow. (That is, �t0;t1(y) = x(t1), where x : [0; 1℄ ! M satis�es _x = Xt(x),x(t0) = y.) We will abbreviate �1 := �0;1 for the time 1 ow from t0 = 0 to t1 = 1. LetHam(L0; L1) be the set of H 2 C1([0; 1℄�M) suh that �1(L0) intersets L1 transversally.Then we have a �nite set of perturbed intersetion pointsI(L0; L1) := � : [0; 1℄!M �� (t) = �0;t((0)); (0) 2 L0; (1) 2 L1	:It is isomorphi to the intersetion �1(L0) t L1. If we assume thatM and L0; L1 are gradedas in (G1-2), then we obtain a degree map from Setion 3,I(L0; L1)! ZN; x 7! jxj = d(�NL0(x); �NL1(x)):Sine N is even the sign (�1)jxj is well-de�ned. It agrees with the usual sign in the inter-setion number, given by the orientations of �1(L0) and L1, whih also determine the mod2 grading by assumption.Next, we denote the spae of time-dependent !-ompatible almost omplex strutures byJt(M;!) := C1([0; 1℄;J (M;!)):For any J 2 Jt(M;!) and H 2 Ham(L0; L1) we say that a map u : R � [0; 1℄ ! M is(J;H)-holomorphi with Lagrangian boundary onditions if(19) �J;Hu := �su(s; t) + Jt;u(s;t)(�tu(s; t)�Xt(u(s; t))) = 0;(20) u(R; 0) � L0; u(R; 1) � L1:



QUILTED FLOER COHOMOLOGY 23The (perturbed) energy of a solution isEH(u) := ZR�[0;1℄ j�suj2 = ZR�[0;1℄ u�! + d(H(u)dt):The following exponential deay lemma will be needed later and is part of the proof ofTheorem 4.2.3 below.Lemma 4.2.1. Let H 2 Ham(L0; L1) and J 2 Jt(M;!). Then for any (J;H)-holomorphistrip u : R � [0; 1℄ ! M with Lagrangian boundary onditions in L0; L1 the following areequivalent:(a) u has �nite energy EH(u) = RR�[0;1℄ j�suj2 <1;(b) There exist x� 2 I(L0; L1) suh that u(s; �) onverges to x� exponentially in allderivatives as s! �1 .For any x� 2 I(L0; L1) we denote byM(x�; x+) := �u : R � [0; 1℄!M �� (19); (20); EH(u) <1; lims!�1u(s; �) = x�	=Rthe spae of �nite energy (J;H)-holomorphi maps modulo translation in s 2 R. It is iso-morphi to the moduli spae of �nite energy J 0-holomorphi maps with boundary onditionsin �1(L0) and L1, and without Hamiltonian perturbation. Here J 0 2 Jt(M;!) arises fromJ by pullbak with �t;1.Remark 4.2.2. Suppose that the pair (L0; L1) is monotone, then for any x� 2 I(L0; L1)there exists a onstant (x�; x+) suh that for all u 2M(x�; x+) the energy-index relationholds:(21) 2EH(u) = � � Ind(Du) + (x�; x+);where Du denotes the linearized operator at u of the Cauhy-Riemann equation (19) on thespae of setions of u�TM satisfying the linearized Lagrangian boundary onditions from(20). Its Fredholm index is given by the Maslov-Viterbo index of u. This monotoniityensures energy bounds for the moduli spaes of �xed index and thus ompatness up tobubbling.Theorem 4.2.3. (Floer,Oh) Let L0; L1 � M be a monotone pair of Lagrangian subman-ifolds satisfying (L1-2) and (M1-2). For any H � Ham(L0; L1), there exists a subsetJ regt (L0; L1;H) � Jt(M;!) of Baire seond ategory, suh that the following holds for allx� 2 I(L0; L1).(a) M(x�; x+) is a smooth manifold whose dimension near a nononstant solution u isgiven by the formal dimension Ind(Du)� 1.(b) The omponent M(x�; x+)0 �M(x�; x+) of formal dimension zero is �nite.() Suppose that L0 and L1 have minimal Maslov numbers NLk � 3. Then the one-dimensional omponent M(x�; x+)1 � M(x�; x+) has a ompati�ation as one-dimensional manifold with boundary(22) �M(x�; x+)1 �= [x2I(L0;L1)M(x�; x)0 �M(x; x+)0(d) If (L0; L1) is relatively spin (as de�ned in e.g. [23℄), then there exists a oherent setof orientations on M(x�; x+)0;M(x�; x+)1 for all x� 2 I(L0; L1), that is, orienta-tions ompatible with (22).



24 KATRIN WEHRHEIM AND CHRIS T. WOODWARDFor the proofs of (a-) we refer to Oh's paper [11℄ and the lari�ations [12℄, [9℄. For theexat ase see [17℄. The proof of (d) is ontained in [23℄ loosely following [5℄. From (d) weobtain a map � :M(x�; x+)0 ! f�1gde�ned by omparing the given orientation to the anonial orientation of a point.Now let M be a monotone sympleti manifold satisfying (M1-2) and equipped withan N -fold Maslov overing. Let L0; L1 � M be a monotone, relative spin pair of gradedLagrangian submanifolds satisfying (L1-3), and let H 2 Ham(L0; L1). The Floer ohaingroup is the ZN-graded groupCF (L0; L1) = Md2ZNCF d(L0; L1); CF d(L0; L1) = Mx2I(L0;L1);jxj=dZhxi;and the Floer oboundary operator is the map of degree 1,�d : CF d(L0; L1)! CF d+1(L0; L1);de�ned by �dhx�i := Xx+2I(L0;L1)� Xu2M(x�;x+)0 �(u)�hx+i:Here we hoose some J 2 J regt (L0; L1;H). If an isolated trajetory u 2M(x�; x+)0 exists,then the degree identity jx+j = jx�j + 1 an be seen by onatenating the paths ~0; ~1 ofgraded Lagrangians in the de�nition of jx�j with the unique graded lifts of u�TL0; u�TL1to obtain paths of graded Lagrangians de�ning jx+j (using a trivialization of u�TM overthe strip, ompati�ed to a disk). By additivity of the Maslov index this shows jx+j =jx�j + I(u�TL0; u�TL1) = jx�j + 1. It follows from Theorem 4.2.3 that �2 = 0. Now theFloer ohomology 3HF (L0; L1) := Md2ZNHF d(L0; L1); HF d(L0; L1) := ker(�d)=im(�d�1)is ZN-graded. It is independent of the hoie of H and J ; a generalization of this fat isproved in Setion 5.3 below. If the gradings moreover satisfy (G1-2), then we have a wellde�ned splitting HF (L0; L1) = HF even(L0; L1)�HF odd(L0; L1):Remark 4.2.4. In a suitable derived sense the Floer ohomology HF (L1; L0) for the swithedpair is the dual spae Hom(HF (L0; L1);Z), see [25℄ for details.4.3. Floer ohomology for generalized Lagrangian orrespondenes. The goal ofthis setion is to de�ne a �rst version of Floer ohomology for a yli generalized La-grangian orrespondene L as in De�nition 2.1.3. So we onsider L = (L01; : : : ; Lr(r+1)), asequene of smooth Lagrangian orrespondenes L(j�1)j �M�j�1 �Mj between a sequeneM0;M1; : : : ;Mr+1 = M0 of sympleti manifolds. For example, we ould onsider a non-yli sequene of Lagrangians L01 �M1, �L(i�1)i �M�i�1 �Mi�i=2;:::;r, Lr0 � M�r , whihis a speial ase of the yli setup with M0 = fptg. The usual Floer ohomology for pairsof Lagrangians �ts into this ase with r = 1 and Lagrangian submanifolds L01; L10 �M1.3Note that our onventions di�er from Seidel's de�nition of graded Floer ohomology in [15℄ in two pointswhih anel eah other: The roles of x� and x+ are interhanged and we swithed the sign of the Maslovindex in the de�nition of the degree (11).



QUILTED FLOER COHOMOLOGY 25We assume that L satis�es (M1-2,L1-3), i.e. eah Mj satis�es (M1-2) and eah L(j�1)jsatis�es (L1-3) with a �xed monotoniity onstant � � 0. We moreover assume that L isgraded in the sense of De�nition 3.1.2 and equipped with a relative spin struture in thefollowing sense.De�nition 4.3.1. Let L = (L01; : : : ; Lr(r+1)) be a yli generalized Lagrangian orre-spondene (i.e. Lj(j+1) � M�j � Mj+1 for a yli sequene M0;M1; : : : ;Mr+1 = M0 ofsympleti manifolds). A relative spin struture on L onsists of a olletion of bakgroundlasses bj 2 H2(Mj ;Z2) for j = 0; : : : ; r + 1 and relative spin strutures on Lj(j+1) withbakground lasses ���j bj + ��j+1bj+1. The yli requirement on the bakground lassesb0 2 H2(M0;Z2) and br+1 2 H2(Mr+1;Z2) = H2(M0;Z2) is br+1 = b0 for r odd andbr+1 = b0 + w2(M0) for r even.4Eventually, in Setion 5, we will de�ne the Floer ohomology HF (L) diretly, using\quilts of pseudoholomorphi strips". In this setion however we de�ne HF (L) as a speialase of the Floer ohomology for pairs of Lagrangian submanifolds { whih are onstrutedfrom the sequene L as follows. If L has even length r + 1 2 2N we de�ne a pair of gradedLagrangian submanifolds,L(0) := (L01 � L23 � : : : � L(r�1)r)L(1) := (L12 � L34 � : : : � Lr(r+1))T � M�0 �M1 �M�2 � : : :�Mr =: fM:Here we denote byM�1 � : : :�M�r �M0 !M�0 �M1� : : :�Mr, Z 7! ZT the transpositionof the last to the �rst fator, ombined with an overall sign hange in the sympleti form.If L has odd length r + 1 2 2N + 1 we insert the diagonal �0 � M�0 �M0 = M�r+1 �M0(equipped with its anonial grading) into L before arranging it into a pair of Lagrangiansubmanifolds as above, yieldingL(0) = (L01 � L23 � : : :� Lr(r+1))L(1) = (L12 � L34 � : : :� L(r�1)r ��0)T � M�0 �M1 � : : :�M�r �Mr+1 = fMIn the ase of a nonyli orrespondene withM0 =Mr+1 = fptg the transposition as wellas insertion of the diagonal are trivial operations. Note that, beyond the grading, also themonotoniity, ompatness, and orientation assumptions (L1-2) on L transfer diretly toproperties (L1-2) for L(0) and L(1). Similarly, a relative spin struture on L indues ompat-ible relative spin strutures on L(0) and L(1), see [23℄. Moreover, we say that L is monotoneif the pair of Lagrangians (L(0); L(1)) is monotone in the sense of De�nition 4.1.2(b). If thisis the ase, then a graded Floer ohomology for L an be de�ned byHF (L) := HF (L(0); L(1)):Remark 4.3.2. To see that HF (L(0); L(1)) is well de�ned we need to make sure that L(0)and L(1) also satisfy (L3), or that the bubbling of holomorphi diss is otherwise exluded.Note that the assumption (L3) on the fators of L does not diretly transfer to the produtLagrangians L(0) and L(1) sine a di�erene of Maslov numbers greater than 3 ould givea total Maslov number less than 3. However, if we use a split almost omplex strutureeJ = J0 � : : : � Jr on fM , indued from ompatible almost omplex strutures Jk on eahMk, then any nononstant holomorphi dis in fM with boundary on L(0) or L(1) will simply4 This shift is neessary in order to �t in the anonial relative spin struture for the diagonal �0, see[20℄ for details.



26 KATRIN WEHRHEIM AND CHRIS T. WOODWARDbe a produt of Jk-holomorphi diss. Pairs of these diss take boundary values in theLagrangian orrespondenes L(k�1)k whih satisfy the monotoniity assumptions as well as(L3). Hene eah of these double diss must have nonnegative area and hene index, andat least one of them has positive area and hene Maslov index at least 3.The proof that transversality an be ahieved with an almost omplex struture (and alsoHamiltonian perturbation) of split type an be found in Theorem 5.2.3 and Proposition 5.2.1below. This exludes bubbling suh that �2 = 0 for this spei� hoie of perturbation data(and hene for any other hoie of regular perturbation data). So the Floer ohomologyHF (L(0); L(1)) is indeed well de�ned.In the ase of a non-yli sequene the Floer ohomology HF (L) speializes toHF (L1; L12; : : : ; L(r�1)r; Lr) = HF (L1 � L23 � : : : ; L12 � L34 � : : :):In partiular we reprodue the de�nition of Floer ohomology for a pair of LagrangiansL0; L1 � M , viewed as yli orrespondene fpt:g L0�! M L1�! fpt:g. We moreover de�nea Floer ohomology for any Lagrangian L � M� �M , viewed as yli orrespondeneM L�! M , in partiular for graphs L = graph(�) of sympletomorphisms � : M !M . Byde�nition, this invariant is HF (L) := HF (L;�M ), whih reprodues the Floer ohomologyHF (graph(�)) = HF (graph(�);�M ) = HF (�) of a sympletomorphism.5. Quilted Floer ohomologyThe purpose of this setion is to reformulate the de�nition of Floer ohomology forgeneralized Lagrangian orrespondenes in terms of quilted surfaes (onsisting of strips).As in Setion 4.3 onsider a yli generalized Lagrangian orrespondene L, that is, asequene of sympleti manifolds M0;M1; : : : ;Mr;Mr+1 with M0 =Mr+1 for r � 0, and asequene of Lagrangian orrespondenesL01 �M�0 �M1; L12 �M�1 �M2; : : : ; Lr(r+1) �M�r �Mr+1:5.1. Unfolding of Floer ohomology in produts. We de�ned the Floer ohomologyHF (L) as the standard Floer ohomology in the produt manifold fM =M�0 �M1�M�2 �: : :of a pair of Lagrangians L(0); L(1) that is built from the yli sequene L. We will showhow quilts arise naturally from "unfolding" this onstrution and phrasing it in terms oftuples of holomorphi urves in the Mj .Informally, HF (L) an be viewed as the Morse homology on the path spaeP(L(0); L(1)) = �y : [0; 1℄! fM �� y(0) 2 L(0); y(1) 2 L(1)	of the (potentially multivalued) sympleti ation funtionalAH(y) = Z[0;1℄�[0;1℄ v�!fM + Z 10 H(t; y(t))dt:Here v : [0; 1℄ ! P(L(0); L(1)) is a smooth homotopy from a �xed v(0) = y0 2 P(L(0); L(1))(in a given onneted omponent) to v(1) = y, whih an also be viewed as map v :[0; 1℄� [0; 1℄ ! fM satisfying Lagrangian boundary onditions on f0g� [0; 1℄ and f1g� [0; 1℄.Suppose for now that r is odd, then the path spae an be identi�ed with the set of tuplesof paths in the manifolds Mj , onneted via Lj(j+1)-mathing onditions at the ends,P(L) = �x = �xj : [0; 1℄!Mj�j=0;:::;r ��(xj(1); xj+1(0)) 2 Lj(j+1)	:



QUILTED FLOER COHOMOLOGY 27Here and throughout we will use the index j 2 f0; : : : ; rgmodulo r+1, so e.g. xr+1 := x0 andthe mathing ondition for j = r+1 is (xr(1); x0(0)) 2 Lr(r+1). We make the identi�ationwith P(L(0); L(1)) by y(t) = �x0(1 � t); x1(t); x2(1 � t); : : : ; xr(t)�, then the unperturbed(H = 0) sympleti ation funtional on P(L) beomesA0(x) = rXj=0 Z[0;1℄�[0;1℄ v�j!Mj :Here vj : [0; 1℄ � [0; 1℄ ! Mj interpolate between �xed paths vj(0; �) and vj(1; �) = xj , andsatisfy what we will all "seam onditions" (vj(s; 1); vj+1(s; 0)) 2 Lj(j+1) for all s 2 [0; 1℄.Next, assume that the almost omplex struture on fM is of time-independent split formJ = (�J0) � J1 � (�J2) � : : : � Jr, given by a tuple Jj 2 J (Mj ; !j) of almost omplexstrutures on the fators of fM . This de�nes a metri on the path spae, and the gradientow lines, viewed as PDE's are the J -holomorphi strips w : R� [0; 1℄ ! fM with boundaryvalues in L(0) and L(1). They are in one-to-one orrespondene with (r + 1)-tuples of Jj-holomorphi maps uj : R � [0; 1℄!Mj satisfying the seam onditions(uj(s; 1); uj+1(s; 0)) 2 Lj(j+1); for all j = 0; : : : ; r; s 2 R:Here we again use yli notation ur+1 := u0, and the orrespondene is given by w(s; t) =�u0(s; 1� t); u1(s; t); u2(s; 1� t); : : : ; ur(s; t)�.For r even there is a slight modi�ation of the previous orrespondene. The produtmanifold fM has two fators M0 and Mr+1 = M0 mathed up via the diagonal. So thepath spae an be identi�ed with the generalized path spae P(L) as above with the ex-eption that the path x0 : [0; 2℄ ! M0 in M0 = Mr+1 is parametrized by an interval oflength 2 and satis�es the mathing ondition (x0(2); x1(0) 2 L01 at its end. Similarly, a J -holomorphi strip w : R�[0; 1℄ ! fM orresponds via w(s; t) = �u0(s; 2�t); u1(s; t); u2(s; 1�t) : : : ; ur(s; 1� t); u0(s; t)� to a tuple of Jj-holomorphi strips as above, with the exeptionthat the strip u0 : R � [0; 2℄ ! M0 has width 2. This tuple (uj)j=0;:::;r is the �rst instaneof a nontrivial pseudoholomorphi quilt { ontaining strips of di�erent widths.When r is even, the Floer trajetories of the pair L(0); L(1) in fat annot be identi�ed withan (r + 1)-tuple of pseudoholomorphi maps, all de�ned on strips of width 1, with seamonditions in Lj(j+1). Conformal resaling ~u0(s; t) := u0(2s; 2t) would result in a "time-shifted" mathing ondition (~u0(s; 1); u1(2s; 0)) 2 L01 unless u1 is resaled, too, whih wouldresult in ~u0 having width 1 but all other strips having width 12 . In fat, only simultaneousresaling of all omponents in these pseudoholomorphi quilts preserves holomorphiity andseam onditions (unless the Lagrangian orrespondenes are of split type, e.g. L01 = L0�L1for Lagrangians Lj �Mj). It annot hange the relative widths of strips.By a reparametrization of the path inM0, one ould identify P(L(0); L(1)) and the ationfuntional with the generalized path spae P(L) and a orresponding ation funtional,where all paths are parametrized by [0; 1℄. However, the reparametrized û0(s; t) := u0(s; 2t)now satis�es �sû0 + 12J0�tû0 = 0 with a no longer omplex struture 12J0 that squares to�14 . This is due to the fat that the pullbak of the metri on P(L(0); L(1)) to P(L) is theL2-metri on eah fator with respet to !j(�; Jj �) for j = 1; : : : ; r but 12!0(�; J0�) onM0. Weould drop the fator 12 in the metri on M0 to obtain Jj-holomorphi strips of width 1 ineah fator as trajetories, however these would be the "gradient ow lines" with respet toa di�erent metri. In general, it is not know how Floer homology behaves under a hange of



28 KATRIN WEHRHEIM AND CHRIS T. WOODWARDmetri. However, we will show that it is independent of the hoie of weights Æ�1j !j(�; Jj �)in the L2-metri on P(L). This setup is equivalent to de�ning the generalized path spaewith varying widths xj : [0; Æj ℄!Mj but �xing the standard L2-metri indued by !j andJj on eah fator.5.2. Constrution of quilted Floer ohomology. In the quilted setup for HF (L) we�x widths Æ = (Æj > 0)j=0;:::;r and onsider the generalized path spaeP(L) := �x = �xj : [0; Æj ℄!Mj�j=0;:::;r ��(xj(Æj); xj+1(0)) 2 Lj(j+1)	:We de�ne a perturbed sympleti ation funtional on P(L) by piking a homotopy v =(vj)j=0;:::;r : [0; 1℄! P(L) from a �xed v(0) to v(1) = x and settingAH(x) = rXj=0�Z[0;1℄�[0;Æj ℄ v�j!Mj + Z Æj0 Hj(t; xj(t))dt�;using a tuple of Hamiltonian funtionsH = �Hj 2 C1([0; Æj ℄�Mj)�j=0;:::;r:By folding and resaling as in the previous setion, this is equivalent to the path spaeP(L(0); L(1)) with sympleti ation funtional perturbed by a Hamiltonian of split type,e.g. H =Prj=0(�1)j+1Æj ~Hj for r odd, where ~Hj(t; x) = Hj(Æjt; x) for j odd and ~Hj(t; x) =Hj(Æj(1� t); x) for j even. Here the ritial points orrespond to the perturbed intersetionpoints �H1 (L(0))\L(1), where �H1 is the time-one ow of H. In the quilted setup, the ritialpoints of AH are tuples of Hamiltonian hords,I(L) := (x = �xj : [0; Æj ℄!Mj�j=0;:::;r ����� _xj(t) = XHj (xj(t));(xj(Æj); xj+1(0)) 2 Lj(j+1)) :I(L) is anonially identi�ed with ��H0Æ0 �L01 ��H1Æ1 L12 : : : ��HrÆr Lr(r+1)�, the set of points�(m0; : : : ;mr) 2M0 � : : :�Mr �� (�HjÆj (mj);mj+1) 2 Lj(j+1)	;where �HjÆj is the time Æj ow of the Hamiltonian Hj . In this setting we an hek thatHamiltonians of split type suÆe to ahieve transversality for the intersetion points.Proposition 5.2.1. There is a dense open subset Ham(L) � �rj=0C1([0; Æj ℄ �Mj) suhthat for every (H0; : : : ;Hr) 2 Ham(L) the set ��H0Æ0 �L01��H1Æ1 L12 : : :��HrÆr Lr(r+1)� is smoothand �nite, that is, the de�ning equations are transversal.Proof. By assumption Lj(j+1) is an embedded submanifold of Mj(j+1) := M�j �Mj+1 andso loally Lj(j+1) is the zero set of a submersion  j(j+1) :Mj(j+1) ! Rnj+nj+1 . The de�ningequations for ��H0Æ0 �L01 ��H1Æ1 L12 : : : ��HrÆr Lr(r+1)� are(23)  j(j+1)��HjÆj (mj);mj+1� = 0 for all j = 0; : : : ; r:Consider the universal moduli U spae of data (H0; : : : ;Hr;m0; : : : ;mr) satisfying (23),where now eah Hj has lass C` for some ` � 2. The linearized equations for U are(24) D j(j+1)(D�HjÆj (hj ; vj); vj+1) = 0 for all j = 0; : : : ; r:



QUILTED FLOER COHOMOLOGY 29for vj 2 TmjMj (with vr+1 := v0) and hj 2 C`([0; 1℄ �Mj). The mapC`([0; 1℄ �Mj)! T�HjÆj (mj)Mj; hj 7! D�HjÆj (hj ; 0)is surjetive, whih shows that the produt of the operators on the left-hand side of (24)is also surjetive. By the impliit funtion theorem U is a smooth Banah manifold, andwe onsider its projetion to �rk=0C`([0; Æk ℄�Mk). By the Sard-Smale theorem, the set ofregular values (the set of funtions H = (H0; : : : ;Hr) suh that the perturbed intersetionis transversal) is dense in �rk=0C`([0; Æk ℄ � Mk). On the other hand, the set of regularvalues is learly open. Hene the set of smooth funtions that are regular values is openand dense. �With this split Hamiltonian perturbation we have a anonial bijetion of ritial points�H1 (L(0))\L(1) �= I(L), and hene the (graded) Floer hain group CF (L(0); L(1)) is identi�edwith CF (L) := Md2ZNCF d(L); CF d(L) := Mx2I(L);jxj=dZhxi:The grading is de�ned as in Setion 3.1,I(L) �= �H1 (L(0)) \ L(1) ! ZN; x �= y 7! jyj = jxj:Next, �x a tuple of almost omplex struturesJ = (Jj)j=0;:::;r 2 �rj=0C1([0; Æj ℄;J (Mj ; !j)) =: Jt(L)and equip P(L) with the L2-metri indued by the t-dependent metri !j(�; Jj �) on eahfator Mj . Then the Floer trajetories (obtained by reformulating the gradient ow asPDE) are (r + 1)-tuples of maps uj : R � [0; Æj ℄!Mj that are (Jj ;Hj)-holomorphi,(25) �Jj ;Hjuj = �suj + Jj��tuj �XHj (uj)� = 0 8j = 0; : : : r;and satisfy the seam onditions(26) (uj(s; Æj); uj+1(s; 0)) 2 Lj(j+1) 8j = 0; : : : r; s 2 R:For a Floer trajetory to be ounted towards the di�erential between ritial points x� 2I(L) we moreover require �nite energy and limits(27) E(u) := rXj=0 ZR�[0;Æj ℄ u�j!j+d(Hj(uj)dt) <1; lims!�1uj(s; �) = x�j 8j = 0; : : : ; r:
L(r�1)rLr
L0...L12

L12L01Lr(r+1)L(r�1)r ...Lt23Lt(r�2)(r�1)Figure 1. Quilted Floer trajetories for M0 = fptg and in general



30 KATRIN WEHRHEIM AND CHRIS T. WOODWARDAs in standard Floer theory, the moduli spaes of "quilted holomorphi strips"M(x�; x+) := �u = �uj : R � [0; Æj ℄!Mj�j=0;:::;r �� (25); (26); (27)	=Rarise from quotienting out by simultaneous R-shift in all omponents uj. (Separate shiftswill not preserve the seam ondition unless the orrespondenes are of split type.) We willsee that they have the same Fredholm, exponential deay, and ompatness properties asusual for Floer trajetories. For that purpose we restrit ourselves to the monotone ase.Remark 5.2.2. The "monotoniity for Floer theory" assumption for the pair (L(0); L(1)) inDe�nition 4.1.2 an be phrased diretly for L in the language of [22℄: "L is a monotoneboundary ondition for the quilted ylinder". That is, the ation-index relation2 rXj=0 Z u�j!j = � � I�(u�jTMj)j=0;:::;r; (s�j(j+1)TLj(j+1))j=0;:::;r�holds for eah tuple of maps uj : S1 � [0; Æj ℄ ! Mj that satis�es the seam onditionssj(j+1)(s) := (uj(s; Æj); uj+1(s; 0)) 2 Lj(j+1) for j = 0; : : : ; r. Here the topologial index Iis de�ned by hoosing a trivialization for eah u�jTMj and then summing over the Maslovindies of the loops s�j(j+1)TLj(j+1) of Lagrangian subspaes with respet to these trivial-izations.Note that the monotoniity ondition for L is independent of the width Æj of the annulithat parametrize the maps uj . Moreover, it implies monotoniity for the sequene L0 =(L01; : : : ; L(j�1)j Æ Lj(j+1); : : : ; Lr(r+1)) obtained from an embedded omposition L(j�1)j ÆLj(j+1). To see the latter note that any seam ondition s(j�1)(j+1) : S1 ! L(j�1)j Æ Lj(j+1)indues a smooth map uj : S1�[0; 1℄!Mj that is onstant in [0; 1℄, �ts the seam onditionsfor L, but ontributes zero to both energy and Maslov index. Hene the ation index relationfor L implies the same relation for L0.Theorem 5.2.3. Suppose that the sympleti manifolds Mj satisfy (M1-2) with the samevalue of the monotoniity onstant � , the Lagrangian orrespondenes Lj(j+1) satisfy (L1-2),and L satis�es the monotoniity assumption of Remark 5.2.2.For any hoie of widths Æ and regular Hamiltonian perturbations H � Ham(L), thereexists a subset J regt (L;H) � Jt(L) of Baire seond ategory, suh that the following holdsfor all x� 2 I(L).(a) M(x�; x+) is a smooth manifold whose dimension near a nononstant solution uis given by the formal dimension, equal to Ind(Du) � 1. Here Du is the linearizedoperator at u of (25) on the spae of setions satisfying the linearized boundary- andseam onditions of (26).(b) The omponent M(x�; x+)0 �M(x�; x+) of formal dimension zero is �nite.() Suppose that eah Lj(j+1) has minimal Maslov number NLj(j+1) � 3. Then theone-dimensional omponent M(x�; x+)1 � M(x�; x+) has a ompati�ation asone-dimensional manifold with boundary(28) �M(x�; x+)1 �= [x2I(L)M(x�; x)0 �M(x; x+)0(d) If L is relatively spin (as de�ned in De�nition 4.3.1), then there exists a oherent setof orientations on M(x�; x+)0;M(x�; x+)1 for all x� 2 I(L), that is, orientationsompatible with (28).



QUILTED FLOER COHOMOLOGY 31Proof. Suppose for simpliity that r is odd. (For even r we an insert a diagonal intothe sequene L, then the quilted holomorphi strips of widths Æ an be identi�ed withquilted holomorphi strips for the new sequene with widths ( Æ02 ; Æ1; : : : ; Ær; Æ02 ).) Thenthe quilted moduli spae M(x�; x+) is anonially identi�ed with the moduli spae of(JÆ ;H)-holomorphi maps w : R � [0; 1℄ ! fM with boundary onditions w(R; 0) � L(0),w(R; 1) � L(1), �nite energy EH(w) <1, and limits lims!�1w(s; �) = x� 2 I(L(0); L(1)).The orrespondene is byw(s; t) = �u0(s; Æ0(1� t)); u1(s; Æ1t); u2(s; Æ2(1� t)); : : : ; ur(s; Ært)�;where H =Prj=0(�1)j+1Æj ~Hj as above andJÆ := ��Æ�10 J0(Æ0(1� t)); Æ�11 J1(Æ1t); : : : ; Æ�1r Jr(Ært)�satis�es all properties of a t-dependent !fM -ompatible almost omplex struture exept thatit squares to the negative de�nite diagonal matrix J2Æ = �(Æ�20 IdTM0 � : : :� Æ�2r IdTMr).This still presents an ellipti boundary value problem of the form �s + D, where thelinearizations of D are self-adjoint operators. Hene the Fredholm property, energy-indexrelation, exponential deay, ompatness, and gluing properties arry over diretly from thease of holomorphi urves. One ruial omponent is the spetrum of the operator JÆ�t onL2([0; 1℄; TfM ) with boundary onditions in T�H1 (L(0)); TL(1). Sine the boundary ondi-tions are transverse on the ends, we have a spetral gap ensuring exponential deay. In fat,the deay rate is uniform for bounded (but possibly small) widths, as proven in [21℄. Spe-tral rossings orrespond to intersetions of the Lagrangian subspaes, as in the standardase, and hene index alulations reprodue the Maslov index. For the ompatness ofindex 0 and 1 moduli spaes it suÆes to exlude bubbling by onsidering a single blow-uppoint for the gradient. This analysis is loal, in the interior of one omponent uj (leading toa Jj-holomorphi sphere inMj) or near a seam, where we an onsider uj(s;�t)�uj+1(s; t)as (�Jj)� Jj+1-holomorphi urve with boundary ondition in Lj(j+1). The latter type ofbubbling hene leads to a holomorphi dis inM�j �Mj+1 with boundary on Lj(j+1), whihare exluded by our assumptions on the minimal Maslov index.To see that there exist regular "deformed omplex strutures" JÆ 2 J regt (L(0); L(1);H)of split form, arising from a hoie of J , we note that the unique ontinuation theorem [4,Theorem 4.3℄ applies to the interior of every single nononstant strip uj : R � (0; Æj)!Mj .It implies that the set of regular points, (s0; t0) 2 R � (0; Æj) with �suj(s0; t0) 6= 0 andu�1j (uj(R [ f�1g); t0) = f(s0; t0)g, is open and dense. These points an be used to provesurjetivity of the linearized operator for a universal moduli spae of solutions with respetto split almost omplex strutures. (The onstant solutions are automatially transversedue to the previously ensured transversality of the intersetion points �H1 (L(0)) t L(1).) Theexistene of a Baire seond ategory set of regular J then follows from the usual Sard-Smaleargument as in [10℄.Orientations an be de�ned as in the standard Floer theory sine the linearized op-erator anonially deforms through Fredholm operators to a standard Cauhy-Riemannoperator. The deformation transfers to the setup with H = 0 (hanging L(0) and alsoJÆ by a Hamiltonian transformation) and then deforms JÆ through the endomorphisms�exp(� ln Æ0)IdTM0 ; : : : ; exp(� ln Ær)IdTMr� Æ JÆ to a true almost omplex struture at � = 1.�



32 KATRIN WEHRHEIM AND CHRIS T. WOODWARDNow, assuming monotoniity and hoosing regular H and J we an de�ne the Floer ho-mologyHF (L) just as in the standard ase: The Floer oboundary operator �d : CF d(L)!CF d+1(L) is de�ned by �dhx�i := Xx+2I(L)� Xu2M(x�;x+)0 �(u)�hx+i;where the signs � :M(x�; x+)0 ! f�1g are de�ned by omparing the given orientation tothe anonial orientation of a point. It follows from Theorem 5.2.3 () that �2 = 0, and �is a map of degree 1 by index alulations as in the standard ase. This de�nes the quiltedFloer ohomologyHF (L) := Md2ZNHF d(L); HF d(L) := ker(�d)=im(�d�1)as ZN-graded group. It is independent of the hoie of H and J by a standard onstrutionof ontinuation maps. The same onstrution also allows for a deformation of the widthsÆ, in the folded setup of the above proof, where the Æj are merely sale fators in theendomorphism JÆ. For a more oneptional proof based on quilts interpolating betweenstrips of di�erent widths see Setion 5.3 below.Remark 5.2.4. One an also allow the sequene L to have length zero (that is, the emptysequene) as a generalized orrespondene fromM to M ; this is the ase r = �1 in the pre-vious notation. In this ase we de�ne HF (L) = HF (IdM ), the ylindrial Floer homology.This would be the ase without seams in Figure 1.5.3. Invariane of quilted Floer ohomology and relative quilt invariants. Thepurpose of this setion is to prove the independene of quilted Floer ohomology from thehoie of perturbation data, in partiular the hoie of widths.Consider a yli generalized Lagrangian orrespondene L = (Lk(k+1))k=0;:::;r satisfyingthe monotoniity onditions of Theorem 5.2.3. Fix a tuple of widths Æ = (Æk)k=0;:::;r. ThenProposition 5.2.1 and Theorem 5.2.3 provide tuples of Hamiltonians H = (Hk)k=0:::;r andalmost omplex strutures J = (Jk)k=0;:::;r suh that the Floer homology HF (L) an be de-�ned by ounting quilted Floer trajetories u 2M(x�; x+) between generalized intersetionpoints x� 2 I(L).In the language of quilted surfaes developed in [22℄ the Floer trajetories orrespondto the holomorphi quilted ylinders u 2 MZ(x�; x+) with K = (Hkdt)k=0;:::;r and J =(Jk)k=0;:::;r. Here the quilted surfae is the quilted ylinder Z whose pathes are strips (Sk =R� [0; Æk ℄)k=0;:::;r of the given widths with the anonial omplex struture and the obvious(up to a shift hosen as �1) ends �k;e� : R� � [0; Æk℄! Sk; (s; t) 7! (s;�1 + t). The seamsare �k = f(k;R � fÆkg); (k + 1;R � f0g)g for k = 0; : : : ; r modulo (r + 1), with seam maps��k : �Sk � (s; Æk) 7! (s; 0) � �Sk+1. This quilted surfae is shown on the right in Figure 1.There are no remaining boundary omponents exept for in the speial ase of a nonylisequene with M0 = fptg, whih is indiated on the left in Figure 1. In that ase Z has noseam �r between Sr and S0 but true boundary omponents (0;R � f0g) and (r;R � fÆrg).The ends of the quilted surfae are the inoming e� = �(0; e�); (1; e�); : : : ; (r; e�)� andthe outgoing e+ = �(0; e+); (1; e+); : : : ; (r; e+)�. Note however that the perturbation data(J;K) is R-invariant and the ount for the Floer di�erential is modulo simultaneous R-shiftof all maps uk. That is, unlike in the de�nition of relative quilt invariants in [22℄, where no



QUILTED FLOER COHOMOLOGY 33symmetries are divided out and index 0 solutions are ounted, we here ount the isolatedsolutions M(x�; x+)0 =MZ(x�; x+)1=R, whih are pseudoholomorphi quilts of index 1.The proof of independene of Floer ohomology from the hoie of perturbations andpartiularly the widths goes somewhat beyond the proof for standard Floer theory. It isbest formulated by using quilted surfaes that are not obtained by "unfolding of strips".With Proposition 5.3.1 below in plae we an in partiular identify the two de�nitions ofFloer ohomology HF (L) �= HF (L(0); L(1)) for a yli sequene in Setions 4.3 and 5.2.For that purpose one hooses speial widths in the quilted setup of Setion 5.2, namelythose that orrespond by the disussion in Setion 5.1 to the "folded" Floer trajetories ofHF (L(0); L(1)). The proof of the Proposition however uses the notation and onstrutionof relative quilt invariants in [22℄.Proposition 5.3.1. HF (L) is independent, up to isomorphism of ZN-graded groups, ofthe hoie of perturbation data (H;J) and widths Æ of the strips.Proof. Suppose that (H i; J i; Æi) are two di�erent hoies for i = 0; 1. For fi; lg = f0; 1glet Zil be the quilted ylinder as before, but with omplex strutures jk on eah stripSk �= R � [0; 1℄ that interpolate between the two widths Æik at the end (k; e�) and Ælk atthe end (k; e+). In order for the seams to be real analyti we pik the standard omplexstruture near the boundary omponents R � f0; 1g � �Sk and only in the interior of Sksale to the appropriate width and interpolate. Figure 2 shows the example for r = 3 andM0 = M4 = fptg. We moreover interpolate the perturbation data on the two ends by
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Æ03Æ02Æ01 Æ13Æ12Æ11
L2L12L01L0Figure 2. Interpolating between two widthssome regular (Kil; J il) on Zil. The relative invariants, onstruted in [22℄ from the zero-dimensional moduli spaes, then provide maps between the orresponding Floer ohomologygroups �Z01 : HF (L)0 ! HF (L)1; �Z10 : HF (L)1 ! HF (L)0:The surfae Z01#Z10 that is glued at fe�g = E�(Z01) and fe+g = E+(Z10) an be de-formed with �xed ends to the in�nite strip with translationally invariant perturbation data(H1; J1; Æ1). The invariant de�ned by the latter is the identity on HF (L)1 sine only on-stant strips an ontribute (all nononstant solutions lie in at least 1-dimensional modulispaes due to the nontriviality of the R-ation). Sine the relative quilt invariants are in-dependent of the above hoies, the relative invariant �Z01#Z10 is the identity on HF (L)1(and similarly for �Z10#Z01). Then by the gluing theorem for relative quilt invariants [22℄(where the sign is positive) we have�Z01 Æ �Z10 = �Z01#Z10 = Id; �Z10 Æ �Z01 = �Z10#Z01 = Id:This proves that the Floer ohomology groups HF (L)0 and HF (L)1 arising from the dif-ferent hoies of data are isomorphi. �



34 KATRIN WEHRHEIM AND CHRIS T. WOODWARD5.4. Geometri omposition and quilted Floer ohomology. In this setion we proveand disuss the isomorphism (3), more preisely stated as follows.Theorem 5.4.1. Let L = (L01; : : : ; Lr(r+1)) be a yli sequene of Lagrangian orrespon-denes between sympleti manifolds M0; : : : ;Mr+1 =M0 as in De�nition 2.1.3. Suppose(a) the sympleti manifolds all satisfy (M1-2) with the same monotoniity onstant � ,(b) the Lagrangian orrespondenes all satisfy (L1-3),() the sequene L is monotone, relatively spin, and graded in the sense of Setion 4.3,(d) the omposition L(j�1)j Æ Lj(j+1) is embedded in the sense of De�nition 2.0.4.Then with respet to the indued relative spin struture, orientation, and grading 5 on themodi�ed sequene L0 = (L01; : : : ; L(j�1)j Æ Lj(j+1); : : : ; Lr(r+1)) there exists a anonial iso-morphism of graded groupsHF (L) = HF (: : : L(j�1)j ; Lj(j+1) : : :) ��! HF (: : : L(j�1)j Æ Lj(j+1) : : :) = HF (L0);indued by the anonial identi�ation of intersetion points in Remark 3.1.3.Before summarizing the proof let us mention the (im)possibility of various generalizations.Remark 5.4.2. (a) The relative spin strutures are only needed to de�ne the Floer o-homology groups with Z oeÆients. Here we only prove the isomorphism with Z2oeÆients. The full result then follows from a omparison of signs in [23℄.(b) There should also be versions of this result for Floer ohomology with oeÆientsin at vetor bundles, and Novikov rings, using an understanding of their behaviourunder geometri omposition, similar to the theory presented here for gradings. Thegradings on the Lagrangians an be dropped if one wants only an isomorphism ofungraded groups.() Note that the geometri omposition L(j�1)j ÆLj(j+1) ould be a smooth Lagrangiandespite the omposition not being embedded. If this failure is in the transversality,then our approah does not apply (as e.g. for a G-invariant Lagrangian L � ��1(0) inthe zero set of the moment map, whose omposition with �� is the smooth projetionLÆ�� = �(L) despite L not being transverse to ��1(0)). (For suh Lagrangians onewould expet a orrespondene between holomorphi urves inM==G and sympletivorties in M , in the spirit of [6℄ and the Lagrangian version of the Atiyah-Floeronjeture [19℄.) However, when L(j�1)j �Mj Lj(j+1) is transverse but a k-fold overof L(j�1)j Æ Lj(j+1), then the map of intersetion points I(L) ! I(L0) is a k-to-1map as well. In this ase our analysis still applies and gives a k-to-1 map of modulispaes. This may lead to further alulation tools for Floer ohomology but needsto be investigated on a ase-by-ase basis.(d) The assumption (L3) on the minimal Maslov numbers is needed only to ahieve�2 = 0 and thus make the Floer ohomology well-de�ned. In the absene of (L3)we have �2 = wId, where w = w(L01) + : : : + w(Lr(r+1)) is the sum of numbers ofpseudoholomorphi disks through a generi point on eah Lagrangian. So insteadof (L3), whih implies w(L(j�1)j) = 0 for eah j, we ould assume w = 0. In asew 6= 0, Theorem 5.4.1 generalizes to an isomorphism in the derived ategory ofmatrix fatorization, see [25℄.5 The grading of L(j�1)(j+1) is given by (16), the orientation is given by Remark 2.0.6(b), and for therelative spin struture see [23℄.



QUILTED FLOER COHOMOLOGY 35(e) The monotoniity assumptions (M1) and (L1) annot simply be replaed by othertools whih allow the de�nition of Floer ohomology (suh as Novikov rings, twistedoeÆients, obstrutions, or deformations). This is sine a new type of bubblingan our in the strip shrinking that we use to prove the isomorphism. We havealled it the "�gure eight bubble" and desribe it in [21℄. However, we are lakingthe onstrution of a moduli spae of �gure eight bubbles. Our present method forexluding these bubbles hinges on strit monotoniity with nonnegative onstant� � 0 as well as the 2-grading assumption implied by orientations. In general, weexpet �gure eight bubbles to be a odimension 1 phenomenon in a 1-parameterfamily of strip widths approahing zero. We hene expet the isomorphism to failin more general settings, exept for speial topologial assumptions restriting theexpeted dimension of �gure eight bubbles. Eventually, we expet to onstrutobstrution lasses and an A1-type struture from moduli spaes of �gure eightbubbles, and to replae the isomorphism by a morphism of A1-modules. However,all of this depends on a basi removable singularity result for �gure eight bubbles,whih has not yet been aomplished.Theorem 5.4.1 is fairly obvious if one of the omposed Lagrangians orrespondenes isthe graph of a sympletomorphism. It suÆes to observe that sympletomorphisms mappseudoholomorphi urves to pseudoholomorphi urves. However, there is no orrespond-ing e�et for more general Lagrangian orrespondenes. Here the natural approah toa proof is to degenerate the holomorphi urve equation in Mj until solutions beomeonstant aross the strip (or, equivalently, shrink the width of that strip to zero). Thislimit orresponds to geometri omposition of the two Lagrangian orrespondenes at-tahed to the strip. Clearly, most diÆulties in this proof are loalized near the degen-erating strip. We thus banished the analysis to [21℄, where we prove the speial aseHF (L0; L01; L12; L2) �! HF (L0; L01 Æ L12; L2) of Theorem 5.4.1 by establishing a bije-tion between the Floer trajetories for (L0; L02; L2) on strips of width (1; 1) and those for(L0; L01; L12; L2) on strips of width (1; Æ; 1) for suÆiently small width Æ of the middlestrip. These quilted Floer trajetories are shown in Figure 3. The missing piee of proof in
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Figure 3. Shrinking the middle strip[21℄ is the independene of the Floer ohomology from the hoie of Æ > 0, whih we hereestablished in Proposition 5.3.1.Summary of proof of Theorem 5.4.1. For a start, the assumptions of the Theorem onlyguarantee that HF (L) is well-de�ned. By Remark 5.2.2 the monotoniity of L also im-plies monotoniity of L0 and hene monotoniity in the sense of (L1) for L(j�1)j Æ Lj(j+1).



36 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(Assuming the sympleti manifolds to be onneted, any disk an be extended to a quiltedylinder.) Compatness and orientation (L2) also holds for the omposed orrespondene,but the minimal Maslov index ondition (L3) may not. However, this only a�ets the ques-tion whether w = 0 in �2 = wId on the Floer hain group for L0. To de�ne the latter wehoose some widths Æ0, Hamiltonian perturbations H 0 to make the intersetion I(L0) trans-verse, and almost omplex strutures J 0 to make the moduli spaes of Floer trajetories forL0 regular. Thanks to Proposition 5.3.1 we may then hoose the same widths Æ exept forsome small Æj > 0, the same Hamiltonian perturbationsH exept for the additionalHj � 0,and the same almost omplex strutures J exept for some additional time-independentJj 2 J (Mj ; !j), to de�ne HF (L). We only need to make sure that this hoie makes theintersetion points I(L) and the moduli spaes of Floer trajetories for L regular. The �rstis automatially the ase by the transversality assumption for L(j�1)j�Mj Lj(j+1), the latteris true for Æj > 0 suÆiently small and is proven as part of the adiabati limit analysis [21℄.(Atually, preisely following the onstrutions of [21℄, we an ahieve transversality for L0with J 0j�1 and J 0j+1 being time-independent near the seam; then Jj�1 and Jj+1 are obtainedby a slight linear dilation and onstant extension near the new seams.) With these hoies,the Maslov index assumptions imply �2 = 0 on CF (L). Next, the injetivity assumptionfor the omposition L(j�1)j �Mj Lj(j+1) provides a anonial bijetion of generalized inter-setion points I(L0) �= I(L) as in Remark 3.1.3. In [21℄ we establish bijetions between theorresponding moduli spaes of Floer trajetories for Æj > 0 suÆiently small. This meansthat the Floer di�erentials on CF (L0) and CF (L) agree under the anonial identi�ationof generators. In partiular that implies �2 = 0 on CF (L0). Hene both Floer ohomologiesare well-de�ned and isomorphi as laimed. �Remark 5.4.3. To see that the assumption that the omposition L(j�1)jÆLj(j+1) is embeddedis neessary, onsider the ase that r = 2 and M0;M2 are points. In this ase, if v :R � [0; 1℄!M1 is a Floer trajetory of index one with limits x+ 6= x�, we an onsider theresaled maps vÆ : R� [0; Æ℄ !M1. In this ase a �gure eight bubble always develops in thelimit Æ ! 0. This shows that the bijetion between trajetories fails in this ase.6. Appliations6.1. Diret omputation of Floer ohomology.Theorem 6.1.1. Let L01 �M�0 �M1 be a Lagrangian orrespondene and suppose that theLagrangian submanifolds L0 � M0 and L1 � M1 are suh that both L0 Æ L01 and L01 Æ L1are embedded ompositions. Assume that M0;M1 satisfy (M1-2), L0; L1; L01 satisfy (L1-3),and (L0�L1; L01) is a monotone pair in the sense of De�nition 4.1.2 (b). Then there existsa anonial isomorphismHF (L0 Æ L01; L1) ��! HF (L0; L01 Æ L1):Proof. By Theorem 5.4.1 both Floer ohomologies are isomorphi to the quilted Floer o-homology HF (L0; L01; L1) = HF (L0 � L1; L01). �Example 6.1.2. We begin with a \warm-up" example. Let N be a ompat, simply-onneted, monotone sympleti manifold. The submanifold �ij := f(x1; x2; x3; x4)jxi =xjg � N� �N �N� �N is oisotropi for appropriate hoies of 1 � i < j � 4. Then wean identify(29) HF (�14 \�23;�12 \�34) �= HF (�N ;�N ) �= H(N)



QUILTED FLOER COHOMOLOGY 37with the homology of N . This follows from Theorem 6.1.1 applied to L0 = �N � N��N =M0, L1 = �12\�34 � N��N�N��N =M1, and L01 = f(w; z;w; x; x; z)jw; x; z 2 Ng �M�0 �M1. Then the ompositions L0 Æ L01 = �14 \ �23 and L01 Æ L1 = �N are learlyembedded. Monotoniity together with simply onnetedness ensures the monotoniity ofall the Lagrangians and pairs of Lagrangians. Sine N is orientable, all minimal Maslovindies are at least 2. The reader an easily verify the identi�ation (29) using the fat thatthe omponents of a holomorphi trajetory for (�14 \ �23;�12 \ �34) �t together to aholomorphi ylinder v : S1 � [0; 1℄! N .The following is a more non-trivial example of Theorem 6.1.1.Example 6.1.3. Let Mn be the moduli spae of Eulidean n-gons of edge length 1, as in forexample Kirwan [8℄:Mn = (S2)n==SO(3) = f(v1; : : : ; vn) 2 (S2)njv1 + : : :+ vn = 0g=SO(3):We take on S2 the standard sympleti form ! with volume 4� so that 1(S2) = [!℄. Forn � 5 odd Mn is a monotone sympleti manifold with minimal Chern number 1 andmonotoniity onstant 1. For example, M3 is a point andM5 is di�eomorphi to the fourthdel Pezzo surfae, given by blowing-up of P2 at four points [25℄. For i 6= j the submanifold�ij = f[v1; : : : ; vn℄ 2 Mn j vi = �vjg is a oisotropi, spherially �bered over Mn�2 by themap that forgets vi; vj . The image of �ij in M�n�2 �Mn is a Lagrangian orrespondene,also denoted �ij. For i; j; k distint the omposition �ij Æ�tjk is embedded and yields thegraph of a permutation onMn�2. For k = i�1 or for i; k = j�1 this permutation is trivial,so we have �ij Æ�tj(i�1) = �Mn�2 ; �(j�1)j Æ�tj(j�1) = �Mn�2 :Now let L � Mn�2 be a ompat, oriented, monotone Lagrangian, and Lij = L Æ �ij beits inverse image in Mn. This omposition is embedded and we an also identify it withLij = �tij Æ L. The latter allows to alulate�ij Æ Ljk = �ij Æ�tjk Æ L :For i; j; k distint it is an embedded omposition, whih yields the image of L under permu-tation. Suppose that the pair (L;L) is monotone, so that HF (L;L) is well-de�ned. UsingTheorem 6.1.1 we an also (de�ne and) alulateHF (Lij ; Lj(i�1)) = HF (L Æ�ij ; Lj(i�1)) = HF (L;�ij Æ Lj(i�1)) = HF (L;L):and similarly HF (L(j�1)j ; Lj(j�1)) = HF (L;L) .The papers [24℄, [25℄ give many other similar examples.6.2. Computations in C Pn. In this setion we demonstrate, at the example of C Pn, howsome Floer ohomologies in tori sympleti varieties an be alulated by redution. Weequip C Pn = f[z℄ = [z0 : z1 : : : : : zn℄g with Fubini-Study sympleti form and momentmaps �j([z℄) = �jzj j2=jzj2 for j = 1; : : : ; n. We denote by�j := ��[: : : zj�1 : zj+1 : : : :℄; [z0 : : : : : zn℄� ���j([z0 : : : : : zn℄) = �n+1	 � (C Pn�1)� � C Pnthe Lagrangian sphere arising from redution at the level set��1j ( �n+1) = �[z0 : : : : : zn℄ �� zj = 1pn+1 ;Pi 6=j jzij2 = nn+1	:Note that the redued spae, e.g. ��1n ( �n+1)=S1 = f[z0 : : : : zn�1℄ ��Pijzij2 = nn+1g=S1 forj = n, is C Pn�1 with Fubini-Study form saled by nn+1 , hene has the same monotoniity



38 KATRIN WEHRHEIM AND CHRIS T. WOODWARDonstant � = n�1 n�n+1 = (n + 1)�1� as C Pn. (Reall that the generator C P1 � C Pn of�2(C Pn) has Fubini-Study sympleti area � and Chern number n+ 1.)More generally, for eah 1 < k � n a Lagrangian orrespondene�(k;:::;n) := ��[z0 : : : : : zk�1℄; [z0 : : : : : zn℄� ���j([z℄) = �n+1 8j � k	 � (C Pk�1)� � C Pnarises from redution at the level set(�k � : : :� �n)�1( �n+1 ; : : : ; �n+1) = n[z℄ ��� zk = jzk+1j = : : : = jznj = 1pn+1 ; k�1Xi=0 jzij2 = kn+1o:Here again the redued spaes C Pk�1 = f[z0 : : : : : zk�1℄ j Pi jzij2 = kn+1g=S1 arry saledFubini-Study forms with monotoniity onstant � = �n+1 . Moreover, note that �(k;:::;n),di�eomorphi to the produt of an (n � k)-torus with a (2k � 1)-sphere, an be viewedas Lagrangian embedded in (C Pk�1)� � C Pn and also as oisotropi submanifold of C Pn.One an hek expliitly that the Lagrangians �(k;:::;n) are monotone, and we will see inCorollary 6.3.3 below that they are nondisplaeable by Hamiltonian di�eomorphisms. Thereason is that as oisotropi they ontain the nondisplaeable Cli�ord torusT nCl = (�1 � : : : �n)�1( �n+1 ; : : : ; �n+1) = �[z℄ �� z0 = jz1j = : : : = jznj = 1pn+1	 � C Pn:That T nCl is the only nondisplaeable �bre of the torus �bration is known by e.g. [2℄. Its Floerohomology was alulated by Cho [3℄ with all possible spin strutures. Here we reproduethis alulation for the standard spin struture, employing the above Lagrangian orrespon-denes and the isomorphism of Floer ohomology under embedded geometri omposition(Theorem 5.4.1). This approah also allows for a diret omputation of Floer ohomologyfor any pair of nonstandard spin strutures on T nCl, whih we will disuss in[23℄.Theorem 6.2.1. [3℄ For any n 2 N with the standard spin struture (given by [3, Prp.8.1℄)HF (T nCl; T nCl) �= H�(T n) �= Z2n:Proof. The isomorphism between the Floer ohomology and the homology of the Cli�ordn-torus follows indutively from the following hain of isomorphisms:HF (T nCl; T nCl) = HF (T 1Cl Æ �(2;:::;n);�t1 Æ T n�1Cl )�= HF (T 1Cl;�(2;:::;n);�t1; T n�1Cl )�= HF (T 1Cl;�(2;:::;n) Æ �t1; T n�1Cl )(30) �= HF (T 1Cl; T 1Cl � T n�1Cl ; T n�1Cl )�= HF (T 1Cl; T 1Cl)
HF (T n�1Cl ; T n�1Cl ):Let us go through this step by step: The geometri omposition T 1Cl Æ �(2;:::;n) = T nCl isthe preimage of T 1Cl under the projetion (�2 � : : : � �n)�1( �n+1 ; : : : ; �n+1) ! C P1, heneautomatially embedded in the sense of De�nition 2.0.4. Similarly, T n�1Cl Æ �1 = T nCl is thepreimage of T n�1Cl under the projetion ��11 ( �n+1)! C Pn�1, and by transposition we obtainthe embedded omposition �t1 Æ T n�1Cl = T nCl. Finally, the intersetion�(2;:::;n) �CPn �t1 �= (�2 � : : :� �n)�1( �n+1 ; : : : ; �n+1) \ ��11 ( �n+1 ) = T nCl � C Pnis transverse and embeds to�(2;:::;n) Æ �t1 = ��[z0 : z1℄; [z0 : z2 : : : : : zn℄� �� [z℄ 2 T nCl	 = T 1Cl � T n�1Cl � C P1 � C Pn�1:



QUILTED FLOER COHOMOLOGY 39To make sure that Theorem 5.4.1 indeed implies all the above isomorphisms of Floer oho-mology, it remains to ensure that the maximally deomposed tuple (T 1Cl;�(2;:::;n);�tj; T n�1Cl )is monotone. That follows from the monotoniity of all fators together with the torsionfundamental groups of the sympleti manifolds involved. Moreover, it turns out that weneed not worry about the minimal Maslov indies 2. This is sine the proof of Theorem 5.4.1provides, for ertain hoies of perturbations, a anonial identi�ation of the Floer haingroup CF (TCl; TCl) with eah of the other hain groups in (30), under whih the Floer dif-ferentials agree. Sine we have �2 = 0 on the �rst hain group (see [11℄), the di�erentials onall the other hain groups also square to zero, making the Floer ohomologies well de�ned.So, stritly speaking, our alulation uses the derived version of Theorem 5.4.1.Moreover, we need to �x spin strutures on T n�1Cl and �1 as well as on T 1Cl and �(2;:::;n)suh that the indued spin struture on the omposition, T nCl is the standard one. For theCli�ord tori we pik the standard spin struture given by the trivialization of TT kCl � C k inthe oordinate hart C k �= fz0 = 1pn+1g � C Pk. On the sphere �1 � C Pn we �x the spinstruture given by the standard orientation in the hart fz1 = 1pn+1g. (The orientationprovides a trivialization over the 0-skeleton, whih oinides with the 1- and 2-skeleton ofthis sphere of dimension � 3; see [3℄ or [23℄ for more details on spin strutures.) We anread o� the standard spin struture indued on T nCl from the identi�ationTT nCl �= pr�TT n�1Cl �E; E = (pr�TC Pn�1)? � T�1jTnCl :Here TC Pn�1jTn�1Cl = TT n�1Cl �iTT n�1Cl inherits a trivialization from T n�1Cl , so the orientationof �1 indues a trivialization of the line bundle E (given by the linearized ation of �1).For the spin struture on �(2;:::;n) � C Pnwe identify �(2;:::;n) �= T n�2 � S3 with the orbitof the sphere S3 = �[z0 : z1 : 1pn+1 : : : : : 1pn+1 ℄ �� jz0j2 + jz1j2 = 2n+1	 � C Pn under theation of the torus T n�2 � C n�2 in the z3; : : : ; zn-oordinates. If we pik the standardtrivialization of T n�2 and the standard orientation of S3 � C 2 in the above hart, thenagain the standard spin struture is indued on T nCl by the identi�ationTzT nCl �= Tpr(z)T 1Cl � Tz(T n�2z)� F(z0;z1); F = (pr�TC P1)? � TS3jT 1Cl :Here TC P1jT 1Cl = TT 1Cl � iTT 1Cl inherits a trivialization from T 1Cl, so the orientation of S3indues a trivialization of the line bundle F .Finally, we know from elementary urve ounts (see e.g. [3℄) that, with the standard spinstruture on both fators, HF (T 1Cl; T 1Cl) �= Z � Z �= H�(S1 = T 1). Sine the homologyH�(T n) satis�es the same indutive relation (30) as the Floer ohomology that proves thetheorem. �This Floer ohomology alulation diretly generalizes when replaing T 1Cl � C P1 withanother Lagrangian submanifold in a possibly higher dimensional omplex projetive spae.Theorem 6.2.2. Let 1 � k < n and let L � C Pk be an oriented, monotone Lagrangiansubmanifold. Denote by pr : (�k+1 � : : : � �n)�1( �n+1 ; : : : ; �n+1) ! C Pk the redution ofC Pn by the (S1)n�k-ation at the monotone level set. Then pr�1(L) � C Pn is a monotoneLagrangian submanifold andHF (pr�1(L); T nCl) �= HF (L; T kCl)
H�(T n�k):Here we assume that �2 = 0 on CF (L; T kCl); otherwise the above isomorphism holds in theategory of derived matrix fatorizations, see [25℄.



40 KATRIN WEHRHEIM AND CHRIS T. WOODWARDProof. Denote by �(1;:::;k) � (C Pn�k)� � C Pn the Lagrangian orrespondene arising fromredution at the level set (�1 � : : :� �k)�1( �n+1 ; : : : ; �n+1) � C Pn. Then�(k+1;:::;n) �CPn �t(1;:::;k) �= (�k+1 � : : : �n)�1( �n+1 ; : : :) \ (�1 � : : : �k)�1( �n+1 ; : : :) = T nClis transverse and embeds to �(k+1;:::;n) Æ �t(1;:::;k) = T kCl � T n�kCl � C Pk � C Pn�k. Now inomplete analogy to the proof of Theorem 6.2.1 above, we have a hain of isomorphismsHF (pr�1(L); T nCl) = HF (L Æ �(k+1;:::;n);�t(1;:::;k) Æ T n�kCl )�= HF (L;�(k+1;:::;n);�t(1;:::;k); T n�kCl )�= HF (L;�(k+1;:::;n) Æ �t(1;:::;k); T n�kCl )�= HF (L; T kCl � T n�kCl ; T n�kCl )�= HF (L; T kCl)
HF (T n�kCl ; T n�kCl ):This �nishes the proof sine HF (T n�kCl ; T n�kCl ) �= H�(T n�k) by [3℄ or Theorem 6.2.1. �Theorem 6.2.2 applies, for example, to RP1 � C P1 and yields another Lagrangian toruspr�1(RP1) � C Pn withHF (pr�1(RP1); T nCl) �= HF (RP1; T kCl)
H�(T n�1) �= H�(T n):More generally, Theorem 6.2.2 applies to odd real projetive spaes RPk � C Pk for k =2` � 1 � 3 with Z2-oeÆients. 6 By expliit alulation due to Alston [1℄ the underlyingFloer ohomology is HF (RP2`�1; T 2`�1Cl ) �= Z2`2 :Now our alulations in Theorem 6.2.2 provide with Z2-oeÆientsHF (pr�1(RP2`�1); T 2`�1Cl ) �= HF (RP2`�1; T 2`�1Cl )
H�(T n�2`+1Cl ) �= Z2`+2(n�2`+1)2 :6.3. Deteting nontrivial Floer ohomology of a Lagrangian orrespondene. Inthis setion we provide a tool for deduing nontriviality of Floer ohomology and henenondisplaeability of a Lagrangian orrespondene itself (as Lagrangian submanifold).Theorem 6.3.1. Let L01 � M�0 � M1 be a Lagrangian orrespondene. Suppose thatthere exists a Lagrangian submanifold L1 � M1 suh that L0 := L01 Æ L1 is an embeddedomposition and HF (L0; L0) 6= 0. Assume that M0;M1 satisfy (M1-2), L0; L1; L01 satisfy(L1-3), and (L0 � L1; L01) is a monotone pair in the sense of De�nition 4.1.2 (b). Thenthe Lagrangian L01 �M�0 �M1 has nonzero Floer ohomology HF (L01; L01) 6= 0.Proof. The assumptions guarantee thatHF (L0; L0) �= HF (L0; L01; L1) = HF (L0�L1; L01)are all well-de�ned and isomorphi, hene nonzero. Now HF (L0�L1; L01) is a module overHF (L01; L01), where the multipliation is de�ned by ounting pseudoholomorphi 3-gons,see e.g. [17℄ or [20℄. The unit 1L01 2 HF (L01; L01) is de�ned by ounting pseudoholomorphi1-gons; it is nontrivial sine it ats as identity on a nontrivial group. Hene HF (L01; L01)ontains a nonzero element, as laimed. �6 The number of holomorphi diss through a generi point is 0 for RPk (whih has minimal Maslovnumber k+ 1 � 3 for k � 2) and it is k+1 for T kCl by [3℄, hene �2 = 0 on CF (RPk; T kCl) only holds for oddk and with Z2 oeÆients.



QUILTED FLOER COHOMOLOGY 41Corollary 6.3.2. Let � � M be the level set of the moment map of a Hamiltonian G-ation. Suppose that � ontains a G-invariant Lagrangian submanifold L � M suh thatHF (L;L) 6= 0 and pr(L) � �=G =M==G is smooth. Assume that M;M==G satisfy (M1-2),�; L;pr(L) satisfy (L1-3), and (pr(L) � L;�) is a monotone pair in the sense of De�ni-tion 4.1.2 (b). Then HF (�;�) 6= 0.Proof. This is a ase of Theorem 6.3.1, where L1 = pr(L), and the omposition � Æpr(L) =pr�1(pr(L)) = L is automatially embedded. �The following example in ase k = n = 2 was initially pointed out to us in 2006 byPaul Seidel; we sine learned of alternative proof methods by Biran-Cornea and Fukaya-Oh-Ono-Ohta. We use the notation of Setion 6.2; in partiular �(n) � (C Pn�1)� � C Pn isa Lagrangian 2n� 1-sphere arising from redution at the level set ��1n ( �n+1).Corollary 6.3.3. For every 2 � k � n the Lagrangian embedding �(k;:::;n) � (C Pk�1)� �C Pn of (S1)n�k � S2k�1 is Hamiltonian non-displaeable.Proof. By onstrution �(k;:::;n) is the orrespondene arising from the level set of �k� : : :��n at the level ( �n+1 ; : : : ; �n+1) whih ontains the nondisplaeable Cli�ord torus T nCl � C Pn.The projetion pr(T nCl) = T nCl Æ �(k;:::;n) is the Cli�ord torus T k�1Cl � C Pk�1. The Cli�ordtori as well as �(k;:::;n) are monotone with minimal Maslov number 2 (exept for k = nwhen �(n) is simply onneted), but as in Setion 6.2 we need not worry about its minimalMaslov index or Oh's number of disks through a generi point. The derived version ofTheorem 5.4.1 provides an isomorphism between HF (T k�1Cl ;�(k;:::;n); T nCl) and HF (T nCl; T nCl),whih is well de�ned by [11℄ and nonzero by [3℄ or our alulation in Setion 6.2. This provesthat HF (T k�1Cl ;�(k;:::;n); T nCl) 6= 0 is well de�ned; now the rest of the proof proeeds as inTheorem 6.3.1. �6.4. Gysin sequene for spherially �bered Lagrangian orrespondene. In thissetion, we give a onjetural relation between Floer ohomology HF (L;L0) for L;L0 �M0and the Floer ohomology HF (L01ÆL;L01ÆL0) for the images inM1 under a orrespondeneL01 �M�0 �M1. Results of this type an be viewed as transfer of non-displaeability results,in the sense that non-triviality of HF (L;L0) implies non-triviality of HF (L01 Æ L;L01 Æ L0)and hene non-displaeability of L01 Æ L from L01 Æ L0 by Hamiltonian perturbation.In our example, the Lagrangian orrespondene arises from a spherially �bered oisotropi� : C ! M with projetion � : C ! B. The image of C under � � � is a Lagrangian or-respondene from M to B, also denoted C. Our standing assumptions are ompatness,orientability, and monotoniity, i.e. M;B, and C satisfy (M1-2) and (L1-2) with a �xed� � 0. Perutz [13℄ proved the following analogue of the Gysin sequene.Theorem 6.4.1. Suppose that the minimal Maslov number of C is at least odim(C �M) + 2. Then there exists a long exat sequene: : :! HF (C;C)! HF (Id)! HF (Id)! HF (C;C)! : : :where the map HF (Id)! HF (Id) is quantum multipliation by the Euler lass of �.One naturally onjetures the following relative version (for example, ompare the Seideltriangle in [16℄ with the relative version in [16℄.)



42 KATRIN WEHRHEIM AND CHRIS T. WOODWARDConjeture 6.4.2. Let L0; L1 � B be a monotone pair of Lagrangian submanifolds satis-fying (L1-3). Suppose that the minimal Maslov number of C is at least odim(C �M) + 2Then there exists a long exat sequene: : :! HF (L0; Ct; C; L1)! HF (L0; L1)! HF (L0; L1)! HF (L0; Ct; C; L1)! : : :where the middle map is Floer theoreti multipliation 7 by the Euler lass of �.The ompositions C Æ L1 and L0 Æ Ct = (C Æ L0)t are learly embedded. Hene Conje-ture 6.4.2 together with Theorem 5.4.1 implies the following.Corollary 6.4.3. Under the same assumptions as in Conjeture 6.4.2 there exists a longexat sequene: : :! HF (C Æ L0; C Æ L1)! HF (L0; L1)! HF (L0; L1)! HF (C Æ L0; C Æ L1)! : : :In partiular, we obtain a 'transfer of non-displaeability' result if the Euler lass vanishes.Corollary 6.4.4. With the same assumptions as in Corollary 6.4.2, if the Euler lass of� : C ! B is zero, then HF (C Æ L0; C Æ L1) is isomorphi to two opies of HF (L0; L1).Example 6.4.5. Suppose that M is a monotone Hamiltonian G = SU(2) manifold, withmoment map �, and ��1(0) is an SU(2)-bundle over the sympleti quotient M==G.Let (L0; L1) be a monotone pair of G-invariant Lagrangians ontained in the zero levelset and with minimal Maslov number at least three. Neessarily eah Lj is a prinipalSU(2) bundle over Lj=G � M==G. Suppose that the minimal Maslov number of ��1(0),onsidered as a Lagrangian inM��M==G, is at least 5. Then there is a long exat sequene: : :! HF (L0; L1)! HF (L0=G;L1=G)! HF (L0=G;L1=G)! HF (L0; L1)! : : : :In partiular, if M ! M==G is a trivial G-bundle, then HF (L0; L1) is isomorphi to twoopies of HF (L0=G;L1=G). Referenes[1℄ G. Alston. Lagrangian Floer homology of the Cli�ord torus and real projetive spae in odd dimensionsarXiv:0902.0197.[2℄ P. Biran, M. Entov, L. Polterovih. Calabi quasimorphisms for the sympleti ball. Commun. Contemp.Math., 6:5, 793{802, 2004.[3℄ Cheol-Hyun Cho. Holomorphi diss, spin strutures, and Floer ohomology of the Cli�ord torus. Int.Math. Res. Not., (35):1803{1843, 2004.[4℄ A. Floer, Helmut Hofer, and Dietmar Salamon. Transversality in ellipti Morse theory for the sympletiation. Duke Math. J., 80(1):251{292, 1995.[5℄ K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono. Lagrangian intersetion Floer theory-anomaly and obstru-tion. in preparation, preliminary version available at http://www.kusm.kyoto-u.a.jp/�fukaya/fooo.dvi.[6℄ Ana Rita Pires Gaio and Dietmar A. Salamon. Gromov-Witten invariants of sympleti quotients andadiabati limits. J. Sympleti Geom., 3(1):55{159, 2005.[7℄ Vitor Guillemin and Shlomo Sternberg. The moment map revisited. J. Di�erential Geom., 69(1):137{162, 2005.[8℄ F. C. Kirwan. Cohomology of Quotients in Sympleti and Algebrai Geometry, volume 31 of Mathe-matial Notes. Prineton Univ. Press, Prineton, 1984.[9℄ D. Kwon and Y.-G. Oh. Struture of the image of (pseudo)-holomorphi diss with totally real boundaryondition. Comm. Anal. Geom., 8(1):31{82, 2000. Appendix 1 by Jean-Pierre Rosay.7 This produt is de�ned by ounting pseudoholomorphi strips with boundary on (L0; L1) and an internalpunture with asymptotis �xed by a given lass in HF (�B) �= H(B).
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