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QUILTED FLOER COHOMOLOGYKATRIN WEHRHEIM AND CHRIS T. WOODWARDAbstra
t. We generalize Lagrangian Floer 
ohomology to sequen
es of Lagrangian 
or-responden
es. For sequen
es related by the geometri
 
omposition of Lagrangian 
orre-sponden
es we establish an isomorphism of the Floer 
ohomologies. We give appli
ationsto 
al
ulations of Floer 
ohomology, displa
eability of Lagrangian 
orresponden
es, andtransfer of displa
eability under geometri
 
omposition.Contents1. Introdu
tion 12. Lagrangian 
orresponden
es 32.1. Generalized Lagrangian 
orresponden
es 73. Gradings 83.1. Graded generalized Lagrangian 
orresponden
es 134. Floer 
ohomology 194.1. Monotoni
ity 194.2. Graded Floer 
ohomology for pairs of Lagrangians 224.3. Floer 
ohomology for generalized Lagrangian 
orresponden
es 245. Quilted Floer 
ohomology 265.1. Unfolding of Floer 
ohomology in produ
ts 265.2. Constru
tion of quilted Floer 
ohomology 285.3. Invarian
e of quilted Floer 
ohomology and relative quilt invariants 325.4. Geometri
 
omposition and quilted Floer 
ohomology 346. Appli
ations 366.1. Dire
t 
omputation of Floer 
ohomology 366.2. Computations in C Pn 376.3. Dete
ting nontrivial Floer 
ohomology of a Lagrangian 
orresponden
e 406.4. Gysin sequen
e for spheri
ally �bered Lagrangian 
orresponden
e 41Referen
es 421. Introdu
tionLagrangian Floer 
ohomology asso
iates to a pair of Lagrangian manifolds a 
hain 
om-plex whose di�erential 
ounts pseudoholomorphi
 strips with boundary values in the givenLagrangians. In this paper we generalize Floer 
ohomology to in
lude Lagrangian 
orrespon-den
es. Re
all that if (M0; !0) and (M1; !1) are symple
ti
 manifolds, then a Lagrangian
orresponden
e L01 from M0 to M1 is a Lagrangian submanifold L01 � M�0 �M1, whereM�0 := (M0;�!0). These were introdu
ed by Weinstein [26℄ in an attempt to 
reate asymple
ti
 
ategory with morphisms between not ne
essarily symple
tomorphi
 manifolds.So we also denote a Lagrangian 
orresponden
e by M0 L01�!M1. With this notation we 
an1
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2 KATRIN WEHRHEIM AND CHRIS T. WOODWARDview a pair of Lagrangian submanifolds L;L0 � M as sequen
e of Lagrangian 
orrespon-den
es pt L�! M L0�! pt from the point via M ba
k to the point. This is a spe
ial 
ase ofa 
y
li
 sequen
e of Lagrangian 
orresponden
esM0 L01�!M1 L12�!M2 : : : Mr Lr(r+1)�! Mr+1 =M0;for whi
h we will de�ne a quilted Floer 
ohomology(1) HF (L01; L12; : : : ; Lr(r+1)):The quilted di�erential 
ounts tuples of pseudoholomorphi
 strips (uj : R�[0; 1℄ !Mj)j=0;:::;rwhose boundaries mat
h up via the Lagrangian 
orresponden
es, (uj(s; 1); uj+1(s; 0)) 2Lj(j+1) for j = 0; : : : ; r. These tuples are examples of pseudoholomorphi
 quilts with thestrips thought of as pat
hes and the boundary mat
hing 
onditions thought of as seams.The theory of quilts is developed in higher generality in [22℄.In this paper, we next investigate the e�e
t of geometri
 
omposition on Floer 
oho-mology. The geometri
 
omposition of two Lagrangian 
orresponden
es L01 � M�0 �M1,L12 �M�1 �M2 is(2) L01 Æ L12 := �(x0; x2) 2M0 �M2 ��9x1 : (x0; x1) 2 L01; (x1; x2) 2 L12	:In general, this will be a singular subset ofM�0 �M2, with isotropi
 tangent spa
es. However,if we assume transversality of the interse
tion L01�M1L12 := �L01�L12�\�M�0 ��M1�M2�,then the restri
tion of the proje
tion �02 :M�0 �M1�M�1 �M2 !M�0 �M2 to L01�M1L12is automati
ally an immersion. We will study the 
lass of embedded geometri
 
ompositions,for whi
h in addition �02 is inje
tive, and hen
e L01 Æ L12 is a smooth Lagrangian 
orre-sponden
e. If the 
omposition L(`�1)` Æ L`(`+1) is embedded, then we obtain under suitablemonotoni
ity assumptions a 
anoni
al isomorphism(3) HF (: : : ; L(`�1)`; L`(`+1); : : :) �= HF (: : : ; L(`�1)` Æ L`(`+1); : : :):For the pre
ise monotoni
ity and admissibility 
onditions see Se
tion 5.4. The proof pro-
eeds in two steps. First, we allow for varying widths (Æj > 0)j=0;:::;k�1 of the pseudoholo-morphi
 strips (uj : R � [0; Æj ℄! Mj)j=0;:::;k�1 de�ning the di�erential. Se
tion 5.3 of thispaper shows that Floer 
ohomology is independent of the 
hoi
e of widths. (These domainsare not 
onformally equivalent due to the identi�
ation between boundary 
omponents thatis impli
it in the seam 
onditions.) The se
ond (hard analyti
) part is to prove that withthe width Æ` > 0 suÆ
iently 
lose to zero, the k-tuples of holomorphi
 strips with seam 
on-ditions in (: : : ; L(`�1)`; L`(`+1); : : :) are in one-to-one 
orresponden
e with the (k� 1)-tuplesof holomorphi
 strips with seam 
onditions in (: : : ; L(`�1)` Æ L`(`+1); : : :). This analysis is
ompletely analogous to [21℄, where we establish the bije
tion for the Floer traje
tories ofthe spe
ial 
y
li
 sequen
e pt L0�! M0 L01�! M1 L12�! M2 L2�! pt when Æ1 ! 0. The mono-toni
ity assumptions are 
ru
ial for this part sin
e the ex
lusion of a novel "�gure eightbubble" in [21℄ hinges on a stri
t energy-index proportionality.In se
tion 6 we provide a number of new tools for the 
al
ulation of Floer 
ohomology(and hen
e dete
tion of non-displa
eability), arising as dire
t 
onsequen
es of (3) or froma 
onje
tural generalization of Perutz' long exa
t Gysin sequen
e [13℄. As �rst spe
i�
example we 
on�rm the 
al
ulation HF (T nCl; T nCl) �= H�(T n) of Cho [3℄ for the Cli�ord torusin C Pn, and we 
al
ulate some further Floer 
ohomologies in CP n using redu
tion at pairsof transverse level sets. Next, we prove Hamiltonian non-displa
eability of the Lagrangian



QUILTED FLOER COHOMOLOGY 33-sphere � � (C P1)� � C P2 arising from redu
tion at the level set of an S1 a
tion on C P2
ontaining TCl. The latter follows from the nontriviality of HF (T 2Cl; T 2Cl) together with ourisomorphism HF (S1 � TCl;�) �= HF (TCl; TCl):Finally, we generalize this non-displa
eability result to 
ertain Lagrangian embeddings � �(C Pk�1)� � C Pn of (S1)n�k � S2k�1 for any 2 � k � n.Another 
onsequen
e of our results is a general pres
ription for de�ning topologi
al in-variants by de
omposing into simple pie
es. For example, let Y be a 
ompa
t manifold andf : Y ! R a Morse fun
tion giving a de
omposition Y = Y01[: : :[Y(k�1)k into simple 
obor-disms by 
utting along non-
riti
al level sets X1; : : : ;Xk�1. First one asso
iates to ea
h Xja monotone symple
ti
 manifold M(Xj), and to ea
h Y(j�1)j with �Y(j�1)j = X�j�1 t Xja smooth monotone Lagrangian 
orresponden
e L(Y(j�1)j) � M(Xj�1)� �M(Xj) (takingM(X0) andM(Xk) to be points.) Se
ond, one 
he
ks that the basi
 moves des
ribed by Cerftheory (
an
ellation or 
hange of order of 
riti
al points) 
hange the sequen
e of Lagrangian
orresponden
es by repla
ing adja
ent 
orresponden
es with an embedded 
omposition, orvi
e-versa. In other words, the equivalen
e 
lass of sequen
es of Lagrangian 
orresponden
esby embedded 
ompositions [L(Y01); : : : ; L(Y(k�1)k)℄ does not depend on the 
hoi
e of theMorse fun
tion f . Then the results of this paper provide a group-valued invariant of Y , bytaking the Floer homology of the sequen
e of Lagrangian 
orresponden
es. For example, in[24℄ we investigate the theory whi
h uses as symple
ti
 manifolds the moduli spa
es of 
atbundles with 
ompa
t stru
ture group on three-dimensional 
obordisms 
ontaining tangles.Notation and Organization: We will frequently refer to the standing assumptions (M1-2), (L1-3), and (G1-2) that 
an be found on pages 19 - 20.Se
tion 2 is a detailed introdu
tion to Lagrangian 
orresponden
es, geometri
 
omposi-tion, and sequen
es of 
orresponden
es, whi
h also provides the basi
 framework for thesequels [20, 22℄ to this paper. In Se
tion 3 we generalize gradings to Lagrangian 
orrespon-den
es and establish their behaviour under geometri
 
omposition, so that the isomorphism(3) be
omes an isomorphism of graded groups. Se
tion 4 provides a review of monotoni
ityand Floer 
ohomology and gives a �rst de�nition of the Floer 
ohomology (1) by building apair of Lagrangians in the produ
tM0�M1�: : :Mk�1. The latter is however unsatisfa
torysin
e it does not provide an approa
h to the isomorphism (3). Se
tion 5 gives the generalde�nition of quilted Floer 
ohomology (1) and �nalizes the proof of the isomorphism (3).Finally, Se
tion 6 gives a number of dire
t symple
ti
 appli
ations of the isomorphism (3).We thank Paul Seidel and Ivan Smith for en
ouragement and helpful dis
ussions.2. Lagrangian 
orresponden
esLet M be a smooth manifold. A symple
ti
 form on M is a 
losed, non-degenerate two-form !. A symple
ti
 manifold is a smooth manifold equipped with a symple
ti
 form. If(M1; !1) and (M2; !2) are symple
ti
 manifolds, then a di�eomorphism ' :M1 !M2 is asymple
tomorphism if '�!2 = !1. Let Symp denote the 
ategory whose obje
ts are sym-ple
ti
 manifolds and whose morphisms are symple
tomorphisms. The following operationsgive Symp a stru
ture similar to that of a tensor 
ategory.(a) (Duals) IfM = (M;!) is a symple
ti
 manifold, thenM� = (M;�!) is a symple
ti
manifold, 
alled the dual of M .



4 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(b) (Sums) If Mj = (Mj ; !j); j = 1; 2 are symple
ti
 manifolds, then the disjoint unionM1 [ M2 equipped with the symple
ti
 stru
ture !1 on M1 and !2 on M2, is asymple
ti
 manifold. The empty set ; is a unit for the disjoint union.(
) (Produ
ts) Let Mj = (Mj ; !j); j = 1; 2 be symple
ti
 manifolds, then the Cartesianprodu
t (M1�M2; ��1!1+��2!2) is a symple
ti
 manifold. (Here �j :M1�M2 !Mjdenotes the proje
tions.) The symple
ti
 manifold pt, 
onsisting of a single point,is a unit for the Cartesian produ
t.Clearly the notion of symple
tomorphism is very restri
tive; in parti
ular, the symple
ti
manifolds must be of the same dimension. A more 
exible notion of morphism is that ofLagrangian 
orresponden
e, de�ned as follows [27, 26, 7℄. Let M = (M;!) be a symple
ti
manifold. A submanifold L � M is isotropi
, resp. 
oisotropi
, resp. Lagrangian if the!-orthogonal 
omplement TL! satis�es TL! � TL resp. TL! � TL resp. TL! = TL.De�nition 2.0.1. LetM1;M2 be symple
ti
 manifolds. A Lagrangian 
orresponden
e fromM1 to M2 is a Lagrangian submanifold L12 �M�1 �M2.Example 2.0.2. The following are examples of Lagrangian 
orresponden
es:(a) (Trivial 
orresponden
e) The one and only Lagrangian 
orresponden
e betweenM1 = ; and any other M2 is L12 = ;.(b) (Lagrangians) Any Lagrangian submanifold L � M 
an be viewed both as 
orre-sponden
e L � pt��M from the point to M and as 
orresponden
e L � M� � ptfrom M to the point.(
) (Graphs) If '12 :M1 !M2 is a symple
tomorphism then its graphgraph('12) = f(m1; '12(m1)) j m1 2M1g �M�1 �M2is a Lagrangian 
orresponden
e.(d) (Fibered 
oisotropi
s) Suppose that � : C ! M is a 
oisotropi
 submanifold. Thenthe null distribution TC! is integrable, see e.g. [10, Lemma 5.30℄. Suppose thatTC! is in fa
t �brating, that is, there exists a symple
ti
 manifold (B;!B) and a�bration � : C ! B su
h that ��! is the pull-ba
k ��!B . Then(�� �) : C !M� �Bmaps C to a Lagrangian 
orresponden
e.(e) (Level sets of moment maps) Let G be a Lie group with Lie algebra g. Supposethat G a
ts on M by Hamiltonian symple
tomorphisms generated by a momentmap � : M ! g�. (That is � is equivariant and the generating ve
tor �elds g !Ve
t(M); � 7! �M satisfy �(�M )! = �d(�; �).) If G a
ts freely on ��1(0), then ��1(0)is a smooth 
oisotropi
 �bered over the symple
ti
 quotient M==G = ��1(0)=G,whi
h is a symple
ti
 manifold. Hen
e we have a Lagrangian 
orresponden
e(�� �) : ��1(0)!M� � (M==G):The symple
ti
 two-form !M==G on M==G is the unique form on M==G satisfying��!M==G = ��!.De�nition 2.0.3. Let M0;M1;M2 be symple
ti
 manifolds and L01 �M�0 �M1, L12 �M�1 �M2 Lagrangian 
orresponden
es.(a) The dual Lagrangian 
orresponden
e of L01 is(L01)t := f(m1;m0) j (m0;m1) 2 L01g �M�1 �M0:



QUILTED FLOER COHOMOLOGY 5(b) The geometri
 
omposition of L01 and L12 isL01 Æ L12 := ((m0;m2) 2M�0 �M2 �����9m1 2M1 : (m0;m1) 2 L01(m1;m2) 2 L12) �M�0 �M2:Geometri
 
omposition and duals of Lagrangian 
orresponden
es satisfy the following:(a) (Graphs) If '01 :M0 !M1 and '12 :M1 !M2 are symple
tomorphisms, thengraph('01) Æ graph('12) = graph('12 Æ '01);graph('01)t = graph('�101 ):(b) (Zero) Composition with ; always yields ;, that is for any Lagrangian 
orresponden
eL01 �M�0 �M1 we have; Æ L01 = ;; L01 Æ ; = ;:(
) (Identity) If L01 �M�0 �M1 is a Lagrangian 
orresponden
e and �j �M�j �Mj; j =0; 1 are the diagonals, thenL01 = �0 Æ L01 = L01 Æ�1:(d) (Asso
iativity) If L01 �M�0 �M1; L12 �M�1 �M2; L23 �M�2 �M3 are Lagrangian
orresponden
es, then(L01 Æ L12) Æ L23 = L01 Æ (L12 Æ L23);(L01 Æ L12)t = (L12)t Æ (L01)t:The geometri
 
omposition 
an equivalently be de�ned as L01 ÆL12 = �02(L01 �M1 L12),the image under the proje
tion �02 :M�0 �M1 �M�1 �M2 !M�0 �M2 ofL12 �M1 L01 := (L01 � L12) \ (M�0 ��1 �M2):Here �1 � M�1 �M1 denotes the diagonal. L01 Æ L12 � M�0 �M2 is an immersed La-grangian submanifold if L01 � L12 interse
ts M�0 ��1 �M2 transversally. In general, thegeometri
 
omposition of smooth Lagrangian submanifolds may not even be immersed. Wewill be working with the following 
lass of 
ompositions, for whi
h the resulting Lagrangian
orresponden
e is in fa
t a smooth submanifold, as will be seen in Lemma 2.0.5 below.De�nition 2.0.4. We say that the 
omposition L01 ÆL12 is embedded if L12�M1 L01 is 
utout transversally (i.e. (L01�L12) t (M�0 ��1�M2)) and the proje
tion �02 : L12�M1L01 !L01 Æ L12 �M�0 �M2 is inje
tive.By some authors (e.g. [7℄) geometri
 
omposition of Lagrangian 
orresponden
es is moregenerally de�ned under 
lean interse
tion hypotheses. This extension is not needed in thepresent paper, be
ause the quilted Floer 
ohomology is invariant under Hamiltonian isotopy,and after su
h an isotopy transversality may always be a
hieved. However, transverseinterse
tion only yields an immersed1 Lagrangian 
orresponden
e, as the following Lemmashows.1One 
an not ne
essarily remove all self-interse
tions of the immersed 
omposition by Hamiltonian isotopyon one 
orresponden
e. A basi
 example is the 
omposition of transverse Lagrangian submanifolds L;L0 �M . IdentifyingM �=M �fptg �= fptg�M the proje
tion L�M L0 ! LÆL0 � fptg�fptg maps the (�nite)interse
tion L t L0 to a point.



6 KATRIN WEHRHEIM AND CHRIS T. WOODWARDLemma 2.0.5. Let L01 �M�0 �M1, L12 �M�1 �M2 be Lagrangian 
orresponden
es su
hthat the interse
tion (L01 � L12) t (M�0 � �1 �M2) is transverse. Then the proje
tion�02 : L12 �M1 L01 ! L01 Æ L12 �M�0 �M2 is an immersion.In parti
ular, if the interse
tion is transverse and the proje
tion is inje
tive, then the
omposition L01 Æ L12 =: L02 is embedded.Proof. This is a 
onsequen
e of the fa
t that the geometri
 
omposition of linear La-grangian 
orresponden
es is always well de�ned (i.e. yields another linear Lagrangian 
or-responden
e). Fix a point x = (x0; x1; x1; x2) 2 L01 �M1 L12 then we need to 
he
k thatker dx�02 = f0g for the proje
tion restri
ted to L12 �M1 L01. In fa
t, we will show that(4) ker dx�02 �= Tx(M0 �M1 �M1 �M2)(T(x0 ;x1)L01 � T(x1;x2)L12) + (Tx0M0 � T(x1;x1)�1 � Tx2M2) ;whi
h is zero by transversality. To simplify notation we abbreviate �01 := T(x0;x1)L01,�12 := T(x1;x2)L12, and Vi := TxiMi. Now (4) follows as in [7, Se
tion 4.1℄. For 
ompletenesswe re
all the pre
ise argument: We identifyker dx�02 = (�01 �V1 �12) \ (f0g � V1 � V1 � f0g)�= �v1 2 V1 �� (0; v1) 2 �01; (v1; 0) 2 �12	 = ker �t01 \ ker�12;(5)where ker �12 := fv1 2 V1 j (v1; 0) 2 �12g � V1 and similarly ker �t01 � V1. On the otherhand, we use the symple
ti
 
omplements with respe
t to !0112 := (�!0)�!1� (�!1)�!2on V0 � V1 � V1 � V2 to identify(V0 � V1 � V1 � V2) = (�01 � �12) + (V0 ��V1 � V2)�= (�01 � �12)!0112 \ (V0 ��V1 � V2)!0112= �(0; v1; v1; 0) �� (0; v1) 2 �(�!0)�!101 ; (v1; 0) 2 �(�!1)�!212 	�= (im�01)!1 \ (im�t12)!1 ;(6)where im�01 := �V1(�01) � V1, similarly im�t12 � V1, and we used the equivalen
e(�!0 � !1)((0; v1); (�0; �1)) = 0 8(�0; �1) 2 �01 , !1(v1; �1) = 0 8�1 2 �V1(�01):Now the two ve
tor spa
es in (5) and (6) are identi�ed by the dualities ker �t01 = (im�01)!1and ker�12 = (im�t12)!1 , whi
h follow from the Lagrangian property of �01 resp. �t12,(0; v1) 2 �01 , (0; v1) 2 ��!0�!101 , v1 2 (im�01)!1 :This proves (4) and hen
e �nishes the proof of the Lemma. �Remark 2.0.6. Suppose that the 
omposition L01 Æ L12 =: L02 is embedded.(a) By the inje
tivity, for every (x0; x2) 2 L02 there is a unique solution x1 2 M1 to(x0; x1; x1; x2) 2 L01 � L12. Due to the transversality assumption, this solution isgiven by a smooth map `1 : L02 !M1.(b) If L01 and L12 are 
ompa
t, oriented, and equipped with a relative spin stru
ture,then L02 is also 
ompa
t and inherits an orientation and relative spin stru
ture, see[23℄. The orientation is indu
ed from the 
anoni
al orientation of the diagonal, seeRemark 3.0.5(b), and the splittingT (M0 �M2 �M1 �M1) = �TL02 � f0g�� �f0g � (T�1)?�� T (L01 � L12)?:



QUILTED FLOER COHOMOLOGY 7(
) If �1(L01) and �1(L12) are torsion, then �1(L02) is torsion. If moreover M0 andM2 are monotone with the same monotoni
ity 
onstant, then L02 is monotone, seeSe
tion 4.1.2.1. Generalized Lagrangian 
orresponden
es. A simple resolution of the 
ompositionproblem is given by passing to sequen
es of Lagrangian 
orresponden
es and 
omposingthem by 
on
atenation. In [20℄ we employ these to de�ne a symple
ti
 
ategory 
ontainingall smooth Lagrangian 
orresponden
es as 
omposable morphisms, yet retaining geometri

omposition in 
ases where it is well de�ned.De�nition 2.1.1. Let M;M 0 be symple
ti
 manifolds. A generalized Lagrangian 
orre-sponden
e L from M to M 0 
onsists of(a) a sequen
e N0; : : : ; Nr of any length r+1 � 2 of symple
ti
 manifolds with N0 =Mand Nr =M 0 ,(b) a sequen
e L01; : : : ; L(r�1)r of 
ompa
t Lagrangian 
orresponden
es with L(j�1)j �N�j�1 �Nj for j = 1; : : : ; r.De�nition 2.1.2. Let L from M to M 0 and L0 from M 0 to M 00 be two generalized La-grangian 
orresponden
es. Then we de�ne 
omposition(L;L0) := �L01; : : : ; L(r�1)r; L001; : : : ; L0(r0�1)r0�as a generalized Lagrangian 
orresponden
e from M to M 00. Moreover, we de�ne the dualLt := �Lt(r�1)r; : : : ; Lt01�:as a generalized Lagrangian 
orresponden
e from M 0 to M .We 
on
lude this subse
tion by mentioning spe
ial 
ases of generalized Lagrangian 
or-responden
es. The �rst is the 
ase M = M 0, whi
h we will want to view separately as a
y
li
 
orresponden
e, without �xing the \base point" M .De�nition 2.1.3. A 
y
li
 generalized Lagrangian 
orresponden
e L 
onsists of(a) a 
y
li
 sequen
e M0;M1; : : : ;Mr;Mr+1 =M0 of symple
ti
 manifolds of any lengthr + 1 � 1,(b) a sequen
e L01; : : : ; Lr(r+1) of 
ompa
t Lagrangian 
orresponden
es with Lj(j+1) �M�j �Mj+1 for j = 0; : : : ; r.The se
ond spe
ial 
ase is M = fptg, whi
h generalizes the 
on
ept of Lagrangian sub-manifolds. Namely, note that any Lagrangian submanifold L � M 0 
an be viewed as
orresponden
e L � fptg� �M 0.De�nition 2.1.4. LetM 0 be a symple
ti
 manifold. A generalized Lagrangian submanifoldL of M 0 is a generalized Lagrangian 
orresponden
e from a point M = fptg to M 0. Thatis, L 
onsists of(a) a sequen
e N�r; : : : ; N0 of any length r � 0 of symple
ti
 manifolds with N�r = fptga point and N0 =M 0,(b) a sequen
e L(�r)(�r+1); : : : ; L(�1)0 of 
ompa
t Lagrangian 
orresponden
es L(i�1)i �N�i�1 �Ni.



8 KATRIN WEHRHEIM AND CHRIS T. WOODWARD3. GradingsThe purpose of this se
tion is to review the theory of graded Lagrangians and extend itto generalized Lagrangian 
orresponden
es. It 
an be skipped at �rst reading.Following Kontsevi
h and Seidel [15℄ one 
an de�ne graded Lagrangian subspa
es asfollows. Let V be a symple
ti
 ve
tor spa
e and let Lag(V ) be the Lagrangian Grassmannianof V . An N -fold Maslov 
overing for V is a ZN-
overing LagN (V )! Lag(V ) asso
iated tothe Maslov 
lass in �1(Lag(V )). A grading of a Lagrangian subspa
e � 2 Lag(V ) is a liftto ~� 2 LagN (V ).Remark 3.0.5. (a) For any basepoint �0 2 Lag(V ) we obtain an N -fold Maslov 
overLagN (V;�0) given as the homotopy 
lasses of paths ~� : [0; 1℄ ! Lag(V ) with basepoint ~�(0) = �0, modulo loops of Maslov index N . The 
overing is ~� 7! ~�(1). Thebase point has a 
anoni
al grading given by the 
onstant path ~�0 � �0. Any pathbetween basepoints �0;�00 indu
es an identi�
ation LagN (V;�0)! LagN (V;�00).(b) For the diagonal � � V � � V we �x a 
anoni
al grading and orientation as follows.We identify the Maslov 
overings LagN (V � � V;�� � �) and LagN (V � � V;�) by
on
atenation of the paths(7) (eJt�� � �)t2[0;�=2℄; (f(tx+ Jy; x+ tJy)jx; y 2 �g)t2[0;1℄;where J 2 End(V ) is an !-
ompatible 
omplex stru
ture on V (i.e. J2 = � Id and!(�; J �) is symmetri
 and positive de�nite). In parti
ular, this indu
es the 
anoni
algrading on the diagonal � with respe
t to any Maslov 
overing LagN (V ��V;����),by 
ontinuation. Any identi�
ation LagN (V ��V;��0 ��0)! LagN (V ��V;��1 ��1)indu
ed by a path in LagN (V ) maps the graded diagonal to the graded diagonal,sin
e the produ
t 
��
 of any loop 
 : S1 ! Lag(V ) has Maslov index 0. Similarly,we de�ne a 
anoni
al orientation on � by 
hoosing any orientation on �, giving theprodu
t �� � � the produ
t orientation (whi
h is well de�ned), and extending theorientation over the path (7). This is related to the orientation indu
ed by proje
tionof the diagonal on the se
ond fa
tor by a sign (�1)n(n�1)=2, where dim(M) = 2n.Let M be a symple
ti
 manifold and let Lag(M) ! M be the �ber bundle whose �berover m 2 M is the spa
e Lag(TmM) of Lagrangian subspa
es of TmM . An N -fold Maslov
overing of M is an N -fold 
over LagN (M) ! Lag(M) whose restri
tion to ea
h �ber isan N -fold Maslov 
overing LagN (TmM) ! Lag(TmM). Any 
hoi
e of Maslov 
over forR2n indu
es a one-to-one 
orresponden
e between N -fold Maslov 
overs ofM and SpN (2n)-stru
tures on M . Here 2n = dimM and SpN (2n) is the N -fold 
overing group of Sp(2n)asso
iated to the Maslov 
lass in �1(Sp(2n)). (Expli
itly, this is realized by using theidentity as base point.) An SpN (2n)-stru
ture on M is an SpN (2n)-bundle FrN (M) ! Mtogether with an isomorphism FrN (M) �SpN (2n) Sp(2n) ' Fr(M) to the symple
ti
 framebundle of M . It indu
es the N -fold Maslov 
overingLagN (M) = FrN (M)�SpN (2n) LagN (R2n):Graded symple
ti
 manifolds (i.e. equipped with Maslov 
overings) form a stru
ture similarto that of a tensor 
ategory, that is, the notions of duals, disjoint union, and Cartesianprodu
t extend naturally to the graded setting. The dual LagN (M�) of a Maslov 
overingLagN (M) ! Lag(M) is the same spa
e with the inverted ZN-a
tion. We denote this
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ation by(8) LagN (M)! LagN (M�); ~� 7! ~��:For SpN -stru
tures FrN (M0) and FrN (M1) the embeddingSpN (2n0)�ZN SpN (2n1)! SpN (2n0 + 2n1)indu
es an SpN (2n0+2n1)-stru
ture FrN (M0�M1) on the produ
t and an equivariant map(9) FrN (M0)� FrN (M1)! FrN (M0 �M1)
overing the in
lusion Fr(M0) � Fr(M1) ! Fr(M0 �M1). The 
orresponding produ
t ofN -fold Maslov 
overs on M0 �M1 is the N -fold Maslov 
overingLagN (M0 �M1) := �FrN (M0)� FrN (M1)��SpN (2n0)�SpN (2n1) LagN (R2n0 � R2n1 ):Combining this produ
t with the dual yields a Maslov 
overing for M�0 �M1 whi
h we 
anidentify withLagN (M�0 �M1) = �FrN (M0)� FrN (M1)��SpN (2n0)�SpN (2n1) LagN (R2n0 ;� � R2n1 ):Finally, the in
lusion Lag(M0)� Lag(M1)! Lag(M0 �M1) lifts to a map(10) LagN (M0)� LagN (M1)! LagN (M0 �M1); (~L0; ~L1) 7! ~L0 �N ~L1with �ber ZN. It is de�ned by 
ombining the produ
t (9) with the basi
 produ
t of thelinear Maslov 
over LagN (R2n0 )� LagN (R2n1 )! LagN (R2n0 � R2n1 ).De�nition 3.0.6. (a) Let M0, M1 be two symple
ti
 manifolds equipped with N -foldMaslov 
overs and let � : M0 ! M1 be a symple
tomorphisms. A grading of� is a lift of the 
anoni
al isomorphism Lag(M0) ! Lag(M1) to an isomorphism�N : LagN (M0) ! LagN (M1), or equivalently, a lift of the 
anoni
al isomorphismFr(M0) ! Fr(M1) of symple
ti
 frame bundles to an isomorphism FrN (M0) !FrN (M1).(b) Let L �M be a Lagrangian submanifold andM be equipped with an N -fold Maslov
over. A grading of L is a lift �NL : L! LagN (M) of the 
anoni
al se
tion �L : L!Lag(M).Remark 3.0.7. (a) The set of graded symple
tomorphisms forms a group under 
ompo-sition. In parti
ular, the identity onM has a 
anoni
al grading, given by the identityon LagN (M).(b) Given a one-parameter family �t of symple
tomorphisms with �0 = IdM , we obtaina grading of �t by 
ontinuity.(
) Any 
hoi
e of grading on the diagonal ~� 2 LagN (R2n;� � R2n) indu
es a bije
tionbetween gradings of a symple
tomorphism � : M0 ! M1 and gradings of its graphgraph(�) �M�0 �M1 with respe
t to the indu
ed Maslov 
over LagN (M�0 �M1). In-deed, the graph of the grading, graph(�N ) � (FrN (M0)�FrN (M1))jgraph(�) is a prin-
ipal bundle over graph(�) with stru
ture group SpN (2n), 2n = dimM0 = dimM1.The graded diagonal des
ends under the asso
iated �ber bundle 
onstru
tion withgraph(�N ) to a se
tion of LagN (M�0 �M1)jgraph(�) lifting graph(�). Moreover, this
onstru
tion is equivariant for the transitive a
tion of H0(M0;ZN) on both the setof gradings of � and the set of gradings of graph(�).We will refer to this as the 
anoni
al bije
tion when using the 
anoni
al grading~� 2 LagN (R2n;��R2n) in Remark 3.0.5. In parti
ular, the diagonal inM��M has



10 KATRIN WEHRHEIM AND CHRIS T. WOODWARDa 
anoni
al grading indu
ed by the 
anoni
al bije
tion from the 
anoni
al gradingof the identity on M .(d) Any grading �NL of a Lagrangian submanifold L �M indu
es a grading of L �M�via the di�eomorphism LagN (M�)! LagN (M).(e) Given graded Lagrangian submanifolds L0 � M0; L1 � M1, the produ
t L0 � L1 �M0 �M1 inherits a grading from (10).(f) Given a graded symple
tomorphism � : M0 ! M1 and a graded Lagrangian sub-manifold L � M0, the image �(L) � M1 inherits a grading by 
omposition �N�(L) =�N Æ �NL .Example 3.0.8. (a) Let Lag2(M) be the bundle whose �ber over m is the spa
e of ori-ented Lagrangian subspa
es of TmM . Then Lag2(M)! Lag(M) is a 2-fold Maslov
overing. A Lag2(M)-grading of a Lagrangian L �M is equivalent to an orientationon L.(b) By [15, Se
tion 2℄, any symple
ti
 manifoldM with H1(M) = 0 and minimal Chernnumber NM admits an N -fold Maslov 
overing LagN (M) i� N divides 2NM . AnyLagrangian with minimal Maslov number NL admits a LagN (M)-grading i� N di-vides NL. In parti
ular, if L is simply 
onne
ted, then NL = 2NM and L admits aLag2NM (M) grading.(
) Suppose that [!℄ is integral, [!℄ = (1=l)
1(TM), and L is a line bundle with 
on-ne
tion r and 
urvature 
urv(r) = (2�=i)!. This indu
es a 2l-fold Maslov 
overLag2l(M)! Lag(M), see [15, Se
tion 2b℄. Let L �M be a Bohr-Sommerfeld mono-tone Lagrangian as in Remark 4.1.4. A grading of L is equivalent to a 
hoi
e of (notne
essarily horizontal) se
tion of LjL whose l-th tensor power is �KL ; that is, a 
hoi
eof the se
tion exp(2�i )�LL in (18).De�nition 3.0.9. Let �0;�1 � V be a transverse pair of Lagrangian subspa
es in a sym-ple
ti
 ve
tor spa
e V and let ~�0; ~�1 2 LagN (V ) be gradings. The degree d(~�0; ~�1) 2 ZNis de�ned as follows. Let ~
0; ~
1 : [0; 1℄ ! LagN (V ) be paths with 
ommon starting point~
0(0) = ~
1(0) and end points ~
j(1) = ~�j . Let 
j : [0; 1℄! Lag(V ) denote their image underthe proje
tion LagN (V )! Lag(V ) and de�ne(11) d(~�0; ~�1) := 12 dim(�0) + I(
0; 
1) mod N;where I(
0; 
1) denotes the Maslov index for the pair of paths as in [18, 14℄.Let us re
all from [14℄ that the Maslov index for a pair of paths with regular 
rossings(in parti
ular with a �nite set of 
rossings C := fs 2 [0; 1℄ j 
0(s)\ 
1(s) 6= f0gg) is given bythe sum of 
rossing numbers with the endpoints weighted by 1=2,I(
0; 
1) = 12 Xs2C\f0;1g sign(�(
0; 
1; s)) + Xs2C\(0;1) sign(�(
0; 
1; s)):Ea
h 
rossing operator �(
0; 
1; s) is de�ned on v 2 
0(s) \ 
1(s) by �xing Lagrangian
omplements 
0(s)
, 
1(s)
 of 
0(s); 
1(s) and setting(12) �(
0; 
1; s)v = ddt ��t=0!(v; w(t) � w0(t))where w(t) 2 
0(s)
 su
h that v+w(t) 2 
0(s+t) and w0(t) 2 
1(s)
 su
h that v+w0(s+t) 2
1(s).



QUILTED FLOER COHOMOLOGY 11Remark 3.0.10. The degree 
an alternatively be de�ned by �xing ~
0 � ~�0 and 
hoosinga path ~
 : [0; 1℄ ! LagN (V ) from ~
(0) = ~�0 to ~
(1) = ~�1 su
h that the 
rossing form�(
;�0; 0) of the underlying path 
 : [0; 1℄! Lag(V ) is positive de�nite at s = 0. Then thedegreed(~�0; ~�1) = dim�02 + I(�0; 
) = � Xs2(0;1) sign(�(
;�0; s)) = �I 0(
;�0) mod Nis given by the Maslov index I 0 of 
j(0;1) (not 
ounting the endpoints) relative to �0. Equiv-alently, we have d(~�0; ~�1) = I 0(
�1;�0) mod Nfor the reversed path 
�1 : [0; 1℄! Lag(V ) from 
�1(0) = �1 to 
�1(1) = �0 su
h that the
rossing form �(
�1;�0; 1) is negative de�nite at s = 1.Lemma 3.0.11. (Index theorem for on
e-pun
tured disks) Let �0;�1 � V be a transversepair of Lagrangian subspa
es with gradings ~�0; ~�1 2 LagN (V ). Then for any smooth pathof graded Lagrangian subspa
es ~� : [0; 1℄! LagN (V ) with endpoints ~�(j) = ~�j, j = 0; 1 wehave d(~�0; ~�1) = Ind(DV;�) mod N:Here DV;� is any Cau
hy-Riemann operator in V on the disk D with one outgoing strip-like end (0;1) � [0; 1℄ ,! D and with boundary 
onditions given by � (the proje
tion of ~�to Lag(V )) su
h that �(j) = �j is the boundary 
ondition over the boundary 
omponents(0;1) � fjg, j = 0; 1 of the end.Proof. It suÆ
es to prove the index identity for a �xed path ~�. Indeed, if ~�0 is any other pathwith the same endpoints then we have Ind(DV;�)�Ind(DV;�0) = Ind(DV;�)+Ind(DV;��0) =Ind(DV;�#(��0)) by gluing. Here the last Cau
hy-Riemann operator is de�ned on the diskwith no pun
tures and with boundary 
onditions given by the loop �#(��0). Sin
e theloop lifts to a loop ~�#(�~�0) in LagN (V ), its Maslov index (and thus index) is 0 modulo N .By Remark 3.0.10, the degree 
an be de�ned by a path ~� from ~�1 to ~�0 whose proje
tion� has negative de�nite 
rossing form at s = 1. The sum of 
rossing numbers in d(~�0; ~�1) =Ps2(0;1) sign(�(�;�0; s)) is the Maslov index IH(�) in [17, Lemma 11.11℄ and hen
e equalsto the Fredholm index Ind(DV;�) over the half spa
e, or the 
onformally equivalent diskwith strip-like end. This 
onformal isomorphism takes the boundary ends (�1;�1) resp.(1;1) in the half spa
e fIm z � 0g (over whi
h � equals to �1 resp. �0) to f1g � (1;1)resp. f0g � (1;1) in the strip-like end. �Lemma 3.0.12. The degree map satis�es the following properties.(a) (Additivity) If V = V 0 � V 00 thend(~�00 �N ~�000 ; ~�01 �N ~�001) = d(~�00; ~�01) + d(~�000 ; ~�001)for ~�0j; ~�00j graded Lagrangian subspa
es in V 0; V 00 respe
tively, j = 0; 1.(b) (Multipli
ativity) For ~�0; ~�1 graded Lagrangian subspa
es and any 
 2 ZNd(~�0; 
 � ~�1) = 
+ d(~�0; ~�1):(
) (Skewsymmetry) For ~�0; ~�1 graded Lagrangian subspa
esd(~�0; ~�1) + d(~�1; ~�0) = dim�0 = d(~�0; ~�1) + d(~��0 ; ~��1 ):



12 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(d) (Diagonal) For a transverse pair ~�0; ~�1 of graded Lagrangian subspa
es in V and ~�the 
anoni
ally graded diagonal in V � � Vd( ~�; ~��0 �N ~�1) = d(~�0; ~�1):Proof. The �rst three properties are standard, see [15, Se
tion 2d℄. We prove the diag-onal property to make sure all our sign 
onventions mat
h up. For that purpose we �x~L 2 LagN (V ) and 
hoose the following paths ~
:: of graded Lagrangian subspa
es (withunderlying paths 
:: of Lagrangian subspa
es):� ~
0 : [�1; 1℄! LagN (V ) from ~
0(�1) = ~L to ~
0(1) = ~�0 su
h that ~
0j[�1;0℄ � ~L,� ~
1 : [�1; 1℄! LagN (V ) from ~
1(�1) = ~L to ~
1(1) = ~�1, su
h that 
1j[�1=2;0℄ � JL tL and 
1j[�1;�1=2℄ is a smoothing of t 7! e�(1+t)JL.� ~
 : [�1; 1℄! LagN (V � � V ) starting with ~
j[�1;�1=2℄ = (~
�1 �N ~
0)j[�1;�1=2℄, endingat ~
j[0;1℄ � ~�, and su
h that 
j[� 12 ;0℄ is a smoothing of t 7! f((2t+1)x+Jy; x+(2t+1)Jy)jx; y 2 Lg. (The lift to graded subspa
es mat
hes up sin
e 
j[�1;0℄ is exa
tlythe path of (7) whi
h de�nes ~� by 
onne
ting it to ~L� � ~L.)Note that we have I(
0; 
1)j[�1;0℄ = �12 dim�0 and I(
; 
�0 �
1)j[�1;0℄ = I(
�1 ; 
�0 )j[�1;0℄+I(
0; 
1)j[�1;0℄ = �dim�0 sin
e 
j[� 12 ;0℄ is transverse to L� � JL. With these preparationswe 
an 
al
ulate d(~�0; ~�1) = 12 dim�0 + I(
0; 
1) = I(
0; 
1)��[0;1℄= I(�; 
�0 � 
1)��[0;1℄= dim�0 + I(
; 
�0 � 
1) = d( ~�; ~��0 �N ~�1):Here the identity of the Maslov indi
es over the interval [0; 1℄ follows from identifying theinterse
tions K(s) := 
0 \ 
1 �= �\ (
�0 � 
1) and the 
rossing forms �(s); �̂(s) : K(s)! Rat regular 
rossings s 2 [0; 1℄ (after a homotopy of the paths to regular 
rossings). FixLagrangian 
omplements 
0(s)
 and 
1(s)
, then for v 2 K(s) pi
k wi(t) 2 
i(s)
 su
h thatv + wi(t) 2 
i(s+ t). For the 
orresponding ve
tor v̂ = (v; v) 2 � \ (
�0 � 
1) we 
an pi
kŵ(t) = (0; 0) 2 �
 satisfying v̂ + ŵ(t) 2 � and ŵ0(t) = (w0; w1) 2 
0(s)
 � 
1(s)
 satisfyingv̂ + ŵ0(t) 2 (
0 � 
1)(s+ t) to identify the 
rossing forms�̂(s)v̂ = ddt ��t=0(�! � !)(v̂; ŵ(t)� ŵ0(t))= ddt ��t=0��!(v;�w0(t)) + !(v;�w1(t))�= ddt ��t=0!(v; w0(t)� w1(t)) = �(s)v: �If L0; L1 � M are LagN (M)-graded Lagrangians and interse
t transversally then oneobtains a degree mapI(L0; L1) := L0 \ L1 ! ZN; x 7! jxj := d(�NL0(x); �NL1(x)):More generally, if L0; L1 do not ne
essarily interse
t transversally, then we 
an pi
k aHamiltonian perturbation H : [0; 1℄ � M ! R su
h that its time 1 
ow �1 : M ! Ma
hieves transversality �1(L0) t L1. Then the Hamiltonian isotopy and the grading on L0indu
e a grading on �1(L0), whi
h is transverse to L1. The degree map is then de�ned onthe perturbed interse
tion points, d : I(L0; L1) := �1(L0) \ L1 ! ZN.



QUILTED FLOER COHOMOLOGY 133.1. Graded generalized Lagrangian 
orresponden
es. In this se
tion we extend thegrading and degree 
onstru
tions to generalized Lagrangian 
orresponden
es and dis
usstheir behaviour under geometri
 
omposition and insertion of the diagonal.De�nition 3.1.1. Let M and M 0 be symple
ti
 manifolds equipped with N -fold Maslov
overings. Let L = (L01; : : : ; L(r�1)r) be a generalized Lagrangian 
orresponden
e fromM to M 0 (i.e. L(j�1)j � M�j�1 �Mj for a sequen
e M = M1; : : : ;Mr = M 0 of symple
ti
manifolds). A grading on L 
onsists of a 
olle
tion of N -fold Maslov 
overs LagN (Mj)!Mjand gradings of the Lagrangian 
orresponden
es L(j�1)j with respe
t to LagN (M�j�1�Mj),where the Maslov 
overs on M1 =M and Mr =M 0 are the �xed ones.A pair of graded generalized Lagrangian 
orresponden
es L1 and L2 from M to M 0(with �xed Maslov 
overings) de�nes a 
y
li
 Lagrangian 
orresponden
e L1#(L2)t, whi
his graded in the following sense.De�nition 3.1.2. Let L = (L01; : : : ; Lr(r+1)) be a 
y
li
 generalized Lagrangian 
orre-sponden
e (i.e. Lj(j+1) � M�j � Mj+1 for a 
y
li
 sequen
e M0;M1; : : : ;Mr+1 = M0 ofsymple
ti
 manifolds). An N -grading on L 
onsists of a 
olle
tion of N -fold Maslov 
oversLagN (Mj) ! Mj and gradings of the Lagrangian 
orresponden
es Lj(j+1) with respe
t toLagN (M�j �Mj+1).In the following, we will 
onsider a 
y
li
 generalized Lagrangian 
orresponden
e L andassume that it interse
ts the generalized diagonal transversally, i.e.(13) �L01 � L12 � : : : � Lr(r+1)� t ���M0 ���M1 � : : : ���Mr�T ;where ��M �M �M� denotes the (dual of the) diagonal andM0�M�0 �M1� : : :�M�r !M�0 �M1 � : : : �M�r �M0, Z 7! ZT is the transposition of the �rst to the last fa
tor.In se
tion 4.3 this transversality will be a
hieved by a suitable Hamiltonian isotopy. Itensures that the above transverse interse
tion 
uts out a �nite set, whi
h we identify withthe generalized interse
tion pointsI(L) := ��M0�L01 ��M1 L12 : : :��Mr Lr(r+1)�= �x = (x0; : : : ; xr) 2M0 � : : :�Mr �� (x0; x1) 2 L01; : : : ; (xr; x0) 2 Lr(r+1)	:Remark 3.1.3. Consider two 
y
li
 generalized Lagrangian 
orresponden
esL = (L01; : : : ; L(j�1)j ; Lj(j+1); : : : ; Lr(r+1));L0 = (L01; : : : ; L(j�1)j Æ Lj(j+1); : : : ; Lr(r+1))su
h that the 
omposition L(j�1)j Æ Lj(j+1) is embedded in the sense of De�nition 2.0.4.Then the generalized interse
tion pointsI(L) = �(: : : ; xj�1; xj ; xj+1; : : :) 2 : : :�Mj�1 �Mj �Mj+1 : : : ��: : : ; (xj�1; xj) 2 L(j�1)j; (xj ; xj+1) 2 Lj(j+1); : : :	= �(: : : ; xj�1; xj+1; : : :) 2 : : :�Mj�1 �Mj+1 : : : ��: : : ; (xj�1; xj+1) 2 L(j�1)j Æ Lj(j+1); : : :	 = I(L0)are 
anoni
ally identi�ed, sin
e the intermediate point xj 2 Mj with (xj�1; xj) 2 L(j�1)jand (xj ; xj+1) 2 Lj(j+1) is uniquely determined by the pair (xj�1; xj+1) 2 L(j�1)j ÆLj(j+1).



14 KATRIN WEHRHEIM AND CHRIS T. WOODWARDNow an N -grading on L indu
es an N -fold Maslov 
overing on M := M�0 �M1 � : : : �Mr �M�r �M0 and a grading of L := L01 � L12 � : : : � Lr(r+1). In addition, we have agrading on �T := (��M0���M1� : : :���Mr)T from the 
anoni
al grading on ea
h fa
tor. Inorder to de�ne a degree we then identify generalized interse
tion points x = (x0; x1; : : : ; xr)with the a
tual interse
tion points x = (x0; x1; x1; : : : ; xr; xr; x0) 2 L \�T .De�nition 3.1.4. Let L be a graded 
y
li
 generalized Lagrangian 
orresponden
e L thatis transverse to the diagonal (13). Then the degree isI(L)! ZN; x 7! jxj = d(�NL (x); �N�T (x)):Lemma 3.1.5. Alternatively, the degree is de�ned as follows:(a) Pi
k any tuple of Lagrangian subspa
es �0i 2 Lag(TxiMi), �00i 2 Lag(TxiM�i ), i =0; : : : ; r whose produ
t is transverse to the diagonal, �0i � �00i t �TxiMi. Then thereexists a path (unique up to homotopy) 
 : [0; 1℄ ! Lag(TxM) from 
(0) = TxLto 
(1) = �000 � �01 � : : : � �0r � �00r � �00 that is transverse to the diagonal at alltimes, 
(t) t Tx�T . We lift the grading �NL (x) 2 LagN (TxM) along this path andpi
k preimages under the graded produ
t map (10) to de�ne ~�0i 2 LagN (TxiMi) and~�00i 2 LagN (TxiM�i ). Then jxj = rXi=0 d(~�0i; ~�00�i ):(b) If L has even length r + 1 2 2N then it de�nes an N -fold Maslov 
over on fM :=M�0 �M1 �M�2 � : : :�Mr and a pair of graded Lagrangian submanifolds,L(0) := L01 � L23 � : : : � L(r�1)r � fM;L(1) := (L12 � L34 � : : :� Lr(r+1))T � fM�;where we denote by M�1 � : : : �M�r �M0 ! M0 �M�1 � : : : �M�r , Z 7! ZT thetransposition of the last to the �rst fa
tor. If L has odd length r + 1 2 2N + 1 weinsert the diagonal �M0 �M�0 �M0 =M�r+1�M0 (with its 
anoni
al grading) beforede�ning a pair of graded Lagrangian submanifolds as above. By (13) the Lagrangiansinterse
t transversally L(0) t L�(1), and this interse
tion is 
anoni
ally identi�ed withI(L). Then for x 2 I(L) 
orresponding to y 2 L(0) \ L�(1) we havejxj = jyj = d(�NL(0)(y); �NL(1)(y)�):Proof. In (a) we use the fa
t that the path 
 has zero Maslov index to rewrited(�NL (x); �N�T (x)) = d(~�00 �N ~�000 �N : : :�N ~�0r �N ~�00r ; ~��Tx0M0 �N : : :�N ~��TxrMr);where we moreover transposed the fa
tors. Now by Lemma 3.0.12 the right hand side 
anbe written as the sum over d(~�0i �N ~�00i ; ~��TxiMi) = d(~�0i; ~�00�i ).In (b) note that a reordering of the fa
tors identi�es the pair of graded Lagrangians(L(0) � L(1);��fM ) with (L;�T ) for r odd. So Lemma 3.0.12 impliesd(�NL (x); �N�T (x)) = d(�NL(0)(y)�N �NL(1)(y); ~��T(y;y)fM ) = d(�NL(0)(y); �NL(1)(y)�):For r even the same argument provesd(�NL(0)(y); �NL(1)(y)�) = d��NL (x)�N ~�Tx0M0 ; ( ~��Tx0M0 � : : : � ~��TxrMr � ~��Tx0M0)T );
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h equals to d(�NL (x); �N�T (x)) by Lemma 3.1.6 (b) below. �The following Lemma des
ribes the e�e
t of inserting a diagonal on the grading of gener-alized Lagrangian 
orresponden
es. Part (a) addresses non
y
li
 
orresponden
es, whereas(b) applies to 
y
li
 
orresponden
es with � = T(x0;x1;:::;xr;x0)(L01 � L12 � : : : � Lr(r+1)),K = T(x0;x0;x1;:::;xr)(��M0 ���M1 � : : :���Mr), V0 = Tx0M0, and V1 = T(x1;:::;xr)(M1�M�1 �: : :�Mr �M�r ).Lemma 3.1.6. Let V0; V1; V2 be symple
ti
 ve
tor spa
es.(a) Let ~�0 � LagN (V0), ~�01 � LagN (V �0 � V1), ~�12 � LagN (V �1 � V2), and ~�2 �LagN (V �2 ) be graded Lagrangian subspa
es. If the underlying Lagrangian subspa
esare transverse thend(~�0 �N ~�12; ~��01 �N ~��2 ) = d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12):(b) Let ~� � LagN (V �0 � V1 � V0) and ~K � LagN (V0 � V �0 � V1) be graded Lagrangiansubspa
es. If the underlying Lagrangian subspa
es are transverse thend(~��N ~�0; ( ~K �N ~��0 )T ) = d(~�; ~KT );with the transposition V0 �W !W � V0, Z 7! ZT .Proof. To prove (a) pi
k a path 
0112 : [0; 1℄ ! Lag(V0 � V �1 � V1 � V �2 ) from 
0112(0) =��01 � ��12 to a split Lagrangian subspa
e 
0112(1) = �00 � �01 � �001 � �02 that is transverseto �0 ��1 � �2 at all times and hen
e has Maslov index I(
0112;�0 ��1 � �2) = 0. We
an homotope this path with �xed endpoints to 
0112 = 
01� 
12 : [0; 1℄! Lag(V0�V �1 )�Lag(V1�V �2 ) that may interse
t �0��1��2 but still has vanishing Maslov index. We liftthe grading along the paths 
01 and 
12 and pi
k preimages under the graded produ
t map(10) to obtain gradings ~�00 2 LagN (V0), ~�01 2 LagN (V �1 ), ~�001 2 LagN (V1), ~�02 2 LagN (V �2 ).With these we 
al
ulate, using Lemma 3.0.12d(~�0 �N ~�12; ~��01 �N ~��2 ) = d(~�0 �N ~�00�1 �N ~�0�2 ; ~�00 �N ~�01 �N ~��2 )= d(~�0; ~�00) + d(~�00�1 ; ~�01) + d(~�0�2 ; ~��2 )= d(~�0; ~�00) + d( ~�1; ~�01 �N ~�001) + d(~�2; ~�02)= d(~�0 �N ~�1 �N ~�2; ~�00 �N ~�01 �N ~�001 �N ~�02)= d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12):The �rst and last degree identity are due to the vanishing of the Maslov index0 = I(�0 ��1 � �2; 
01 � 
12) = I(�0 � 
�12; 
01 � ��2 ) = 0:The identity of these Maslov indi
es follows from identifying the interse
tionsK(s) := (�0�
�12(s))\(
01(s)���2 ) �= (�0��1��2)\(
01�
12) and the 
rossing form �(s); �̂(s) : K(s)!R given by (12) at regular 
rossings s 2 [0; 1℄. Fix Lagrangian 
omplements 
01(s)
 �V0 � V �1 and 
12(s)
 � V1 � V �2 , then for v = (v0; v1; v2) 2 K(s) we 
an pi
k (w1; w2)(t) 2
12(s)
 su
h that v + (0; w1; w2)(t) 2 �0 � 
12(s + t) and (w00; w01)(t) 2 
01(s)
 su
h thatv + (w00; w01; 0)(t) 2 
01(s + t) � �2. For the 
orresponding ve
tor v̂ = (v0; v1; v1; v2) 2(�0��1���2 )\(
�01�
�12) we have v̂+(0; 0; 0; 0) 2 (�0��1��2) and v̂+(w00; w01; w1; w2)(t) 2
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01 � 
12)(s+ t). With this we identify the 
rossing forms�̂(s)v̂ = ddt ��t=0(!0 ��!1 � !1 ��!2)�v̂; (0; 0; 0; 0) � (w00; w01; w1; w2)(t)�= ddt ��t=0��!0(v0; w00)� !1(v1; w1 � w01) + !2(v2; w2)�= ddt ��t=0(!0 ��!1 � !2)�v; (0; w1; w2)(t)� (w00; w01; 0)(t)� = �(s)v:This proves (a). To prove (b) we pi
k a path 
 : [0; 1℄! Lag(V �0 � V1 � V0) from 
(0) = �to a split Lagrangian subspa
e 
(1) = ��0 � �1 � �00 2 Lag(V �0 )� Lag(V1)� Lag(V0) thatis transverse to KT at all times and hen
e has Maslov index0 = I(
;KT ) = I(
 ��0; (K ���0 )T ):Here the equality of Maslov follows dire
tly from the identi�
ation of the trivial interse
tions(
 � �0) \ (K � ��0 )T �= 
 \ KT = f0g. Now we 
an lift the grading along 
 to obtaingradings ~�0 2 LagN (V0), ~�1 2 LagN (V1), ~�00 2 LagN (V0). With these we 
al
ulate, usingpart (a) and the fa
t that gradings are invariant under simultaneous transposition of bothfa
tors d(~��N ~�0; ( ~K �N ~��0 )T ) = d(~��0 �N ~�1 �N ~�00 �N ~�0; ( ~K �N ~��0 )T )= d(~�00 �N ~�0 �N ~��0 �N ~�1; ~��0 �N ~K)= d(~�00 �N ~K�; ~��0 �N (~��0 �N ~�1)�)= d( ~�0 �N (~��0 �N ~�1); ~�0�0 �N ~K)= d( ~K�; ~�0�0 �N (~��0 �N ~�1)�)= d(~�00 �N ~��0 �N ~�1; ~K)= d(~��0 �N ~�1 �N ~�00; ~KT ) = d(~�; ~KT ) �In the rest of this se
tion we investigate the e�e
t of geometri
 
omposition on thegrading of Lagrangian 
orresponden
es. This requires a generalization of Viterbo's index
al
ulations [18℄.First, we lift the 
omposition map to Maslov 
overs. Let M0;M1;M2 be symple
ti
manifolds equipped with N -fold Maslov 
overings LagN (Mj); j = 0; 1; 2. We equip theprodu
tsM�i �Mj andM�0 �M1�M�1 �M2 with the indu
ed Maslov 
overings LagN (M�i �Mj) resp. LagN (M�0 �M1 �M�1 �M2). We denote byT (M1) � Lag(M�0 �M1 �M�1 �M2)��M0��M1�M2the subbundle whose �bre over (m0;m1;m1;m2) 
onsists of the Lagrangian subspa
es�0112 � T(m0;m1;m1;m2)(M�0 �M1�M�1 �M2) that are transverse to the diagonal �0112 :=Tm0M0 � �Tm1M1 � Tm2M2. The linear 
omposition of Lagrangian subspa
es extends asmooth mapÆ : T (M1)! Lag(M�0 �M2); �0112 7! �M0�M2��0112 \�0112�:The preimage of T (M1) in the Maslov 
over will be denoted byT N (M1) � LagN (M�0 �M1 �M�1 �M2)��M0��M1�M2 :



QUILTED FLOER COHOMOLOGY 17Finally, re
all that we have a 
anoni
al grading of the diagonal ~�M1 2 LagN (M�1 �M1)and its dual ~��M1 2 LagN (M1 �M�1 ), and let us denote another ex
hange of fa
tors byLagN (M�0 �M2 �M1 �M�1 )! LagN (M�0 �M1 �M�1 �M2), ~� 7! ~�T .Lemma 3.1.7. The linear 
omposition Æ : T (M1) ! Lag(M�0 � M2) lifts to a uniquesmooth map ÆN : T N (M1)! LagN (M�0 �M2) with the property that(14) ÆN ��~�02 �N ~�11�T � = d(~�11; ~��M1) � ~�02:for all graded Lagrangians ~�02 2 LagN (M�0 �M2) and ~�11 2 LagN (M1 �M�1 ), su
h thatthe underlying Lagrangian �11 2 Lag(M1 �M�1 ) is transverse to the diagonal.Proof. We denote by Lag(R2n) the Lagrangian Grassmannian in R2n , write dimMi = 2ni,and abbreviate R0112 := R2n0 ;� � R2n1 � R2n1 ;� � R2n2 . Let T � Lag(R0112 ) be the subsetof Lagrangian subspa
es meeting the diagonal R2n0 ��R2n1 �R2n2 transversally. The linear
omposition mapLag(R0112) � T ! Lag(R2n0 ;� � R2n2 ); � 7! �R2n0�R2n2 �� \ (R2n0 ��R2n1 � R2n2 )�is Sp(2n0) � Sp(2n1) � Sp(2n2)-equivariant, and lifts to a unique SpN (2n0) � SpN (2n1) �SpN (2n2)-equivariant map(15) LagN (R0112) � T N ! LagN (R2n0 ;� � R2n2 )with the property (14). On the other hand, the restri
tion of Fr(M0)�Fr(M1)�Fr(M1)�Fr(M2) toM0��M1�M2 admits a redu
tion of the stru
ture group to Sp(2n0)�Sp(2n1)�Sp(2n2), and similarly the restri
tionFrN0112 := �FrN (M0)� FrN (M1)� FrN (M1)� FrN (M2)���M0��M1�M2admits a redu
tion of the stru
ture group to SpN (2n0)�SpN (2n1)�SpN (2n2). This groupa
ts on LagN (R0112 ) by the diagonal a
tion of SpN (2n1) on R2n1 � R2n1 ;�. Finally, we usethe asso
iated �ber bundle 
onstru
tion to identifyLagN (M�0 �M1 �M�1 �M2)��M0��M1�M2�= FrN0112�SpN (2n0)�SpN (2n1)�SpN (2n1)�SpN (2n2) LagN (R0112)�= �FrN (M0)� FrN (M1)� FrN (M2)��SpN (2n0)�SpN (2n1)�SpN (2n2) LagN (R0112)andLagN (M�0 �M2) = �FrN (M�0 )� FrN (M2)��SpN (2n0)�SpN (2n2) LagN (R2n0 ;� � R2n2 ):Then the forgetful map on the �rst fa
tor and the equivariant map (15) on the se
ond fa
torde�ne the unique lift ÆN . �Now 
onsider two graded Lagrangian 
orresponden
es L01 �M�0 �M1 and L12 �M�1 �M2 and suppose that the 
omposition L01ÆL12 =: L02 �M�0 �M2 is smooth and embedded.The 
anoni
al se
tion �L02 : L02 ! Lag(M�0 �M2) is given by the linear 
omposition Æapplied to (�L01 � �L12)jL01��M1L12 . The gradings �NL01 , �NL12 indu
e a grading on L02,(16) �NL02 := ÆN��NL01 �N �NL12���L01��M1L12 ;where the map �N is de�ned in (10) and we identify L02 �= L01 ��M1 L12.



18 KATRIN WEHRHEIM AND CHRIS T. WOODWARDProposition 3.1.8. Let L0 � M0, L01 � M�0 �M1, L12 � M�1 �M2, and L2 � M�2 begraded Lagrangians su
h that the 
omposition L01 Æ L12 =: L02 is embedded. Then, withrespe
t to the indu
ed grading on L02, the degree map I(L0 � L2; L02) ! ZN is the pull-ba
k of the degree map I(L0 � L12; L01 � L2)! ZN under the 
anoni
al identi�
ation 2 ofinterse
tion points.Proof. Suppose for simpli
ity that Hamiltonian perturbations have been applied to theLagrangians L0; L2 su
h that I(L0�L2; L02) (and hen
e also I(L0 �L12; L01 �L2)) is theinterse
tion of transverse Lagrangians. We need to 
onsider (m0;m1;m2) 2 (L0 � L12) \(L01 � L2), whi
h 
orresponds to (m0;m2) 2 (L0 � L2) \ L02. We abbreviate the tangentspa
es of the Lagrangians by �j = TmjLj, �ij = T(mi ;mj)Lij, and �1 = �Tm1M1 and theirgraded lifts by ~�j = �NLj (mj), ~�ij = �NLij (mi;mj), and ~�1 = ~�Tm1M1 . We 
laim thatd(~�0 �N ~�12; ~��01 �N ~��2 ) = d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12)= d(~�0 �N ~�2; ~��01 ÆN ~��12):(17)The �rst identity is Lemma 3.1.6. To prove (17) we begin by noting the transverse inter-se
tion �02 t �0 � �2. We denote ~�02 := ~�01 ÆN ~�12 (hen
e ~��02 = ~��01 ÆN ~��12) and pi
k apath ~
02 : [0; 1℄! LagN (Tm0M�0 � Tm2M2) from ~
02(0) = ~�0 �N ~�2 to ~
02(1) = ~��02 whose
rossing form with �0 � �2 at s = 0 is positive de�nite and hen
e by Remark 3.0.10d(~�0 �N ~�2; ~��02) = �I 0(
02;�0 � �2):Here I 0 denotes the Maslov index of a pair of paths (the se
ond one is 
onstant), not 
ounting
rossings at the endpoints. Next, �x a 
omplement L11 2 Lag(T(m1;m1)M1 �M�1 ) of thediagonal. Then both (�02 �N L11)T and �01��12 are transverse to Tm0M0��1� Tm2M2and their 
omposition is �02. By Lemma 3.1.9 below we then �nd a path 
0112 and lift it to~
0112 : [0; 1℄ ! LagN (T(m0;m1;m1;m2)M�0 �M1 �M�1 �M2) from ~
0112(0) = [~�02 �N ~L11℄Tto ~
0112(1) = ~�01 �N ~�12 whose 
omposition Æ(
0112) = �02 is 
onstant and that has no
rossings with �0��1��2 (by the transversality 
0112\(�0��1��2) = �02\(�0��2) =f0g). Here the grading of ~L11 is determined by 
ontinuation along this path. Sin
e the
omposition Æ(
0112) is 
onstant this 
ontinuation yields~�02 = ÆN (~
0112) = ÆN ((~�02 �N ~L11)T ) = d(~L11; ~��1 ) � ~�02:Here we also used (14), and we dedu
e that d(~L11; ~��1 ) = 0 mod N . Furthermore, we �xa path ~
11 : [0; 1℄ ! LagN (T(m1;m1)M�1 �M1) from ~
11(0) = ~�1 to ~
11(1) = ~L�11 whose
rossing form with �1 at s = 0 is positive de�nite, and thus�I 0(
11;�1) = d( ~�1; ~L�11) = d(~L11; ~��1 ) = 0 mod N:Now the 
on
atenated path (~
02 � ~
11)T#~
�0112 
onne
ts ~�0 �N ~�1 �N ~�2 to ~��01 �N ~��12with positive de�nite 
rossing form at s = 0, and (17) 
an be veri�ed,d(~�0 �N ~�1 �N ~�2; ~��01 �N ~��12) = �I 0((
02 � 
11)T#
�0112;�0 ��1 � �2)= �I 0(
02;�0 � �2)� I 0(
11;�1)� I 0(
�0112;�0 ��1 � �2)= �I 0(
02;�0 � �2) = d(~�0 �N ~�2; ~��02): �2 Here it suÆ
es to allow for Hamiltonian perturbation on M0 and M2, i.e. repla
ing L0; L2 with L00 :=�H01 (L0), L02 := (�H21 )�1(L2). Then for every (m0; m2) 2 (L00 � L02) \ L02 there is a unique m1 2 M1 su
hthat (m0;m1) 2 L01, (m1;m2) 2 L12, and hen
e (m0;m1; m2) 2 (L00 � L12) \ (L01 � L02).



QUILTED FLOER COHOMOLOGY 19Lemma 3.1.9. Let V0; V1; V2 be symple
ti
 ve
tor spa
es, �02 � V �0 � V2 a Lagrangiansubspa
e, and denote by T�02 � Lag(V �0 � V1 � V �1 � V2)the subset of Lagrangian subspa
es � � V �0 �V1�V �1 �V2 with � t (V0��V1 �V2) =: �̂02and �02(�̂02) = �02. Then T�02 is 
ontra
tible.Proof. We �x metri
s on V0, V1, and V2. Then we will 
onstru
t a 
ontra
tion (�t)t2[0;1℄,�t : T�02 ! T�02 with �0 = Id and �1 � 	(�02 � (�1)?), where 	 : V �0 � V2 � V1 � V �1 !V �0 � V1 � V �1 � V2 ex
hanges the fa
tors. To de�ne �t(�) we write � = �̂02 � �̂11, where�̂11 is the orthogonal 
omplement of �̂02 in �. Now �̂02 is the image of (IdV0 ; i1; i1; IdV2) :�02 ! V �0 � V1 � V �1 � V2 for a linear map i1 : �02 ! V1 and �̂11 is the image of(j0; IdV1 + j1;�IdV1 + j1; j2) : V1 ! V �0 � V1 � V �1 � V2 for linear maps ji : V1 ! Vi. One
an 
he
k that�t(�) := im�IdV0 ; t � i1; t � i1; IdV2�� im�t � j0; IdV1 + t2 � j1;�IdV1 + t2 � j1; t � j2�is an element of T�02 for all t 2 [0; 1℄ and de�nes a smooth 
ontra
tion. �4. Floer 
ohomologyThe main 
ontent of this se
tion is a review of the 
onstru
tion of graded Floer 
ohomol-ogy for pairs of Lagrangian submanifolds in monotone and exa
t 
ases by Floer, Oh, andSeidel. In 4.3 we then extend Floer 
ohomology to generalized Lagrangian 
orresponden
es,whi
h in Se
tion 5 will be reformulated in terms of pseudoholomorphi
 quilts.4.1. Monotoni
ity. Let (M;!) be a symple
ti
 manifold. Let J (M;!) denote the spa
eof 
ompatible almost 
omplex stru
tures on (M;!). Any J 2 J (M;!) gives rise to a
omplex stru
ture on the tangent bundle TM ; the �rst Chern 
lass 
1(TM) 2 H2(M;Z) isindependent of the 
hoi
e of J . Throughout, we will use the following standing assumptionson all symple
ti
 manifolds:(M1): (M;!) is monotone, that is for some � � 0[!℄ = �
1(TM):(M2): If � > 0 then M is 
ompa
t. If � = 0 then M is (ne
essarily) non
ompa
t butsatis�es \bounded geometry" assumptions as in [17℄.Note here that we treat the exa
t 
ase [!℄ = 0 as spe
ial 
ase of monotoni
ity (with� = 0). Next, we denote the index map by
1 : �2(M)! Z; u 7! (
1; u�[S2℄):The minimal Chern number NM 2 N is the positive generator of its image.Asso
iated to a Lagrangian submanifold L � M are the Maslov index and a
tion (i.e.symple
ti
 area) maps I : �2(M;L)! Z; A : �2(M;L)! R:Our standing assumptions on all Lagrangian submanifolds are the following:(L1): L is monotone, that is2A(u) = �I(u) 8u 2 �2(M;L)where the � � 0 is (ne
essarily) that from (M1).(L2): L is 
ompa
t and oriented.



20 KATRIN WEHRHEIM AND CHRIS T. WOODWARDAny homotopy 
lass [u℄ 2 �2(M;L) that is represented by a nontrivial J -holomorphi
 disku : (D; �D)! (M;L) has positive a
tion A([u℄) = R u�! > 0. Monotoni
ity with � > 0 thenimplies that the index is also positive. So, for pra
ti
al purposes, we de�ne the (e�e
tive)minimal Maslov number NL 2 N as the generator of I(f[u℄ 2 �2(M;L)jA([u℄) > 0g) � N.If M and L are exa
t (� = 0), then A � 0, so we have NL =1.If the Lagrangian submanifold L is oriented then I(u) is always even sin
e it is the Maslovindex of a loop of oriented Lagrangian subspa
es. So the orientation and monotoni
ityassumption on L imply NL � 2, i.e. any nontrivial holomorphi
 disk must have I(u) � 2,whi
h ex
ludes disk bubbling in transverse moduli spa
es of index 0 and 1.In order for the Floer 
ohomology groups to be well de�ned we will also have to makethe following additional assumption.(L3): L has minimal Maslov number NL � 3.Moreover, we will restri
t our 
onsiderations to Maslov 
overings and gradings that are
ompatible with orientations, that is we make the following additional assumptions on thegrading of the symple
ti
 manifolds M and Lagrangian submanifolds L �M . (In the 
aseN = 2 these assumptions redu
e to (L2).)(G1): M is equipped with a Maslov 
overing LagN (M) for N even, and the indu
ed 2-foldMaslov 
overing Lag2(M) is the one des
ribed in Example 3.0.8 (i).(G2): L is equipped with a grading �NL : L ! LagN (M), and the indu
ed 2-gradingL! Lag2(M) is the one given by the orientation of L.In the following we dis
uss topologi
al situations whi
h ensure monotoni
ity.Lemma 4.1.1. Suppose that M is monotone and L �M is a Lagrangian su
h that �1(L)is torsion (that is, every element has �nite order). Then L is monotone and the minimalMaslov number is at least 2NM=k where k is the maximum of orders of elements of �1(L).Proof. Let u : (D; �D) ! (M;L) and let k(u) be the order of the restri
tion of u tothe boundary in �1(L). After passing to a k(u)-fold 
over ~u, we may assume that therestri
tion of ~u to �D is homotopi
ally trivial in L. By adding the homotopy we obtaina sphere v : S2 ! M with k(u)I(u) = I(~u) = 2
1(v) divisible by 2NM . For the relationbetween the �rst Chern 
lass and the Maslov index see e.g. [10, Appendix℄. The similaridentity for the a
tions (due to !jL = 0) 
ompletes the proof. �In pra
ti
e, we will need the a
tion-index relation not only for disks as in (L1) but also forother surfa
es with several boundary 
omponents mapping to several Lagrangians. (Thisreally only be
omes relevant in [22℄ for the de�nition of relative invariants from surfa
eswith striplike ends.) In parti
ular, to de�ne Floer 
ohomology for a pair of Lagrangians(and espe
ially later to prove the isomorphism (3)) we need the a
tion-index for annulibetween the two Lagrangians. This provides the energy-index relation in Remark 4.2.2. Infa
t, it also implies monotoni
ity (L1) for both Lagrangians as long as M is 
onne
ted.De�nition 4.1.2. (a) We say that a tuple (Le)e2E is monotone with monotoni
ity 
on-stant � � 0 if the following holds: Let � be any 
onne
ted 
ompa
t surfa
e withnonempty boundary �� = te2ECe (with Ce possibly empty or dis
onne
ted). Thenfor every map u : �!M satisfying u(Ce) � Le we have the a
tion-index relation2Z u�! = � � I(u�TM; (u�TLe)e2E );



QUILTED FLOER COHOMOLOGY 21where I is the sum of the Maslov indi
es of the totally real subbundles (ujCe)�TLein some �xed trivialization of u�TM .(b) We say that a pair (L0; L1) is monotone for Floer theory if (a) holds for the annulus� = [0; 1℄�S1 and every map u with boundary values u(fjg�S1) � Lj for j = 0; 1.The following is a minor generalization of [11, Proposition 2.7℄.Lemma 4.1.3. Suppose that M is monotone.(a) If ea
h Le � M is monotone, and the image of ea
h �1(Le) in �1(M) is torsion,then the tuple (Le)e2E is monotone.(b) If both L0; L1 � M are monotone, and the image of �1(L0) or �1(L1) in �1(M) istorsion, then the pair (L0; L1) is monotone for Floer theory.Proof. To 
he
k (a) 
onsider u : � ! M satisfying u(Ce) � Le. By assumption we haveintegers Ne 2 N su
h that NeujCe is 
ontra
tible in M . Let N =Qe2E Ne, so that NujCe is
ontra
tible for all boundary 
omponents Ce of �. Let ~�! � be a �nite N -
over de�nedby a representation � : �1(�)! ZN with �([Ce℄) = [N=Ne℄, so that ea
h 
omponent of theinverse image ~Ce of Ce is an Ne-fold 
over. The pull-ba
k ~u : ~� ! M of u : � ! M hasrestri
tions to the boundary ~uj ~Ce that are homotopi
ally trivial inM . Thus ~u is homotopi
to the union of some maps ve : (D; �D) ! (M;Le) and a map v : S ! M on a 
losedsurfa
e S. We 
an now use the 
losedness of ! and the monotoni
ity of M and ea
h Le todedu
e 2N Z u�! = 2Z ~u�! = 2Z v�! +Xe2E 2Z v�e!= 2�
1(v�TM) +Xe2E �I(ve) = �I(~u) = �NI(u);using properties of the Maslov index explained in [10, Appendix℄.In the 
ase of (b) we 
an take a multiple 
over of the annulus su
h that one boundaryloop is 
ontra
tible inM , and hen
e the multiply 
overed annulus is homotopi
 to two disksto whi
h we 
an apply monotoni
ity of the single Lagrangians. �In the exa
t 
ase, with ! = d�, any tuple of exa
t Lagrangians (Le)e2E , that is with[�jLe ℄ = 0 2 H1(Le), is automati
ally monotone. Moreover, note that monotoni
ity isinvariant under Hamiltonian isotopies of one or several Lagrangians.Remark 4.1.4. Another situation in whi
h one naturally has monotoni
ity is the Bohr-Sommerfeld setting, as pointed out to us by P. Seidel. Suppose that the 
ohomology 
lass [!℄is integral. Let (L;r)! (M;!) be a unitary line-bundle-with-
onne
tion having 
urvature(2�=i)!. The restri
tion of (L;r) to any Lagrangian L �M is 
at. L is Bohr-Sommerfeldif the restri
tion of (L;r) to L is trivial, that is, there exists a non-zero horizontal se
tion�LL. The se
tion �LL is unique up to a 
olle
tion of phases U(1)�0(L). Suppose that Mis monotone, [!℄ = �
1(M) for some � > 0. Sin
e 
1(M) and [!℄ are integral, we musthave � = k=l for some integers k; l > 0. Let K�1 ! M denote the anti
anoni
al bundle,K�1m = �topC (T 0;1m M), whi
h satis�es k
1(K�1) = l i2� [
urv(r)℄ = l
1(L). Hen
e there existsan isomorphism � : (K�1)
k ! L
l:



22 KATRIN WEHRHEIM AND CHRIS T. WOODWARDLet L � M be an oriented Lagrangian submanifold. The restri
tion of K�1 to L has anatural non-vanishing se
tion �KL given by the orientation and the isomorphisms�topR TL! �topC T 0;1M jL; v1 ^ : : : ^ vn 7! (v1 + iJv1) ^ : : : ^ (vn + iJvn):We say that L is Bohr-Sommerfeld monotone with respe
t to (L;r;�) if the se
tions (�LL)
land � Æ (�KL )
k are homotopi
, that is, there exists a fun
tion  : L! R su
h that(18) (exp(2�i )�LL)
l = � Æ (�KL)
k:Lemma 4.1.5. Let (Le)e2E be a 
olle
tion of Lagrangians su
h that ea
h is Bohr-Sommerfeldmonotone with respe
t to (L;r;�). Then (Le)e2E is monotone.Proof. Let � be a 
ompa
t Riemann surfa
e with boundary 
omponents (Ce)e2E . Letu : � ! M be a map with boundary u(Ce) � Le. The index I(u) is the sum of Maslovindi
es of the bundles (ujCe)�TLe, with respe
t to some �xed trivialization of u�TM . Equiv-alently, I(u) is the sum of winding numbers of the se
tions �KLe with respe
t to the indu
edtrivialization of u�K�1. Sin
e ea
h Le is Bohr-Sommerfeld, kI(u) is the sum of the windingnumbers of the se
tions (�LLe)
l, with respe
t to the indu
ed trivialization of u�L
l. Writeu�r
l = d + � for some � 2 
1(�) in this trivialization, so that u� 
urv(r
l) = d�. Sin
ethe se
tions are horizontal, we havekI(u) = (i=2�)Z�� � = (i=2�)Z� u� 
urv(r
l) = lA(u): �4.2. Graded Floer 
ohomology for pairs of Lagrangians. Let L0; L1 �M be 
ompa
tLagrangian submanifolds. For a time-dependent Hamiltonian H 2 C1([0; 1℄ � M) let(Xt)t2[0;1℄ denote the family of Hamiltonian ve
tor �elds for (Ht)t2[0;1℄, and let �t0;t1 :M !M denote its 
ow. (That is, �t0;t1(y) = x(t1), where x : [0; 1℄ ! M satis�es _x = Xt(x),x(t0) = y.) We will abbreviate �1 := �0;1 for the time 1 
ow from t0 = 0 to t1 = 1. LetHam(L0; L1) be the set of H 2 C1([0; 1℄�M) su
h that �1(L0) interse
ts L1 transversally.Then we have a �nite set of perturbed interse
tion pointsI(L0; L1) := �
 : [0; 1℄!M �� 
(t) = �0;t(
(0)); 
(0) 2 L0; 
(1) 2 L1	:It is isomorphi
 to the interse
tion �1(L0) t L1. If we assume thatM and L0; L1 are gradedas in (G1-2), then we obtain a degree map from Se
tion 3,I(L0; L1)! ZN; x 7! jxj = d(�NL0(x); �NL1(x)):Sin
e N is even the sign (�1)jxj is well-de�ned. It agrees with the usual sign in the inter-se
tion number, given by the orientations of �1(L0) and L1, whi
h also determine the mod2 grading by assumption.Next, we denote the spa
e of time-dependent !-
ompatible almost 
omplex stru
tures byJt(M;!) := C1([0; 1℄;J (M;!)):For any J 2 Jt(M;!) and H 2 Ham(L0; L1) we say that a map u : R � [0; 1℄ ! M is(J;H)-holomorphi
 with Lagrangian boundary 
onditions if(19) �J;Hu := �su(s; t) + Jt;u(s;t)(�tu(s; t)�Xt(u(s; t))) = 0;(20) u(R; 0) � L0; u(R; 1) � L1:



QUILTED FLOER COHOMOLOGY 23The (perturbed) energy of a solution isEH(u) := ZR�[0;1℄ j�suj2 = ZR�[0;1℄ u�! + d(H(u)dt):The following exponential de
ay lemma will be needed later and is part of the proof ofTheorem 4.2.3 below.Lemma 4.2.1. Let H 2 Ham(L0; L1) and J 2 Jt(M;!). Then for any (J;H)-holomorphi
strip u : R � [0; 1℄ ! M with Lagrangian boundary 
onditions in L0; L1 the following areequivalent:(a) u has �nite energy EH(u) = RR�[0;1℄ j�suj2 <1;(b) There exist x� 2 I(L0; L1) su
h that u(s; �) 
onverges to x� exponentially in allderivatives as s! �1 .For any x� 2 I(L0; L1) we denote byM(x�; x+) := �u : R � [0; 1℄!M �� (19); (20); EH(u) <1; lims!�1u(s; �) = x�	=Rthe spa
e of �nite energy (J;H)-holomorphi
 maps modulo translation in s 2 R. It is iso-morphi
 to the moduli spa
e of �nite energy J 0-holomorphi
 maps with boundary 
onditionsin �1(L0) and L1, and without Hamiltonian perturbation. Here J 0 2 Jt(M;!) arises fromJ by pullba
k with �t;1.Remark 4.2.2. Suppose that the pair (L0; L1) is monotone, then for any x� 2 I(L0; L1)there exists a 
onstant 
(x�; x+) su
h that for all u 2M(x�; x+) the energy-index relationholds:(21) 2EH(u) = � � Ind(Du) + 
(x�; x+);where Du denotes the linearized operator at u of the Cau
hy-Riemann equation (19) on thespa
e of se
tions of u�TM satisfying the linearized Lagrangian boundary 
onditions from(20). Its Fredholm index is given by the Maslov-Viterbo index of u. This monotoni
ityensures energy bounds for the moduli spa
es of �xed index and thus 
ompa
tness up tobubbling.Theorem 4.2.3. (Floer,Oh) Let L0; L1 � M be a monotone pair of Lagrangian subman-ifolds satisfying (L1-2) and (M1-2). For any H � Ham(L0; L1), there exists a subsetJ regt (L0; L1;H) � Jt(M;!) of Baire se
ond 
ategory, su
h that the following holds for allx� 2 I(L0; L1).(a) M(x�; x+) is a smooth manifold whose dimension near a non
onstant solution u isgiven by the formal dimension Ind(Du)� 1.(b) The 
omponent M(x�; x+)0 �M(x�; x+) of formal dimension zero is �nite.(
) Suppose that L0 and L1 have minimal Maslov numbers NLk � 3. Then the one-dimensional 
omponent M(x�; x+)1 � M(x�; x+) has a 
ompa
ti�
ation as one-dimensional manifold with boundary(22) �M(x�; x+)1 �= [x2I(L0;L1)M(x�; x)0 �M(x; x+)0(d) If (L0; L1) is relatively spin (as de�ned in e.g. [23℄), then there exists a 
oherent setof orientations on M(x�; x+)0;M(x�; x+)1 for all x� 2 I(L0; L1), that is, orienta-tions 
ompatible with (22).



24 KATRIN WEHRHEIM AND CHRIS T. WOODWARDFor the proofs of (a-
) we refer to Oh's paper [11℄ and the 
lari�
ations [12℄, [9℄. For theexa
t 
ase see [17℄. The proof of (d) is 
ontained in [23℄ loosely following [5℄. From (d) weobtain a map � :M(x�; x+)0 ! f�1gde�ned by 
omparing the given orientation to the 
anoni
al orientation of a point.Now let M be a monotone symple
ti
 manifold satisfying (M1-2) and equipped withan N -fold Maslov 
overing. Let L0; L1 � M be a monotone, relative spin pair of gradedLagrangian submanifolds satisfying (L1-3), and let H 2 Ham(L0; L1). The Floer 
o
haingroup is the ZN-graded groupCF (L0; L1) = Md2ZNCF d(L0; L1); CF d(L0; L1) = Mx2I(L0;L1);jxj=dZhxi;and the Floer 
oboundary operator is the map of degree 1,�d : CF d(L0; L1)! CF d+1(L0; L1);de�ned by �dhx�i := Xx+2I(L0;L1)� Xu2M(x�;x+)0 �(u)�hx+i:Here we 
hoose some J 2 J regt (L0; L1;H). If an isolated traje
tory u 2M(x�; x+)0 exists,then the degree identity jx+j = jx�j + 1 
an be seen by 
on
atenating the paths ~
0; ~
1 ofgraded Lagrangians in the de�nition of jx�j with the unique graded lifts of u�TL0; u�TL1to obtain paths of graded Lagrangians de�ning jx+j (using a trivialization of u�TM overthe strip, 
ompa
ti�ed to a disk). By additivity of the Maslov index this shows jx+j =jx�j + I(u�TL0; u�TL1) = jx�j + 1. It follows from Theorem 4.2.3 that �2 = 0. Now theFloer 
ohomology 3HF (L0; L1) := Md2ZNHF d(L0; L1); HF d(L0; L1) := ker(�d)=im(�d�1)is ZN-graded. It is independent of the 
hoi
e of H and J ; a generalization of this fa
t isproved in Se
tion 5.3 below. If the gradings moreover satisfy (G1-2), then we have a wellde�ned splitting HF (L0; L1) = HF even(L0; L1)�HF odd(L0; L1):Remark 4.2.4. In a suitable derived sense the Floer 
ohomology HF (L1; L0) for the swit
hedpair is the dual spa
e Hom(HF (L0; L1);Z), see [25℄ for details.4.3. Floer 
ohomology for generalized Lagrangian 
orresponden
es. The goal ofthis se
tion is to de�ne a �rst version of Floer 
ohomology for a 
y
li
 generalized La-grangian 
orresponden
e L as in De�nition 2.1.3. So we 
onsider L = (L01; : : : ; Lr(r+1)), asequen
e of smooth Lagrangian 
orresponden
es L(j�1)j �M�j�1 �Mj between a sequen
eM0;M1; : : : ;Mr+1 = M0 of symple
ti
 manifolds. For example, we 
ould 
onsider a non-
y
li
 sequen
e of Lagrangians L01 �M1, �L(i�1)i �M�i�1 �Mi�i=2;:::;r, Lr0 � M�r , whi
his a spe
ial 
ase of the 
y
li
 setup with M0 = fptg. The usual Floer 
ohomology for pairsof Lagrangians �ts into this 
ase with r = 1 and Lagrangian submanifolds L01; L10 �M1.3Note that our 
onventions di�er from Seidel's de�nition of graded Floer 
ohomology in [15℄ in two pointswhi
h 
an
el ea
h other: The roles of x� and x+ are inter
hanged and we swit
hed the sign of the Maslovindex in the de�nition of the degree (11).



QUILTED FLOER COHOMOLOGY 25We assume that L satis�es (M1-2,L1-3), i.e. ea
h Mj satis�es (M1-2) and ea
h L(j�1)jsatis�es (L1-3) with a �xed monotoni
ity 
onstant � � 0. We moreover assume that L isgraded in the sense of De�nition 3.1.2 and equipped with a relative spin stru
ture in thefollowing sense.De�nition 4.3.1. Let L = (L01; : : : ; Lr(r+1)) be a 
y
li
 generalized Lagrangian 
orre-sponden
e (i.e. Lj(j+1) � M�j � Mj+1 for a 
y
li
 sequen
e M0;M1; : : : ;Mr+1 = M0 ofsymple
ti
 manifolds). A relative spin stru
ture on L 
onsists of a 
olle
tion of ba
kground
lasses bj 2 H2(Mj ;Z2) for j = 0; : : : ; r + 1 and relative spin stru
tures on Lj(j+1) withba
kground 
lasses ���j bj + ��j+1bj+1. The 
y
li
 requirement on the ba
kground 
lassesb0 2 H2(M0;Z2) and br+1 2 H2(Mr+1;Z2) = H2(M0;Z2) is br+1 = b0 for r odd andbr+1 = b0 + w2(M0) for r even.4Eventually, in Se
tion 5, we will de�ne the Floer 
ohomology HF (L) dire
tly, using\quilts of pseudoholomorphi
 strips". In this se
tion however we de�ne HF (L) as a spe
ial
ase of the Floer 
ohomology for pairs of Lagrangian submanifolds { whi
h are 
onstru
tedfrom the sequen
e L as follows. If L has even length r + 1 2 2N we de�ne a pair of gradedLagrangian submanifolds,L(0) := (L01 � L23 � : : : � L(r�1)r)L(1) := (L12 � L34 � : : : � Lr(r+1))T � M�0 �M1 �M�2 � : : :�Mr =: fM:Here we denote byM�1 � : : :�M�r �M0 !M�0 �M1� : : :�Mr, Z 7! ZT the transpositionof the last to the �rst fa
tor, 
ombined with an overall sign 
hange in the symple
ti
 form.If L has odd length r + 1 2 2N + 1 we insert the diagonal �0 � M�0 �M0 = M�r+1 �M0(equipped with its 
anoni
al grading) into L before arranging it into a pair of Lagrangiansubmanifolds as above, yieldingL(0) = (L01 � L23 � : : :� Lr(r+1))L(1) = (L12 � L34 � : : :� L(r�1)r ��0)T � M�0 �M1 � : : :�M�r �Mr+1 = fMIn the 
ase of a non
y
li
 
orresponden
e withM0 =Mr+1 = fptg the transposition as wellas insertion of the diagonal are trivial operations. Note that, beyond the grading, also themonotoni
ity, 
ompa
tness, and orientation assumptions (L1-2) on L transfer dire
tly toproperties (L1-2) for L(0) and L(1). Similarly, a relative spin stru
ture on L indu
es 
ompat-ible relative spin stru
tures on L(0) and L(1), see [23℄. Moreover, we say that L is monotoneif the pair of Lagrangians (L(0); L(1)) is monotone in the sense of De�nition 4.1.2(b). If thisis the 
ase, then a graded Floer 
ohomology for L 
an be de�ned byHF (L) := HF (L(0); L(1)):Remark 4.3.2. To see that HF (L(0); L(1)) is well de�ned we need to make sure that L(0)and L(1) also satisfy (L3), or that the bubbling of holomorphi
 dis
s is otherwise ex
luded.Note that the assumption (L3) on the fa
tors of L does not dire
tly transfer to the produ
tLagrangians L(0) and L(1) sin
e a di�eren
e of Maslov numbers greater than 3 
ould givea total Maslov number less than 3. However, if we use a split almost 
omplex stru
tureeJ = J0 � : : : � Jr on fM , indu
ed from 
ompatible almost 
omplex stru
tures Jk on ea
hMk, then any non
onstant holomorphi
 dis
 in fM with boundary on L(0) or L(1) will simply4 This shift is ne
essary in order to �t in the 
anoni
al relative spin stru
ture for the diagonal �0, see[20℄ for details.



26 KATRIN WEHRHEIM AND CHRIS T. WOODWARDbe a produ
t of Jk-holomorphi
 dis
s. Pairs of these dis
s take boundary values in theLagrangian 
orresponden
es L(k�1)k whi
h satisfy the monotoni
ity assumptions as well as(L3). Hen
e ea
h of these double dis
s must have nonnegative area and hen
e index, andat least one of them has positive area and hen
e Maslov index at least 3.The proof that transversality 
an be a
hieved with an almost 
omplex stru
ture (and alsoHamiltonian perturbation) of split type 
an be found in Theorem 5.2.3 and Proposition 5.2.1below. This ex
ludes bubbling su
h that �2 = 0 for this spe
i�
 
hoi
e of perturbation data(and hen
e for any other 
hoi
e of regular perturbation data). So the Floer 
ohomologyHF (L(0); L(1)) is indeed well de�ned.In the 
ase of a non-
y
li
 sequen
e the Floer 
ohomology HF (L) spe
ializes toHF (L1; L12; : : : ; L(r�1)r; Lr) = HF (L1 � L23 � : : : ; L12 � L34 � : : :):In parti
ular we reprodu
e the de�nition of Floer 
ohomology for a pair of LagrangiansL0; L1 � M , viewed as 
y
li
 
orresponden
e fpt:g L0�! M L1�! fpt:g. We moreover de�nea Floer 
ohomology for any Lagrangian L � M� �M , viewed as 
y
li
 
orresponden
eM L�! M , in parti
ular for graphs L = graph(�) of symple
tomorphisms � : M !M . Byde�nition, this invariant is HF (L) := HF (L;�M ), whi
h reprodu
es the Floer 
ohomologyHF (graph(�)) = HF (graph(�);�M ) = HF (�) of a symple
tomorphism.5. Quilted Floer 
ohomologyThe purpose of this se
tion is to reformulate the de�nition of Floer 
ohomology forgeneralized Lagrangian 
orresponden
es in terms of quilted surfa
es (
onsisting of strips).As in Se
tion 4.3 
onsider a 
y
li
 generalized Lagrangian 
orresponden
e L, that is, asequen
e of symple
ti
 manifolds M0;M1; : : : ;Mr;Mr+1 with M0 =Mr+1 for r � 0, and asequen
e of Lagrangian 
orresponden
esL01 �M�0 �M1; L12 �M�1 �M2; : : : ; Lr(r+1) �M�r �Mr+1:5.1. Unfolding of Floer 
ohomology in produ
ts. We de�ned the Floer 
ohomologyHF (L) as the standard Floer 
ohomology in the produ
t manifold fM =M�0 �M1�M�2 �: : :of a pair of Lagrangians L(0); L(1) that is built from the 
y
li
 sequen
e L. We will showhow quilts arise naturally from "unfolding" this 
onstru
tion and phrasing it in terms oftuples of holomorphi
 
urves in the Mj .Informally, HF (L) 
an be viewed as the Morse homology on the path spa
eP(L(0); L(1)) = �y : [0; 1℄! fM �� y(0) 2 L(0); y(1) 2 L(1)	of the (potentially multivalued) symple
ti
 a
tion fun
tionalAH(y) = Z[0;1℄�[0;1℄ v�!fM + Z 10 H(t; y(t))dt:Here v : [0; 1℄ ! P(L(0); L(1)) is a smooth homotopy from a �xed v(0) = y0 2 P(L(0); L(1))(in a given 
onne
ted 
omponent) to v(1) = y, whi
h 
an also be viewed as map v :[0; 1℄� [0; 1℄ ! fM satisfying Lagrangian boundary 
onditions on f0g� [0; 1℄ and f1g� [0; 1℄.Suppose for now that r is odd, then the path spa
e 
an be identi�ed with the set of tuplesof paths in the manifolds Mj , 
onne
ted via Lj(j+1)-mat
hing 
onditions at the ends,P(L) = �x = �xj : [0; 1℄!Mj�j=0;:::;r ��(xj(1); xj+1(0)) 2 Lj(j+1)	:



QUILTED FLOER COHOMOLOGY 27Here and throughout we will use the index j 2 f0; : : : ; rgmodulo r+1, so e.g. xr+1 := x0 andthe mat
hing 
ondition for j = r+1 is (xr(1); x0(0)) 2 Lr(r+1). We make the identi�
ationwith P(L(0); L(1)) by y(t) = �x0(1 � t); x1(t); x2(1 � t); : : : ; xr(t)�, then the unperturbed(H = 0) symple
ti
 a
tion fun
tional on P(L) be
omesA0(x) = rXj=0 Z[0;1℄�[0;1℄ v�j!Mj :Here vj : [0; 1℄ � [0; 1℄ ! Mj interpolate between �xed paths vj(0; �) and vj(1; �) = xj , andsatisfy what we will 
all "seam 
onditions" (vj(s; 1); vj+1(s; 0)) 2 Lj(j+1) for all s 2 [0; 1℄.Next, assume that the almost 
omplex stru
ture on fM is of time-independent split formJ = (�J0) � J1 � (�J2) � : : : � Jr, given by a tuple Jj 2 J (Mj ; !j) of almost 
omplexstru
tures on the fa
tors of fM . This de�nes a metri
 on the path spa
e, and the gradient
ow lines, viewed as PDE's are the J -holomorphi
 strips w : R� [0; 1℄ ! fM with boundaryvalues in L(0) and L(1). They are in one-to-one 
orresponden
e with (r + 1)-tuples of Jj-holomorphi
 maps uj : R � [0; 1℄!Mj satisfying the seam 
onditions(uj(s; 1); uj+1(s; 0)) 2 Lj(j+1); for all j = 0; : : : ; r; s 2 R:Here we again use 
y
li
 notation ur+1 := u0, and the 
orresponden
e is given by w(s; t) =�u0(s; 1� t); u1(s; t); u2(s; 1� t); : : : ; ur(s; t)�.For r even there is a slight modi�
ation of the previous 
orresponden
e. The produ
tmanifold fM has two fa
tors M0 and Mr+1 = M0 mat
hed up via the diagonal. So thepath spa
e 
an be identi�ed with the generalized path spa
e P(L) as above with the ex-
eption that the path x0 : [0; 2℄ ! M0 in M0 = Mr+1 is parametrized by an interval oflength 2 and satis�es the mat
hing 
ondition (x0(2); x1(0) 2 L01 at its end. Similarly, a J -holomorphi
 strip w : R�[0; 1℄ ! fM 
orresponds via w(s; t) = �u0(s; 2�t); u1(s; t); u2(s; 1�t) : : : ; ur(s; 1� t); u0(s; t)� to a tuple of Jj-holomorphi
 strips as above, with the ex
eptionthat the strip u0 : R � [0; 2℄ ! M0 has width 2. This tuple (uj)j=0;:::;r is the �rst instan
eof a nontrivial pseudoholomorphi
 quilt { 
ontaining strips of di�erent widths.When r is even, the Floer traje
tories of the pair L(0); L(1) in fa
t 
annot be identi�ed withan (r + 1)-tuple of pseudoholomorphi
 maps, all de�ned on strips of width 1, with seam
onditions in Lj(j+1). Conformal res
aling ~u0(s; t) := u0(2s; 2t) would result in a "time-shifted" mat
hing 
ondition (~u0(s; 1); u1(2s; 0)) 2 L01 unless u1 is res
aled, too, whi
h wouldresult in ~u0 having width 1 but all other strips having width 12 . In fa
t, only simultaneousres
aling of all 
omponents in these pseudoholomorphi
 quilts preserves holomorphi
ity andseam 
onditions (unless the Lagrangian 
orresponden
es are of split type, e.g. L01 = L0�L1for Lagrangians Lj �Mj). It 
annot 
hange the relative widths of strips.By a reparametrization of the path inM0, one 
ould identify P(L(0); L(1)) and the a
tionfun
tional with the generalized path spa
e P(L) and a 
orresponding a
tion fun
tional,where all paths are parametrized by [0; 1℄. However, the reparametrized û0(s; t) := u0(s; 2t)now satis�es �sû0 + 12J0�tû0 = 0 with a no longer 
omplex stru
ture 12J0 that squares to�14 . This is due to the fa
t that the pullba
k of the metri
 on P(L(0); L(1)) to P(L) is theL2-metri
 on ea
h fa
tor with respe
t to !j(�; Jj �) for j = 1; : : : ; r but 12!0(�; J0�) onM0. We
ould drop the fa
tor 12 in the metri
 on M0 to obtain Jj-holomorphi
 strips of width 1 inea
h fa
tor as traje
tories, however these would be the "gradient 
ow lines" with respe
t toa di�erent metri
. In general, it is not know how Floer homology behaves under a 
hange of
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. However, we will show that it is independent of the 
hoi
e of weights Æ�1j !j(�; Jj �)in the L2-metri
 on P(L). This setup is equivalent to de�ning the generalized path spa
ewith varying widths xj : [0; Æj ℄!Mj but �xing the standard L2-metri
 indu
ed by !j andJj on ea
h fa
tor.5.2. Constru
tion of quilted Floer 
ohomology. In the quilted setup for HF (L) we�x widths Æ = (Æj > 0)j=0;:::;r and 
onsider the generalized path spa
eP(L) := �x = �xj : [0; Æj ℄!Mj�j=0;:::;r ��(xj(Æj); xj+1(0)) 2 Lj(j+1)	:We de�ne a perturbed symple
ti
 a
tion fun
tional on P(L) by pi
king a homotopy v =(vj)j=0;:::;r : [0; 1℄! P(L) from a �xed v(0) to v(1) = x and settingAH(x) = rXj=0�Z[0;1℄�[0;Æj ℄ v�j!Mj + Z Æj0 Hj(t; xj(t))dt�;using a tuple of Hamiltonian fun
tionsH = �Hj 2 C1([0; Æj ℄�Mj)�j=0;:::;r:By folding and res
aling as in the previous se
tion, this is equivalent to the path spa
eP(L(0); L(1)) with symple
ti
 a
tion fun
tional perturbed by a Hamiltonian of split type,e.g. H =Prj=0(�1)j+1Æj ~Hj for r odd, where ~Hj(t; x) = Hj(Æjt; x) for j odd and ~Hj(t; x) =Hj(Æj(1� t); x) for j even. Here the 
riti
al points 
orrespond to the perturbed interse
tionpoints �H1 (L(0))\L(1), where �H1 is the time-one 
ow of H. In the quilted setup, the 
riti
alpoints of AH are tuples of Hamiltonian 
hords,I(L) := (x = �xj : [0; Æj ℄!Mj�j=0;:::;r ����� _xj(t) = XHj (xj(t));(xj(Æj); xj+1(0)) 2 Lj(j+1)) :I(L) is 
anoni
ally identi�ed with ��H0Æ0 �L01 ��H1Æ1 L12 : : : ��HrÆr Lr(r+1)�, the set of points�(m0; : : : ;mr) 2M0 � : : :�Mr �� (�HjÆj (mj);mj+1) 2 Lj(j+1)	;where �HjÆj is the time Æj 
ow of the Hamiltonian Hj . In this setting we 
an 
he
k thatHamiltonians of split type suÆ
e to a
hieve transversality for the interse
tion points.Proposition 5.2.1. There is a dense open subset Ham(L) � �rj=0C1([0; Æj ℄ �Mj) su
hthat for every (H0; : : : ;Hr) 2 Ham(L) the set ��H0Æ0 �L01��H1Æ1 L12 : : :��HrÆr Lr(r+1)� is smoothand �nite, that is, the de�ning equations are transversal.Proof. By assumption Lj(j+1) is an embedded submanifold of Mj(j+1) := M�j �Mj+1 andso lo
ally Lj(j+1) is the zero set of a submersion  j(j+1) :Mj(j+1) ! Rnj+nj+1 . The de�ningequations for ��H0Æ0 �L01 ��H1Æ1 L12 : : : ��HrÆr Lr(r+1)� are(23)  j(j+1)��HjÆj (mj);mj+1� = 0 for all j = 0; : : : ; r:Consider the universal moduli U spa
e of data (H0; : : : ;Hr;m0; : : : ;mr) satisfying (23),where now ea
h Hj has 
lass C` for some ` � 2. The linearized equations for U are(24) D j(j+1)(D�HjÆj (hj ; vj); vj+1) = 0 for all j = 0; : : : ; r:



QUILTED FLOER COHOMOLOGY 29for vj 2 TmjMj (with vr+1 := v0) and hj 2 C`([0; 1℄ �Mj). The mapC`([0; 1℄ �Mj)! T�HjÆj (mj)Mj; hj 7! D�HjÆj (hj ; 0)is surje
tive, whi
h shows that the produ
t of the operators on the left-hand side of (24)is also surje
tive. By the impli
it fun
tion theorem U is a smooth Bana
h manifold, andwe 
onsider its proje
tion to �rk=0C`([0; Æk ℄�Mk). By the Sard-Smale theorem, the set ofregular values (the set of fun
tions H = (H0; : : : ;Hr) su
h that the perturbed interse
tionis transversal) is dense in �rk=0C`([0; Æk ℄ � Mk). On the other hand, the set of regularvalues is 
learly open. Hen
e the set of smooth fun
tions that are regular values is openand dense. �With this split Hamiltonian perturbation we have a 
anoni
al bije
tion of 
riti
al points�H1 (L(0))\L(1) �= I(L), and hen
e the (graded) Floer 
hain group CF (L(0); L(1)) is identi�edwith CF (L) := Md2ZNCF d(L); CF d(L) := Mx2I(L);jxj=dZhxi:The grading is de�ned as in Se
tion 3.1,I(L) �= �H1 (L(0)) \ L(1) ! ZN; x �= y 7! jyj = jxj:Next, �x a tuple of almost 
omplex stru
turesJ = (Jj)j=0;:::;r 2 �rj=0C1([0; Æj ℄;J (Mj ; !j)) =: Jt(L)and equip P(L) with the L2-metri
 indu
ed by the t-dependent metri
 !j(�; Jj �) on ea
hfa
tor Mj . Then the Floer traje
tories (obtained by reformulating the gradient 
ow asPDE) are (r + 1)-tuples of maps uj : R � [0; Æj ℄!Mj that are (Jj ;Hj)-holomorphi
,(25) �Jj ;Hjuj = �suj + Jj��tuj �XHj (uj)� = 0 8j = 0; : : : r;and satisfy the seam 
onditions(26) (uj(s; Æj); uj+1(s; 0)) 2 Lj(j+1) 8j = 0; : : : r; s 2 R:For a Floer traje
tory to be 
ounted towards the di�erential between 
riti
al points x� 2I(L) we moreover require �nite energy and limits(27) E(u) := rXj=0 ZR�[0;Æj ℄ u�j!j+d(Hj(uj)dt) <1; lims!�1uj(s; �) = x�j 8j = 0; : : : ; r:
L(r�1)rLr
L0...L12

L12L01Lr(r+1)L(r�1)r ...Lt23Lt(r�2)(r�1)Figure 1. Quilted Floer traje
tories for M0 = fptg and in general



30 KATRIN WEHRHEIM AND CHRIS T. WOODWARDAs in standard Floer theory, the moduli spa
es of "quilted holomorphi
 strips"M(x�; x+) := �u = �uj : R � [0; Æj ℄!Mj�j=0;:::;r �� (25); (26); (27)	=Rarise from quotienting out by simultaneous R-shift in all 
omponents uj. (Separate shiftswill not preserve the seam 
ondition unless the 
orresponden
es are of split type.) We willsee that they have the same Fredholm, exponential de
ay, and 
ompa
tness properties asusual for Floer traje
tories. For that purpose we restri
t ourselves to the monotone 
ase.Remark 5.2.2. The "monotoni
ity for Floer theory" assumption for the pair (L(0); L(1)) inDe�nition 4.1.2 
an be phrased dire
tly for L in the language of [22℄: "L is a monotoneboundary 
ondition for the quilted 
ylinder". That is, the a
tion-index relation2 rXj=0 Z u�j!j = � � I�(u�jTMj)j=0;:::;r; (s�j(j+1)TLj(j+1))j=0;:::;r�holds for ea
h tuple of maps uj : S1 � [0; Æj ℄ ! Mj that satis�es the seam 
onditionssj(j+1)(s) := (uj(s; Æj); uj+1(s; 0)) 2 Lj(j+1) for j = 0; : : : ; r. Here the topologi
al index Iis de�ned by 
hoosing a trivialization for ea
h u�jTMj and then summing over the Maslovindi
es of the loops s�j(j+1)TLj(j+1) of Lagrangian subspa
es with respe
t to these trivial-izations.Note that the monotoni
ity 
ondition for L is independent of the width Æj of the annulithat parametrize the maps uj . Moreover, it implies monotoni
ity for the sequen
e L0 =(L01; : : : ; L(j�1)j Æ Lj(j+1); : : : ; Lr(r+1)) obtained from an embedded 
omposition L(j�1)j ÆLj(j+1). To see the latter note that any seam 
ondition s(j�1)(j+1) : S1 ! L(j�1)j Æ Lj(j+1)indu
es a smooth map uj : S1�[0; 1℄!Mj that is 
onstant in [0; 1℄, �ts the seam 
onditionsfor L, but 
ontributes zero to both energy and Maslov index. Hen
e the a
tion index relationfor L implies the same relation for L0.Theorem 5.2.3. Suppose that the symple
ti
 manifolds Mj satisfy (M1-2) with the samevalue of the monotoni
ity 
onstant � , the Lagrangian 
orresponden
es Lj(j+1) satisfy (L1-2),and L satis�es the monotoni
ity assumption of Remark 5.2.2.For any 
hoi
e of widths Æ and regular Hamiltonian perturbations H � Ham(L), thereexists a subset J regt (L;H) � Jt(L) of Baire se
ond 
ategory, su
h that the following holdsfor all x� 2 I(L).(a) M(x�; x+) is a smooth manifold whose dimension near a non
onstant solution uis given by the formal dimension, equal to Ind(Du) � 1. Here Du is the linearizedoperator at u of (25) on the spa
e of se
tions satisfying the linearized boundary- andseam 
onditions of (26).(b) The 
omponent M(x�; x+)0 �M(x�; x+) of formal dimension zero is �nite.(
) Suppose that ea
h Lj(j+1) has minimal Maslov number NLj(j+1) � 3. Then theone-dimensional 
omponent M(x�; x+)1 � M(x�; x+) has a 
ompa
ti�
ation asone-dimensional manifold with boundary(28) �M(x�; x+)1 �= [x2I(L)M(x�; x)0 �M(x; x+)0(d) If L is relatively spin (as de�ned in De�nition 4.3.1), then there exists a 
oherent setof orientations on M(x�; x+)0;M(x�; x+)1 for all x� 2 I(L), that is, orientations
ompatible with (28).



QUILTED FLOER COHOMOLOGY 31Proof. Suppose for simpli
ity that r is odd. (For even r we 
an insert a diagonal intothe sequen
e L, then the quilted holomorphi
 strips of widths Æ 
an be identi�ed withquilted holomorphi
 strips for the new sequen
e with widths ( Æ02 ; Æ1; : : : ; Ær; Æ02 ).) Thenthe quilted moduli spa
e M(x�; x+) is 
anoni
ally identi�ed with the moduli spa
e of(JÆ ;H)-holomorphi
 maps w : R � [0; 1℄ ! fM with boundary 
onditions w(R; 0) � L(0),w(R; 1) � L(1), �nite energy EH(w) <1, and limits lims!�1w(s; �) = x� 2 I(L(0); L(1)).The 
orresponden
e is byw(s; t) = �u0(s; Æ0(1� t)); u1(s; Æ1t); u2(s; Æ2(1� t)); : : : ; ur(s; Ært)�;where H =Prj=0(�1)j+1Æj ~Hj as above andJÆ := ��Æ�10 J0(Æ0(1� t)); Æ�11 J1(Æ1t); : : : ; Æ�1r Jr(Ært)�satis�es all properties of a t-dependent !fM -
ompatible almost 
omplex stru
ture ex
ept thatit squares to the negative de�nite diagonal matrix J2Æ = �(Æ�20 IdTM0 � : : :� Æ�2r IdTMr).This still presents an ellipti
 boundary value problem of the form �s + D, where thelinearizations of D are self-adjoint operators. Hen
e the Fredholm property, energy-indexrelation, exponential de
ay, 
ompa
tness, and gluing properties 
arry over dire
tly from the
ase of holomorphi
 
urves. One 
ru
ial 
omponent is the spe
trum of the operator JÆ�t onL2([0; 1℄; TfM ) with boundary 
onditions in T�H1 (L(0)); TL(1). Sin
e the boundary 
ondi-tions are transverse on the ends, we have a spe
tral gap ensuring exponential de
ay. In fa
t,the de
ay rate is uniform for bounded (but possibly small) widths, as proven in [21℄. Spe
-tral 
rossings 
orrespond to interse
tions of the Lagrangian subspa
es, as in the standard
ase, and hen
e index 
al
ulations reprodu
e the Maslov index. For the 
ompa
tness ofindex 0 and 1 moduli spa
es it suÆ
es to ex
lude bubbling by 
onsidering a single blow-uppoint for the gradient. This analysis is lo
al, in the interior of one 
omponent uj (leading toa Jj-holomorphi
 sphere inMj) or near a seam, where we 
an 
onsider uj(s;�t)�uj+1(s; t)as (�Jj)� Jj+1-holomorphi
 
urve with boundary 
ondition in Lj(j+1). The latter type ofbubbling hen
e leads to a holomorphi
 dis
 inM�j �Mj+1 with boundary on Lj(j+1), whi
hare ex
luded by our assumptions on the minimal Maslov index.To see that there exist regular "deformed 
omplex stru
tures" JÆ 2 J regt (L(0); L(1);H)of split form, arising from a 
hoi
e of J , we note that the unique 
ontinuation theorem [4,Theorem 4.3℄ applies to the interior of every single non
onstant strip uj : R � (0; Æj)!Mj .It implies that the set of regular points, (s0; t0) 2 R � (0; Æj) with �suj(s0; t0) 6= 0 andu�1j (uj(R [ f�1g); t0) = f(s0; t0)g, is open and dense. These points 
an be used to provesurje
tivity of the linearized operator for a universal moduli spa
e of solutions with respe
tto split almost 
omplex stru
tures. (The 
onstant solutions are automati
ally transversedue to the previously ensured transversality of the interse
tion points �H1 (L(0)) t L(1).) Theexisten
e of a Baire se
ond 
ategory set of regular J then follows from the usual Sard-Smaleargument as in [10℄.Orientations 
an be de�ned as in the standard Floer theory sin
e the linearized op-erator 
anoni
ally deforms through Fredholm operators to a standard Cau
hy-Riemannoperator. The deformation transfers to the setup with H = 0 (
hanging L(0) and alsoJÆ by a Hamiltonian transformation) and then deforms JÆ through the endomorphisms�exp(� ln Æ0)IdTM0 ; : : : ; exp(� ln Ær)IdTMr� Æ JÆ to a true almost 
omplex stru
ture at � = 1.�



32 KATRIN WEHRHEIM AND CHRIS T. WOODWARDNow, assuming monotoni
ity and 
hoosing regular H and J we 
an de�ne the Floer ho-mologyHF (L) just as in the standard 
ase: The Floer 
oboundary operator �d : CF d(L)!CF d+1(L) is de�ned by �dhx�i := Xx+2I(L)� Xu2M(x�;x+)0 �(u)�hx+i;where the signs � :M(x�; x+)0 ! f�1g are de�ned by 
omparing the given orientation tothe 
anoni
al orientation of a point. It follows from Theorem 5.2.3 (
) that �2 = 0, and �is a map of degree 1 by index 
al
ulations as in the standard 
ase. This de�nes the quiltedFloer 
ohomologyHF (L) := Md2ZNHF d(L); HF d(L) := ker(�d)=im(�d�1)as ZN-graded group. It is independent of the 
hoi
e of H and J by a standard 
onstru
tionof 
ontinuation maps. The same 
onstru
tion also allows for a deformation of the widthsÆ, in the folded setup of the above proof, where the Æj are merely s
ale fa
tors in theendomorphism JÆ. For a more 
on
eptional proof based on quilts interpolating betweenstrips of di�erent widths see Se
tion 5.3 below.Remark 5.2.4. One 
an also allow the sequen
e L to have length zero (that is, the emptysequen
e) as a generalized 
orresponden
e fromM to M ; this is the 
ase r = �1 in the pre-vious notation. In this 
ase we de�ne HF (L) = HF (IdM ), the 
ylindri
al Floer homology.This would be the 
ase without seams in Figure 1.5.3. Invarian
e of quilted Floer 
ohomology and relative quilt invariants. Thepurpose of this se
tion is to prove the independen
e of quilted Floer 
ohomology from the
hoi
e of perturbation data, in parti
ular the 
hoi
e of widths.Consider a 
y
li
 generalized Lagrangian 
orresponden
e L = (Lk(k+1))k=0;:::;r satisfyingthe monotoni
ity 
onditions of Theorem 5.2.3. Fix a tuple of widths Æ = (Æk)k=0;:::;r. ThenProposition 5.2.1 and Theorem 5.2.3 provide tuples of Hamiltonians H = (Hk)k=0:::;r andalmost 
omplex stru
tures J = (Jk)k=0;:::;r su
h that the Floer homology HF (L) 
an be de-�ned by 
ounting quilted Floer traje
tories u 2M(x�; x+) between generalized interse
tionpoints x� 2 I(L).In the language of quilted surfa
es developed in [22℄ the Floer traje
tories 
orrespondto the holomorphi
 quilted 
ylinders u 2 MZ(x�; x+) with K = (Hkdt)k=0;:::;r and J =(Jk)k=0;:::;r. Here the quilted surfa
e is the quilted 
ylinder Z whose pat
hes are strips (Sk =R� [0; Æk ℄)k=0;:::;r of the given widths with the 
anoni
al 
omplex stru
ture and the obvious(up to a shift 
hosen as �1) ends �k;e� : R� � [0; Æk℄! Sk; (s; t) 7! (s;�1 + t). The seamsare �k = f(k;R � fÆkg); (k + 1;R � f0g)g for k = 0; : : : ; r modulo (r + 1), with seam maps��k : �Sk � (s; Æk) 7! (s; 0) � �Sk+1. This quilted surfa
e is shown on the right in Figure 1.There are no remaining boundary 
omponents ex
ept for in the spe
ial 
ase of a non
y
li
sequen
e with M0 = fptg, whi
h is indi
ated on the left in Figure 1. In that 
ase Z has noseam �r between Sr and S0 but true boundary 
omponents (0;R � f0g) and (r;R � fÆrg).The ends of the quilted surfa
e are the in
oming e� = �(0; e�); (1; e�); : : : ; (r; e�)� andthe outgoing e+ = �(0; e+); (1; e+); : : : ; (r; e+)�. Note however that the perturbation data(J;K) is R-invariant and the 
ount for the Floer di�erential is modulo simultaneous R-shiftof all maps uk. That is, unlike in the de�nition of relative quilt invariants in [22℄, where no



QUILTED FLOER COHOMOLOGY 33symmetries are divided out and index 0 solutions are 
ounted, we here 
ount the isolatedsolutions M(x�; x+)0 =MZ(x�; x+)1=R, whi
h are pseudoholomorphi
 quilts of index 1.The proof of independen
e of Floer 
ohomology from the 
hoi
e of perturbations andparti
ularly the widths goes somewhat beyond the proof for standard Floer theory. It isbest formulated by using quilted surfa
es that are not obtained by "unfolding of strips".With Proposition 5.3.1 below in pla
e we 
an in parti
ular identify the two de�nitions ofFloer 
ohomology HF (L) �= HF (L(0); L(1)) for a 
y
li
 sequen
e in Se
tions 4.3 and 5.2.For that purpose one 
hooses spe
ial widths in the quilted setup of Se
tion 5.2, namelythose that 
orrespond by the dis
ussion in Se
tion 5.1 to the "folded" Floer traje
tories ofHF (L(0); L(1)). The proof of the Proposition however uses the notation and 
onstru
tionof relative quilt invariants in [22℄.Proposition 5.3.1. HF (L) is independent, up to isomorphism of ZN-graded groups, ofthe 
hoi
e of perturbation data (H;J) and widths Æ of the strips.Proof. Suppose that (H i; J i; Æi) are two di�erent 
hoi
es for i = 0; 1. For fi; lg = f0; 1glet Zil be the quilted 
ylinder as before, but with 
omplex stru
tures jk on ea
h stripSk �= R � [0; 1℄ that interpolate between the two widths Æik at the end (k; e�) and Ælk atthe end (k; e+). In order for the seams to be real analyti
 we pi
k the standard 
omplexstru
ture near the boundary 
omponents R � f0; 1g � �Sk and only in the interior of Sks
ale to the appropriate width and interpolate. Figure 2 shows the example for r = 3 andM0 = M4 = fptg. We moreover interpolate the perturbation data on the two ends by
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Æ03Æ02Æ01 Æ13Æ12Æ11
L2L12L01L0Figure 2. Interpolating between two widthssome regular (Kil; J il) on Zil. The relative invariants, 
onstru
ted in [22℄ from the zero-dimensional moduli spa
es, then provide maps between the 
orresponding Floer 
ohomologygroups �Z01 : HF (L)0 ! HF (L)1; �Z10 : HF (L)1 ! HF (L)0:The surfa
e Z01#Z10 that is glued at fe�g = E�(Z01) and fe+g = E+(Z10) 
an be de-formed with �xed ends to the in�nite strip with translationally invariant perturbation data(H1; J1; Æ1). The invariant de�ned by the latter is the identity on HF (L)1 sin
e only 
on-stant strips 
an 
ontribute (all non
onstant solutions lie in at least 1-dimensional modulispa
es due to the nontriviality of the R-a
tion). Sin
e the relative quilt invariants are in-dependent of the above 
hoi
es, the relative invariant �Z01#Z10 is the identity on HF (L)1(and similarly for �Z10#Z01). Then by the gluing theorem for relative quilt invariants [22℄(where the sign is positive) we have�Z01 Æ �Z10 = �Z01#Z10 = Id; �Z10 Æ �Z01 = �Z10#Z01 = Id:This proves that the Floer 
ohomology groups HF (L)0 and HF (L)1 arising from the dif-ferent 
hoi
es of data are isomorphi
. �
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omposition and quilted Floer 
ohomology. In this se
tion we proveand dis
uss the isomorphism (3), more pre
isely stated as follows.Theorem 5.4.1. Let L = (L01; : : : ; Lr(r+1)) be a 
y
li
 sequen
e of Lagrangian 
orrespon-den
es between symple
ti
 manifolds M0; : : : ;Mr+1 =M0 as in De�nition 2.1.3. Suppose(a) the symple
ti
 manifolds all satisfy (M1-2) with the same monotoni
ity 
onstant � ,(b) the Lagrangian 
orresponden
es all satisfy (L1-3),(
) the sequen
e L is monotone, relatively spin, and graded in the sense of Se
tion 4.3,(d) the 
omposition L(j�1)j Æ Lj(j+1) is embedded in the sense of De�nition 2.0.4.Then with respe
t to the indu
ed relative spin stru
ture, orientation, and grading 5 on themodi�ed sequen
e L0 = (L01; : : : ; L(j�1)j Æ Lj(j+1); : : : ; Lr(r+1)) there exists a 
anoni
al iso-morphism of graded groupsHF (L) = HF (: : : L(j�1)j ; Lj(j+1) : : :) ��! HF (: : : L(j�1)j Æ Lj(j+1) : : :) = HF (L0);indu
ed by the 
anoni
al identi�
ation of interse
tion points in Remark 3.1.3.Before summarizing the proof let us mention the (im)possibility of various generalizations.Remark 5.4.2. (a) The relative spin stru
tures are only needed to de�ne the Floer 
o-homology groups with Z 
oeÆ
ients. Here we only prove the isomorphism with Z2
oeÆ
ients. The full result then follows from a 
omparison of signs in [23℄.(b) There should also be versions of this result for Floer 
ohomology with 
oeÆ
ientsin 
at ve
tor bundles, and Novikov rings, using an understanding of their behaviourunder geometri
 
omposition, similar to the theory presented here for gradings. Thegradings on the Lagrangians 
an be dropped if one wants only an isomorphism ofungraded groups.(
) Note that the geometri
 
omposition L(j�1)j ÆLj(j+1) 
ould be a smooth Lagrangiandespite the 
omposition not being embedded. If this failure is in the transversality,then our approa
h does not apply (as e.g. for a G-invariant Lagrangian L � ��1(0) inthe zero set of the moment map, whose 
omposition with �� is the smooth proje
tionLÆ�� = �(L) despite L not being transverse to ��1(0)). (For su
h Lagrangians onewould expe
t a 
orresponden
e between holomorphi
 
urves inM==G and symple
ti
vorti
es in M , in the spirit of [6℄ and the Lagrangian version of the Atiyah-Floer
onje
ture [19℄.) However, when L(j�1)j �Mj Lj(j+1) is transverse but a k-fold 
overof L(j�1)j Æ Lj(j+1), then the map of interse
tion points I(L) ! I(L0) is a k-to-1map as well. In this 
ase our analysis still applies and gives a k-to-1 map of modulispa
es. This may lead to further 
al
ulation tools for Floer 
ohomology but needsto be investigated on a 
ase-by-
ase basis.(d) The assumption (L3) on the minimal Maslov numbers is needed only to a
hieve�2 = 0 and thus make the Floer 
ohomology well-de�ned. In the absen
e of (L3)we have �2 = wId, where w = w(L01) + : : : + w(Lr(r+1)) is the sum of numbers ofpseudoholomorphi
 disks through a generi
 point on ea
h Lagrangian. So insteadof (L3), whi
h implies w(L(j�1)j) = 0 for ea
h j, we 
ould assume w = 0. In 
asew 6= 0, Theorem 5.4.1 generalizes to an isomorphism in the derived 
ategory ofmatrix fa
torization, see [25℄.5 The grading of L(j�1)(j+1) is given by (16), the orientation is given by Remark 2.0.6(b), and for therelative spin stru
ture see [23℄.
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ity assumptions (M1) and (L1) 
annot simply be repla
ed by othertools whi
h allow the de�nition of Floer 
ohomology (su
h as Novikov rings, twisted
oeÆ
ients, obstru
tions, or deformations). This is sin
e a new type of bubbling
an o

ur in the strip shrinking that we use to prove the isomorphism. We have
alled it the "�gure eight bubble" and des
ribe it in [21℄. However, we are la
kingthe 
onstru
tion of a moduli spa
e of �gure eight bubbles. Our present method forex
luding these bubbles hinges on stri
t monotoni
ity with nonnegative 
onstant� � 0 as well as the 2-grading assumption implied by orientations. In general, weexpe
t �gure eight bubbles to be a 
odimension 1 phenomenon in a 1-parameterfamily of strip widths approa
hing zero. We hen
e expe
t the isomorphism to failin more general settings, ex
ept for spe
ial topologi
al assumptions restri
ting theexpe
ted dimension of �gure eight bubbles. Eventually, we expe
t to 
onstru
tobstru
tion 
lasses and an A1-type stru
ture from moduli spa
es of �gure eightbubbles, and to repla
e the isomorphism by a morphism of A1-modules. However,all of this depends on a basi
 removable singularity result for �gure eight bubbles,whi
h has not yet been a

omplished.Theorem 5.4.1 is fairly obvious if one of the 
omposed Lagrangians 
orresponden
es isthe graph of a symple
tomorphism. It suÆ
es to observe that symple
tomorphisms mappseudoholomorphi
 
urves to pseudoholomorphi
 
urves. However, there is no 
orrespond-ing e�e
t for more general Lagrangian 
orresponden
es. Here the natural approa
h toa proof is to degenerate the holomorphi
 
urve equation in Mj until solutions be
ome
onstant a
ross the strip (or, equivalently, shrink the width of that strip to zero). Thislimit 
orresponds to geometri
 
omposition of the two Lagrangian 
orresponden
es at-ta
hed to the strip. Clearly, most diÆ
ulties in this proof are lo
alized near the degen-erating strip. We thus banished the analysis to [21℄, where we prove the spe
ial 
aseHF (L0; L01; L12; L2) �! HF (L0; L01 Æ L12; L2) of Theorem 5.4.1 by establishing a bije
-tion between the Floer traje
tories for (L0; L02; L2) on strips of width (1; 1) and those for(L0; L01; L12; L2) on strips of width (1; Æ; 1) for suÆ
iently small width Æ of the middlestrip. These quilted Floer traje
tories are shown in Figure 3. The missing pie
e of proof in
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Figure 3. Shrinking the middle strip[21℄ is the independen
e of the Floer 
ohomology from the 
hoi
e of Æ > 0, whi
h we hereestablished in Proposition 5.3.1.Summary of proof of Theorem 5.4.1. For a start, the assumptions of the Theorem onlyguarantee that HF (L) is well-de�ned. By Remark 5.2.2 the monotoni
ity of L also im-plies monotoni
ity of L0 and hen
e monotoni
ity in the sense of (L1) for L(j�1)j Æ Lj(j+1).



36 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(Assuming the symple
ti
 manifolds to be 
onne
ted, any disk 
an be extended to a quilted
ylinder.) Compa
tness and orientation (L2) also holds for the 
omposed 
orresponden
e,but the minimal Maslov index 
ondition (L3) may not. However, this only a�e
ts the ques-tion whether w = 0 in �2 = wId on the Floer 
hain group for L0. To de�ne the latter we
hoose some widths Æ0, Hamiltonian perturbations H 0 to make the interse
tion I(L0) trans-verse, and almost 
omplex stru
tures J 0 to make the moduli spa
es of Floer traje
tories forL0 regular. Thanks to Proposition 5.3.1 we may then 
hoose the same widths Æ ex
ept forsome small Æj > 0, the same Hamiltonian perturbationsH ex
ept for the additionalHj � 0,and the same almost 
omplex stru
tures J ex
ept for some additional time-independentJj 2 J (Mj ; !j), to de�ne HF (L). We only need to make sure that this 
hoi
e makes theinterse
tion points I(L) and the moduli spa
es of Floer traje
tories for L regular. The �rstis automati
ally the 
ase by the transversality assumption for L(j�1)j�Mj Lj(j+1), the latteris true for Æj > 0 suÆ
iently small and is proven as part of the adiabati
 limit analysis [21℄.(A
tually, pre
isely following the 
onstru
tions of [21℄, we 
an a
hieve transversality for L0with J 0j�1 and J 0j+1 being time-independent near the seam; then Jj�1 and Jj+1 are obtainedby a slight linear dilation and 
onstant extension near the new seams.) With these 
hoi
es,the Maslov index assumptions imply �2 = 0 on CF (L). Next, the inje
tivity assumptionfor the 
omposition L(j�1)j �Mj Lj(j+1) provides a 
anoni
al bije
tion of generalized inter-se
tion points I(L0) �= I(L) as in Remark 3.1.3. In [21℄ we establish bije
tions between the
orresponding moduli spa
es of Floer traje
tories for Æj > 0 suÆ
iently small. This meansthat the Floer di�erentials on CF (L0) and CF (L) agree under the 
anoni
al identi�
ationof generators. In parti
ular that implies �2 = 0 on CF (L0). Hen
e both Floer 
ohomologiesare well-de�ned and isomorphi
 as 
laimed. �Remark 5.4.3. To see that the assumption that the 
omposition L(j�1)jÆLj(j+1) is embeddedis ne
essary, 
onsider the 
ase that r = 2 and M0;M2 are points. In this 
ase, if v :R � [0; 1℄!M1 is a Floer traje
tory of index one with limits x+ 6= x�, we 
an 
onsider theres
aled maps vÆ : R� [0; Æ℄ !M1. In this 
ase a �gure eight bubble always develops in thelimit Æ ! 0. This shows that the bije
tion between traje
tories fails in this 
ase.6. Appli
ations6.1. Dire
t 
omputation of Floer 
ohomology.Theorem 6.1.1. Let L01 �M�0 �M1 be a Lagrangian 
orresponden
e and suppose that theLagrangian submanifolds L0 � M0 and L1 � M1 are su
h that both L0 Æ L01 and L01 Æ L1are embedded 
ompositions. Assume that M0;M1 satisfy (M1-2), L0; L1; L01 satisfy (L1-3),and (L0�L1; L01) is a monotone pair in the sense of De�nition 4.1.2 (b). Then there existsa 
anoni
al isomorphismHF (L0 Æ L01; L1) ��! HF (L0; L01 Æ L1):Proof. By Theorem 5.4.1 both Floer 
ohomologies are isomorphi
 to the quilted Floer 
o-homology HF (L0; L01; L1) = HF (L0 � L1; L01). �Example 6.1.2. We begin with a \warm-up" example. Let N be a 
ompa
t, simply-
onne
ted, monotone symple
ti
 manifold. The submanifold �ij := f(x1; x2; x3; x4)jxi =xjg � N� �N �N� �N is 
oisotropi
 for appropriate 
hoi
es of 1 � i < j � 4. Then we
an identify(29) HF (�14 \�23;�12 \�34) �= HF (�N ;�N ) �= H(N)



QUILTED FLOER COHOMOLOGY 37with the homology of N . This follows from Theorem 6.1.1 applied to L0 = �N � N��N =M0, L1 = �12\�34 � N��N�N��N =M1, and L01 = f(w; z;w; x; x; z)jw; x; z 2 Ng �M�0 �M1. Then the 
ompositions L0 Æ L01 = �14 \ �23 and L01 Æ L1 = �N are 
learlyembedded. Monotoni
ity together with simply 
onne
tedness ensures the monotoni
ity ofall the Lagrangians and pairs of Lagrangians. Sin
e N is orientable, all minimal Maslovindi
es are at least 2. The reader 
an easily verify the identi�
ation (29) using the fa
t thatthe 
omponents of a holomorphi
 traje
tory for (�14 \ �23;�12 \ �34) �t together to aholomorphi
 
ylinder v : S1 � [0; 1℄! N .The following is a more non-trivial example of Theorem 6.1.1.Example 6.1.3. Let Mn be the moduli spa
e of Eu
lidean n-gons of edge length 1, as in forexample Kirwan [8℄:Mn = (S2)n==SO(3) = f(v1; : : : ; vn) 2 (S2)njv1 + : : :+ vn = 0g=SO(3):We take on S2 the standard symple
ti
 form ! with volume 4� so that 
1(S2) = [!℄. Forn � 5 odd Mn is a monotone symple
ti
 manifold with minimal Chern number 1 andmonotoni
ity 
onstant 1. For example, M3 is a point andM5 is di�eomorphi
 to the fourthdel Pezzo surfa
e, given by blowing-up of P2 at four points [25℄. For i 6= j the submanifold�ij = f[v1; : : : ; vn℄ 2 Mn j vi = �vjg is a 
oisotropi
, spheri
ally �bered over Mn�2 by themap that forgets vi; vj . The image of �ij in M�n�2 �Mn is a Lagrangian 
orresponden
e,also denoted �ij. For i; j; k distin
t the 
omposition �ij Æ�tjk is embedded and yields thegraph of a permutation onMn�2. For k = i�1 or for i; k = j�1 this permutation is trivial,so we have �ij Æ�tj(i�1) = �Mn�2 ; �(j�1)j Æ�tj(j�1) = �Mn�2 :Now let L � Mn�2 be a 
ompa
t, oriented, monotone Lagrangian, and Lij = L Æ �ij beits inverse image in Mn. This 
omposition is embedded and we 
an also identify it withLij = �tij Æ L. The latter allows to 
al
ulate�ij Æ Ljk = �ij Æ�tjk Æ L :For i; j; k distin
t it is an embedded 
omposition, whi
h yields the image of L under permu-tation. Suppose that the pair (L;L) is monotone, so that HF (L;L) is well-de�ned. UsingTheorem 6.1.1 we 
an also (de�ne and) 
al
ulateHF (Lij ; Lj(i�1)) = HF (L Æ�ij ; Lj(i�1)) = HF (L;�ij Æ Lj(i�1)) = HF (L;L):and similarly HF (L(j�1)j ; Lj(j�1)) = HF (L;L) .The papers [24℄, [25℄ give many other similar examples.6.2. Computations in C Pn. In this se
tion we demonstrate, at the example of C Pn, howsome Floer 
ohomologies in tori
 symple
ti
 varieties 
an be 
al
ulated by redu
tion. Weequip C Pn = f[z℄ = [z0 : z1 : : : : : zn℄g with Fubini-Study symple
ti
 form and momentmaps �j([z℄) = �jzj j2=jzj2 for j = 1; : : : ; n. We denote by�j := ��[: : : zj�1 : zj+1 : : : :℄; [z0 : : : : : zn℄� ���j([z0 : : : : : zn℄) = �n+1	 � (C Pn�1)� � C Pnthe Lagrangian sphere arising from redu
tion at the level set��1j ( �n+1) = �[z0 : : : : : zn℄ �� zj = 1pn+1 ;Pi 6=j jzij2 = nn+1	:Note that the redu
ed spa
e, e.g. ��1n ( �n+1)=S1 = f[z0 : : : : zn�1℄ ��Pijzij2 = nn+1g=S1 forj = n, is C Pn�1 with Fubini-Study form s
aled by nn+1 , hen
e has the same monotoni
ity



38 KATRIN WEHRHEIM AND CHRIS T. WOODWARD
onstant � = n�1 n�n+1 = (n + 1)�1� as C Pn. (Re
all that the generator C P1 � C Pn of�2(C Pn) has Fubini-Study symple
ti
 area � and Chern number n+ 1.)More generally, for ea
h 1 < k � n a Lagrangian 
orresponden
e�(k;:::;n) := ��[z0 : : : : : zk�1℄; [z0 : : : : : zn℄� ���j([z℄) = �n+1 8j � k	 � (C Pk�1)� � C Pnarises from redu
tion at the level set(�k � : : :� �n)�1( �n+1 ; : : : ; �n+1) = n[z℄ ��� zk = jzk+1j = : : : = jznj = 1pn+1 ; k�1Xi=0 jzij2 = kn+1o:Here again the redu
ed spa
es C Pk�1 = f[z0 : : : : : zk�1℄ j Pi jzij2 = kn+1g=S1 
arry s
aledFubini-Study forms with monotoni
ity 
onstant � = �n+1 . Moreover, note that �(k;:::;n),di�eomorphi
 to the produ
t of an (n � k)-torus with a (2k � 1)-sphere, 
an be viewedas Lagrangian embedded in (C Pk�1)� � C Pn and also as 
oisotropi
 submanifold of C Pn.One 
an 
he
k expli
itly that the Lagrangians �(k;:::;n) are monotone, and we will see inCorollary 6.3.3 below that they are nondispla
eable by Hamiltonian di�eomorphisms. Thereason is that as 
oisotropi
 they 
ontain the nondispla
eable Cli�ord torusT nCl = (�1 � : : : �n)�1( �n+1 ; : : : ; �n+1) = �[z℄ �� z0 = jz1j = : : : = jznj = 1pn+1	 � C Pn:That T nCl is the only nondispla
eable �bre of the torus �bration is known by e.g. [2℄. Its Floer
ohomology was 
al
ulated by Cho [3℄ with all possible spin stru
tures. Here we reprodu
ethis 
al
ulation for the standard spin stru
ture, employing the above Lagrangian 
orrespon-den
es and the isomorphism of Floer 
ohomology under embedded geometri
 
omposition(Theorem 5.4.1). This approa
h also allows for a dire
t 
omputation of Floer 
ohomologyfor any pair of nonstandard spin stru
tures on T nCl, whi
h we will dis
uss in[23℄.Theorem 6.2.1. [3℄ For any n 2 N with the standard spin stru
ture (given by [3, Prp.8.1℄)HF (T nCl; T nCl) �= H�(T n) �= Z2n:Proof. The isomorphism between the Floer 
ohomology and the homology of the Cli�ordn-torus follows indu
tively from the following 
hain of isomorphisms:HF (T nCl; T nCl) = HF (T 1Cl Æ �(2;:::;n);�t1 Æ T n�1Cl )�= HF (T 1Cl;�(2;:::;n);�t1; T n�1Cl )�= HF (T 1Cl;�(2;:::;n) Æ �t1; T n�1Cl )(30) �= HF (T 1Cl; T 1Cl � T n�1Cl ; T n�1Cl )�= HF (T 1Cl; T 1Cl)
HF (T n�1Cl ; T n�1Cl ):Let us go through this step by step: The geometri
 
omposition T 1Cl Æ �(2;:::;n) = T nCl isthe preimage of T 1Cl under the proje
tion (�2 � : : : � �n)�1( �n+1 ; : : : ; �n+1) ! C P1, hen
eautomati
ally embedded in the sense of De�nition 2.0.4. Similarly, T n�1Cl Æ �1 = T nCl is thepreimage of T n�1Cl under the proje
tion ��11 ( �n+1)! C Pn�1, and by transposition we obtainthe embedded 
omposition �t1 Æ T n�1Cl = T nCl. Finally, the interse
tion�(2;:::;n) �CPn �t1 �= (�2 � : : :� �n)�1( �n+1 ; : : : ; �n+1) \ ��11 ( �n+1 ) = T nCl � C Pnis transverse and embeds to�(2;:::;n) Æ �t1 = ��[z0 : z1℄; [z0 : z2 : : : : : zn℄� �� [z℄ 2 T nCl	 = T 1Cl � T n�1Cl � C P1 � C Pn�1:



QUILTED FLOER COHOMOLOGY 39To make sure that Theorem 5.4.1 indeed implies all the above isomorphisms of Floer 
oho-mology, it remains to ensure that the maximally de
omposed tuple (T 1Cl;�(2;:::;n);�tj; T n�1Cl )is monotone. That follows from the monotoni
ity of all fa
tors together with the torsionfundamental groups of the symple
ti
 manifolds involved. Moreover, it turns out that weneed not worry about the minimal Maslov indi
es 2. This is sin
e the proof of Theorem 5.4.1provides, for 
ertain 
hoi
es of perturbations, a 
anoni
al identi�
ation of the Floer 
haingroup CF (TCl; TCl) with ea
h of the other 
hain groups in (30), under whi
h the Floer dif-ferentials agree. Sin
e we have �2 = 0 on the �rst 
hain group (see [11℄), the di�erentials onall the other 
hain groups also square to zero, making the Floer 
ohomologies well de�ned.So, stri
tly speaking, our 
al
ulation uses the derived version of Theorem 5.4.1.Moreover, we need to �x spin stru
tures on T n�1Cl and �1 as well as on T 1Cl and �(2;:::;n)su
h that the indu
ed spin stru
ture on the 
omposition, T nCl is the standard one. For theCli�ord tori we pi
k the standard spin stru
ture given by the trivialization of TT kCl � C k inthe 
oordinate 
hart C k �= fz0 = 1pn+1g � C Pk. On the sphere �1 � C Pn we �x the spinstru
ture given by the standard orientation in the 
hart fz1 = 1pn+1g. (The orientationprovides a trivialization over the 0-skeleton, whi
h 
oin
ides with the 1- and 2-skeleton ofthis sphere of dimension � 3; see [3℄ or [23℄ for more details on spin stru
tures.) We 
anread o� the standard spin stru
ture indu
ed on T nCl from the identi�
ationTT nCl �= pr�TT n�1Cl �E; E = (pr�TC Pn�1)? � T�1jTnCl :Here TC Pn�1jTn�1Cl = TT n�1Cl �iTT n�1Cl inherits a trivialization from T n�1Cl , so the orientationof �1 indu
es a trivialization of the line bundle E (given by the linearized a
tion of �1).For the spin stru
ture on �(2;:::;n) � C Pnwe identify �(2;:::;n) �= T n�2 � S3 with the orbitof the sphere S3 = �[z0 : z1 : 1pn+1 : : : : : 1pn+1 ℄ �� jz0j2 + jz1j2 = 2n+1	 � C Pn under thea
tion of the torus T n�2 � C n�2 in the z3; : : : ; zn-
oordinates. If we pi
k the standardtrivialization of T n�2 and the standard orientation of S3 � C 2 in the above 
hart, thenagain the standard spin stru
ture is indu
ed on T nCl by the identi�
ationTzT nCl �= Tpr(z)T 1Cl � Tz(T n�2z)� F(z0;z1); F = (pr�TC P1)? � TS3jT 1Cl :Here TC P1jT 1Cl = TT 1Cl � iTT 1Cl inherits a trivialization from T 1Cl, so the orientation of S3indu
es a trivialization of the line bundle F .Finally, we know from elementary 
urve 
ounts (see e.g. [3℄) that, with the standard spinstru
ture on both fa
tors, HF (T 1Cl; T 1Cl) �= Z � Z �= H�(S1 = T 1). Sin
e the homologyH�(T n) satis�es the same indu
tive relation (30) as the Floer 
ohomology that proves thetheorem. �This Floer 
ohomology 
al
ulation dire
tly generalizes when repla
ing T 1Cl � C P1 withanother Lagrangian submanifold in a possibly higher dimensional 
omplex proje
tive spa
e.Theorem 6.2.2. Let 1 � k < n and let L � C Pk be an oriented, monotone Lagrangiansubmanifold. Denote by pr : (�k+1 � : : : � �n)�1( �n+1 ; : : : ; �n+1) ! C Pk the redu
tion ofC Pn by the (S1)n�k-a
tion at the monotone level set. Then pr�1(L) � C Pn is a monotoneLagrangian submanifold andHF (pr�1(L); T nCl) �= HF (L; T kCl)
H�(T n�k):Here we assume that �2 = 0 on CF (L; T kCl); otherwise the above isomorphism holds in the
ategory of derived matrix fa
torizations, see [25℄.



40 KATRIN WEHRHEIM AND CHRIS T. WOODWARDProof. Denote by �(1;:::;k) � (C Pn�k)� � C Pn the Lagrangian 
orresponden
e arising fromredu
tion at the level set (�1 � : : :� �k)�1( �n+1 ; : : : ; �n+1) � C Pn. Then�(k+1;:::;n) �CPn �t(1;:::;k) �= (�k+1 � : : : �n)�1( �n+1 ; : : :) \ (�1 � : : : �k)�1( �n+1 ; : : :) = T nClis transverse and embeds to �(k+1;:::;n) Æ �t(1;:::;k) = T kCl � T n�kCl � C Pk � C Pn�k. Now in
omplete analogy to the proof of Theorem 6.2.1 above, we have a 
hain of isomorphismsHF (pr�1(L); T nCl) = HF (L Æ �(k+1;:::;n);�t(1;:::;k) Æ T n�kCl )�= HF (L;�(k+1;:::;n);�t(1;:::;k); T n�kCl )�= HF (L;�(k+1;:::;n) Æ �t(1;:::;k); T n�kCl )�= HF (L; T kCl � T n�kCl ; T n�kCl )�= HF (L; T kCl)
HF (T n�kCl ; T n�kCl ):This �nishes the proof sin
e HF (T n�kCl ; T n�kCl ) �= H�(T n�k) by [3℄ or Theorem 6.2.1. �Theorem 6.2.2 applies, for example, to RP1 � C P1 and yields another Lagrangian toruspr�1(RP1) � C Pn withHF (pr�1(RP1); T nCl) �= HF (RP1; T kCl)
H�(T n�1) �= H�(T n):More generally, Theorem 6.2.2 applies to odd real proje
tive spa
es RPk � C Pk for k =2` � 1 � 3 with Z2-
oeÆ
ients. 6 By expli
it 
al
ulation due to Alston [1℄ the underlyingFloer 
ohomology is HF (RP2`�1; T 2`�1Cl ) �= Z2`2 :Now our 
al
ulations in Theorem 6.2.2 provide with Z2-
oeÆ
ientsHF (pr�1(RP2`�1); T 2`�1Cl ) �= HF (RP2`�1; T 2`�1Cl )
H�(T n�2`+1Cl ) �= Z2`+2(n�2`+1)2 :6.3. Dete
ting nontrivial Floer 
ohomology of a Lagrangian 
orresponden
e. Inthis se
tion we provide a tool for dedu
ing nontriviality of Floer 
ohomology and hen
enondispla
eability of a Lagrangian 
orresponden
e itself (as Lagrangian submanifold).Theorem 6.3.1. Let L01 � M�0 � M1 be a Lagrangian 
orresponden
e. Suppose thatthere exists a Lagrangian submanifold L1 � M1 su
h that L0 := L01 Æ L1 is an embedded
omposition and HF (L0; L0) 6= 0. Assume that M0;M1 satisfy (M1-2), L0; L1; L01 satisfy(L1-3), and (L0 � L1; L01) is a monotone pair in the sense of De�nition 4.1.2 (b). Thenthe Lagrangian L01 �M�0 �M1 has nonzero Floer 
ohomology HF (L01; L01) 6= 0.Proof. The assumptions guarantee thatHF (L0; L0) �= HF (L0; L01; L1) = HF (L0�L1; L01)are all well-de�ned and isomorphi
, hen
e nonzero. Now HF (L0�L1; L01) is a module overHF (L01; L01), where the multipli
ation is de�ned by 
ounting pseudoholomorphi
 3-gons,see e.g. [17℄ or [20℄. The unit 1L01 2 HF (L01; L01) is de�ned by 
ounting pseudoholomorphi
1-gons; it is nontrivial sin
e it a
ts as identity on a nontrivial group. Hen
e HF (L01; L01)
ontains a nonzero element, as 
laimed. �6 The number of holomorphi
 dis
s through a generi
 point is 0 for RPk (whi
h has minimal Maslovnumber k+ 1 � 3 for k � 2) and it is k+1 for T kCl by [3℄, hen
e �2 = 0 on CF (RPk; T kCl) only holds for oddk and with Z2 
oeÆ
ients.



QUILTED FLOER COHOMOLOGY 41Corollary 6.3.2. Let � � M be the level set of the moment map of a Hamiltonian G-a
tion. Suppose that � 
ontains a G-invariant Lagrangian submanifold L � M su
h thatHF (L;L) 6= 0 and pr(L) � �=G =M==G is smooth. Assume that M;M==G satisfy (M1-2),�; L;pr(L) satisfy (L1-3), and (pr(L) � L;�) is a monotone pair in the sense of De�ni-tion 4.1.2 (b). Then HF (�;�) 6= 0.Proof. This is a 
ase of Theorem 6.3.1, where L1 = pr(L), and the 
omposition � Æpr(L) =pr�1(pr(L)) = L is automati
ally embedded. �The following example in 
ase k = n = 2 was initially pointed out to us in 2006 byPaul Seidel; we sin
e learned of alternative proof methods by Biran-Cornea and Fukaya-Oh-Ono-Ohta. We use the notation of Se
tion 6.2; in parti
ular �(n) � (C Pn�1)� � C Pn isa Lagrangian 2n� 1-sphere arising from redu
tion at the level set ��1n ( �n+1).Corollary 6.3.3. For every 2 � k � n the Lagrangian embedding �(k;:::;n) � (C Pk�1)� �C Pn of (S1)n�k � S2k�1 is Hamiltonian non-displa
eable.Proof. By 
onstru
tion �(k;:::;n) is the 
orresponden
e arising from the level set of �k� : : :��n at the level ( �n+1 ; : : : ; �n+1) whi
h 
ontains the nondispla
eable Cli�ord torus T nCl � C Pn.The proje
tion pr(T nCl) = T nCl Æ �(k;:::;n) is the Cli�ord torus T k�1Cl � C Pk�1. The Cli�ordtori as well as �(k;:::;n) are monotone with minimal Maslov number 2 (ex
ept for k = nwhen �(n) is simply 
onne
ted), but as in Se
tion 6.2 we need not worry about its minimalMaslov index or Oh's number of disks through a generi
 point. The derived version ofTheorem 5.4.1 provides an isomorphism between HF (T k�1Cl ;�(k;:::;n); T nCl) and HF (T nCl; T nCl),whi
h is well de�ned by [11℄ and nonzero by [3℄ or our 
al
ulation in Se
tion 6.2. This provesthat HF (T k�1Cl ;�(k;:::;n); T nCl) 6= 0 is well de�ned; now the rest of the proof pro
eeds as inTheorem 6.3.1. �6.4. Gysin sequen
e for spheri
ally �bered Lagrangian 
orresponden
e. In thisse
tion, we give a 
onje
tural relation between Floer 
ohomology HF (L;L0) for L;L0 �M0and the Floer 
ohomology HF (L01ÆL;L01ÆL0) for the images inM1 under a 
orresponden
eL01 �M�0 �M1. Results of this type 
an be viewed as transfer of non-displa
eability results,in the sense that non-triviality of HF (L;L0) implies non-triviality of HF (L01 Æ L;L01 Æ L0)and hen
e non-displa
eability of L01 Æ L from L01 Æ L0 by Hamiltonian perturbation.In our example, the Lagrangian 
orresponden
e arises from a spheri
ally �bered 
oisotropi
� : C ! M with proje
tion � : C ! B. The image of C under � � � is a Lagrangian 
or-responden
e from M to B, also denoted C. Our standing assumptions are 
ompa
tness,orientability, and monotoni
ity, i.e. M;B, and C satisfy (M1-2) and (L1-2) with a �xed� � 0. Perutz [13℄ proved the following analogue of the Gysin sequen
e.Theorem 6.4.1. Suppose that the minimal Maslov number of C is at least 
odim(C �M) + 2. Then there exists a long exa
t sequen
e: : :! HF (C;C)! HF (Id)! HF (Id)! HF (C;C)! : : :where the map HF (Id)! HF (Id) is quantum multipli
ation by the Euler 
lass of �.One naturally 
onje
tures the following relative version (for example, 
ompare the Seideltriangle in [16℄ with the relative version in [16℄.)



42 KATRIN WEHRHEIM AND CHRIS T. WOODWARDConje
ture 6.4.2. Let L0; L1 � B be a monotone pair of Lagrangian submanifolds satis-fying (L1-3). Suppose that the minimal Maslov number of C is at least 
odim(C �M) + 2Then there exists a long exa
t sequen
e: : :! HF (L0; Ct; C; L1)! HF (L0; L1)! HF (L0; L1)! HF (L0; Ct; C; L1)! : : :where the middle map is Floer theoreti
 multipli
ation 7 by the Euler 
lass of �.The 
ompositions C Æ L1 and L0 Æ Ct = (C Æ L0)t are 
learly embedded. Hen
e Conje
-ture 6.4.2 together with Theorem 5.4.1 implies the following.Corollary 6.4.3. Under the same assumptions as in Conje
ture 6.4.2 there exists a longexa
t sequen
e: : :! HF (C Æ L0; C Æ L1)! HF (L0; L1)! HF (L0; L1)! HF (C Æ L0; C Æ L1)! : : :In parti
ular, we obtain a 'transfer of non-displa
eability' result if the Euler 
lass vanishes.Corollary 6.4.4. With the same assumptions as in Corollary 6.4.2, if the Euler 
lass of� : C ! B is zero, then HF (C Æ L0; C Æ L1) is isomorphi
 to two 
opies of HF (L0; L1).Example 6.4.5. Suppose that M is a monotone Hamiltonian G = SU(2) manifold, withmoment map �, and ��1(0) is an SU(2)-bundle over the symple
ti
 quotient M==G.Let (L0; L1) be a monotone pair of G-invariant Lagrangians 
ontained in the zero levelset and with minimal Maslov number at least three. Ne
essarily ea
h Lj is a prin
ipalSU(2) bundle over Lj=G � M==G. Suppose that the minimal Maslov number of ��1(0),
onsidered as a Lagrangian inM��M==G, is at least 5. Then there is a long exa
t sequen
e: : :! HF (L0; L1)! HF (L0=G;L1=G)! HF (L0=G;L1=G)! HF (L0; L1)! : : : :In parti
ular, if M ! M==G is a trivial G-bundle, then HF (L0; L1) is isomorphi
 to two
opies of HF (L0=G;L1=G). Referen
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