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Abstract. This is the second in a sequence of papers in which we construct a quan-
tum version of the Kirwan map from the equivariant quantum cohomology QHG(X) of
a smooth polarized complex projective variety X with the action of a connected com-
plex reductive group G to the orbifold quantum cohomology QH(X//G) of its geometric
invariant theory quotient X//G, and prove that it intertwines the genus zero gauged
Gromov-Witten potential of X with the genus zero Gromov-Witten graph potential of
X//G. In this part we construct virtual fundamental classes on the moduli spaces used in
the construction of the quantum Kirwan map and the gauged Gromov-Witten potential.
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2 CHRIS T. WOODWARD

We continue with the notation in the first part [55] where we introduced moduli
spaces of vortices from the symplectic viewpoint. In order to obtain virtual funda-
mental classes for the moduli spaces of vortices, we show that the moduli spaces
of vortices are homeomorphic to coarse moduli spaces of algebraic stacks equipped
with (in good cases) perfect obstruction theories.

4. Stacks of curves and maps

This section contains mostly algebraic preliminaries. In particular, we introduce
hom-stacks of morphisms of stacks for which there is unfortunately no general
theory yet. However, by a result of Lieblich [29, 2.3.4], the stack of morphisms
to a quotient stack by a reductive group is an Artin stack, and this is enough for
our purposes. We also must show that the substacks of curves satisfying Mundet’s
semistability condition are algebraic, and this requires recalling some results of
Schmitt [46] who gave a geometric invariant theory construction of a related moduli
space.

By our convention a stack means a locally Noetherian stack over the fppf site
of schemes, following de Jong et al [10] which we take as our standard reference.
(Another standard reference on stacks is Laumon-Moret-Bailly [26], with a cor-
rection by Olsson [36].) By abuse of terminology we say that a stack is a scheme
resp. algebraic space if it is the stack associated to a scheme resp. algebraic space.
A morphism of stacks f : X → Y is representable if for any morphism g : S → Y
where S is a scheme, the fiber product S ×Y X is an algebraic space. An Artin
stack resp. Deligne-Mumford stack X over a scheme S is a stack for which the
diagonal X → X ×S X is representable, quasi-compact, and separated, and such
that there exists an algebraic space X/S and a smooth resp. étale surjective mor-
phism X → X . In characteristic zero (here the base field is always the complex
numbers) an Artin stack is a Deligne-Mumford stack iff all the automorphism
groups are finite, see e.g. [12, Remark 2.1]. A gerbe is a locally non-empty, locally
connected (between any two objects exists a morphism) Artin stack. The cate-
gory of Artin resp. Deligne-Mumford stacks is closed under disjoint unions and
(category-theoretic) fiber products [26, 4.5]. A morphism of stacks is proper if it
is separated, of finite type, and universally closed.

4.1. Quotient stacks

The following are examples of stacks:

Example 4.1. (a) (Quot schemes) For integers r, n with 0 < r < n let Gr(r, n)
denote the Grassmannian of subspaces of Cn of dimension r. Any mor-
phism from X to Gr(r, n) gives rise to a vector bundle E → X obtained
by pull-back of the quotient bundle and a surjective morphism φ from the
trivial bundle X×Cn to E. Grothendieck [20], and later Olsson-Starr [37],
studied such pairs in a very general setting, as part of a general program to
construct moduli schemes for various functors. Given a scheme X/S resp.
separated Deligne-Mumford stack X/S and a quasicoherent OX -module
F , let QuotF/X/S be the category that assigns to any S-scheme T the
set of pairs (E, φ) where φ : F ×S T → E is a flat family of quotients.
By Grothendieck [20] resp. Olsson-Starr [37], if X is a scheme projective
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over S resp. Deligne-Mumford stack then QuotF/X/S is a smooth scheme
resp. algebraic space, whose connected components are projective resp.
quasiprojective if X is.

(b) (Stack of coherent sheaves) The category of coherent sheaves on a projective
scheme carries the structure of an Artin stack. If X is an S-scheme we
denote by Coh(X/S) resp. Vect(X/S) the category that assigns to any
T → S the category of coherent sheaves resp. vector bundles on X ×S T .
By [26, p. 29], see also [29, Theorem 2.1.1], if X is a projective scheme
then Coh(X) is an Artin stack and Vect(X) an open substack. Charts can
be constructed as follows: after suitable twisting any sheaf E → X can
be generated by its global sections, in which case E can be written as a
quotient F → E where F = X × H0(E)∨. Then Coh(X) is isomorphic
locally near E to the quotient of QuotF/X/S by Aut(F ).

(c) (Stack of bundles, first version) Let G be a reductive group and X an S-
scheme. We denote by BunG(X) the category that assigns to any T → S
the category of principal G-bundles on X ×S T . Then for any integer
r > 0 the stack BunGL(r)(X) is canonically isomorphic to the substack
Vectr(X) of Vect(X) of vector bundles of rank r. Any principal G-bundle
corresponds to a GL(V )-bundle E → X ×S T together with a reduction of
structure group X ×S T → E/G. If X is projective, then Vect(X) is an
Artin stack, being an open substack of the stack Coh(X), and the above
description gives that BunG(X) is an Artin stack as in Sorger [47, 3.6.6
Corollary].

(d) (Quotient stacks) If G is a reductive group scheme over S then we denote
by BG the stack which assigns to an algebraic space T → S the category
of principal G-bundles (torsors) over T . More generally if X is a G-scheme
over S then X/G denotes the quotient stack which assigns to any morphism
T → S the category of principal G-bundles P → T together with sections
u : T → (P ×SX)/G, or equivalently equivariant morphisms from P to X ,
see Laumon-Moret-Bailly [26, 4.6.1]. In particular, BG = pt /G.

4.2. Stacks of curves

Example 4.2. (a) (Stable curves) By a nodal curve over the scheme S we mean
a flat proper morphism π : C → S of schemes such that the geometric fibers
of π are reduced, one-dimensional and have at most ordinary double points
(nodes) as singularities; that is, a nodal curve without the connectedness
assumption in [7, Definition 2.1]. A nodal curve is stable if each fiber has no
infinitesimal automorphisms. The category of connected nodal resp. stable
marked curves of genus g is then a (non-finite-type) Artin resp. proper
Deligne-Mumford stack Mg,n resp. Mg,n [11], [7]. Let Mg,n,Γ denote the
stack consisting of objects whose combinatorial type in Definition 4.2 is Γ.
If Γ is connected then Mg,n,Γ is a locally closed, local complete intersection
Artin substack of Mg,n [7].

There is a canonical morphism Mg,n,Γ → Mg,n,Γ which collapses unstable
components, and can be defined as follows. Let π : C → S be an n-marked
family of nodal curves. Let ωC/S denote the relative dualizing sheaf over
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S and ωC/S [z1 + . . .+ zn] its twisting by z1 + . . .+ zn. Consider the curve

Cst = Proj⊕n≥0π∗((ωC/S [z1 + . . .+ zn])
⊗n).

As noted in [7, Section 3], in the case that a family of n-marked curves
arises from forgetting a marking of a family of (n + 1)-marked curves,
each fiber Csts is obtained from Cs by collapsing unstable components.
Furthermore, the formation of Cst commutes with base change and the
map Cst → S is projective and flat. The general case is reduced to this
one by adding markings locally. Let Υ : Γ → Γ′ be a morphism of modular
graphs. Then there are morphisms of Artin resp. Deligne-Mumford stacks
M(Υ) : Mg,n,Γ → Mg,n,Γ′ resp. M(Υ) : Mg,n,Γ → Mg,n,Γ′ . In the case of
forgetting a tail, the morphism M(Υ) can be defined by the composition of
the inclusionMg,n,Γ → Mg,n,Γ, the mapM(Υ) : Mg,n,Γ → Mg,n,Γ′ and the
collapsing map Mg,n,Γ′ → Mg,n,Γ′ . We denote by Cg,n,Γ → Mg,n,Γ resp.
Cg,n,Γ → Mg,n,Γ the universal curve over Mg,n,Γ resp. Mg,n,Γ namely
the category of n-marked nodal (resp. stable) curves equipped with an
additional (n+ 1)-marking which need not be distinct from the first n. In
the case of Mg,n, the forgetful morphism fn+1 lifts to a map Cg,n+1 → Cg,n
and the section provided by the (n + 1)-st marking Mg,n+1 → Cg,n+1

combine to an isomorphism Mg,n+1 → Cg,n. In other words, Mg,n+1 can
be considered the universal curve for Mg,n.

(b) (Stable parametrized curves) Recall from Section 2.2 that if C is a smooth
connected projective curve then a C-parametrized curve is a map u :
Ĉ → C of homology class [C] from a nodal curve Ĉ to C, and is sta-
ble if it has only finitely many automorphisms. The category of nodal
resp. stable C-parametrized curves forms an Artin stack Mn(C) resp.
Mn(C). More generally, for any rooted tree Γ we have Artin resp. Deligne-
Mumford stacks Mn,Γ(C) resp. Mn,Γ(C); the latter is a special case of the
Fulton-MacPherson compactification studied in [17]. There is a morphism
Mn,Γ(C) → Mn,Γ(C) which collapses the unstable components. Indeed

let π : Ĉ → S, u : Ĉ → C be a family of C-parametrized n-marked nodal
curves. Let LC be an ample line bundle on C, and ωĈ/S denote the relative

dualizing sheaf over S and ωĈ/S [z1 + . . .+ zn] its twisting by z1 + . . .+ zn.
Consider the curve

Ĉst = Proj⊕n≥0π∗((ωĈ/S [z1 + . . .+ zn]⊗ u∗L⊗3
C )⊗n). (21)

For families arising by forgetting markings, Ĉst is obtained from Ĉ by
collapsing unstable components and the formation of Ĉst commutes with
base change. The general case is reduced to this one by adding markings
locally [7, Section 3].
Any morphism of rooted trees Υ : Γ → Γ′ of the type collapsing an edge,
cutting an edge, forgetting a tail induces a morphism M(Υ) : Mn,Γ(C) →
Mn,Γ′(C) resp. M(Υ) : Mn,Γ(C) → Mn,Γ′(C). In the case of forgetting a
tail, the morphismM(Υ) can be defined by the composition of the inclusion
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Mn,Γ(C) → Mn,Γ(C), the map M(Υ) : Mn,Γ(C) → Mn,Γ′(C) followed by
the collapsing map Mn,Γ′(C) → Mn,Γ′(C).

(c) (Curves with scalings) Let S be an algebraic space over C and C a smooth
projective nodal curve over S. Recall from e.g. [4, p.95] that the dualizing
sheaf ωC/S is locally free. Factor the projection π : C → S locally into
the composition of a regular embedding i : C → R of relative dimension
m and a smooth morphism j : R→ S of relative dimension l. The normal
sheaf NC/R of i is locally free of rank m, while the sheaf of relative Kähler
differentials Ω1

R/S is locally free of rank l. The relative dualizing sheaf of

π is ωC/S := (ΛmNC/R)
−1 ⊗ΛlΩ1

R/S . Explicitly, if C is a nodal curve over

a point and C̃ denotes the normalization of C (the disjoint union of the
irreducible components of C) with nodal points {{w+

1 , w
−
1 }, . . . , {w

+
k , w

−
k }}

then ωC is the sheaf of sections of ωC̃ := T∨C̃ whose residues at the points
w+
j , w

−
j sum to zero, for j = 1, . . . , k. Denote by P(ωC/S ⊕ C) the fiber

bundle obtained by adding in a section at infinity. A scaling of C is a section
λ of P(ωC/S⊕C). The category of pairs (C, λ) is an Artin stack, with charts
given by the forgetful morphisms from stable curves with additional marked
points, equipped with scalings.

(d) (Stable scaled affine lines) Let S be an algebraic space over C. A nodal
n-marked scaled affine line, see [55, Section 2.3], consists of a smooth con-
nected projective nodal curve C over S, an (n + 1)-tuple (z0, . . . , zn) of
sections S → C (the markings) distinct from the nodes and each other,
and a scaling λ of P(ωC/S ⊕ C), satisfying the following conditions:

i. (Affine structure on each component on which it is non-degenerate)
on each irreducible component Ci of C the form λ is either zero,
infinite, or finite except for a single order two pole at a node of C.

ii. (Monotonicity) on each non-self-crossing path of components from
zi, i > 0 to z0, there is exactly one component on which λ is finite
and non-zero; on the components before resp. after, λ vanishes
resp. is infinite.

The first condition means that on the complement of the pole, if it exists,
there is a canonical affine structure. An n-marked scaled curve is stable if it
has no infinitesimal automorphisms, or equivalently, each component with
degenerate resp. non-degenerate scaling has at least three resp. two special
points. We denote by Mn,1(A) resp. Mn,1(A) the stack of stable resp.
nodal connected affine scaled n-marked curves; this is a proper complex
variety resp. Artin stack. The former was constructed in [30]. Charts
for the latter are given by forgetful morphisms Mm,1(A) → Mn,1(A) for
m > n defined by forgetting the last m− n points, as in the case without
scaling in Behrend-Manin [7].

We also wish to allow twistings at nodes of C with infinite scaling, see [40,
Section 2] for a precise definition: the node has a cyclic automorphism
group µr and there exist charts for neighborhoods of the node in each
component of the form U/µr acting by inverse roots of unity. As in [40,

Theorem 1.8], the category M
tw

n,1(A) of scaled twisted marked curves is
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equivalent to the category of scaled log twisted marked curves, compatibly

with base change, and this implies that M
tw

n,1(A) is an Artin stack. For any

colored tree Γ we denote by M
tw

n,1,Γ(A) resp. M
tw

n,1,Γ(A) the stack of nodal
resp. stable scaled n-marked affine lines of combinatorial type Γ.
There is a canonical morphism Mn,1(A) → Mn,1(A) defined as follows.
Let (C, λ, z) be a family of scaled affine lines over an algebraic space S.
Let Λ denote the sheaf over C that assigns to an open subset U ⊂ C the
space of (possibly infinite) sections of T∨U given by fλ where f ∈ OC(U)
is regular on U . Thus Λ is rank one on the components where λ /∈ {0,∞},
and is rank zero otherwise. Denote the sum

ωλC/S [z1 + . . .+ zn] = ωC/S [z1 + . . .+ zn] + Λ.

In terms of the normalization C̃s of any fiber Cs, ω
λ
C/S [z1 + . . . + zn] is

the sheaf of relative differentials with poles at the markings, nodes, and an
additional pole on any component with finite scaling at the node connecting
with a component with infinite scaling. Consider the curve

Cst = Proj⊕n≥0π∗((ω
λ
C/S [z1 + . . .+ zn])

⊗n). (22)

In the case that C arises from a family obtained by forgetting a marked
point on a stable scaled affine curve, Cst collapses unstable components
and its formation commutes with base change. This construction collapses
the bubbles that are unstable furthest away from the root marking, in par-
ticular, any colored component that becomes unstable after forgetting the
marking. However, the adjacent component may be destabilized by col-
lapse of this component; it is then necessary to apply the construction
again to collapse this component. The forgetful morphism is produced
by applying the Proj construction twice, in contrast to the case of stable
curves where a single application suffices. The general case is reduced to
this one by adding markings locally.
Any morphism of colored trees Υ : Γ → Γ′ of the type collapsing an
edge, collapsing edges with relations, cutting an edge, cutting an edge with
relations or forgetting a tail induces morphisms M(Υ) : Mn,1,Γ(A) →
Mn,1,Γ′(A) andM(Υ) : Mn,1,Γ(A) → Mn,1,Γ′(A). In the case of forgetting
a tail, the morphism M(Υ) can be defined by the composition of the inclu-
sion Mn,1,Γ(A) → Mn,1,Γ(A), the map M(Υ) : Mn,1,Γ(A) → Mn,1,Γ′(A)
followed by the collapsing map Mn,1,Γ′(A) → Mn,1,Γ′(A).
By its construction, the stack Mn,1(A) has a universal curve Cn,1(A) →
Mn,1(A) equipped with universal scaling and markings. The forgetful mor-
phism Mn+1,1(A) → Mn,1(A) is isomorphic to the universal curve, as in
the Knudsen case, given by the map Mn+1,1(A) → Cn,1(A). The latter
is defined by the n-marked curve (22) with section the (n + 1)-st marked
point. The inverse Cn,1(A) → Mn+1,1(A) is defined by a consideration of
various cases: If the extra marked point is a smooth point on a compo-
nent with infinite scaling, distinct from the other markings, then one adds
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a bubble with finite scaling with the additional marking to the curve. If
the extra marked point is a smooth point on a component with finite or
zero scaling, distinct from the other marking, then one adds that point
as an additional marking. If the extra marked point coincides with one
of the other markings, or with a node, the one adds an additional bubble
component with the appropriates scaling, and puts the additional marking
on that component. This shows that the morphism Mn+1,1(A) → Cn(A)
induces a bijection of geometric points and is therefore (as a morphism of
nodal curves over Mn,1(A)) an isomorphism.

More generally, one may consider stacks Mn,s(A) of s-scaled n-marked
affine lines, that is, curves equipped with markings z1, . . . , zn and scalings
λ1, . . . , λs. By similar arguments, these stacks are Artin and the stacks of
stable curves Mn,s(A) are Deligne-Mumford.

(e) (Stacks of scaled curves) A family of nodal C-parametrized curves with
finite scaling consists of π : Ĉ → S a family of nodal curves, u : Ĉ → C a
family of nodal maps of homology class [C], a family of sections z1, . . . , zn :
S → Ĉ, and a section λ : Ĉ → P(ωĈ/C ⊕ C) of the projectivized relative

dualizing sheaf (see 4.2 (c)) satisfying the following conditions:

i. (Finite on any marking) λ(zi) is finite;

ii. (Scaling on each bubble component) on each component Ci of Ĉ
mapping to a point in C such that λ|Ci is finite and non-zero, the
restriction λ|Ci has a unique pole of order 2, at the node connecting
Ci with the principal component C0; and

iii. (Monotonicity) on each non-self-crossing path of components from
the principal component to the component containing zi, i > 0,
there is exactly one component on which λ is finite and non-zero;
on the components before resp. after, λ vanishes resp. is infinite.

The category of such forms an Artin stack MΓ,n,1(C). There is a “forgetful
morphism” from Mn,1(C) to Mn(C) which forgets the scaling. There is
also a morphismMn,1(C) → Mn,1(C) collapsing the unstable components,
whose construction is a combination of the previous cases and left to the

reader. Similarly, M
tw

n,1(C) is the stack of scaled marked curves with log
structures at the nodes with infinite scaling as in [40, Section 2].

4.3. Stacks of morphisms

Many of our examples will arise as stacks of morphisms between stacks. Fix an
algebraic space S. Let X and Y be Artin stacks over S. Let HomS(X ,Y) be the
fibered category over the category of S-schemes, which to any T → S associates
the groupoid of functors X ×S T → Y ×S T . Unfortunately, there seems to be
no general construction which guarantees that HomS(X ,Y) is an Artin stack, but
partial results are given by Olsson [39], Romagny [44], and Lieblich [29, 2.3.4].

Example 4.3. (a) (Hom stacks between schemes) IfX,Y are projective schemes
over a Noetherian scheme S with X flat over S then HomS(X,Y ) is repre-
sentable by a quasiprojective S-scheme (a subscheme of the Hilbert scheme)
by Grothendieck’s construction of Hilbert schemes, described in [14].
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(b) (Stable maps) Let Mg,n denote the stack of nodal curves with genus g
and n markings from Example 4.2, Cg,n → Mg,n the universal curve, and
X a projective variety. Then Mg,n(X) := Hom

Mg,n
(Cg,n, X) is the stack

of nodal (or prestable) maps to X . The locus Mg,n(X) of stable maps is
defined as the sub-stack of maps with no infinitesimal automorphisms, or
equivalently, such that each component on which the map is constant of
genus zero (resp. one) has at least three resp. (one) special point. By
the constructions in Behrend-Manin [7] and Fulton-Pandharipande [16],
Mg,n(X) resp. Mg,n(X) is an Artin resp. proper Deligne-Mumford stack.
Similarly for any type Γ, let Mg,n,Γ(X) = Hom

Mg,n,Γ
(Cg,n,Γ, X) denote

the compactified stack of maps of combinatorial type Γ and Mg,n,Γ(X)
the locus of stable maps. Then Mg,n,Γ(X) resp. Mg,n,Γ(X) is an Artin
resp. proper Deligne-Mumford stack. There is a canonical morphism from
Mg,n,Γ(X) to Mg,n,Γ(X) which collapses unstable components. Indeed,
given a family u : C → X and an ample line bundle L → X consider the
curve

Cst = Proj
⊕

n≥0

π∗(ωC/S [z1 + . . .+ zn]⊗ u∗L3)⊗n. (23)

For families arising from forgetting markings from a family of stable maps,
Cst is obtained from C by collapsing unstable components, and the for-
mation of C commutes with base change. The general case reduces to this
one by adding markings locally [7].

Any morphism Υ : Γ → Γ′ of type cutting an edge, collapsing an edge, or
forgetting a tail induces morphisms of moduli stacks

M(Υ, X) : Mg,n,Γ(X) → Mg,n,Γ′(X), M(Υ, X) : Mg,n,Γ(X) → Mg,n,Γ′(X).

In the first case the morphism is induced from fiber product with the
morphism M(Υ, X) : Mg,n,Γ → Mg,n,Γ′ , while M(Υ, X) is defined by
composing the inclusion M(Υ, X) → M(Υ, X) with M(Υ, X) and the
collapsing morphism to Mg,n,Γ′(X).

(c) (Stacks of bundles, second version) Let X be an S-scheme and G a reduc-
tive group. Let Hom(X,BG) be the category that assigns to T → S the
groupoid of G-bundles on X×S T . Then Hom(X,BG) is a stack, naturally
isomorphic to the stack BunG(X) of G-bundles. In particular, if X is a
projective S-scheme then Hom(X,BG) is an Artin stack by Example 4.1.

(d) (Stacks of morphisms to quotient stacks) Let X be an algebraic space over
S, G a reductive group and Y a G-scheme, and Y/G the quotient stack.
Let HomS(X,Y/G) denote the category that assigns to any T → S, a
principal G-bundle P over X ×S T and a section X ×S T → P ×G Y . By
Lieblich [29, 2.3.4], HomS(X,Y/G) is an Artin stack. More generally if
f : X → Z is a proper morphism of Artin stacks and Y is a separated
and finitely-presented G-scheme then let HomZ(X , Y/G) be the fibered
category that associates to any morphism T → Z and object X of X ×Z T
the category of pairs (P, u) where P → X is a principal G-bundle and
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section u : X → P ×G Y . By Olsson [2, Lemma C.5], HomZ(X , Y/G) is
an Artin stack.

(e) (Stacks of morphisms to quotient stacks as quotients) In this example fol-
lowing Schmitt [46] we describe a realization of morphisms to quotients
stacks as subschemes of Grothendieck’s quot scheme discussed in Example
4.1. First suppose that C is a scheme over S, G = GL(n) and X = Pn−1.
Any morphism u : C → X/G corresponds to a vector bundle E → C
together with a section of the projectivization P(E). There are several
equivalent descriptions of this data: (i) a vector bundle E and a line sub-
bundle L := u∗OP(E)(1) → C, (ii) a vector bundle E∨, a line bundle L∨,
and a surjective morphism E∨ → L∨. The latter datum is termed a swamp
(short for sheaf with map) or more generally, a bump (short for bundle with
map) if the group G is arbitrary reductive. Schmitt [46] shows that the
functor from schemes to sets which associates to any scheme the set of
isomorphism classes of stable bumps, can be realized as a git quotient of a
quot scheme. The type of a bump is the pair of integers (deg(E), deg(L)).
If S is an arbitrary scheme, then a bump over C parametrized by S with
representation V consists of a principal G-bundle P on S×C, a line bundle
L→ S×C, and a homomorphism ϕ from P (V ) to L. Since BunC×(C) splits
non-canonically as Jac(C) × BC×, this data is equivalent to a morphism
S → Jac(C) together with a line bundle on the parameter space S, which
is the formulation adopted in Schmitt [46].
The idea of Schmitt’s construction of the moduli space of semistable bumps
is as follows. After suitable twisting, we may assume that E is generated
by its global sections, in which case E∨ is a quotient of a trivial vector
bundle F and we obtain a double quotient F → E∨ → L∨. This gives
a quotient F 2 → E∨ × L∨ with the property that the map to L∨ fac-
tors through E∨, and so a point in the quot scheme QuotF 2/X/S . Let

MG,quot,fr(C,X, F ) denote the subscheme of QuotF 2/X/S arising in this

way, and let MG,quot(C,X, F ) = MG,quot,fr/Aut(F ) be the quotient by

the action of the general linear group Aut(F ). Let M
G,quot

(C,X, F ) be its
closure in QuotF 2/X/S /Aut(F ). More generally, for any reductive group
G and projective G-variety Y , a choice of representation G → GL(V )

and embedding Y → P(V ) gives a stack M
quot,G

(C,X, F ) by encoding
the reduction of structure group as a section and taking the closure of
Hom(X,Y/G) (or rather, those maps whose bundles are quotients of F ) in
QuotF 2/X/S .

(f) (Inertia stacks) The inertia stack of a Deligne-Mumford (or Artin) stack
X is

IX := X ×X×X X

where both maps are the diagonal. The objects of IX may be identified
with pairs (x, g) where x is an object of X and g is an automorphism of x.
For example, if X = X/G is a global quotient by a finite group then

IX = ∪[g]∈G/Ad(G)X
g/Zg
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where G/Ad(G) denotes the set of conjugacy classes in X and Zg is the
centralizer of g. There is also an interpretation as a hom stack (see e.g.
[1])

IX = ∪r>0IX ,r, IX ,r := Homrep(Bµr,X ).

(g) (Rigidified inertia stacks) The following stack plays an important role in
Gromov-Witten theory of Deligne-Mumford stacks as developed by Abramovich-
Graber-Vistoli [1]. If µr is the group of r-th roots of unity then Bµr is an
Deligne-Mumford stack. If X is a Deligne-Mumford stack then

IX = ∪r>0IX ,r, IX ,r := IX/r/Bµr.

is the rigidified inertia stack of representable morphisms from Bµr to X ,
see [1]. There is a canonical quotient cover π : IX → IX which acts on
cohomology as an isomorphism

π∗H∗(IX ,Q) → H∗(IX ,Q)

so for the purposes of defining orbifold Gromov-Witten invariants, IX can
be replaced by IX at the cost of additional factors of r on the r-twisted
sectors. If X = X/G is a global quotient of a scheme X by a finite group
G then

IX/G =
∐

(g)

Xss,g/(Zg/〈g〉)

where 〈g〉 ⊂ Zg is the cyclic subgroup generated by g.
(h) (Rigidified inertia stacks for locally free git quotients) Suppose that X is a

polarized smooth projective G-variety such that X//G is locally free. Then

IX//G =
∐

(g)

Xss,g/Zg

where Xss,g is the fixed point set of g ∈ G on Xss, Zg is its centralizer, and
the union is over all conjugacy classes,

IX//G =
∐

(g)

Xss,g/(Zg/〈g〉)

where 〈g〉 is the (finite) group generated by g.
(i) (Stacks of nodal gauged maps) Consider the Artin stack Mg,n of marked

nodal curves and X/G the quotient stack associated to the quotient of a
projective scheme X by a reductive group G. Then Hom

Mg,n
(Cg,n, X/G)

is an Artin stack.
(j) (Stacks of parametrized nodal gauged maps) Let C be a curve and X a

G-scheme. Then Hom
Mn(C)(Cn(C), X/G) is the category that assigns to

a morphism T → S the groupoid of marked nodal curves Ĉ → T × C, of
class [C] on the second factor, equipped with a principal G-bundle P → Ĉ
and a morphism C → P ×G X .
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(k) (Stacks of parametrized nodal affine gauged maps) Let X be a G-scheme.
Then HomMn,1(A)(Cn,1(A), X/G) is the category that assigns to a mor-

phism T → S the groupoid of marked affine nodal curves Ĉ → T equipped
with a principal G-bundle P → Ĉ and a morphism Ĉ → P ×G X . More

generally, Hom
M

tw

n,1(A)
(C

tw

n,1(A), X/G) is the hom-stack allowing orbifold

singularities in the domain at the nodes with infinite scaling.

4.4. Twisted stable maps

We recall the definitions of twisted curve and twisted stable map to a Deligne-
Mumford stack from Abramovich-Graber-Vistoli [1], Abramovich-Olsson-Vistoli
[2], and Olsson [40]. These definitions are needed for the construction of the
moduli stack of affine gauged maps in the case that X//G is an orbifold, but not
if the quotient is free. Denote by µr the group of r-th roots of unity.

Definition 4.4. (Twisted curves) Let S be a scheme. An n-marked twisted curve
over S is a collection of data (f : C → S, {‡i ⊂ C}ni=1) such that

(a) (Coarse moduli space) C is a proper stack over S whose geometric fibers
are connected of dimension 1, and such that the coarse moduli space of C
is a nodal curve C over S.

(b) (Markings) The ‡i ⊂ C are closed substacks that are gerbes over S, and
whose images in C are contained in the smooth locus of the morphism
C → S.

(c) (Automorphisms only at markings and nodes) If Cns ⊂ C denotes the non-
special locus given as the complement of the ‡i and the singular locus of
C → S, then Cns → C is an open immersion.

(d) (Local form at smooth points) If p→ C is a geometric point mapping to a
smooth point of C, then there exists an integer r, equal to 1 unless p is in
the image of some ‡i, an étale neighborhood Spec(R) → C of p and an étale
morphism Spec(R) → SpecS(OS [x]) such that the pull-back C ×S Spec(R)
is isomorphic to Spec(R[z]/zr = x)/µr.

(e) (Local form at nodal points) If p → C is a geometric point mapping to a
node of C, then there exists an integer r, an étale neighborhood Spec(R) →
C of p and an étale morphism Spec(R) → SpecS(OS [x, y]/(xy − t)) for
some t ∈ OS such that the pull-back C ×S Spec(R) is isomorphic to
Spec(R[z, w]/zw = t′, zr = x,wr = y)/µr for some t′ ∈ OS .

Let X be a smooth Deligne-Mumford stack proper over a scheme S over a field
of characteristic zero with projective coarse moduli space X , or an open subset
thereof.

Definition 4.5. A twisted stable map from an n-marked twisted curve (π : C →
S, (‡i ⊂ C)ni=1) over S to X is a representable morphism of S-stacks u : C → X
such that the induced morphism on coarse moduli spaces uc : C → X is a stable
map in the sense of Kontsevich [23] from the n-pointed curve (C, z = (z1, . . . , zn))
to X , where zi is the image of ‡i. The homology class of a twisted stable curve is
the homology class u∗[Cs] ∈ H2(X,Q) of any fiber Cs.



12 CHRIS T. WOODWARD

Twisted stable maps naturally form a 2-category, but every 2-morphism is
unique and invertible if it exists, and so this 2-category is naturally equivalent
to a 1-category which forms a stack over schemes [1].

Theorem 4.6. ([1, 4.2]) The stack Mg,n(X ) of twisted stable maps from n-
pointed genus g curves into X is a Deligne-Mumford stack. If X is proper, then for
any c > 0 the union of substacks Mg,n(X , d) with homology class d ∈ H2(X ,Q)
satisfying (d, [ω]) < c is proper.

The proof uses the equivalence of the category of twisted curves with log-twisted
curves. Let IX denote the rigidified inertia stack as in Proposition 4.3 (g). The
moduli stack of twisted stable maps admits evaluation maps

ev : Mg,n(X ) → I
n

X , ev : Mg,n(X ) → I
n

X ,

where the second is obtained by composing with the involution IX → IX induced
by the map µr → µr, ζ 7→ ζ−1. There is a modification of the definition which

produces evaluation maps to the unrigidified moduli stacks: Let M
fr

g,n(X ) denote
the moduli space of framed twisted stable maps, that is, twisted stable maps with
sections of the gerbes at the marked points [1]. These stacks are

∏n
i=1 ri-fold covers

of Mg,n(X ), where ri : Mg,n(X ) → Z≥0 is the order of the isotropy group at the
i-th marking, and admit evaluation maps

evfr : M
fr

g,n(X ) → InX , evfr : M
fr

g,n(X ) → InX .

If C is a finite disjoint union of twisted curves, then a stable map from C to X is a
stable map of each of its components. For any possibly disconnected combinatorial

type Γ, we denote by Mg,n,Γ(X ) resp. M
fr

g,n,Γ(X ) the stack of stable maps resp.
framed stable maps whose underlying stable map of schemes has combinatorial
type Γ.

Proposition 4.7. (a) (Cutting an edge) If Γ′ is obtained from Γ by cutting an
edge, there is a morphism

G(Υ, X) : Mg,n,Γ′(X )×
I
2

X

IX → Mg,n,Γ(X ) (24)

where the second morphism in the fiber product is the diagonal ∆ : IX →

I
2

X , and an isomorphism

M
fr

g,n,Γ′(X ) ×I2
X
IX → M

fr

g,n,Γ(X ).

(b) (Collapsing an edge) If Γ′ is obtained from Γ by collapsing an edge then
there is an isomorphism

Mg,n,Γ′(X ) ×
Mn,Γ′

Mg,n,Γ → Mg,n,Γ(X )

and similarly for framed twisted stable maps.
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Example 4.8. (Inertia stacks for toric orbifolds) Consider a stack X = X//G ob-
tained as the quotient of a vector space X by a torus G with weights µ1, . . . , µk at
a weight ν ∈ g∨, see (30). For each subset {µi, i ∈ I} with ν ∈ span{µi, i ∈ I}, let
ΛI denote the lattice generated by the µi, i ∈ I, and GI = exp(Λ∨

I ) the subgroup
generated by the dual lattice. Let XI denote the span of the weight spaces for
µi, i ∈ I and XI//G the git quotient of XI by G. For any element g ∈ G let I(g)
denote the set of i such that g ∈ ker(exp(µi) : G→ C×). Then

IX//G = ∪g∈G(XI(g)//G)

(finite by the previous paragraph) and is therefore a union of toric stacks. For each
i ∈ I(g), vanishing of the coordinate in XI(g) corresponding to i defines a divisor

D̃i, whose (possibly empty) image in XI(g) is a divisor Di,g. The cohomology of
IX//G is generated by the classes of the divisors Di,g, i ∈ I(g).

4.5. Coarse moduli spaces

A coarse moduli space for a stack X is an algebraic space X together with a
morphism π : X → X such that π induces a bijection between the geometric
points of X and X and π is universal for maps to algebraic spaces. By a theorem
of Keel-Mori [22], coarse moduli spaces for Artin stacks with finite inertia (in
particular, Deligne-Mumford stacks in characteristic zero) exist.

Proposition 4.9. A Deligne-Mumford stack over C is proper iff its coarse moduli
space is proper iff its coarse moduli space is compact and Hausdorff in the analytic
topology.

Proof. The first equivalence is e.g. [39, 2.10]. The second equivalence is folklore,
see for example [41, Theorem 3.17].

Artin [5] has given conditions for a category fibered in groupoids to be an Artin
stack. In particular, each object should admit a versal deformation, universal if
the stack is Deligne-Mumford. Versal deformations give a notion of topological
convergence of a sequence of objects in the category, defined if the corresponding
sequence of points sν in the parameter space S for a versal deformation converges
to a point s, in which case the limit is the equivalence class of objects corresponding
to s. In particular, these notions define the underlying C0 topology of the coarse
moduli spaces.

Example 4.10. (a) (Convergence of nodal curves) Any projective nodal curve
has a versal deformation given in the analytic category by a gluing con-
struction in which small balls around the nodes are removed and the com-
ponents glued together via maps z 7→ δ/z [4, p. 176] in local coordinates z
near the node.

(b) (Convergence of stable maps) Any map from a projective nodal curve to a
projective variety has a versal deformation given by considering its graph
as an element in a suitable Hilbert scheme of subvarieties, see for example
[14]. The construction of the Hilbert scheme is reduced to the construc-
tion of a Quot scheme, which in turn reduces to representability of the
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Grassmannian. For the Grassmannian topological convergence of a sub-
bundle implies topological convergence in the sense described above for
(uni)versal deformations. It follows that topological convergence for maps
is the usual notion of convergence of stable maps discussed in, for example,
McDuff-Salamon [31].

(c) (Convergence of bundles) Any vector bundle over a curve has a versal de-
formation given by considering it, after twisting by a sufficiently positive
line bundle, as a quotient of a trivial bundle. A similar statement holds for
principal bundles for reductive groups by considering them as vector bun-
dles with reductions. Topological convergence of a sequence of isomorphism
classes of bundles is the usual notion of topological convergence of holo-
morphic bundles, that is, C0 convergence of the corresponding holomorphic
structures on the components after complex gauge transformation.

(d) (Convergence of isomorphism classes of vector bundles) In particular, let
C be a smooth projective curve and M = BunssGL(r)(C) the moduli stack
of semistable bundles of rank r ≥ 0. By a theorem of Narasimhan-Seshadri
[35], if stable=semistable then the coarse moduli space M for M admits
a homeomorphism φ to its image in the moduli space of unitary repre-
sentations of the fundamental group R = Hom(π1(C), U(r))/U(r), where
Hom(π1(C), U(r)) denotes the topological space of representations of π1(C)
in U(r). The Hilbert scheme construction, or the construction of universal
families in [35], shows that inverse map R →M is continuous.

5. Stable gauged maps

In this section we identify the moduli space of symplectic vortices as the coarse
moduli space of a substack of the moduli stack of gauged maps satisfying a semista-
bility condition introduced by Mundet [33] and further studied by Schmitt [45],
[46]. This correspondence of Hitchin-Kobayashi type implies that the moduli space
of symplectic vortices, if every vortex has finite automorphism group, is the moduli
space of a proper Deligne-Mumford stack.

5.1. Gauged maps

Let G be a complex reductive group, X be a smooth projective G-variety and
C a smooth connected projective curve. In this section we construct the stack

M
G

n (C,X) of n-marked gauged maps for integers n ≥ 0.

Definition 5.1. An n-marked nodal gauged map from C to X over a scheme S is
a morphism u : Ĉ → C × X/G from a nodal curve Ĉ over S whose projection
onto the first factor has homology class [C], such that if Ci,s ⊂ Ĉs is a component
that maps to a point in C, then the bundle corresponding to u|Ci is trivial. More
explicitly, such a morphism is given by a datum (Ĉ, P, u, z) where

(a) (Nodal curve) Ĉ → S is a proper flat morphism with reduced nodal curves
as fibers;

(b) (Bundle over the principal component) P → C×S is a principal G-bundle;
(c) (Section of the associated fiber bundle) u : Ĉ → P (X) := (P × X)/G is

a family of stable maps with base class [C], that is, the composition of u
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with the projection P (X) → C has class [C].

A morphism between gauged maps (S, Ĉ, P, u) and (S′, Ĉ′, P ′, u′) consists of a
morphism β : S → S′, a morphism φ : P → (β×1)∗P ′, and a morphism ψ : Ĉ → Ĉ′

such that the first diagram below is Cartesian and the second and third commute:

Ĉ S

Ĉ′ S′

✲

❄

ψ

❄

β

✲

P S × C

(β × 1)∗P ′ S × C

✲

❄

φ

❄

id

✲

Ĉ P (X)

Ĉ′ P ′(X).

✲
u

❄

ψ

❄

[φ×idX]

✲

u′

An n-marked nodal gauged map is equipped with an n-tuple (z1, . . . , zn) ∈ Ĉn of
distinct smooth points on Ĉ.

LetM
G

n (C,X) denote the category of n-marked nodal gauged maps,M
G,st

n (C,X)
the subcategory where u : Ĉ → P (X) is a stable map, and MG

n (C,X) the sub-
category where Ĉ → C is an isomorphism, that is, the domain is irreducible. The

functor from M
G

n (C,X) to schemes which assigns to any datum (S,C, P, u, z) the

base scheme S makes M
G

n (C,X) resp. M
G,st

n (C,X) resp. MG
n (C,X) into a cat-

egory fibered in groupoids. We denote by C
G

n (C,X) → M
G

n (C,X) the universal
curve, consisting of a datum (P → C, u : Ĉ → P (X), z : S → Ĉn, z′ : S → Ĉ) with
z not necessarily mapping to the smooth locus of Ĉ. The universal curve maps
canonically to X/G via evaluation at z′:

C
G

n (C,X) → X/G, (S,C, P, z, z′) 7→ (S, (π ◦ u ◦ z′)∗P, u ◦ z′).

Theorem 5.2. M
G

n (C,X) resp. M
G,st

n (C,X) resp. MG
n (C,X) is a (non-finite-

type, non-separated) Artin stack.

Proof. If Cn(C) → Mn(C) is the universal curve, Hom
Mn(C)(Cn(C), X/G) is an

Artin stack by the results of Section 4.3 (d). The stack M
G

n (C,X) is the substack
of Hom

Mn(C)(Cn(C), X/G) corresponding to morphisms f : Ĉ → X/G such that

on each component Ĉi mapping to a point in C, the principal G-bundle Pi →
Ĉi defined by f is trivial. Since triviality on the bubbles is an open condition,

M
G

n (C,X) is an Artin stack as well. The condition that u : Ĉ → P (X) is stable

(has no infinitesimal automorphisms) is an open condition, hence M
G,st

n (C,X) is
an open substack, hence also an Artin stack. Similarly the locus MG

n (C,X) where
Ĉ ∼= C is open and so also Artin.

Lemma 5.3. (Existence of a morphism collapsing unstable components) There is

a morphism M
G

n (C,X) → M
G,st

n (C,X) collapsing unstable components. The com-

position M
G,st

n (C,X) → M
G

n−1(C,X) → M
G,st

n−1(C,X) collapsing unstable compo-

nents is isomorphic to the universal curve C
G

n−1(C,X) → M
G

n−1(C,X), and in
particular proper.
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Proof. Let π : Ĉ → S be a nodal curve with dualizing sheaf ωĈ/S , a morphism

u : Ĉ → C × P (X), an ample G-line bundle L → X , and an ample line bundle
LC → C. The formation of the curve

Ĉst = Proj
⊕

n≥0

π∗(ωĈ/S [z1 + . . .+ zn]⊗ u∗(LC ⊠ P (L))⊗3)⊗n

commutes with base change, in the case that the family arises from a stable family
by forgetting a marking. Then u factors through Ĉst and this gives the required
family in this case. The general case reduces to this one by adding markings locally,
see Behrend-Manin [7, Theorem 3.10] and [7, Proposition 4.6].

5.2. Mundet stability

Gauged maps corresponding to solutions of the vortex equations correspond to
maps satisfying a semistability condition introduced by Mundet [33]. In this section

we construct the stack M
G

n (C,X) of Mundet-semistable gauged maps. These are
used later to define gauged Gromov-Witten invariants.

First recall some terminology from the study of moduli spaces of G-bundles,
from Ramanathan [43]. We restrict here to the case that G is connected. A
subgroup R ⊂ G is parabolic if G/R is complete. Given a parabolic subgroup
R, the maximal reductive Levi subgroup L ⊂ R is unique up to conjugation by
elements of R. The parabolic R admits a decomposition R = LU where U is a
maximal unipotent subgroup. The quotient map will be denoted p : R → R/U ∼= L
and the inclusion i : L→ G. A parabolic reduction of a bundle P to R is a section
σ : C → P/R.

Definition 5.4. (Associated Graded Bundle) Let P be a principal G-bundle on a
curve C.

(a) (As an induced bundle) Given a parabolic reduction σ : C → P/R, let
σ∗P denote the associated R bundle, p∗σ

∗P the associated L-bundle, and
j : R → G the inclusion. The bundle Gr(P ) := j∗p∗σ

∗P is the associated
graded G-bundle for σ.

(b) (As a degeneration) Let σ : C → P/R be parabolic reduction, Z(L) denote
the center of the Levi subgroup L, z(l) its Lie algebra, and λ ∈ z(l) a generic
antidominant coweight (with respect to the roots of the Lie algebra p of
P restricted to z(l)). For z ∈ C×, the induced family of automorphisms
φ of R by zλ = exp(ln(z)λ) by conjugation induces a family of bundles
Pσ,λ := j∗((σ

∗P × C)×φ R) over C × C with central fiber Gr(P ).

Example 5.5. (Associated graded bundles for vector bundles) If G = GL(n), then
a parabolic reduction is equivalent to a filtration of the associated vector bundle
and Gr(P ) is the frame bundle of the associated graded vector bundle, see [43].
The degeneration in the second definition above is the one that deforms the “off
diagonal” parts of the transition maps of P to zero.

Definition 5.6. (Associated Graded Section) Given a section u : C → P (X), define
the associated graded section Gr(u) : Ĉ → (Gr(P ))(X) associated to (σ, λ) as the
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unique stable limit u0 of the sections uz of Pσ,λ|C×{z}(X) given by acting on u by

zλ.
The Mundet stability condition is a collection of inequalities given by inte-

grals over the curve C, analogous to the definition of stability of vector bun-
dles by degrees of sub-bundles. Suppose λ is a weight of Z(L) and so defines a
one-dimensional representation Cλ. Via the trivialization z(l) ∼= (p∗σ

∗P )(z(l)) ⊂
(Gr(P ))(g) the element λ defines an infinitesimal automorphism of Gr(P ), fixing
the principal component Gr(u)0 of Gr(u). The polarization OX(1) defines a line
bundle P (OX(1)) → P (X) and the infinitesimal automorphism defined by λ acts
on the fibers over Gr(u)0 with a weight µX(Gr(u)0, λ).

Definition 5.7. (Mundet weight) The Mundet weight of the pair (σ, λ) as above is
defined by

µ(σ, λ) =

∫

[C]

c1(p∗σ
∗P ×L C−λ) + µX(Gr(u)0,−λ)[ωC ]. (25)

A gauged map (P, u) is Mundet stable iff it satisfies the

(Weight Condition) µ(σ, λ) < 0 (26)

for all (σ, λ), Mundet unstable if there exists a de-stabilizing pair (σ, λ) violating
(26) with strict inequality, Mundet semistable if it is not unstable, and Mundet
polystable if it is semistable but not stable and (P, u) is isomorphic to its asso-
ciated graded for any pair (σ, λ) satisfying the above with equality. A gauged
map is semistable if it is Mundet semistable with stable section, and stable if it is
semistable and has finite automorphism group.

Remark 5.8. (a) (Connection with stability of bundles) In the case that X is
trivial and G is semisimple, Mundet stability is the same as Ramanathan
stability of principal G-bundles [43].

(b) (Definition in terms of the moment map) If P (K) is a smooth principal
K-bundle so that P = P (K)×KG is a smooth principal G-bundle, then via
the correspondence between complex structures on P (G) and connections
on P we may view Gr(P ) as a limiting connection on P (K), and the section
Gr(u) as a stable section of P (K) ×K X . Then the weight µX(Gr(u)0, λ)
can be expressed in terms of the moment map as

µX(Gr(u)0, λ) = ((P (K))(Φ) ◦Gr(u)0, λ),

by the usual correspondence between moment maps and linearizations of
actions.

(c) (Dependence on choices) The stability condition depends on the cohomol-
ogy class [ωC ] ∈ H2(C), in addition to the metric on k and the choice of
moment map (or polarization) on X . Rescaling the metric on k is equiva-
lent to rescaling [ωC ] or to rescaling the moment map. Allowing a varying
curve C equipped with a cohomology class [ωC ] leads to various properness
issues, see Mundet-Tian [34].
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(d) (Comparison with Mundet’s definition) We have chosen the definition to
generalize that of Ramanathan [43] for principal G-bundles. Mundet’s
definition in [33, Section 4] is slightly different: For a parabolic reduction σ
and possibly irrational antidominant λ ∈ z, identified with an infinitesimal
gauge transformation,

µ(σ, λ) = inf
t

∫

C

(FeitλA,−λ) + ((eitλu)∗P (Φ),−λ)ωC .

Then µ(σ, λ) agrees with the previous definition in the case that λ is a
coweight, since in this case the infimum equals the limit as t → −∞, the
right-hand-side of (25). To see that the two definitions are the same, it
suffices to check that if (26) is violated by some irrational λ it is also
violated for rational λ. For λ′ sufficiently close to λ and defining the same
parabolic reduction, we have

lim
t→∞

eitλA = lim
t→∞

eitλ
′

A =: A∞, lim
t→∞

FeitλA = lim
t→∞

Feitλ′A = FA∞
(27)

uniformly in all derivatives. Furthermore, by Gromov compactness eitλu
Gromov converges to some limit u∞ : Ĉ → P (X) as t→ ∞, with principal
component u0,∞ : Ĉ → P (X) and

lim
t→∞

∫

C

((eitλu)∗P (Φ),−λ)ωC →

∫

C

(u∗0,∞P (Φ),−λ)ωC .

Let λ′ ∈ k(P )(A∞,u∞) commute with λ. It follows from the local slice
theorem for holomorphic actions that if in addition λ′ is sufficiently close
to λ then for z not in the bubbling set

lim
t→∞

eitλ
′

u(z) = u0,∞(z) = lim
t→∞

eitλ
′

u(z). (28)

Indeed after passing to a maximal torus containing both λ, λ′ the equation
(28) holds iff the weights for the action at u0,∞(z) have the same sign on
λ and λ′. Since rational Lie algebra vectors are dense in the Lie algebra
of any closed subgroup, we may find λ′ rational satisfying (27),(28) and so
violating semistability if λ does. Mundet also allows a correction coming
from the center of g on the right-hand-side of (26), so that in the case X
trivial and G = GL(n) the definition of semistability agrees with that for
vector bundles.

Theorem 5.9 below gives the equivalence of the stability condition with the
existence of a solution to the vortex equations. We denote by G(P ) the group of
complex gauge transformations of P . There is a one-to-one correspondence between
the space J (P (G)) of complex structures on P (G) and connections A(P ) on P .
The identification A(P ) → J (P (G)) is equivariant for the action of K(P ), in the
sense that JkA = Dk ◦ JA ◦Dk−1. Thus, the identification defines an extension of
the K(P ) action on A(P ) to an action of G(P ). The group G(P ) acts on H(P,X)
by composition on the second factor. A pair (A, u) is simple if no element of G(P )
semisimple at each point in C leaves (A, u) fixed, see [33, Definition 2.17].
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Theorem 5.9 (Mundet’s Hitchin-Kobayashi correspondence [33]). Let P →
C be a principal K-bundle. A simple pair (A, u) ∈ H(P,X) defines a Mundet-stable
gauged map if and only if there exists a complex gauge transformation g ∈ G(P )
such that g(A, u) is a vortex.

Remark 5.10. (Analytic Mundet stability) Mundet’s proof depends on the con-
vexity of the functional I(P ) (depending on the choice of (A, u)) obtained by
integrating the one form determined by the moment map

I(P ) : G(P )/K(P ) → R, [exp(itξ)] 7→

∫ 1

0

〈Fexp(itξ)(A,u), ξ〉dt. (29)

If (A, u) is complex gauge equivalent to a symplectic vortex, then I(P ) is bounded
from below. On the other hand, if I(P ) is not bounded from below then Mundet
(using previous results of Uhlenbeck-Yau [50]) constructs a direction ξ ∈ k(P ) in
which limt→∞ exp(−itξ)(A, u) exists and

lim
t→∞

(Fexp(−itξ)(A,u), ξ) ≥ 0

and shows that the corresponding parabolic reduction violates the stability con-
dition. A pair (A, u) is Mundet unstable resp. semistable resp. stable iff the
Mundet functional I(P ) is not bounded from below resp. bounded from below
resp. attains its minimum in G(P )/K(P ).

The algebraic moduli spaces arising from the Mundet semistability condition
are investigated in Schmitt [46]. Let MG

n (C,X) ⊂ MG,st
n (C,X) denote the cat-

egory of n-marked gauged maps to X with irreducible domain that are Mundet
semistable. We wish to show that MG

n (C,X) is an Artin stack, for which it suf-
fices to show that the semistability condition is open. Recall from Section 4.3
(d) Schmitt’s compactification of the moduli space of gauged maps by projective
bumps. Schmitt [46] defines a semistability condition for projective bumps which

generalizes Mundet semistability for gauged maps. Let M
G,quot

(C,X, F ) denote

the moduli stack of projective bumps from 4.3 (e), let M
G,quot

(C,X, F ) denote

the subcategory of M
G,quot

(C,X, F ) consisting of families of Mundet semistable

bumps. For d ∈ HG
2 (X,Z) and let M

G,quot
(C,X, F, d) denote the moduli sub-

stack of M
G,quot

(C,X, F ) of semistable bumps with class d. The semistable lo-

cus M
G,quot

(C,X, F ) is independent of F for F of sufficiently large rank, by [46,

Proposition 2.7.2.9], and will be denotedM
G,quot

(C,X). Recall thatX is equipped
with the equivariant class [ωX,G] ∈ H2

G(X).

Theorem 5.11. Let X be a smooth polarized projective G-variety. The mod-

uli stack of projective bumps M
G,quot

(C,X, F ) resp. Mundet semistable projec-

tive bumps M
G,quot

(C,X, F ) is an Artin stack locally of finite type, containing

MG(C,X) as an open substack. More precisely each M
G,quot

(C,X, F, d) resp.

M
G,quot

(C,X, F, d) has a presentation as a quotient of a closed subscheme of a
quot scheme resp. semistable locus in a closed subscheme of a quot scheme. If
stable=semistable for projective bumps then for each constant c > 0, the union of

components M
G,quot

(C,X, F, d) with (d, [ωX,G]) < c is a proper Deligne-Mumford
stack with projective coarse moduli space.
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Proof. Schmitt [46] avoids the language of stacks, but the construction is the same:

M
G,quot

(C,X, F ) is the quotient of a rigidified moduli space M
G,quot,fr

(C,X, F ),

and M
G,quot

(C,X, F ) is the quotient of the git semistable locus [46, Theorem
2.7.1.4]. The necessary local quot scheme is constructed as follows, in the case G =
GL(n). Let E → C be a vector bundle and u : E → L a quotient corresponding
to a section of P(E∨). After suitable twisting, we may assume that E is generated
by its global sections, in which case E is a quotient of a trivial vector bundle
F . We then obtain a double quotient F → E → L. Such a double quotient
can be considered as a quotient F 2 → E × L. Let MG,fr,quot(C,X, F ) denote
the open subscheme of the quot scheme QuotF 2/C consisting of such quotients.

Let MG,quot(C,X, F ) = MG,fr,quot(C,X, F )/Aut(F ) be the quotient stack by the

action of the general linear group Aut(F ). Let M
G,quot

(C,X, F ) its closure in
QuotF 2/C /Aut(F ). Schmitt [46, Section 2.7] shows that a suitable canonical
polarization on QuotF 2/C gives a semistability condition which reproduces Mundet

semistability. The git construction shows that each substack M
G,quot

(C,X, F, d)
is proper. On the other hand, the set of classes d such that (d, [ωX,G]) < c and

M
G,quot

(C,X, F, d) is non-empty, is finite, since, as one may check, (d, [ωX,G]) is
the degree of the line bundle L in Schmitt’s construction.

On the other hand, there is a natural Kontsevich-style moduli space which allows

bubbling in the fibers satisfying a stability condition. Denote by M
pre,G

n (C,X)
the category of n-marked nodal gauged maps (that is, not necessarily stable sec-

tions) that are Mundet semi-stable. Let M
G

n (C,X) denote the subcategory of

M
pre,G

n (C,X) consisting of Mundet semistable gauged maps that are semistable,
that is, have sections that are stable maps, and MG

n (C,X) the subcategory where

Ĉ ∼= C. The relationship between the Kontsevich-style compactificationM
G
(C,X)

and the Grothendieck-style compactification M
G,quot

(C,X) is given by relative
version of Givental’s collapsing morphism [18, p. 646]:

Proposition 5.12. LetX be a smooth polarized projectiveG-variety. ThenM
G

n (C,X)

is an Artin stack equipped with a proper Deligne-Mumford morphism toM
G,quot

(C,X).

Proof. By Givental’s main lemma [18, p. 646], see [28, Lemma 2.6], [15, Section 8],
[8], [42] for any smooth projective variety X embedded in a projective space P(V ),
there exists a proper morphism Mg,0(C ×X) → QuotF/C where QuotF/C is the
quot scheme of the trivial bundle F = C × V ∨ compactifying Hom(C,P(V )). We
apply this as follows, continuing Example 4.2 (e): Consider the forgetful morphism

M
G

0 (C,X) → Hom(C,BG). As in Narasimhan-Seshadri [35] for G = GL(n,C)
or Ramanathan [43], Sorger [47] in general, the stack Hom(C,BG) admits a lo-
cal presentation as a quotient Mfr,quot(C,F )/Aut(F ) where Mfr,quot(C,F ) is a
quasiprojective scheme of bundles whose associated vector bundle is equipped
with a presentation as a quotient of F . The space Mfr,quot(C,F ) has a univer-
sal G-bundle Ufr,quot(C,F ) → C ×Mfr,quot(C,F ) equipped with a G-equivariant
Aut(F )-action. Let d̃ ∈ H2(U

quot(C,F ) ×G X) be the class corresponding to d
that is, whose push-forward under Ufr,quot(C,F ) ×G X → Mquot(C,F ) is zero
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and whose fiber class is determined by d. The stack MG(C,X, F, d) is a cate-
gory of bundles with section, and so is isomorphic to the quotient of the rigid-
ified moduli space Mg,0(U

fr,quot(C,F ) ×G X, d̃) by the action of Aut(F ). Let

M
fr,quot

(C,U
quot

(C,F )×GX, d̃) be the subscheme of QuotF 2/C compactifying mor-

phisms C → U
quot

(C,F ) ×G X of class d̃. By the relative version of Givental’s

lemma [42, Theorem, p.4] there exists a proper morphism g : Mg,0(U
quot

(C,F )×G

X, d̃) → M
fr,quot

(C,U
quot

(C,F ) ×G X, d̃) mapping each stable map to the corre-

sponding quotient. The morphism M
G
(C,X, F, d) → M

G,quot
(C,X, F, d) is the

quotient of g by the action of Aut(F ). Since g is proper and of Deligne-Mumford
type, so is the quotient. After restricting to the semistable locus, we may assume
that F is sufficiently large so that every bundle occurs as a quotient of F . Then

M
G

0 (C,X) is the inverse image of the open substack M
G,quot

(C,X) and so also

an Artin stack. Furthermore M
G

n (C,X) is the inverse image of M
G

0 (C,X) under
the forgetful morphism obtained by iterating Lemma 5.3, and so an Artin stack.
Since the forgetful morphism and g are both Deligne-Mumford and proper, the
claim follows.

Corollary 5.13. Let X be a smooth polarized projective G-variety. Suppose that
every Mundet semistable gauged map is stable. For each constant c > 0, the union

of components M
G

n (C,X, d) with (d, [ωX,G]) < c is a proper Deligne-Mumford
stack.

Proof. By Theorem 5.11 and Proposition 5.12, the morphismsM
G,quot

(C,X, d) →

pt and M
G

n (C,X, d) → M
G,quot

(C,X, d) are proper and Deligne-Mumford, hence
so is their composition, and similarly for the union of components satisfying the
bound in the Corollary.

There is another approach to the properness result above which uses symplectic
geometry rather than the git constructions in Schmitt [46]. Let K be a maximal
compact subgroup of G.

Theorem 5.14. Let X be a smooth polarized projective G-variety or a G-vector
space with a proper moment map. Suppose that every semistable gauged map is
stable. The map assigning to any stable gauged map the corresponding vortex

defines a homeomorphism Z from the coarse moduli space of M
G

n (C,X, d) to the

moduli space of vortices M
K

n (C,X, d).

Proof. That the map Z is a bijection follows from Mundet’s Theorem 5.9 applied
to the principal component. We check that the map is a homeomorphism. The

topology on the coarse moduli space M
G

n (C,X, d) is induced from specialization
in families: For any convergent sequence [(Pν , uν)] → [(P, u)] there exists an an-
alytic family Ĉ of nodal curves over a connected complex manifold S, a family
of holomorphic G-bundles P → C × S, a family of maps Ĉ → P (X), and a
convergent sequence sν ∈ s such that (Pν , uν) resp. (P, u) is isomorphic to the
fiber over sν resp. s. Fixing a reduction of structure group to K and using the
correspondence between holomorphic structures and connections gives a family
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(As ∈ A(P ), us : Ĉs → P (X)) of connections and sections on a fixed K-bundle P .
If sν ∈ S is a sequence converging to s ∈ S as ν → ∞, then Asν → A uniformly in
all derivatives and usν Gromov converges to us. In particular, the principal com-
ponent usν ,0 converges to us,0 uniformly in all derivatives on compact subsets of
the complement of the bubbling set. Then u∗sνP (Φ) → u∗sP (Φ) in the Lp topology,
for p > 2, and uniformly on compact subsets of the complement of the bubbling
set. So FAsν

+ u∗sνP (Φ)ωC → FAs + u∗sP (Φ)ωC in the Lp-topology on Ω2(C,P (k))
and uniformly on compact subsets of the complement of the bubbling set. Let ξA,u
denote the unique global minimum of I(P ), so that the correspondence is given
by (A, u) 7→ exp(iξA,u)(A, u). Then Fexp(iξA,u)(As,us) converges to Fexp(iξA,u)(A,u)

in Lp. By the implicit function theorem, there exists a unique complex gauge
transformation of the form exp(iξ′ν) such that exp(iξ′ν) exp(iξA,u)(Aν , uν) is a
vortex, with ξ′ν → 0 in W 1,p. Since exp(iξ′ν) exp(iξA,u) = exp(iξAν ,uν ) mod
K(P ), this implies ξAs,us → ξA,u in W 1,p. In particular, for p > 2 this implies
ξAs,us → ξA,u in C0, which implies that Z is continuous. Continuity of the inverse

map M
K

n (C,X) → M
G

n (C,X) follows from the fact that M
G

n (C,X) is a coarse
moduli space for C0 families of gauged maps. This in turn follows from its con-
struction via Quot scheme methods as in Section 4.5. Namely, for each bundle one
finds a point in the Grassmannian corresponding to a realization of the bundle as
a quotient; the construction of this point depends continuously on the connection
and curve chosen.

Lemma 5.15. M
pre,G

n (C,X) is an Artin stack equipped with a morphism M
pre,G

n (C,X) →

M
G

n (C,X) collapsing unstable components.

Proof. M
pre,G

n (C,X) is the pre-image ofM
G

n (C,X) under the morphism of Lemma
5.3.

The assignmentX → M
G

n (C,X) is functorial in the following sense, generalizing
functoriality of the stacks of stable map in Behrend-Manin [7].

Definition 5.16. The category of smooth polarized varieties with reductive group
actions has

(a) (Objects) are data (G,X,L) consisting of a reductive group G, a smooth
polarized G-variety X , and an ample G-line bundle L→ X ;

(b) (Morphisms) from (G0, X0, L0) to (G1, X1, L1) consist of pairs of a mor-
phism ϕ : X0 → X1 a surjective homomorphism ψ : G0 → G1 and an
injective right inverse ι : G1 → G0 such that ϕ preserves Hilbert-Mumford
weights, that is, if x0 is fixed by one-parameter subgroup C× → ι(G1) then
x1 has the same weight as ϕ(x0).

Remark 5.17. The definition of morphism implies that G0 is a product of G1 with
the kernel of ψ, and that the semistable locus in X0 maps to the semistable locus
in X1.

Proposition 5.18. X 7→ M
G

n (C,X) extends to a functor from the category of
smooth polarized varieties with reductive group actions to (Artin stacks, equiva-
lence classes of morphisms of Artin stacks).



QUANTUM KIRWAN MORPHISM II 23

Proof. Consider the composition M
G0

n (C,X0) → M
G1

n (C,X1). Let (P0, u0) be

an object of M
G0

n (C,X0). Any parabolic reduction of P0 ×G0
G1 to a parabolic

subgroup R1 defines a parabolic reduction of P1 to R0 = ψ−1(R1), via the isomor-
phism P ×G0

G1/R1 → P/R0, and the associated graded bundles Gr(P0). Any
character of the center of R1 defines a character of the center of R0. The image of
the associated graded section Gr(u0) : C → P (X0) is the associated graded section
of the image of u0 under P (X0) → P (X1). Since the Hilbert-Mumford weights are
preserved, the Mundet weight is the same and the image of the Mundet semistable

locus M
G0

n (C,X0) lies in M
G1,pre

n (C,X1). By restriction we obtain a morphism

from M
G0

n (C,X0) to M
G1,pre

n (C,X1), and by composition with the collapse map,

to M
G1

n (C,X1). The functor axioms (identity, composition) are immediate from
the definition of the collapse maps.

In particular taking X1 and G1 in the lemma above to be trivial gives:

Corollary 5.19. There exists a forgetful morphism f : M
G

n (C,X) → Mn(C) which
maps (Ĉ, P, u, z) to the stable map to C obtained from (C, π ◦ u, z) by composing
with the projection C×X/G→ C and collapsing unstable components as in (21).

In order to investigate splitting properties of the gauged Gromov-Witten in-
variants we introduce moduli spaces whose combinatorial type is a rooted forest

(finite collection of trees) Γ. Denote by M
G

n,Γ(C,X), resp. M
G,st

n,Γ (C,X), resp.

M
G,pre

n,Γ (C,X), resp. M
G

n,Γ(C,X) the stacks of nodal gauged maps resp. nodal
gauged maps with stable sections resp. Mundet semistable maps resp. Mundet
semistable maps with stable sections of combinatorial type Γ defined as follows:

Definition 5.20. (Stacks of gauged maps with disconnected combinatorial type)
Suppose that Γ = Γ0 ∪ Γ1 . . . ∪ Γl is a disjoint union of trees Γ0, . . . ,Γl equipped
with a root vertex v0 ∈ Vert(Γ0) and a homology class d = d0+. . .+dl ∈ HG

2 (X,Z).

LetM
G

n0,Γ0
(C,X) be defined as above and for i ≥ 1 (not containing the root vertex)

let
M

G

ni,Γi
(C,X, di) := M0,ni,Γi(X, di)/G

(the quotient of the moduli stack of parametrized stable maps by the G-action).

Let M
G

n,Γ(C,X, d) be the product of moduli stacks M
G

n,Γi
(C,X, di).

Let < denote the partial ordering on combinatorial types, so that Γ < Γ′ if Γ′

is obtained from Γ by collapsing edges. Denote by Mn,Γ(C) = ∪Γ′≤ΓMn,Γ′(C)
the “compactified” stack of nodal curves of combinatorial type Γ and Cn,Γ(C) →
Mn,Γ(C) the universal curve. These stacks of various combinatorial types are
related as follows, in the language of tree morphisms [7].

Proposition 5.21. Any morphism of rooted trees Υ : Γ → Γ′ induces a morphism
of moduli spaces of nodal resp. stable gauged maps

M(Υ, X) : M
G

n,Γ(C) → M
G

n,Γ′(C), M(Υ, X) : M
G

n,Γ(C) → M
G

n,Γ′(C).

In particular,
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(a) (Cutting an edge) If Υ : Γ → Γ′ is a morphism cutting an edge, then

M
G

n,Γ(C,X) may be identified with the fiber product M
G

n,Γ′(C,X)×(X/G)2

(X/G) over the diagonal ∆ : (X/G) → (X/G)2 and M(Υ, X) is projection
of the fiber product on the first factor.

(b) (Collapsing an edge) If Γ′ is obtained from Γ by collapsing an edge then

M
G

n,Γ(C,X) is isomorphic toM
G

n,Γ′(C,X)×
Mn,Γ′(C)Mn,Γ(C) andM(Υ, X)

is projection on the first factor.

5.3. Toric quotients and quasimaps

In this section we treat the case that X is a vector space equipped with a linear
action of a torus G.

Remark 5.22. (Quotients of vector spaces by tori) SupposeX has weights µ1, . . . , µk ∈
g∨. A moment map for the G-action on X is given by

(z1, . . . , zk) 7→ ν −

(

k
∑

i=1

µi|zi|
2/2

)

where ν ∈ g∨ is a constant. Assuming ν is rational, the choice of this constant
determines a polarization OX(1) → X given by twisting the trivial bundle with
the rational character corresponding to ν. The semistable locus is then

Xss = {(z1, . . . , zk)| span{µi, zi 6= 0} ∋ ν} . (30)

The git quotient X//G is a toric stack with residual action of the torus (C×)k/G.
One has stable=semistable if µi(ν) 6= 0 for all i. If so, the git quotient X//G is
proper if the weights µ1, . . . , µk are contained in an open half-space in the real part.
Note that X//G depends on the choice of ν. The components of the complements
of the hyperplanes kerµi are called chambers for ν.

Example 5.23. (The projective plane and its blow-up as a quotient of affine four-
space) Suppose thatX = C4 andG = (C×)2 acting with weights (1, 0), (1, 0), (1, 1), (0, 1).

(a) For ν = (1, 2) the unstable locus has a component given by the sum of
the weight spaces with weights (1, 0), (1, 1) and a component equal to the
weight space with weight (0, 1). The quotient X//G is isomorphic to P2 via
the map [x1, x2, x3, x4] 7→ [x1, x2, x3x

−1
4 ] ∈ P2.

(b) For ν = (2, 1), the unstable locus has a component given by the sum of
the weight spaces with weights (0, 1), (1, 1) and a component with weight
(0, 1). The quotient X//G is isomorphic to the blow-up of P2 with the
map to P2 blowing down the exceptional divisor given by [x1, x2, x3, x4] 7→
[x1, x2, x3x

−1
4 ].

See Figure 13.
Morphisms from a curve C to the git quotientX//G are closely related to objects

in the stack of quasimaps H0(C,P ×G X)/G as follows. If u ∈ H0(C,P ×G X)
takes values in the semistable locus then it defines a map to X//G, and any map to
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Figure 13. Quotients for the (C×)2 action on C4

X//G arises in this way. If C has genus zero, P → C has c1(P ) = d and Xj denotes
the weight space with weight µj then there is an isomorphism of G-modules

H0(C,P ×G X) → X(d) :=
⊕

j

X
⊕max(0,(d,µj)+1)
j . (31)

Any polarization OX(1) of X induces a polarization OX(d)(1) by taking the mo-
ment map resp. polarization to be given by ν ∈ g∨ We say that a quasimap
u ∈ H0(C,P×GX) is (semi)stable if it is (semi)stable for the polarizationOX(d)(1).

Proposition 5.24. For any d ∈ HG
2 (X,Z), there exists a constant ρ0 such that if

stable=semistable for the G-action on X(d) and ρ > ρ0 then a gauged map (P, u)
of class d is ρ-semistable iff u ∈ H0(C,P ×G X) is semistable for the action of G,
so that there is an isomorphism of stacks

MG(C,X, d) ∼= H0(C,P ×G X)//G = X(d)//G.

Proof. Since G is abelian, there are no parabolic reductions and Mundet’s criterion
for semistability becomes

µ(σ, λ) =

∫

[C]

(c1(P ) + ρP (Φ) ◦Gr(u)0[ωC ],−λ) ≤ 0

where λ represents an infinitesimal automorphism of the bundle P , that is, an
element of the group G. For ρ sufficiently large, we may ignore the term involving
c1(P ) and obtain the stability condition for the action of G on H0(C,P ×G X).

Example 5.25. (a) (Projective Space) Let X = Ck with G = C× acting diag-
onally. Identify HG

2 (X,Z) ∼= Z. Then X(d) = Ckd and MG(C,X, d) =
Ckd//C× = Pkd−1. A polynomial [u] ∈ MG(C,X, d) defines a map to Pk−1

of degree d iff its components have no common zeroes.
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(b) (The projective plane and its blow-up as a quotient by a two-torus) Suppose
that X = C4 and G = (C×)2 acting with weights (1, 0), (1, 0), (1, 1), (0, 1).
With d = (1, 0), we have X(d) = C(0,1) ⊕ C⊕2

(1,1) ⊕ C⊕4
(1,0). The moduli

spaces of gauged maps are P5 for ν = (1, 2) or BlP1(P5) for ν = (2, 1). For
example, by Thaddeus [49] the two quotients are related by blow-up along
C⊕2

(1,1)//G = P1.

The comparison between the vortex equations and quasimaps has been inves-
tigated from the symplectic point of view by J. Wehrheim [54], based on earlier
work of Cieliebak-Salamon [9]. The space of quasimaps appears in the work of
Morrison-Plesser [32], Givental [18], Lian-Liu-Yau [28] etc. on mirror symmetry
as an algebraic model for the space of stable maps to the quotient X//G.

5.4. Affine gauged maps

Let X be a G-variety as above. In this section we construct the stack M
G

n,1(A, X)
of affine gauged maps. These are used later to construct the quantum Kirwan
morphism. The following extends [55, Definition 1.2] to the case of orbifold target
X//G.

Definition 5.26. (Affine gauged maps) An n-marked affine gauged map to X over
a scheme S consists of

(a) (Projective weighted line) a weighted projective line C = P[1, r] for some
r > 0

(b) (Marking) an n-tuple of distinct points (z1, . . . , zn) : S → (C − {∞})n,
where ∞ := Bµr is the stacky point at infinity;

(c) (Scaling) a non-zero meromorphic one-form λ ∈ H0(C × S, T∨
C (2∞)) and

(d) (Representable morphism) a representable morphism u : C × S → X/G
such that u(∞, s) ∈ X//G for all s ∈ S.

A morphism of n-marked affine gauged maps (zj , λj , uj) consists of an automor-
phism ψ : C → C mapping z0,i to z1,i and pulling back λ1 to λ0 and an isomor-
phism of u1 ◦ ψ with u0.

The complement of ∞ in C has the structure of an affine line determined by
λ, hence the use of the terminology affine. The category MG

n,1(A, X) of n-marked
affine gauged maps to X/G has the structure of an Artin stack: In the case that
X//G is a free quotient, it is an open substack of the stack Hom

Mn,1(A)
(Cn,1(A), X/G)

considered in Example 4.3. More generally, in the case that X//G has orbifold sin-

gularities, MG
n,1(A, X) is an open substack of Hom

M
tw

n,1(A)
(C

tw

n,1(A), X/G) where

M
tw

n,1(A) is defined in Definition 4.2.

Definition 5.27. (Nodal affine gauged maps) A nodal n-marked affine gauged map
toX over a scheme S consists of a nodal marked scaled affine curveC = (C, λ, z0, . . . , zn)
over S, possibly twisted at the nodes of infinite scaling and the root marking, and
a representable morphism u : C → X/G. In addition we require that

(a) (Root marking is target-stable) u(z0) ∈ IX//G;
(b) (Infinite area components are target-stable) on any component such that

λ is infinite, u takes values in the stable locus X//G;
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(c) (Zero area components are bundle-stable) the bundle is stable, hence triv-
ializable, on the locus on which the scaling is zero.

A morphism of affine gauged maps (C, λ, z, u : C → X/G) to (C′, λ′, z′, u′ : C′ →
X/G) is a morphism φ : C → C′ of scaled curves from (C, λ, z) to (C′, λ′, z′) such
that u = u′◦φ. The homology class of u : C → X/G is u∗[C] ∈ HG

2 (X,Q) (integral
in the absence of orbifold singularities on the curve C). A affine gauged map over
S is stable if every fiber us : Cs → X admits only finitely many automorphisms,
or equivalently, every component on which u has zero homology class has at least
three special points or two special points and a non-trivial scaling.

Denote by M
G

n,1(A, X, d) resp. M
G

n,1(A, X, d) the stack of stable resp. not-

necessarily stable scaled curves of genus zero and homology class d and byM
G

n,1(A, X)
the sum over homology classes.

Theorem 5.28. M
G

n,1(A, X, d) resp. M
G

n,1(A, X, d) is an Artin stack resp. proper
Deligne-Mumford stack.

Proof. It follows from Example 4.3 that the hom-stack Hom
M

tw

n,1,Γ(A)
(C

tw

n,1,Γ(A), X/G)

is an Artin stack, since C
tw

n,1,Γ(A) → M
tw

n,1,Γ(A) is proper andX is smooth. The con-

ditions defining M
G

n,1(A, X/G, d) (values in the semistable locus where λ = ∞) are

open and soM
G

n,1(A, X/G, d) is an open substack of Hom
M

tw

n,1,Γ(A)
(C

tw

n,1,Γ(A), X/G).

Furthermore, by assumption G acts freely on the semistable locus in X and so

M
G

n,1(A, X/G, d) has finite automorphism groups, and so is Deligne-Mumford.
Properness is equivalent to properness of the underlying coarse moduli space by
Proposition 4.9. This in turn follows from the compactness [55, Theorem 3.20] and
Theorem 5.29 below.

Theorem 5.29. Suppose that X is either a smooth polarized projective G-variety
or a polarized vector space with linear action of G and proper moment map. The

coarse moduli space of M
G

n,1(A, X) is homeomorphic to the moduli space of affine

symplectic vortices M
K

n,1(A, X).

Proof. This is mostly proved in [52] using the heat flow for gauged maps in [51].
We sketch the proof: Any morphism u : C → X/G with u(z0) ∈ X//G determines,
by restriction, a pair (A, u) on A ∼= C − {z0} taking values in the semistable
locus, which can be complex-gauge-transformed (using the implicit function the-
orem) to a pair satisfying the vortex equations outside of a sufficiently large
ball. The heat flow for gauged maps provides a complex gauge transform to a
symplectic vortex; the convexity of Mundet’s functional implies that the com-
plex gauge transformation is unique up to unitary gauge transformation. Let
C → S, u : C → X/G, λ, z : S → Cn be a family of stable affine gauged maps
and s0 ∈ S. After restricting to a neighborhood of s0 we may assume that the
bundles are obtained from a fixed principal K-bundle on Cs0 and family of con-
nections on Cs0 via gluing. For each s ∈ S, there is a unique-up-to-unitary gauge
transformation gs ∈ G(P ) such that gs(As, us) is a vortex, obtained as the min-
imum of a functional ψ̃s obtained by integrating the moment map. We have
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Fgs(As,us) → Fgs(As0 ,us0)j
as s → s0 in Lp, by convergence away from the bub-

bling set, for any component (As0 , us0)j of (As0 , us0) with finite scaling. By the
implicit function theorem gs converges to gs0 in a suitable Sobolev 1, p-space for

p > 2, hence in C0. Continuity of the inverse map M
K

n,1(A, X) → M
G

n,1(A, X)

follows from the fact that M
G

n,1(A, X) is a coarse moduli space for C0 families
of gauged maps, by its construction via Quot scheme methods as in Section 4.5.
Let (Cs, Ps, As, us) be a family of nodal affine vortices over a topological space S.
(Cs, Ps, As) defines a continuous family of holomorphic bundles, denoted (Cs, P

C
s ).

Any such bundle is the pull-back of the universal deformation P univ → Cuniv of
(Cs0 , P

C
s0) by some continuous map S → Suniv, where PC

s0 is the holomorphic bun-
dle defined by A0. Consider us as a continuous family of holomorphic maps to
P univ(X), with Gromov limit u0 : C0 → P univ(X). The latter is also the limit in
the algebraic sense of the maps us, that is, the limit of the corresponding points
[us] in the moduli space of stable maps to P univ(X). Taking the universal defor-
mation of u0 realizes u0 as an algebraic specialization of us, which shows that that

map M
K

n,1(A, X) →M
G

n,1(A, X) is continuous.

Following Behrend-Manin [7] in the case of stable maps, we show that the moduli
stacks of affine gauged maps are functorial for suitable morphisms of G-varieties.

Proposition 5.30. There is a canonical morphism M
G,pre

n,1 (A, X) → M
G

n,1(A, X),
given by (recursively) collapsing unstable components.

Proof. Given a family u : C → X/G of affine gauged maps to X and an ample
G-line bundle L→ X define

Cst = Proj
⊕

n≥0

π∗(ω
λ
C/S [z1 + . . .+ zn]⊗ u∗L3)⊗n.

The map u factors through Cst and commutes with base change, in the case that
the family arises from forgetting a marking from a stable family by the similar
arguments to those in Behrend-Manin [7]. As in the case of (22), it is necessary
to perform this construction twice in order to produce a stable affine gauged map.
The general case reduces to this one, by adding markings locally. The orbifold
case is as in [3, Section 9], by taking the proj relative to the target stack.

Recall the category of smooth polarized G-varieties from Definition 5.16.

Corollary 5.31. X 7→ M
G

n,1(A, X) extends to a functor from the category of smooth
polarized G-varieties to Deligne-Mumford stacks.

Proof. Given morphisms φ : X0 → X1, G0 → G1 we obtain a morphism from

M
G0

n,1(A, X0) to M
G1,pre

n,1 (A, X1) by composing u with φ. Composing with the
collapsing morphism 5.30 gives the required morphism of moduli stacks.

Example 5.32. (Affine gauged maps in the toric case) Suppose thatG is a torus and
X a vector space with weights µ1, . . . , µk. Then MG

1,1(A, X) = Hom(A, X)ss/G
where Hom(A, X)ss is the space of morphisms from A to X that are generically
semistable, that is, u : A → X such that u−1(Xss) ⊂ A is non-empty.
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(a) (Projective space quotient) If X = Ck with G = C× acting diagonally, the
component of homology class d ∈ HG

2 (X,Z) ∼= Z is

Hom(A, X, d)ss/G =







∑

e≤d

(ae,1, . . . , ae,k)z
e | (ad,1, . . . , ad,k) 6= 0







/G

For example, if d = 1 and k = 2 then

MG
1,1(A, X, 1)

∼= {z 7→ (a1,1z + a0,1, a1,2z + a0,2), (a1,1, a1,2) 6= 0}/G

is the total space of OP(1)
⊕2. Its boundary is isomorphic to M0,2(P, [P]) ∼=

P2, the moduli space of twice-marked stable maps of degree [P], by the
map which attaches a trivial affine gauged map at the marking z1.

(b) (Point quotient) The case of X = C is studied from the point of view of
vortices in Taubes [48, Theorem 1] and Jaffe-Taubes [21]. To describe this
classification, let Symd(A) = Ad/Sd denote the symmetric product. The
references [], [21] show that the map

MG
1,1(A, X, d) → Symd(A), [u] 7→ u−1(0)

is a homeomorphism on coarse moduli spaces, which is obvious from the
algebraic description given here.

(c) (Weighted projective line quotient) The following is an example with orb-
ifold singularities in the quotient X//G. Let C2 resp. C3 denote the weight
space for GC = C× with weight 2 resp. 3 so that X = C2 ⊕ C3 and
X//G = P[2, 3]. Identifying HG

2 (X,Q) ∼= Q so that HG
2 (X,Z) ∼= Z we see

that for complex numbers a0, b0, a1, b1, . . .

MG
1,1(A, X, 0) = {(a0, b0) 6= 0}/G ∼= P[2, 3]

MG
1,1(A, X, 1/3) = {(a0, b1z + b0), b1 6= 0}/G ∼= C2/Z3

MG
1,1(A, X, 1/2) = {(a1z + a0, b1z + b0), a1 6= 0}/G ∼= C3/Z2

MG
1,1(A, X, 2/3) = {(a1z + a0, b2z

2 + b1z + b0), b2 6= 0}/G ∼= C4/Z3

MG
1,1(A, X, 1) = {(a2z

2 + a1z + a0, b3z
3 + b2z

2 + b1z + b0), (a2, b3) 6= 0}/G.

The stacks M
G

n,Γ(A, X) satisfy functoriality with respect to morphisms of col-
ored trees, similar to Proposition 4.7, with the caveat that because we allow stacky
points in the domain, in the case that X//G is only locally free, the gluing maps
will not be isomorphisms:

Proposition 5.33. Any morphism of colored trees Υ : Γ → Γ′ induces a morphism
of moduli spaces

M(Υ, X) : M
G

n,1,Γ(A, X) → M
G

n,1,Γ′(A, X), M(Υ, X) : M
G

n,1,Γ(A, X) → M
G

n,1,Γ′(A, X).

In particular,
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(a) (Cutting an edge or edges with relations) If Υ : Γ′ → Γ is a morphism
corresponding to cutting an edge of Γ, then there is a gluing morphism

G(Υ, X) : M
G

n,1,Γ′(A, X)×
I
2m
X/G

I
m

X/G → M
G

n,1,Γ(A, X) (32)

where m is the number of cut edges and the second morphism is the diag-
onal

∆ : I
m

X/G → I
2m

X/G

which is an isomorphism in the absence of stacky points in the domain,
that is, if X//G is a variety, and in general is an isomorphism after passing
to finite covers. The morphism M(Υ, X) is given by projection on the first
factor.

(b) (Collapsing an edge) If Γ′ is obtained from Γ by collapsing an edge then
there is an isomorphism

M
G

n,1,Γ′(A, X)×
Mn,1,Γ′ (A) Mn,1,Γ(A) → M

G

n,1,Γ(A, X)

and M(Υ, X) is given by projection on the first factor.

Proof. In the case that X//G is a variety, these claims are immediate from the
definitions. In the case that X//G is a Deligne-Mumford stack, the gluing maps

are isomorphisms after passing to the stack M
fr,G

n,1,Γ(A, X) of stable affine gauged
maps with sections at the stacky points.

5.5. Scaled gauged maps

In this section, we construct moduli stacks of scaled maps with projective domain.
These are used later to relate the gauged graph potential of X with the graph
potential of the quotient X//G. Let X be a smooth projectively embedded G-
variety and C a smooth connected projective curve.

Definition 5.34. A nodal scaled gauged map from C toX consists of a twisted nodal
scaled n-marked curve (Ĉ, z, ω) as in [55, Definition 2.40], with orbifold structures
only at the nodes with infinite scaling, together with a morphism Ĉ → C ×X/G
consisting of a bundle P → Ĉ and a representable morphism u : Ĉ → C × P (X).
Such a map is stable iff

(a) (Finite scaling) if the scaling ω is finite on the principal component then u
is stable for the large area chamber;

(b) (Infinite scaling) if the scaling ω is infinite on the principal component then
C admits a decomposition into not-necessarily-irreducible components C =
C0∪ . . .∪Cr where u0 = u|C0 is an r-marked stable map C0 → C× (X//G)
and ui = u|Ci : Ci → C ×X/G are stable affine gauged maps.

A morphism of scaled Mundet-stable curves (Ĉ, λ, z, u) to (Ĉ′, λ′, z′, u′) is an iso-
morphism of the underlying scaled curves φ : Ĉ → Ĉ′ intertwining the scalings,
markings, and morphisms. A nodal gauged map is stable if it is Mundet stable
and has finitely many automorphisms, that is, each non-principal component with
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non-degenerate scaling resp. degenerate scaling has at least two resp. three special
points.

Let M
G

n,1(C,X) denote the stack of nodal Mundet-semistable scaled gauged

maps, and M
G

n,1(C,X) the stack of semistable scaled gauged maps. M
G

n,1(C,X)

is the union of stacks M
G

n,1(C,X)<∞ consisting of gauged vortices for large area

chamber and a scaling on the underlying curve, and a stack M
G

n,1(C,X, d)∞ con-
sisting of maps from C to X//G and collections of affine maps to X/G. By forget-
ting the affine maps one obtains a fiber bundle

M
G

n,1(C,X, d)∞ → Mr(C,X//G) (33)

with fiber Πrj=1M
G

ij ,1(A, X).1 Note that M
G

n,1(C,X) contains M
G

n (C,X) as the
zero section.

Proposition 5.35. M
G

n,1(C,X) is an Artin stack. M
G

n,1(C,X) is an open substack

equipped with a morphism ρ : M
G

n,1(C,X) → M0,1(C) ∼= P with the property that

there exist isomorphisms M
G

n (C,X, d) → ρ−1(0) (with stability on the domain

given by the large area chamber ρ → 0) and M
G

n,1(C,X, d)∞ → ρ−1(∞). The

coarse moduli space of M
G

n,1(C,X) is homeomorphic to the moduli space of scaled

vortices M
K

n,1(C,X).

Proof. That M
G

n,1(C,X) is an Artin stack follows from Example 4.3, since the

universal scaled curve is proper over M
G

n,1(C,X) and M
G

n,1(C,X) is the hom-stack
of representable morphisms from the universal scaled curve to X/G. To see that

M
G

n,1(C,X, d) is an Artin substack we must show thatM
G

n,1(C,X, d)<∞\M
G

n,1(C,X, d)<∞

is closed in M
G

n,1(C,X, d). An argument which uses the Hitchin-Kobayashi corre-

spondences above goes as follows: Suppose that u : Ĉ → C ×X/G is a family of
scaled maps over a parameter space S with central fiber u0 an infinite-area gauged
map, that is, a map C0 → X//G together with a collection of affine gauged maps
Ci → X/G, i = 1, . . . , k, and for s 6= 0, the map us ρs-unstable with ρs → ∞ as
s → 0. In particular the principal component of us can be represented as a pair
(As, vs) with (As, vs) flowing under the heat flow in Venugopalan [51] to a limit
(A′

s, v
′
s) that is reducible. Since K acts locally freely on the zero level set Φ−1(0)

there exists a constant c > 0 such that

∀x ∈ X, dim(Kx) > 0 =⇒ ‖Φ(x)‖ > c.

Using the energy-area identity there exist constants c0, c1 such that

‖ρ−1
s FA′

s
+ ρs(v

′
s)

∗P (Φ)‖L2 ≥ c0 + c1|ρs|

which implies the same estimate for (As, vs). Now suppose that (As, us) converges
to some (A0, v0) with v

∗
0P (Φ) = 0 on the principal component. Since ‖FAs‖L2 is

1Equation (33) is corrected from the published version.
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bounded, we must have ‖v∗sP (Φ)‖L2 → ∞. This contradicts ‖v∗0P (Φ)‖ = 0. Hence

u0 is not in the closure of the unstable locus in M
G

n,1(C,X)<∞.

If every polystable scaled gauged map is stable then M
G

n,1(C,X) is Deligne-
Mumford. The homeomorphism of the coarse moduli space to the moduli space of
vortices is already established for curves with finite scaling or curves with infinite
scaling via Mundet’s correspondence and its version for affine curves in Theorem
5.29. It remains to show that the homeomorphisms on these subsets glue to-
gether to a homeomorphism on the entire space, that is, that the bijection and
its inverse are continuous. The first issue is the continuity of the complex gauge
transformation used in the definition of the correspondence under specialization.
Let C → S, u : C → X/G, λ, z : S → Cn be a family of stable scaled gauged maps
and s0 ∈ S. After restricting to a neighborhood of s0 we may assume that the
bundles are obtained by applying the gluing construction to a principal K-bundle
on Cs0 to family of connections on Cs0 . For each s ∈ S, there is a unique-up-to-
unitary gauge transformation gs ∈ G(P ) such that gs(As, us) is a vortex, obtained
as the minimum of the Mundet functional. On any component, say j-th, with
finite scaling we have Fgs0 (As,us) → Fgs0 (As0 ,us0 )j

as s → s0 in Lebesgue space
Lp, p > 2. By an argument using the implicit function theorem, gs converges to
gs0 in W 1,p, hence in C0 on the complement of the bubbling set. (Note that the
Lp convergence does not hold at the bubbling points and indeed there is not C0

convergence of the complex gauge transformation on the principal component.)
A similar discussion holds on any of the bubbles on which the limiting scaling is
finite: Namely suppose that φs : Brs(0) → C is a sequence of embeddings of balls
of radius rs → ∞ such that φ∗s(As, us) converges to an affine vortex (A, u). Then
φ∗sFAs,us converges to FA,u in Lp. This implies that the gauge transformations gs
converge in C0 on the compact subsets of the affine line. Continuity of the inverse

map M
K

n,1(C,X) →M
G

n,1(C,X) follows from the fact that M
G

n,1(C,X) is a coarse
moduli space for C0 families of gauged maps, which is similar to the case C = A.

6. Virtual fundamental classes

The virtual fundamental class theory of Behrend-Fantechi [6] (which is a version
of earlier approach of Li-Tian [27]) constructs a Chow class from a perfect relative
obstruction theory. Stacks of representable morphisms to quotient stacks by reduc-
tive groups have canonical relative obstruction theories, by the same construction
in [6] and a deformation result of Olsson [38]. In this section, we construct vir-
tual fundamental classes for stacks of gauged (resp. gauged affine, gauged scaled)
maps.

6.1. Sheaves on stacks

Any Artin stack X comes equipped with a canonical structure sheaf of rings OX

in any of the standard Grothendieck topologies on X . A sheaf on an Artin stack
X will mean a sheaf of OX -modules over the lisse-étale site of X , see Olsson [36],
de Jong et al [10]. A sheaf E is coherent if for every object U of the lisse-étale
site, the restriction E|U admits presentations (ØnX |U) → (E|U) of finite type,
and furthermore any such map has kernel of finite type. The derived category
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of bounded complexes of sheaves with coherent cohomology DbCoh(X ) is the sub-
category of the derived category of complexes of coherent sheaves with coherent
bounded cohomology groups. It is a triangulated category obtained by inverting
quasi-isomorphisms in the category of complexes of sheaves with coherent coho-
mology.

Example 6.1. (Examples of complexes of coherent sheaves on Artin stacks)

(a) (Equivariant sheaves) If X = X/G is the quotient stack associated to a
group action of a group G on a scheme G, then the category of sheaves
on X is equivalent to the category of G-equivariant sheaves on X , by an
argument involving simplicial spaces [26, 12.4.5].

(b) (Cotangent complex) Any morphism of Artin stacks f : X → Y defines a
cotangent complex LX/Y ∈ DbCoh(X ) satisfying the expected properties
[36], for example, if g : Y → Z is another morphism of Artin stacks then
there is a distinguished triangle in DbCoh(X ) . . . → LX/Z → LX/Y →
Lf∗LY/Z [1] → . . . .

6.2. Cycles on stacks

The notion of rational Chow group A(X ) of a Deligne-Mumford stack X is devel-
oped in Vistoli [53], and further improved in Kresch [24]. A cycle of dimension k
on X is an element of the free abelian group Zk(X ) generated by all integral closed
substacks of dimension k so that the group of cycles is

Z(X ) =
⊕

k

Zk(X ).

A cycle with rational coefficients of dimension k is an element of the group Zk(X )⊗
Q. The group of rational equivalences on cycles of dimension k on X is

Wk(X ) =
⊕

Y

C(Y)∗

the sum of the spaces of non-zero rational functions on substacks Y of X of di-
mension k + 1. Set

W (X ) = ⊕kWk(X ), W (X )Q =W (X )⊗Q.

If X is a scheme, there is a homomorphism ∂X : W (X) → Z(X) that takes a
rational function on a subvariety of X to the cycle associated to its Weil divisor.
For a stack X , the functors Z,W define sheaves on the étale site of X , the maps
∂X define a morphism of sheaves and hence a morphism of spaces of global sections
∂X : W (X ) → Z(X ). The Chow group is the cokernel

A(X ) := coker(∂X : W (X ) → Z(X ))

and the rational Chow group is A(X )Q = A(X ) ⊗Q.
Let f : X → Y be a morphism of Deligne-Mumford stacks. If f is flat, then

there is a flat pull-back f∗ : Z(Y) → Z(X ). If f is proper, then there is a proper
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push-forward f∗ : Z(X )Q → Z(Y)Q given for finite flat morphisms by f∗[X
′] =

deg(X ′/f(X ′))[f(X ′)]; note that for stacks the degree is a rational number, see
Vistoli [53, Section 2]. These maps pass to rational equivalences, so that we obtain
maps

f∗ : A(Y) → A(X ) f flat, f∗ : A(X )Q → A(Y)Q f proper.

If f : X → Y is a regular local embedding of codimension d and Z → Y is a
morphism from a scheme V , then there is a Gysin homomorphism

f ! : Z(Y) → A(X ×Y V ) f regular local embedding

defined by local intersection products. Vistoli [53, Theorem 3.11] proves that
this passes to rational equivalence. The Gysin homomorphisms satisfy the usual
functorial properties with respect to proper and flat morphisms: For any fiber
diagram

X ′′ Y ′′

X ′ Y ′

X Y

❄

p

✲

❄

q

❄

✲

❄

✲
f

where Y ′,Y ′′ are schemes and f is a regular local embedding, (i) if q is proper then
f !q∗ = p∗f

| and (ii) if q is flat then f !q∗ = p∗f !.
If f : X → Y is a morphism of schemes then there is a bivariant Chow group

A∨(X → Y ), whose elements α of degree l associate to any morphism U → Y
and each class u ∈ Ak(U) a class, denoted α ∩ u, in Ak−l(X ×Y U) satisfying
compatibility with flat pull-back, proper push-forward, and Gysin homomorphisms
for regular local embeddings. The definition of bivariant Chow groups extends to
representable morphisms of stacks f : X → Y [53, Section 5], and the action on
Chow groups of schemes extends to an action on Chow groups of stacks equipped
with morphisms to Y.

The theory of Gromov-Witten invariants requires bivariant Chow theory for
representable morphisms of Artin stacks. As explained by Behrend-Fantechi [6,
Section 7]

Proposition 6.2. (a) If X → Y is a representable morphism of Artin stacks,
then there exists a bivariant Chow group A∨(X → Y).

(b) If X → Y is a regular local immersion then there exists a canonical element
[f ] ∈ A∨(X → Y) whose action on Chow cycles is denoted f !.

(c) If X → Y is flat then there is a canonical orientation class [f ] ∈ A∨(X →
Y).

Now we define derived categories and Chow groups for G-stacks. Let X be a
G-stack with multiplication µ : G × X → X and projection on the right factor
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ρ : G×X → X . and F → X a sheaf. A G-linearization of F is an isomorphism of
sheaves φ : µ∗F → ρ∗F which is compatible with multiplication in the sense that
(µ × IdX )∗φ is equal to (IdG × µ)∗φ. A G-sheaf on X is a sheaf together with a
linearization. Any G-sheaf F descends to a sheaf F/G on the quotient stack X/G,
so that the cohomology of F/G is the invariant part of the cohomology of F .

The equivariant derived category Db CohG(X ) is the derived category of the
quotient stack DbCoh(X/G). In particular, any complex of G-sheaves defines an
object in Db CohG(X ). Note that if X/G is Deligne-Mumford, then Db CohG(X )
is the usual derived category of bounded complexes of coherent sheaves, other-
wise one needs more complicated constructions involving Cartesian sheaves [36].
The equivariant cotangent complex is the cone LGX := Cone(LX → g∨) on the
morphism LX → g∨ induced by the action of G. By the exact triangle for cotan-
gent complexes, if the action of G on X is locally free, so that X/G is again a
Deligne-Mumford stack then LGX descends to LX/G.

Suppose that G is a reductive group, and X is a proper Deligne-Mumford
stack X of dimension n equipped with an action of G. The equivariant Chow
groups AG(X ) are defined by Edidin-Graham (for schemes) [13] and Graber-
Pandharipande (for stacks) [19] as follows. Let V be an l-dimensional represen-
tation of G such that V has an open subset U on which G acts freely and whose
complement has codimension more than n− i. Let

AGi (X ) = Ai+l−g(U ×G X )

be the i-th equivariant Chow group. By [13, Proposition 1] (for schemes; the
argument for Deligne-Mumford stacks is the same) AGi (X ) is independent of the
choice of V and U . It satisfies the following properties

(a) (Functoriality) If X ,Y are Deligne-Mumford stacks equipped with actions
of G then any G-equivariant proper resp. flat morphism f : X → Y induces
a map f∗ : AG(X ) → AG(Y) resp. f∗ : AG(Y) → AG(X ).

(b) (Free actions) If the action ofG on X is locally free then AG(X ) → A(X/G)
is an isomorphism, where X/G is the quotient stack. (This is [19, Lemma
6] in the case G = C×).

More generally, Kresch has introduced a notion of Chow groups for Artin stacks
[25], so that A(X/G) is isomorphic to AG(X ), for a not-necessarily-free action of
a reductive group G on a Deligne-Mumford stack X .

6.3. Obstruction theories

Often a stack X is given (at least locally) as a zero locus of a vector bundle E → Y.
In such a case, X is a complete intersection and so carries a fundamental class.
The notion of perfect obstruction theory for X keeps some of this information and
is enough to reconstruct a virtual fundamental class for X .

Definition 6.3. An obstruction theory for an Deligne-Mumford stack X is a pair
(E, φ) where E ∈ Ob(Db Coh(X )) is an object in the derived category of coherent
sheaves in the étale topology and φ : E → LX is a morphism in the derived
category of coherent sheaves such that
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(a) hi(E) = 0, i > 0;
(b) h0(φ) is an isomorphism;
(c) h−1(φ) is surjective.

The rank of E is the virtual dimension of X . A relative obstruction theory for a
morphism of stacks f : X → Y is defined similarly, but replacing the cotangent
complex LX with its relative version Lf . An obstruction theory (E, φ) is perfect
if E has amplitude in [−1, 0], that is, non-vanishing cohomology only in degrees
0,−1. Behrend-Fantechi [6] furthermore assume that there is a global resolution
of E, that is, a complex of vector bundles F = [F−1 → F 0] together with an
isomorphism of F to E in DbCoh(X ), but this assumption is removed in Kresch
[25].

There is an equivariant version of obstruction theory in the sense of Behrend-
Fantechi [6], given as follows. Let X be a proper Deligne-Mumford G-stack where
G is a reductive group, and let U be a free G-variety as in the definition of the
equivariant Chow ring above. Let Lπ ∈ Ob(Db Coh(X ×G U)) be the relative
cotangent complex for π : X ×G U → U/G. An equivariant obstruction theory is a
pair (E, φ) where E ∈ Ob(Db Coh(X ×GU)) and φ is a morphism in Db Coh(X ×G
U) to Lπ. We suppose that E admits a global presentation E−1 → E0.

Example 6.4. (Examples of Obstruction Theories)

(a) (Stacks of morphisms to projective schemes [6]) Let C,X be projective
schemes such that C is Gorenstein, and Hom(C,X) the scheme of mor-
phisms from C to X . Let u : C ×X → X be the universal morphism and
p : C ×X → C the projection. Let

E = Rp∗(u
∗LX ⊗ ω) = (Rp∗u

∗TX)∨.

Then E forms part of an obstruction theory for X , perfect if X is smooth
and C is a curve [6, 6.3]. Indeed, by the functorial properties of the cotan-
gent complex there is a homomorphism

e : u∗LX → LC×Hom(C,X) → LC×Hom(C,X)/C
∼= π∗LHom(C,X).

Then e induces a homomorphism φ := π∗(e
∨)∨ : E∨ → L∨

X . The map φ is
an obstruction theory [6, 6.3].

(b) (Stacks of morphisms to Artin stacks) The construction of an obstruction
theory extends to the case that X is an Artin S-stack and HomS(C,X)
is replaced by a Deligne-Mumford substack of the stack of representable
morphisms Homrep

S (C,X), as long as one can show that Homrep
S (C,X) is

also an Artin S-stack and E has amplitude in [−1, 0]; see [38, Theorem 1.1]
for the extension of basic results about deformation theory of morphisms
of schemes to the setting of stacks. That the Hom-stack HomS(C,X) is an
Artin stack, if C,X are, is not known in general, but holds as long as X =
Y/G is a quotient stack for action of a reductive group G on a projective
variety Y by Example 4.3 (d). In this case, if X is smooth than E has
amplitude in−1, 0; cohomology below degree−1 vanishes since T (Y/G) has
amplitude in 0, 1 while vanishing in degree 1 follows from the assumption
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that the substack is Deligne-Mumford and H1(E) = Ext−1(E,C) is the
sheaf of infinitesimal automorphisms [38, Theorem 1.5].

(c) (Moduli stacks of bundles) Let C be a projective scheme and G a reductive
group so that Hom(C,BG) is the moduli stack of principal G-bundles on
C. By Examples 4.1 (c) and 4.3 (c) Hom(C,BG) has an obstruction theory
with E = (Rp∗g[1])

∨ where g denotes the trivial sheaf with fiber g. If C is
a projective curve then this obstruction theory is perfect on the substack
of irreducible bundles. In fact Hom(C,BG) is a smooth Artin stack and
the obstruction theory coincides with the cotangent complex [47, 3.6.8].

(d) (Hom-stacks over stacks) Continuing 4.3 (d) let X be a Gorenstein Deligne-
Mumford curve over an Artin stack Z, Y an Artin stack overZ and suppose
that Homrep

Z (X ,Y) is an Artin stack, and Homrep,0
Z (X ,Y) the sub-stack

of Homrep
Z (X ,Y) with finite automorphism group. The restriction of the

relative obstruction theory to Homrep,0
Z (X ,Y) is perfect.

(e) (Moduli stacks of gauged maps) In particular, for any type Γ and non-

negative integer n, the moduli stack M
G

n,Γ(C,X) has a relative obstruction

theory over Mn,Γ(C) with complex given by (Rp∗u
∗T (X/G))∨.

(f) (Moduli stacks of affine gauged maps) For any type Γ and non-negative in-

teger n, the moduli stackM
G

n,Γ(A, X) is an open substack of Homrep

Mn,Γ(A)
(Cn,Γ(A), X/G)

and has a relative obstruction theory over Mn,Γ(A) with complex given by
(Rp∗u

∗T (X/G))∨.
(g) (Moduli stacks of stable maps, equivariant case) If a group G acts on a

smooth projective varietyX , then for any type Γ and non-negative integers
g, n the moduli stack of stable maps Mg,n,Γ(X) admits an equivariant
perfect relative obstruction theory overMg,n,Γ as in Graber-Pandharipande
[19] and so an equivariant virtual fundamental class.

6.4. Definition of the virtual fundamental class

Behrend-Fantechi [6] and Kresch [24] construct for any Deligne-Mumford stack X
an intrinsic normal cone of pure dimension zero CX , defined by patching together
the quotients CU/M/f

∗TM for local embeddings f : U → M . (See [24, Theorem
1] for a correction to the argument in [6].) If (E, φ) is a perfect obstruction
theory with E = (E−1 → E0) then the morphism φ induces a morphism of cone
stacks CX → E∨,1/E∨,0. Let CE denote the fiber product of E∨,1 and CX over
E∨,1/E∨,0. In the rest of the paper, we denote by A(X ) etc. the rational Chow
group of X .

Definition 6.5. (Virtual fundamental classes)

(a) (Non-equivariant case) The virtual fundamental class [X ] (depending on
(E, φ)) is the intersection of CE with the zero section of E∨,1 in A(X ).
By [6, 5.3], [X ] is independent of the choice of global resolution used to
construct it.

(b) (Equivariant virtual fundamental classes) In the equivariant case, the mor-
phism π : U ×G X → U/G is of Deligne-Mumford type and gives an
intrinsic normal cone [CX ] ∈ AG0 (X ) = A0(X ×GU). One obtains a virtual
fundamental class in AG(X ).
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(c) (Relative virtual fundamental classes) Let f : X → Y be a representable
morphism of algebraic stacks, and A∨(X → Y) the bivariant Chow group
constructed by Vistoli [53]. If f is flat or a regular immersion, one denotes
by [f ] ∈ A∨(X → Y) the orientation class of 6.2, and by f ! its action on
Chow groups of Deligne-Mumford stacks. Given a relative perfect obstruc-
tion theory let [X ] ∈ Adim(Y)+rk(E)(X ) be the relative virtual fundamental
class given by intersecting CE with the zero section of E∨,1 [6], [24].

Example 6.6. (a) (Stable Maps) Let X be a smooth projective variety and
g, n non-negative integers. For any type Γ, the moduli stack Mg,n,Γ(X, d)
with genus g and n markings is a proper Deligne-Mumford stack equipped
with a perfect relative obstruction theory over Mg,n,Γ and so has a vir-
tual fundamental class [Mg,n,Γ(X, d)]. More generally if X is proper
smooth G-stack with G a reductive group then the obstruction theory
is equivariant and Mg,n(X, d) has a G-equivariant virtual fundamental
class [Mg,n,Γ(X, d)] ∈ AG(Mg,n,Γ(X, d)). Even more generally let X be a
smooth proper Deligne-Mumford stack and Γ a combinatorial type. The
moduli space of twisted stable maps Mg,n,Γ(X ) discussed in Section 4 has
a canonical perfect relative obstruction theory and hence a virtual funda-
mental class [Mg,n,Γ(X , d)].

(b) (Stable gauged maps) For a type Γ and non-negative integer n ifM
G

n,Γ(C,X)
is a Deligne-Mumford substack (equivalently in characteristic zero, all
automorphism groups are finite) then it has a virtual fundamental class

[M
G

n,Γ(C,X)] ∈ A(M
G

n,Γ(C,X)), by Example 6.4 (e).

(c) Recall that M
G

n,1(A, X) admits a forgetful morphism to M
tw

n,1(A) (where
the superscript tw indicates that we allow orbifold structures at the nodes
with infinite scaling, in the case that X//G is only locally free) and to
Mn,1(A), the latter collapsing components that become unstable after

forgetting the morphism to X/G. M
G

n,1(A, X) has a canonical perfect

relative obstruction theory over M
tw

n,1(A), whose complex is dual to the

push-forward of u∗T (X/G) over the universal curve over M
G

n,1(A, X), by

Example 6.4 and so a virtual fundamental class [M
G

n,1(A, X)].
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