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Quantum Kirwan for quantum K-theory
E. González and C. Woodward

Abstract

For G a complex reductive group and X a smooth projective or con-

vex quasi-projective polarized G-variety we construct a formal map in

quantum K-theory

κGX : QK0
G(X)→ QK0(X//G)

from the equivariant quantum K-theory QK0
G(X) to the quantum K-

theory of the geometric invariant theory quotient X//G, assuming the

quotient X//G is a smooth Deligne-Mumford stack with projective coarse

moduli space. As an example, we give a presentation of the (possibly

bulk-shifted) quantum K-theory of any smooth proper toric Deligne-

Mumford stack with projective coarse moduli space, generalizing the

presentation for quantum K-theory of projective spaces due to Buch-

Mihalcea [7] and (implicitly) of Givental-Tonita [18]. We also provide a

wall-crossing formula for the K-theoretic gauged potential

τGX : QK0
G(X)→ ΛGX

under variation of geometric invariant theory quotient, a proof of the

invariance of τGX under (strong) crepant transformation assumptions,

and a proof of the abelian non-abelian correspondence relating τGX and

τTX for T ⊂ G a maximal torus.

Partially supported by NSF grants DMS-1510518 and DMS-1711070
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1.1 Introduction

We aim to describe the behavior of quantum K-theory under the opera-

tion of geometric invariant theory quotient. Let X be a smooth projec-

tive G-variety with polarization L → X. The geometric invariant theory

(git) quotient X//G is a proper smooth Deligne-Mumford stack with

projective coarse moduli space. Let K0
G(X) denote the even topological

or algebraic G-equivariant K-cohomology of X. The Kirwan map is the

ring homomorphism in K-theory (“K-theoretic reduction”)

κGX : K0
G(X)→ K0(X//G), [E] 7→ [(E|Xss)/G] (1.1)

obtained by restricting a vector bundle E to the semistable locus Xss

and passing to the stack quotient. If X is projective then Kirwan showed

that (1.1) is surjective in rational cohomology [39]. The analogous results

in K-theory hold by work of Harada-Landweber [30, Theorem 3.1] and

Halpern-Leistner [27, Corollary 1.2.3]. The Kirwan map can often be

used to compute the K-theory of a git quotient. In particular, the Kirwan

map allows a simple presentation of the K-theory of a smooth projective

toric variety, equivalent to the presentation given in Vezzosi-Vistoli [55,

Section 6.2].

A quantum deformation of the K-theory ring was introduced by Given-

tal [17] and Y.P. Lee [41]. In this deformation, the tensor product of

vector bundles is replaced by a certain push-pull over the moduli space

of stable maps. The virtual fundamental class in cohomology is replaced

by a virtual structure sheaf introduced in [41], and integrals over the

moduli space of stable maps in K-theory are called K-theoretic Gromov-

Witten invariants. For many purposes quantum K-theory is expected

to be more natural than the quantum cohomology ring, which can be

obtained as a limit; see for example [43]. In particular, the K-theoretic

Gromov-Witten invariants are integers. Computations in quantum K-

theory have been rather rare; even the quantum K-theory of projective

space seems to have been computed only recently by Buch-Mihalcea [7].

We develop a quantum version of Kirwan’s map in K-theory. As appli-

cations, we give presentations of the quantum K-theory of toric varieties,

generalizing a computation of Buch-Mihalcea [7] in the case of projective

spaces. Let

ΛGX ⊂ Map(HG
2 (X,Q),Q)

denote the equivariant Novikov ring associated to the polarization, with

qd denoting for q a formal variable the delta function at d ∈ HG
2 (X,Q).
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The quantum K-theory product is defined by Givental-Lee [17, 41] as a

pull-push over moduli spaces of stable maps; in order to make the prod-

ucts finite we define the equivariant quantum K-theory as the completion

of K0
G ⊗ ΛGX with respect to the ideal IXG (c) of elements E ∈ K0

G ⊗ ΛGX
with valq(E) > c:

QK0
G(X) = lim

n←
(K0

G(X)⊗ ΛGX)/IXG (c)n. (1.2)

The main result is the following:

Theorem 1.1. Let G be a complex reductive group and X be a smooth

polarized projective (or convex quasiprojective) G-variety with locally free

git quotient X//G. There exists a canonical Kirwan map in quantum K-

theory

κGX : QK0
G(X)→ QK0(X//G)

with the property that the linearization Dακ
G
X is a homomorphism:

Dακ
G
X(β ? γ) = Dακ

G
X(β) ? Dακ

G
X(γ).

If X//G is a free quotient then κGX is surjective.1

The convexity assumption is satisfied if, for example, the variety is

a vector space with a torus action such that all weights are properly

contained in a half-space. For example, for toric varieties that may be

realized as git quotients we explicitly compute the kernel of the map

to obtain a presentation of the orbifold quantum K-theory at a point

determined by the presentation, generalizing the presentation of ordi-

nary K-theory of non-singular toric varieties due to Vezzosi-Vistoli [55,

Section 6.2] and the case of quantum K-theory of projective spaces

due to Buch-Mihalcea [7]: Let G be a complex torus and X a vec-

tor space with weight spaces X1, . . . , Xk and weights µ1, . . . , µk define

the completed equivariant quantum K-theory Q̂K
0

G(X) to be the ring

with generators X±1
1 , . . . , X±1

k formally completed by the ideal gener-

ated by (1−X−1
j ), j = 1, . . . , k.2 The K-theoretic Batyrev (or quantum

K-theoretic Stanley-Reisner) ideal is the ideal QKSRGX generated by the

relations ∏
(µj ,d)≥0

(1−X−1
j )µj(d) = qd

∏
(µj ,d)<0

(1−X−1
j )−µj(d). (1.3)

1 Computations suggest that the map κGX might be surjective even for locally free
quotients of proper free actions.

2 In the case of orbifold quotients, a more complicated formal completion is
necessary, see Definition 1.2.
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Theorem 1.2. Suppose that G is a torus with Lie algebra g, that X is

a G-vector space with weights µ1, . . . , µk ∈ g∨R contained in an open half-

space in g∨R, and that X is equipped with a polarization so that X//G

is a non-singular proper toric Deligne-Mumford stack with projective

coarse moduli space. Let T = (C×)k/G denote the residual torus. Then

the quantum K-theory ring QK0(X//G) with bulk deformation κGX(0) is

isomorphic to the quotient ̂QK0
G(X)/QKSRGX .

Example 1.3. (Weighted projective spaces) Suppose that G = C×
acts on X = Ck with weights µ1, . . . , µk ∈ Z, so that X//G is the

weighted projective space P(µ1, . . . , µk). Then the T -equivariant quan-

tum K-theory of X//G has canonical presentation with generators and

a single relation (in this case the formal completion is not necessary):

QK0(X//G) ∼=
ΛGX [X±1

1 , . . . , X±1
k ]〈∏

j(1−X
−1
j )µj(d) − q

〉 . (1.4)

In this case, the bulk deformation κGX(0) turns out to vanish, see Lemma

1.6 below, and Xj is the class of the line bundle associated to the weight

µj .

Example 1.4. (BZ2) This is a sub-example of the previous Example

1.3; we include it to emphasize the importance of working over the equiv-

ariant Novikov ring. Suppose that G = C× acts on X = C with weight

two. Then the quantum K-theory of X//G = BZ2 has generators X±1

with single relation

QK(BZ2) =
Z[X±1, q]〈

(1−X−1)2 − q
〉 .

On the other hand, without the equivariant Novikov ring K(BZ2;Z) is

simply the group ring on Z2 via the identification of representations with

their characters. Let

δ±1 ∈ K(BZ2;Z)

be the delta functions at the group elements ±1 ∈ Z2. Proposition 1.1

below shows that (1−X−1) maps to
√
qδ−1 under D0κ

G
X . This implies

the relation

(
√
qδ−1)2 − q = qδ(−1)(−1) − q = 0

since δ1 is the identity. This matches with the relation

δ2
−1 = δ1
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in K(BZ2), the group algebra of Z2 since the product is given by con-

volution.

Since the relations are essentially the same as those in quantum co-

homology, one obtains a generalization of the isomorphism between

K-theory and cohomology of toric varieties induced by identifying co-

homological and K-theoretic first Chern classes of divisors in Vezzosi-

Vistoli [55, Section 6.2]: The quantum K-theory ring at bulk deformation

κGX(0) ∈ QK0(X//G) is canonically isomorphic to the quantum cohomol-

ogy ring QH(X//G) at bulk deformation κG,coh
X (0) ∈ QH(X//G) (where

κG,coh
X : QHG(X) → QH(X//G) is the cohomological quantum Kirwan

map) via a map defined on generators by

QK0(X//G)→ QH(X//G), Dακ
G
X(Xj − 1) 7→ Dακ

G,coh
X (c1(Xj)).

In particular, the quantum K-theory of toric Deligne-Mumford stacks is

generically semisimple.

We thank Ming Zhang for helpful comments and an anonymous referee

for pointing out an important omission in the orbifold case.

1.2 Equivariant quantum K-theory

We recall the following basics of equivariant quantum K-theory, following

Buch-Mihalcea [7] and Iritani-Milanov-Tonita [33]. Let X be a G-variety.

The equivariant K-homology group KG
0 (X) is the Grothendieck group of

coherent G-sheaves on X, that is, the free Abelian group generated by

isomorphism classes of G-equivariant coherent sheaves modulo relations

whenever there exists an equivariant exact sequence: For G-equivariant

sheaves F ,F ′,F ′′ we have an implication

0→ F ′ → F → F ′′ → 0 =⇒ [F ] = [F ′] + [F ′′].

The K-homology K0
G(X) is naturally a module over the equivariant K-

cohomology ring K0
G(X) of G-equivariant vector bundles on X. Both the

multiplicative structure of K0
G(X) and the module structure of KG

0 (X)

are given by tensor products. If X is non-singular then the map from

K0
G(X) to KG

0 (X) that sends a vector bundle to its sheaf of sections is

an isomorphism.

Equivariant K-theory has the following functoriality properties. Given

a G-equivariant morphism f : X → Y between varieties X,Y there is a
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ring homomorphism

f∗ : K0
G(Y )→ K0

G(X), [E] 7→ [f∗E]

given by pull-back of bundles. If f is proper then there is a pushforward

map

f∗ : KG
0 (X)→ KG

0 (Y ), f∗[F ] 7→
∑
i≥0

(−1)i[Rif∗F ].

This map is a homomorphism of K0
G(Y ) modules by the projection for-

mula.

The quantum product in K-theory is defined by incorporating contri-

butions from moduli spaces of stable maps. Let X be a smooth projective

G-variety. For integers g, n ≥ 0 and a class d ∈ H2(X,Z) let

Mg,n(X, d) =

{
(u : C → X, z ∈ Cn)

∣∣∣∣ # Aut(u, z) <∞,
g(C) = g, u∗[C] = d

}
denote the moduli stack of stable maps to X with n markings, genus g,

and homology class d. The evaluation maps are denoted

ev = (ev1, . . . , evn) :Mg,n(X, d)→ Xn.

Recall that a perfect obstruction theory E• admitting a global resolution

by vector bundles on a stack M is a pair (E, φ) consisting of an object

of the bounded derived category of coherent sheaves on M that can be

presented as a two term complex

E = [E−1 → E0] ∈ D[−1,0](Coh(M))

of vector bundles, together with a morphism

φ : E → LM, h0(φ) iso, h−1(φ) epi

to the ( L≥−1 truncation of the) cotangent complex of LM, satisfying

that (c.f. [4], [21]) h0(φ) is an isomorphism and h−1(φ) is an epimor-

phism. The perfect obstruction theory defines the virtual tangent bundle

T vir
M = Def −Obs ∈ K0(M), Def := [(E0)∨], Obs := [(E−1)∨]

as in [10, p. 21]. That is, the virtual tangent bundle is the K-theoretic

difference of the deformation space and the obstruction space. The vir-

tual normal cone C ↪→ E1 = (E−1)∨ induces the virtual structure sheaf

[41] as the derived tensor product

Ovir
M := OM

L⊗
OE1

OC ∈ Ob(DCoh(M)),
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whose class in K(M) is

[Ovir
M ] =

∞∑
i=0

(−1)i ToriOE1
(OM,OC) ∈ K(M).

For any class α ∈ K(M) we define the virtual Euler characteristic

χvir(M;α) = χ(M;α⊗Ovir
M) ∈ Z

the Euler characteristic after twisting byOvir
M . These constructions admit

equivariant generalizations, so that for any genus g ≥ 0 and markings

n ≥ 0 with M = Mg,n(X, d) the virtual structure sheaf Ovir
M is an

object in the G-equivariant bounded derived category for Mg,n(X, d)

introduced by Y.P. Lee [41]. It defines a class [Ovir] in the equivariant

K-theory ofMg,n(X, d). For classes α1, . . . , αn ∈ K0
G(X) and a class β ∈

K(Mg,n) define the equivariant K-theoretic Gromov-Witten invariants

〈α1, . . . , αn;β〉g,n,d := χG(ev∗1 α1 ⊗ . . .⊗ ev∗n αn ⊗ f∗β ⊗ [Ovir]), (1.5)

where χG is the equivariant Euler characteristic. In fact, because X is

smooth, one may replace the algebraic K-cohomology group above by the

topological equivariant K-cohomology, that is, the Grothendieck group

of equivariant complex vector bundles on X, as in [41, Section 4]. In this

case the equivariant Euler characteristic is then replaced by a proper

push-forward in topological K-theory. Define descendant invariants by

〈α1L
d1 , . . . , αnL

dn ;β〉g,n,d ∈ K0
G(pt)

defined by insertion di cotangent lines L at the i-th marking zi.

The K-theoretic Gromov-Witten invariants can be organized into a

potential as follows. Let ΛX ⊂ Map(H2(X),Q) denote the Novikov ring

associated to the ample line bundle L → X. The elements of the Novikov

ring are formal combinations

ΛX =

 ∑
d∈H2(X)

cdq
d


such that for any E > 0 the number of coefficients cd with (d, c1(L)) < E

is finite. Define the equivariant quantum K-theory as the completion

(1.2). The K-theoretic genus zero Gromov-Witten potential with inser-

tions is the formal function which we write informally

µX : QK0
G(X)→ QK0

G(pt), α 7→
∑

d∈H2(X)

∑
n≥0

〈α, . . . , α; 1〉0,n,d
qd

n!
;

(1.6)
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what this means is that each Taylor coefficient of µX is well-defined. In

the following expressions involving µX will be understood in this sense.

For any element σ ∈ QK0
G(pt) we denote by ∂σµX the differentiation of

µX in the direction of σ. The quantum K-theory pairing at α ∈ QK0
G(X)

is for σ, γ ∈ QK0
G(X)

Bα(σ, γ) = ∂1∂σ∂γµX(α) ∈ QK0
G(pt) (1.7)

where the identity in QK0
G(X) is the structure sheaf OX . This recovers

the usual pairing χ(σ⊗γ) when α = 0, q = 0. Note that the correspond-

ing pairing in quantum cohomology is the classical pairing; the existence

of quantum corrections in the K-theoretic pairing is due to a modifica-

tion in the contraction axioms [41, Section 3.7], this is an important

new feature of quantum K-theory. The quantum K-theory product on

QK0
G(X) with bulk deformation α is the formal product defined by

Bα(σ ?α γ, κ) = ∂σ∂γ∂κµX(α).

As in the product in quantum cohomology, for each choice of α ∈
QK0

G(X) we obtain a formal Frobenius algebra structure on QK0
G(X),

by an argument of Givental [17]. Notably, the product does not satisfy

a divisor axiom. However, quantum K-theory has better properties in

other respects. For example, the small quantum K-theory (product at

α = 0) is defined over the integers, since the virtual Euler characteristics

are virtual representations.

Later we will need a slight reformulation of the quantum-corrected

inner product in (1.7). Let evdn+1 denote the restriction of the evaluation

map

evn+1 :M0,n+1(X)→ X

to M0,n+1(X, d). Define the (formal) Maurer-Cartan map

MCGX : QK0
G(X)→ QK0

G(X)

α 7→
∑

n≥1,d∈H2(X)

evdn+2,∗
(
ev∗1 α⊗ . . .⊗ ev∗n α⊗ ev∗n+11

) qd
n!

(1.8)

where the push-forward is defined using the virtual structure sheaf. Then

if B denotes the classical Mukai pairing we have

Bα(σ, γ) = B(DαMCGX(σ), γ), B−1Bα = DαMCGX ,
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where DαMCGX denotes the linearization of MCGX at α

σ 7→
∑

n≥1,d∈H2(X)

evdn+2,∗
(
ev∗1 σ ⊗ ev∗2 α⊗ . . .⊗ ev∗n α⊗ ev∗n+1 1

) qd
n!
.

One can also consider twisted K-theoretic Gromov-Witten invariants

as in Tonita [54]: Let

Cg,n(X, d) X

Mg,n(X, d).

e

p

denote the universal curve. If E → X is a G-equivariant vector bundle

then the index class is defined by

Ind(E) := [Rp∗e
∗E] ∈ K0(Mg,n(X, d)).

Its Euler class [Eul(Ind(E))] is well-defined in K0
C×(Mg,n(X, d)) after

localizing the equivariant parameter for the action of C× by scalar mul-

tiplication on the fibers of E at roots of unity. The genus g = 0 sum

ϕEn,d : K0
G×C×(X)⊗n → K0,loc

G×C×(pt),

(α1, . . . , αn) 7→ χG×C×(ev∗1 α1⊗ . . .⊗ ev∗n αn⊗ [Ovir]⊗ [Eul(Ind(E))])

(1.9)

produces the E-twisted quantum K-theory, again a Frobenius manifold.

An analog of the quantum connection in quantum K-theory was in-

troduced by Givental [17]:With m(α)(·) = α ? · quantum multiplication

define a connection

∇qα = (1− z)∂α +m(α) ∈ End(QK0
C×(X)).

By Givental [17] the quantum connection is flat. One of the goals of this

paper is to give (somewhat non-explicit) formulas for its fundamental

solutions.

1.3 Quantum K-theoretic Kirwan map

In this section we extend the definition of the quantum Kirwan map,

defined in [57] to K-theory. Let G be a complex reductive group as in

the introduction and let X be a smooth polarized projective G-variety

with G-polarization, that is, ample G-line bundle, L → X. Suppose that
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G acts with finite stabilizers on the semistable locus, defined as the locus

of points with non-vanishing invariant sections of some positive power

of the polarization:

Xss = Xss(L) = {x ∈ X | ∃k > 0, s ∈ H0(X,L⊗k)G, s(x) 6= 0} ⊂ X.

Equivalently, suppose that every orbit Gx ⊆ Xss for x ∈ Xss is closed.

Denote the stack-theoretic quotient

X//G := Xss/G

which is necessarily a smooth proper Deligne-Mumford stack with pro-

jective coarse moduli space. By definition X/G is a category whose ob-

jects

Ob(X/G) = {(P → C, u : P → X)}

are pairs consisting of principal G-bundles P over some base C and

equivariant maps u : P → X, and whose morphisms are the natural

commutative diagrams.

1.3.1 Affine gauged maps

The quantum Kirwan map is defined by push-forward (in cohomology

by integration) over moduli spaces of affine gauged maps.

Definition 1.1. (Affine gauged maps) An affine gauged map to X/G is

a datum (C, z, λ, u : C → X/G) consisting of

• (Curve) a possibly-nodal projective curve p : C → S of arithmetic

genus 0 over an algebraic space S;

• (Markings) sections z = (z0, . . . , zn : S → C) disjoint from each other

and the nodes;

• (One-form) a section λ : C → P(ωC/S ⊕C) of the projective dualizing

sheaf ωC/S ;

• (Map) a map u : C → X/G to the quotient stack X/G;

satisfying the following conditions:

• (Scalings at markings) λ(z0) =∞ and λ(zi) is finite for i = 1, . . . , n;

• (Monotonicity) on any component Cv ⊂ C on which λ|Cv is non-

constant, λ|Cv has a single double pole, at the node w ∈ Cv closest

to z0;

• (Map stability for infinity scaling) u takes values in the semistable

locus X//G on λ−1(∞);
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• (Bundle triviality for zero scaling) The bundle u∗(X → X/G) is triv-

ializable on λ−1(0), or equivalently, u lifts to a map to X on λ−1(0).

The monotonicity assumption gives an affine structure near the double

pole, thus the term affine. An affine gauged map given by a datum

(u : C → X/G, z0, . . . , zn, λ) is stable if any component Cv of C on

which u is trivializable has at least three special points, if λ|Cv is zero

or infinite, or two special points, if λ|Cv is finite and non-zero. In the

case that X//G is only locally free, that is, has some finite but non-

trivial stabilizers we also allow orbifold twistings at the nodes of C where

λ = ∞, as in orbifold quantum cohomology. The homology class of an

affine gauged map is the class u∗[C] ∈ HG
2 (X,Q).

We introduce the following notation for moduli stacks. LetMG

n (A, X)

be the moduli stack of stable affine gauged maps to X andMG

n (A, X, d)

the locus of homology class d. Each MG

n (A, X, d) is a proper Deligne-

Mumford stack equipped with a perfect obstruction theory. The rel-

ative perfect obstruction theory on MG

n (A, X) has complex dual to

Rp∗e
∗TX/G, where p, e are maps from the universal curve CGn (A, X) as

in the diagram

CGn (A, X) X/G

MG

n (A, X).

e

p

As in the construction of Y.P. Lee [41], the perfect obstruction theory

determines a virtual structure sheafOvir
M in the bounded derived category

of coherent sheaves onMG

n (A, X). It defines a class [Ovir
M ] in the rational

K-theory of MG

n (A, X). Let IX//G denote the rigidified inertia stack of

X//G and

ev = (ev0, ev1, . . . , evn) :MG

n (A, X)→ IX//G × (X/G)n

denote the evaluation maps at z0, . . . , zn. If X is smooth projective then

the moduli stack MG

n (A, X) is proper. Properness also holds in certain

other situations, such as if X is a vector space, G is a torus, and the

weights of G are contained in an open half-space in g∨. For details on

the proof of properness we refer the reader to [26].

The moduli stack of affine gauged maps also admits a forgetful map to

a stack of domain curves. Denote byMn(A) the moduli stackMG

n (A, X)
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in the case that X and G are points, which we call the stack of affine

scaled curves. There is a forgetful morphism

f :MG

n (A, X)→Mn(A)

defined by forgetting the morphism to X/G and collapsing all compo-

nents that become unstable.

Example 1.2. The moduli stack M2(A) of twice-marked affine scaled

curves is isomorphic to the projective line via the map

M2(A)→ P1, (C, z0, z1, z2, λ) 7→
∫ z2

z1

λ;

more precisely, the map above identifies the locus of affine scaled curves

with irreducible domain with C×. The compactification adds the two

distinguished divisors

D{1,2}, D{1},{2} ⊂M2(A)

corresponding to loci where the markings z1, z2 ∈ C are on the same

component Cv ⊆ C, v ∈ Vert(Γ) with zero scaling λ|Cv = 0 resp. differ-

ent components Cv1 , Cv2 ⊂ C, v1 6= v2 ∈ Vert(Γ).

1.3.2 Affine gauged invariants and quantum Kirwan

map

K-theoretic affine gauged Gromov-Witten invariants are defined as vir-

tual Euler characteristics over the moduli stack of affine gauged maps.

We introduce an equivariant version of the Novikov ring. Denote the

equivariant polarization L → X. We denote the equivariant Novikov

ring

ΛGX =

 f(q) =
∑

d∈HG2 (X,Q)

cdq
d

∣∣∣∣∣∣ ∀E,# SuppE(f) <∞

 (1.10)

where

SuppE(f) =
{
d ∈ HG

2 (X)
∣∣ cd 6= 0, 〈d, cG1 (L)〉 < E

}
.

The ring ΛGX depends on the (class of the) polarisation L, but we omit

L from the notation when it is clear which polarisation we are using.
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Redefine

QK0
G(X) = lim

n←
K0
G(X)⊗ ΛGX/I

G
X(c)n,

QK0(X//G) = lim
n←

K0(X//G)⊗ ΛGX/I
G
X(c)n;

in other words, from now on we work over the Novikov ring ΛGX . Let evd0
denote the restriction of

ev0 :MG

n (A, X)→ IX//G

to MG

n (A, X, d). Recall the formal map MCX//G from QK(X//G) to

QK(X//G) from (1.8). The map MCX//G is formally invertible near 0.

Its linearization at 0 is the identity modulo higher order terms, involv-

ing positive powers of q, hence it has a formal inverse MC−1
X//G with

MC−1
X//G(0) = 0.

Definition 1.3. The quantum Kirwan map in quantum K-theory with

insertions βn ∈ K(M0,n) is the formal map

κGX : QK0
G(X)→ QK0(X//G),

α 7→ MC−1
X//G

∑
d∈H2(X//G,Q),n≥0

qd

n!
evd0,∗(ev∗1 α⊗. . .⊗. . . ev∗n α⊗f∗βn).

(1.11)

The linearized quantum Kirwan map is obtained from the linearization

of κGX and correction terms arising from the quantum corrections in the

inner product:

Dακ
G
X : QK0

G(X)→ QK0(X//G),

σ 7→ (DκGX(α)MCX//G)−1
∑
d,n

qd

(n− 1)!
evd0,∗(ev∗1 σ⊗ev∗2 α⊗. . . ev∗n α).

(1.12)

Theorem 1.4. Each linearization of κGX is a ?-homomorphism:

Dακ
G
X(σ ?α γ) = Dακ

G
X(σ) ?κGX(α) Dακ

G
X(γ)

for any α ∈ QK0
G(X).

Proof The proof is a consequence of an equivalence of divisor classes.

As in the proof of associativity of quantum K-theory by Givental [17],

consider the forgetful map

f2 :MG

n (A, X)→M2(A) ∼= P1
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forgetting all but the first and second markings and scaling. The inverse

image f−1
2 (∞) consists of configurations

(u : C → X/G, λ, z) ∈ Ob(MG

n (A, X))

where the first two incoming markings z1, z2 ∈ C are on different com-

ponents of the domain C is a union of boundary divisors:

f−1
2 (∞) =

⋃
Γ

MG

Γ (A, X)

where Γ ranges over combinatorial type of colored tree with r colored

vertices v1, . . . , vr ∈ Vert(Γ) and one non-colored vertex v0 ∈ Vert(Γ),

with the edge labelled 1 attached to the first vertex v1 and the edge

labelled 2 attached to the second colored vertex v2. We digress briefly

to recall that if

D = ∪ni=1Di

is a divisor with normal crossing singularities on a variety Y then the

class of the structure sheaf OD is

[OD] =
∑

I⊂{1,...n}

(−1)|I|[ODI ] ∈ K(Y ), DI =
⋂
i∈I

Di.

The corresponding property for virtual structure sheaves in Mg,n(X)

is proved by Y.P. Lee [41, Proposition 11]. The intersection of any

two strata MG

Γ1
(A, X), MG

Γ2
(A, X) of codimension one is a stratum

MG

Γ3
(A, X) of lower codimension; there is an exact sequence of sheaves

whose i-th term is the union of structure sheaves of strata of codimen-

sion i. Thus the structure sheaf of f−1
2 (∞) is identified in K-theory with

the alternating sum of structure sheaves

[Of−1
2 (∞)] =

∑
k1,k2≥0

(−1)k1+k2

∑
Γ∈T∞(k1,k2)

[OMG
Γ (A,X,d)

]

where T∞(k1, k2) is the set of combinatorial types of affine scaled gauged

maps with k1, k2 rational curves connecting the components containing

z1, z2, with finite and non-zero scaling, and the component with infinite

scaling containing z0. On the other hand, the structure sheaf of f−1
2 (0)

is the alternating sum of structure sheaves

[Of−1
2 (0)] =

∑
k≥0

(−1)k
∑

Γ∈T0(k)

[OMG
Γ (A,X,d)

]

where T0(k) is the set of combinatorial types with z1, z2 on one com-

ponent, z0 on another, and these two components related by a chain of
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k rational curves. The contribution of T∞(k) to the push-forward over

f−1
2 (0) is

(DαMCX//G−I)k
∑

d∈HG2 (X,Q),n≥1

qd

(n− 1)!
evd0,∗(ev∗1 σ⊗ev∗2 α⊗ . . . ev∗n α).

The inverse of the linearization of the map MCX//G,

DαMC−1
X//G = (I + (DαMCX//G − I))−1 =

∑
k≥0

(−1)k(DαMCX//G − I)k.

(1.13)

Putting everything together and using (1.12) gives

(DκGX(α)MCX//G)(Dακ
G
X)(σ ?α γ) =

(DκGX(α)MCX//G)(((Dακ
G
X)σ) ?κGX(α) ((Dακ

G
X)γ)).

Since DκGX(α)MCX//G is invertible, this implies the result.

Remark. (Inductive definition) For classes

ℵ0 ∈ QK0(X//G), ℵ1, . . . ,ℵn ∈ QK0
G(X)

denote by

mn,d(ℵ0,ℵ1, . . . ,ℵn)

:= χ(MG

n (A, X, d), ev∗0 ℵ0 ⊗ ev∗1 ℵ1 ⊗ . . . ev∗n ℵn ⊗ [Ovir]) ∈ Z (1.14)

the virtual Euler characteristic. For classes

ℵ0 ∈ QK0(X//G), α,ℵ1, . . . ,ℵk ∈ QK0
G(X)

define

mα
k,d(ℵ0, . . . ,ℵk) =

∑
n≥0

1

n!
mk+n,d(ℵ0, . . . ,ℵk, α, . . . , α)

and similarly define ϕ
κGX(α)
n,d by summing over all possible numbers of

insertions of κGX(α). Expanding the definition of the inner product we

have (in topological K-theory)

B(Dακ
G
X(σ), γ) =

∑
d0,...,dr,ℵ1,...,ℵr

(−1)rqdmα
2,d0

(σ,ℵ∨1 )

(
r−1∏
i=1

ϕ
κGX(α)
2,di

(ℵi,ℵ∨i+1)

)
ϕ
κGX(α)
2,dr

(ℵr, γ) (1.15)
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where the sum is over all sequences of non-negative classes (d0, . . . , dr)

such that
∑
di = d and di > 0 for i > 0 and ℵ1, . . . ,ℵr range over a basis

for QK(X//G). Equivalently, Dακ
G
X(σ) can be defined by the inductive

formula

B(Dακ
G
X(σ), γ) =

∑
d>0

qdmα
2,d(σ, γ)

−
∑
ℵ,e>0

qeB(Dακ
G
X(σ),ℵ)ϕ

κGX(α)
2,e (ℵ∨, γ). (1.16)

Definition 1.5. The canonical bulk deformation of QK(X//G) is the

value κGX(0) ∈ QK(X//G) of κGX at 0.

Note that κGX depends on the choice of presentation of X//G as a git

quotient. We give the following criterion for the canonical bulk deforma-

tion to vanish.

Lemma 1.6. Suppose that the coarse moduli spaces of MG

0 (A, X, d)

and M0,n(X//G, d) are smooth, rational and connected with virtual fun-

damental sheaf equal to the usual structure sheaf. Suppose further that

HG
2 (X) ∼= H2(X//G) with MG

0 (A, X, d) non-empty iff M0,n(X//G, d) is

non-empty. Then κGX(0) = 0.

Proof Under the conditions in the Lemma, a result of Buch-Mihalcea

[7, Theorem 3.1] implies that the push-forward of the structure sheaf

over any moduli space of maps in the Lemma under any evaluation map

is the structure sheaf of the target:

evd0,∗[OMG
n (A,X,d)

] = [OX//G], evd1,∗[OM0,n(X//G,d)] = [OX//G],

∀d ∈ HG
2 (X) ∼= H2(X//G), n ≥ 0. (1.17)

Thus ∑
d

qd evd0,∗[OMG
n (A,X,d)

] =

(∑
d

qd

)
[OX//G],

∑
d,n

qd evd1,∗[OM0,1(X,d)] =

(∑
d

qd

)
[OX//G]

where both sums are over d such that MG

n (A, X, d),M0,n(X//G, d) are

non-empty. It follows that

MCX//G(0) =

(∑
d

qd

)
[OX//G], κGX(0) = 0
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as claimed.

Under the conditions of the lemma, one obtains a map of small quan-

tum K-rings given by the linearized quantum Kirwan map

D0κ
G
X : QK0

G(X)→ QK0(X//G).

1.4 Quantum K-theory of toric quotients

In this section we use the K-theoretic quantum Kirwan map to give

a presentation of the quantum K-theory of any smooth proper toric

Deligne-Mumford stack with projective coarse moduli space. The case of

projective spaces was treated in Buch-Mihalcea [7] and Iritani-Milanov-

Tonita [33], and general toric varieties were treated in Givental [18]. The

toric stacks we consider are obtained as git quotients for actions of tori

on vector spaces. Let G be a torus with Lie algebra g. Let X be a vector

space with a representation of G such that the weights

µi ∈ g∨R , i = 1, . . . , k

of the action are contained in the interior of a half-space in g∨R . For

generic polarization, the git quotient X//G is smooth. We assume that

X//G is non-empty, and for simplicity that the generic stabilizer is trivial.

We have

QK0
G(X) ∼= QK0

G(pt) = R(G)

where R(G) denotes the Grothendieck group of finite-dimensional rep-

resentations of G. Denote by Xk ⊂ X the representation given by the

k-th weight space. For any class d ∈ HG
2 (X) ∼= gZ, define elements of

QK0
G(X) by

ζ+(d) =
∏

µj(d)≥0

(1−X−1
j )µj(d), ζ−(d) = qd

∏
µj(d)≤0

(1−X−1
j )−µj(d).

Define the d-th K-theoretic Batyrev element

ζ(d) = ζ+(d)− ζ−(d) ∈ QK0
G(pt) ∼= QK0

G(X). (1.18)

Proposition 1.1. The kernel of D0κ
G
X contains the elements ζ(d), d ∈

HG
2 (X).

Proof An argument using divided difference operators is given later in

Example 1.6; here we give a geometric proof. The target X itself defines
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an element of K0
G(X) via pull-back under X → pt. The pull-back [ev∗j X]

is a class in K(MG

1 (A, X)) for j = 1, . . . , n. Define sections

σi,j :MG

n (A, X)→ ev∗j X, i ≥ 0 (1.19)

by composing the mapMG

1 (A, X)→ ev∗1 X taking the i-th derivative of

the map u : C → X/G at the marking zj with the forgetful morphism

MG

n (A, X) → MG

1 (A, X). More precisely, suppose that u : C → X/G

is given by a bundle P → C and a section v : C → P ×G X. In a local

trivialization near zj the section is given by a map v : C→ X. Further-

more, the scaling λ on C necessarily pulls back to a non-zero scaling on

C, since there are no components of C with zero scaling. (There are no

holomorphic curves in X, hence all curves with zero scaling are constant,

and there is only one marking, hence no constant components with three

special points and zero scaling.) Choose a coordinate z so that λ = dz.

Let σi,j([u]) ∈ ev∗1 Xj denote the i-th derivative of v at zj with respect

to the coordinate z.

We apply these canonical sections to the following Euler class com-

putation. Each factor Xj defines a corresponding class [Xj ] in K0
G(X);

we often omit the square brackets to simplify notation. Define bundles

E± →M
G

1 (A, X)

E± :=
⊕

±µj(d)≥0

ev∗1 X
⊕µj(d)
j .

The Euler class of E± is

Eul(E)± =
⊗

±µj(d)≥0

(1− ev∗1 Xj)
⊗µj(d) ∈ K(MG

1 (A, X)).

Given a section σj of ev∗1 Xj transverse to the zero section, there is a

canonical isomorphism of the structure sheaf Oσ−1
j (0) of σ−1

j (0) with

[Eul(ev∗1 X
∨
j )] = [1− ev∗1 X

∨
j ] ∈ K(MG

1 (A, X, d′)).

This isomorphism is defined by the exact sequence

0→ ev∗1 X
∨
j → O → Oσ−1

j (0) → 0.

Extending this by direct sums, any section σ : MG

1 (A, X, d′) → E±
transverse to the zero section defines an equality

[Oσ−1(0)] = [Eul(E)∨±] ∈ K(MG

1 (A, X), d′).
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In particular, let σ denote the section of E+ given by the derivatives

σi,j , i = 1, . . . , dj := min(µj(d), µj(d
′))

defined in (1.19). We construct a diagram

σ−1(0) MG

1 (A, X, d′)

.MG

1 (A, X, d′ − d)

ι

δ

as follows. The map ι is the inclusion. To construct δ, note that σ−1(0) ⊂
MG

1 (A, X) consists of maps u whose j-th component uj vanishes to order

dj at the marking z1. Therefore, for any [u] ∈ σ−1(0) define a map of

degree d′− d by dividing by the j-th component of u : C → X/G on the

component of C containing z1 by (z−z1)dj on the component containing

z1, to obtain a map denoted (z − z1)−du. The other components of C

all map to X//G, and the action of (z − z1)−d on the other components

does not change the isomorphism class of u. It follows that there is a

canonical map

δ : σ−1(0)→MG

1 (A, X, d′ − d), [u] 7→ [u/(z − z1)d]. (1.20)

The normal bundle to δ has Euler class the product of factors (1 −
X−1
j )min(µj(−d),µj(d

′−d)) over j such that µj(−d) ≥ 0.

The remaining factors are explained by the difference in obstruction

theories. We denote by pd
′

the restriction of the projection p to maps

of homology class d′. To compute the difference in classes we note that

δ lifts to an inclusion of universal curves and (if ed
′
, ed
′−d denote the

universal evaluation maps)

ι∗[Rpd
′

∗ e
∗TX/G]− δ∗[Rpd

′−d
∗ e∗TX/G] = ι∗[Rpd

′

∗

⊕
j

(Oz1(µj(d
′))]

−δ∗[Rpd
′−d
⊕
j

Oz1(µj(d
′ − d))]

= ι∗[E+]− ρ∗[E−].

Hence for any class α0 ∈ K(X//G) we obtain

χvir(MG

1 (A, X, d′), ev∗0 α0 ⊗ ev∗ ζ+(d))

= χvir(MG

1 (A, X, d′ − d), ev∗0 α0 ⊗ ev∗ ζ−(d)). (1.21)
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That is,

m1,d′(α0, ζ+(d)) = m1,d′−d(α0, ζ−(d)).

By definition of the quantum Kirwan map this implies

D0κ
G
X(ζ+(d)) = qdD0κ

G
X(ζ−(d)).

We wish to show that the elements in the lemma above generate,

in a suitable sense, the kernel of the K-theoretic quantum Kirwan map.

Define the quantum K-theoretic Stanley-Reisner ideal QKSRGX to be the

ideal in QK0
G(X) spanned by the K-theoretic Batyrev elements ζ(d), d ∈

H2(X,Z) of (1.18). In general there are additional elements in the kernel

of the linearized quantum Kirwan map. In order to remove these one

must pass to a formal completion.

Definition 1.2. a. In the case that G acts freely on the semistable locus

in X, for l = (l1, . . . , lk) ∈ Zk≥0 define a filtration

QK0
G(X)≥l :=

k∏
j=1

(1−X−1
j )ljQK0

G(X) ⊂ QK0
G(X).

b. More generally suppose that G acts on the semistable locus in X with

finite stabilizers Gx, x ∈ Xss and let

F(X) =

k⋃
j=1

Fj(X) ⊂ C

denote the set of roots of unity

Fj(X) := {gµj = exp(2πiµj(ξ)) ∈ C× | g = exp(ξ) ∈ Gx, x ∈ Xss}

representing the roots of unity for the action of g ∈ Gx, x ∈ Xss on

Xj . Define

QK0
G(X)≥l :=

k∏
j=1

∏
ζ∈Fj(X)

(1− ζX−1
j )lj .

Let Q̂KG(X) denote the completion with respect to this filtration

Q̂KG(X) = lim
←l

QK0
G(X)/QK0

G(X)≥l.

Lemma 1.3. For any d, n the K-theoretic Gromov-Witten invariants in

the definition of κGX vanish for α0, . . . , αn ∈ QK0
G(X)≥l for l1 + . . .+ lk

sufficiently large.



22 E. González and C. Woodward

Proof We apply Tonita’s virtual Riemann-Roch theorem [53]: If M =

MG

n (A, X, d) embeds in a smooth global quotient stack and IM its in-

ertia stack then for any vector bundle V

χvir(M, V ) =

∫
[IM]vir

m−1 Ch(V ⊗Ovir
IM) Td(TIM) Ch(Eul(ν∨M))

where νM is the normal bundle of IM → M and m : IM → Z is the

order of stabilizer function. The pullback ev∗j (1 − ζX
−1
j ) restricts on a

component of the inertia stack corresponding to an element h ∈ G to

the K-theory class 1 − χj(h)−1X−1
j , where χj is the character of Xj .

The Chern character of each 1 − χj(h)−1ζX−1
j has degree at least two

for ζ = χj(h). In this case if the sum lj , j ∈ I(h) of weights for which

χj(h) is trivial is larger than the virtual dimension for the component

of IM corresponding to h, the virtual integral over IM (which embeds

in a smooth global quotient stack, see [57, Part 3, Proposition 9.14] and

[24, Proposition 3.1 part (d)]) vanishes.

Lemma 1.3 implies that the quantum Kirwan map admits a natural

extension to the formal completion:

κ̂GX : Q̂KG(X)→ QK(X//G).

Theorem 1.4. (Theorem 1.2 from the Introduction.) The completed

quantum Stanley-Reisner ideal is the kernel of the linearized quantum

Kirwan map D0κ
G
X : We have an exact sequence

0→ ̂QKSRGX → ̂QK0
G(X)→ QK(X//G)→ 0.

Proof In [23, Theorem 2.6] we proved a version of Kirwan surjectivity

for the cohomological quantum Kirwan map. The arguments given there

hold equally well in rational topological K-theory as in cohomology. We

address first the surjectivity of the right arrow in the sequence. By [23,

Proposition 2.9] for d such that µj(d) > 0 for all j we have

D0κ
G
X

(
k∏
i

(1−X−1
j )sdµi(d)e

)
= qd[OIX//G(exp(d))] + h.o.t. (1.22)

where h.o.t. denotes terms higher order in q. Since divisor intersections

[DI ] = ∩i∈I [Di] generate the cohomology H(IX//G) of any IX//G, the

classes of their structure sheaves [ODi ] generate the rational K-theory

K(IX//G). It follows that D0κ̂GX is surjective.

To show exactness of the sequence, it suffices to show the equality of
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dimensions

dim(Q̂KG(X)/QKSRGX) = dim(QK(X//G)).

We recall the argument in the case that the generic stabilizer is trivial.

Let T = (C×)k/G denote the residual torus acting onX//G. The moment

polytope of X//G may be written

∆X//G = {µ ∈ t∨ | (µ, νj) ≥ cj , j = 1, . . . , k}

where νj are normal vectors to the facets of ∆X//G, determined by the

image of the standard basis vectors in Rk in t under the quotient map,

and cj are constants determined by the equivariant polarization on X.

The quantum cohomology may be identified with the Jacobian ring

of a Givental potential defined on the dual torus. Let Λ = exp−1(1) ⊂ t

denote the coweight lattice, and Λ∨ ⊂ t∨ the weight lattice. The dual

torus and Givental potential are

T∨ = t∨/Λ∨, W : T∨ → C[q, q−1], y 7→
k∑
j=1

qcjyνj .

The quotient of QKG(X) by the Batyrev ideal maps to the ring Jac(W )

of functions on Crit(W ) by (1 − X−1
j ) 7→ yνj . Denote by ̂Crit(W ) the

intersection of Crit(W ) with a product U of formal disks around q =

0, Xj ∈ Fj(X):

̂Crit(W ) = Crit(W ) ∩ U.

Under the identification of the Jacobian ring, ̂Crit(W ) is the scheme of

critical points y(q) such that each yνj approaches an element of Fj(X)

as q → 0. This definition differs from that in [23] in that we allow in

theory critical points that converge to non-trivial roots of unity Fj(X)

in the limit q → 0.

To see that this gives the same definition as in [23] we must show that

there are no families of critical points that converge to non-zero values

of yνj as q → 0. Let y(q) be such a family. Necessarily the q-valuation

valq(y(q)) of y(q) lies in some face of the moment polytope. Since the

moment polytope is simplicial, the normal vectors νj of facets containing

valq(y(q)) cannot be linearly dependent. Taking such νj as part of a basis

for the Lie algebra of the torus one may write W (y) = y1+. . .+yk+h.o.t

and taking partials with respect to y1, . . . , yk shows that these variables

must vanish. Thus y(q) converges to zero as q → 0.

The dimension of ̂Crit(W ) can be computed using the toric minimal
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model program [23, Lemma 4.15]: under the toric minimal model pro-

gram each flip changes the dimension of ̂Crit(W ) in the same as way as

the dimension of QK(X//G). .

Similarly for a Mori fibration one has a product formula representing

dim(QK(X//G)) as the product of dimension of the base and fiber, and

similarly for the Jacobian ring. It follows that dim( ̂Crit(W )) is equal to

dim(Q̂KG(X)/QKSRGX) = dim(QK(X//G)).

Remark. a. The presentation above specializes to Vezzosi-Vistoli pre-

sentation [55, Theorem 6.4] by setting q = 1 in the case of smooth

projective toric varieties. See Borisov-Horja [6] for the case of smooth

Deligne-Mumford stacks.

b. The presentation above restricts Buch-Mihalcea presentation [7] in the

case of projective spaces. In the case of projective (or more generally

weighted projective spaces realized as quotients of a vector space by

a C× action) we have m0,d(α0) = 1 for any d > 0. This implies

κGX(0) = 0, by the arguments in Buch-Mihalcea [7]: The moduli stack

is non-singular, has rational singularities, the evaluation map

ev0(d) :MG

0 (A, X, d)→ Xexp(d)//G

is surjective and has irreducible and rational fibers. By [7, Theorem

3.1], the push-forward of the structure sheaf OMG
0 (A,X,d)

is a multiple

of the structure sheaf on Xexp(d)//G. It follows from the inductive

formula (1.16) for κGX(0) that κGX(0) is the structure sheaf on IX//G.

c. The linearized quantum Kirwan map has no quantum corrections in

the case of circle group actions on vector spaces with positive weights.

To see this, note that for d > 0 the push-forward of ev∗1(1−Xj) is the

pushforward of the structure sheaf Oσ−1
j (0) to X//G. By the argument

in the previous item, this push-forward is equal to [OX//G]. For similar

reasons, for d > 0 we have

m2,d(ev∗1(1−Xj), [Opt]) = 1.

The formula (1.16) then implies that D0κ
G
X(1 − Xj) has no quan-

tum corrections, hence neither does D0κ
G
X(Xj). It follows that in the

presentation (1.4) the class Xj may be taken to be the line bun-

dle associated to the weight µj on the weighted projective space

X//G = P(µ1, . . . , µk). It seems to us at the moment that even in

the case of Fano toric stacks one might have κGX(0) 6= 0 and so the

bulk deformation above may be non-trivial.
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1.5 K-theoretic gauged Gromov-Witten invariants

In this section we define gauged K-theoretic Gromov-Witten invari-

ants by K-theoretic integration over moduli stacks of Mundet-semistable

maps to the quotient stack, and prove an adiabatic limit Theorem 1.4

relating the invariants.

1.5.1 The K-theoretic gauged potential

In our terminology, a gauged Gromov-Witten invariant is an integral

over gauged maps, by which we mean maps to the quotient stack. Let

C be a smooth projective curve.

Definition 1.1. (Gauged maps) A gauged map from C to X/G consists

of

• (Curve) a nodal projective curve Ĉ → S over an algebraic space S;

• (Markings) sections z0, . . . , zn : S → Ĉ disjoint from each other and

the nodes;

• (One-form) a stable map Ĉ → C of homology class [C];

• (Map) a map Ĉ → X/G to the quotient stack X/G, corresponding to

a bundle P → Ĉ and section u : Ĉ → P (X) := (P ×X)/G which we

required to be pulled back from a map C → BG.

A gauged map is stable it satisfies a slope condition introduced by

Mundet [46] which combines the slope conditions in Hilbert-Mumford

and Ramanathan for G-actions and principal G-bundles respectively.

Given a gauged map

(u : Ĉ → C ×X/G, z0, . . . , zn)

let

σ : C → P/R

be a parabolic reduction of P to a parabolic subgroup R ⊂ P . Let

λ ∈ l(P )∨

be a central weight of the Levi subgroup L(P ) of R. By twisting the

bundle and section by the one-parameter subgroup zλ, z ∈ C we obtain

a family of gauged maps

uλ : Ĉ × C× → C ×X/G.
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By Gromov compactness the limit z → 0 gives rise to an associated

graded gauged map

u∞ : Ĉ∞ → X/G

equipped with a canonical infinitesimal automorphism

λ∞ : Ĉ∞ → aut(P∞)

where P∞ is the G-bundle corresponding to u∞. The automorphism

naturally acts on the determinant line bundle det aut(P∞) as well as on

the line bundle induced by the linearization u∗∞(P∞(L) → P (X)). The

action on the first line bundle is given by a Ramanathan weight while

the second is the Hilbert-Mumford weight

λ∞ · δ∞ = iµRλ (u)δ∞ λ∞ · ũ∞ = iµHMλ (u)ũ∞

for points δ∞ resp. ũ∞ in the fiber of det aut(P∞) resp. u∗∞(P∞(L) →
P (X)). Let ρ > 0 be a real number. The Mundet weight is combination

of the Ramanathan and Hilbert-Mumford weights with vortex parameter

ρ ∈ R>0

µM (σ, λ) = ρµR(σ, λ) + µHM (σ, λ). (1.23)

Definition 1.2. A gauged map u : Ĉ → C×X/G is Mundet semistable

if

a. µM (σ, λ) ≤ 0 for all pairs (σ, λ) and

b. each component Cj of Ĉ on which u is trivializable (as a bundle with

section) has at least three special points zi ∈ Cj .

The map u is stable if, in addition, there are only finitely many auto-

morphisms in Aut(u).

Gauged K-theoretic Gromov-Witten invariants are defined as virtual

Euler characteristics over moduli stacks of Mundet-semistable gauged

maps. Denote by MG
(C,X) the moduli stack of Mundet semistable

gauged maps. Assume that the semistable locus is equal to the stable lo-

cus, in which caseMG
(C,X) is a Deligne-Mumford stack with a perfect

obstruction theory, proper for fixed numerical invariants [57]. Restriction

to the sections defines an evaluation map

ev :MG
(C,X)→ (X/G)n.

Forgetting the map and stabilizing defines a morphism

f :MG
(C,X)→Mn(C), (C, u) 7→ Cst
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where Mn(C) is the moduli stack of stable maps to C of class [C]. For

classes α1, . . . , αn ∈ K0
G(X), βn ∈ Mn(C) and d ∈ HG

2 (X) we denote

by

τGX,n,d(C,α1, . . . , αn;β) :=

χvir(MG

n (C,X, d), ev∗0 α0 ⊗ ev∗1 α1 ⊗ . . . ev∗n αn)⊗ f∗βn ∈ Z (1.24)

the virtual Euler characteristic. Define the gauged K-theoretic Gromov-

Witten potential as the formal sum

τGX : QK0
G(X)×K(Mn(C))→ ΛGX ,

(α, σ) 7→
∑

n≥0,d∈HG2 (X,Z)

qd

n!
τGX,n,d(C,α, . . . , α;βn). (1.25)

In the case of domain the projective line the gauged potential can

be further localized as follows. Let C = P1 be equipped with the stan-

dard C× action with fixed points 0,∞ ∈ P1. Denote by z the equivari-

ant parameter corresponding to the C×-action. As in [57, Section 9] let

MG

n+1(C+, X, d)C
×

denote the stack of n+1-marked Mundet-semistable

gauged maps P → P1, u : P1 → P (X) with the following properties: the

data (P, u) are fixed up to automorphism by the C× action, and with

one marking at 0 and the remaining markings mapping to components

attached to 0, and the pair (P, u) is trivializable in a neighborhood of

∞ ∈ P1. The moduli space MG

n+1(C−, X, d)C
×

is defined similarly but

replacing 0 with ∞ and vice-versa. It is an observation of Givental (in

a more restrictive setting) that the C×-fixed locus in MG
(P1, X, d) for

sufficiently small vortex parameter ρ is naturally a union of fiber prod-

ucts

MG

n−+n+
(P1, X)C

×
=⋃

n−+n+=n

d−+d+=d

MG

n−+1(C−, X, d−)C
×
×IX//GM

G

n++1(C+, X, d+)C
×

(1.26)

Indeed the bundle P → P1 is given via the clutching construction by

a transition map corresponding to an element d ∈ g and the map u on

C± is given by an orbit of the one-parameter subgroup u(z) = exp(zd)x

generated by d, for some x ∈ X.

Integration over the factors in this fiber product define localized gauged

graph potentials τGX,± as follows. The stack MG(C±, X, d)C
×

has a nat-

ural equivariant perfect obstruction theory, as a fixed point stack in
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MG(P1, X, d). The perfect obstruction theory forMG(C±, X, d) on the

fixed locus splits in the fixed and moving parts. A perfect obstruction

theory for MG(C±, X, d)C
×

can be taken to be the fixed part. Let N±
denote the virtual normal complex ofMG(C±, X, d)C

×
inMG(P1, X, d).

Define

τGX,± : QK0
G(X)→ QK(X//G)[z±1, z∓1]],

α 7→
∑

n≥0,d∈HG2 (X,Q)

qd

n!
evd∞,∗

ev∗ α⊗n

Eul(N∨±)
.

Example 1.3. The gauged graph potentials for toric quotients are q-

hypergeometric functions described in Givental-Lee [19]. Let G be a

torus acting on a vector space X is a vector space with weights µ1, . . . , µk
and weight spaces X1, . . . , Xk with free quotient X//G. For any given

class φ ∈ HG
2 (X,Z) ∼= gZ, we have (omitting the classical mapKG(X)→

K(X//G) from the notation)

τGX,−(0) =
∑

d∈HG2 (X)

qd
∏k
j=1

∏0
m=−∞(1− zmX−1

j )∏k
j=1

∏µj(d)
m=−∞(1− zmX−1

j )
. (1.27)

Note that the terms with X//dG = ∅ contribute zero in the above sum

since in this case the factor in the numerator
∏
µj(d)<0(1−X−1

j ) vanishes.

Arbitrary values of the gauged potential can be computed as follows,

using a result of Y.P. Lee [42] on Euler characteristics on the moduli

spaces of genus zero marked curves. Since there are no non-constant

holomorphic spheres in X, the evaluation maps ev1, . . . , evn are equal

on MG

n (C±, X)C
×

. Let

Li →M
G

n (C±, X), (Li)u:C→X/G,λ,z = T∨ziC

denote the cotangent line at the i-th marked point. We compute the

push-pull as follows: On the component ofMG

n (C±, X)C
×

corresponding

to maps of degree d the pushforward is given by

evd∞,∗
ev∗ αn

∓(1− z±1)(1− z±1Ln+1)

=
Ψd(α)⊗n

(1− z±1)2
χ

(
M0,n+1,

∑
d

(Ln+1z
±1)d

)
(1.28)

where

(Ψdα)(g) = α(gzd).
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The integral (1.28) can be computed using a result of Y.P. Lee [42,

Equation (3)] on Euler characteristics over M0,n+1 (note the shift by 1

in the variable n to relate to Lee’s conventions):

χ

(
M0,n+1,

∑
d

((z±1Ln+1)⊗d)

)
= (1− z±)n−1.

This implies that for α ∈ K0
G(X)

τGX,−(α) =
∑

d∈HG2 (X)

qd exp

(
Ψd(α)

1− z−1

) ∏k
j=1

∏0
m=−∞(1−X−1

j zm)∏k
j=1

∏µj(d)
m=−∞(1−X−1

j zm)
.

(1.29)

This is a version of Givental’s K-theoretic I-function, see Givental-Lee

[19] and Taipale [50].

1.5.2 The adiabatic limit theorem

In the limit that the linearization tends to infinity, the gauged Gromov-

Witten invariants are related to the Gromov-Witten invariants of the

quotient in K-theory. Let C× act on MG
X(A, X) via the weight 1 action

on A. The quantum Kirwan map then has a natural C×-equivariant

extension

κGX : K0
G(X)→ K0

C×(X//G)

defined by push-forward using the C×-equivariant virtual fundamental

sheaf. The following is a K-theoretic version of a result of Gaio-Salamon

[15]:

Theorem 1.4 (Adiabatic Limit Theorem). Suppose that C is a smooth

projective curve and X a polarized projective G-variety such that sta-

ble=semistable for gauged maps from C to X of sufficiently small ρ.

Then

τX//G ◦ κGX = lim
ρ→0

τGX : QK0
G(X)→ ΛGX (1.30)

in the following sense: For a class β ∈ K(Mn,1(C)) let

l∑
k=1

βk∞ ⊗ βk1 ⊗ . . . βkr , β0
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be its pullbacks to

K

Mr(C)×
r∏
j=1

M|Ij |(C)

 , resp. K(Mn(C))

respectively. Then∑
I1∪...∪Ir={1,...,n}

l∑
k=1

τ rX//G(α, βk∞) ◦ κG,|Ij |X (α, βkj ) = lim
ρ→0

τG,nX (α, β0).

Similarly for the localized graph potentials (without insertions of classes

on the source moduli spaces)

τX//G,± ◦ κGX = τGX,± : QK0
G(X)→ QK0

C×(X//G).

In other words, the diagram

QK0
G(X) QK0

C×(X//G)

ΛGX

τGX

κGX

τX//G
(1.31)

commutes in the limit ρ→ 0.

Sketch of Proof The proof is similar to that in the cohomology case in

[57]: the proof only used an equivalence of divisor classes in the moduli

stacks of scaled gauged maps. Let Mn,1(P1) denote the moduli space

scaled maps to P1, that is, the space of maps φ : C → P1 of class [P1]

equipped with sections λ of the projectivized relative dualizing sheaf

from [57]; this means that some component C0 mapped isomorphically

onto P1 while the remaining components maps to points; either λ|C0 is

finite, in which case the remaining components Cv ⊂ C have λ|Cv = 0,

or λ|C0 is infinite in which case there are a collection of bubble trees

C1, . . . , Ck ⊂ C attached to C0 of the form described in 1.1. In particular,

if there are no markings n = 0 then there are no bubble components and

there exists an isomorphism

M0,1(P1) ∼= P

corresponding to the choice of section of the projectivized trivial sheaf.

Denote by

f0,0 :M0,n(P1)→M0,0(P1) ∼= P (1.32)
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the forgetful morphism forgetting the markings z1, . . . , zn but remem-

bering the scaling λ. We have the relation

[O∪PDP ] = [Of−1
0,0 (0)] ∈ K(Mn(P1))

where

DP ∼=Mr(P1)×
r∏
i=1

Mij (A)

is a divisor corresponding to the unordered partition

P = {P1, . . . ,Pr}, |Pj | = Ij

of the markings P in groups of size i1, . . . , ir. The class ∪PDP is locally

the union of prime divisors in a toric variety and the standard resolution

gives the equality in K-theory

[O∪PDP ] =
∑

P1,...,Pk

(−1)k−1[ODP1
∩...∩DPk ].

Two divisors DP1
, . . . , DPk intersect if and only the partitions P1, . . . ,Pk

have a common refinement (take a curve (C, z) in the intersection and the

partition determined by the equivalence class given by two markings are

equivalent if they lie on the same irreducible component) and any type

MΓ(P1) in the intersection corresponds to some common refinement P.

Thus in the case of a non-empty intersection DP1
∩ . . . ∩ DPk we may

assume that each P refines each Pj .
Define a moduli space of maps with scaling as follows. If (C, λ, z)

is a scaled curve and u : C → X/G a morphism we say that the data

(C, λ, z) is stable if either λ|C0 is finite and is Mundet semistable or λ|C0

is infinite and each bubble tree is stable in the sense of 1.1. By [26], the

moduli stack of scaled gauged mapsMG

n,1(P1, X) is proper with a perfect

obstruction theory. Virtual Euler characteristics overMG

n,1(P1, X) define

invariants

K0
G(X)⊗K(Mn,1(P1))→ Z

with the property that α ⊗ [Opt] maps to τXG (α). We have a natural

forgetful morphism

f :MG

n,1(P1, X)→M0,1(P1) ∼= P

and the inverse image of ∞ is the union of divisor classes corresponding

to partitions according to which markings lie on which bubble tree.

The contributions of intersections of divisors correspond to the terms
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in the Taylor expansion of the inverse of the Maurer-Cartan map, us-

ing the tree inversion formula of Bass-Connell-Wright [3, Theorem 4.1].

Consider the Taylor expansion

MC(α) = Id +
∑

k1,...,kr≥0

MC(i1,...,ir;)α
i1
1 . . . αirr

i1! . . . ir!
,

MC(i1,...,ir) ∈ QK(X//G). (1.33)

The tree formula for the formal inverse MC−1 of MC reads

MC−1 =
∑

Γ

|Aut(Γ)|−1
∏

v∈Vert(Γ)

(−MCv)

where the sum over {1, . . . ,dim(QH(X//G))}-labelled trees Γ,

MCv(σ1, . . . , σk(v)) =
∑

i1,...,ik(v)

MCi1(v),...,ir(v)(σ1, . . . , σr)

is the |v|-th Taylor coefficient in MC − Id for the labels incoming the

vertex v considered as a symmetric polynomial in the entries; and com-

position is taken on the tensor algebra using the tree structure on Γ. For

example, for the tree corresponding to the bracketing (12)3 the contribu-

tion ofMC2 toMC−1 is (−MC2)(−MC2 ⊗ Id). See Wright [58] for the

extension of [3] to power series, and also Kapranov-Ginzburg [16, The-

orem 3.3.9]. The argument for the localized gauged potential is similar,

by taking fixed point components for the C×-action onMG
(P1, X).

1.5.3 Divided difference operators

A result of Givental and Tonita [20] shows the existence of a difference

module structure on quantum K-theory for arbitrary target which gives

rise to relations in the quantum K-theory. We follow the treatment in

[33, Section 2.5, esp. 2.10-2.11]. Let

λ1, . . . , λk ∈ K(X)

be classes of nef line bundles corresponding to a basis of H2(X,Z) and

m(λi) the corresponding endomorphisms of QK(X) given by multipli-

cation. Define endomorphisms

Ei = τ(m(λi)
−1zqi∂qi τ−1) ∈ End(QK0

C×(X))

where τ is a fundamental solution to ∇qατ = 0. Define

Ei,com = Ei|z=1 ∈ End(QK(X)).
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Then any difference operator annihilating the J-function defines a rela-

tion in the quantum K-theory: Following [33, Remark 2.11] define

τ̃GX,± =

(
r∏
i=1

λ
− ln(qi)/ ln(z)
i

)
τGX,±.

The results in [33, Section 2] give relations corresponding to opera-

tors annihilating the fundamental solution. Working with topological

K-theory we define coordinates t1, . . . , tr by

ℵ = t1ℵ1 + . . . trℵr, ℵ1, . . . ,ℵr a basis of QK(X//G).

Theorem 1.5. For any divided-difference operator

2 ∈ Q[z, z−1][[q, t]]〈zqi∂qi , (1− z−1)∂α, α ∈ QH(X//G)〉

(where angle brackets denote the sub-ring of differential operators gen-

erated by these symbols) we have

2(z, q, t, zqi∂qi , (1− z−1)∂α)τ̃GX,− = 0 =⇒ 2(z, q, t, Ei,∇zα)1 = 0

and setting z = 1 gives rise to the relation involving quantum multipli-

cation m(α) by α

2(1, q, t, Ei,com,m(α)) = 0

in the quantum K-theory QK(X//G).

Example 1.6. (Toric varieties) In the toric case, we recover some of

the relations on quantum K-theory from Theorem 1.2 as follows. The

operators

Di,k := 1−Xi(z
qi∂qi + z−k(1− z−1)∂i)

satisfy ∏
µi(d)≥0

µi(d)−1∏
k=0

Di,k − qd
∏

µi(d)<0

−µi(d)∏
i=1

Di,k

 τ̂GX,− = 0. (1.34)

Using the expression (1.29) and Ψd(Xi) = Xiz
µi(d) we have

(1− z)∂iτGX,−

=
∑

d∈HG2 (X)

qdXiz
µi(d) exp

(
Ψd(α)

1− z−1

) ∏k
j=1

∏0
m=−∞(1−X−1

j zm)∏k
j=1

∏µj(d)
m=−∞(1−X−1

j zm)
.

(1.35)
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Hence

∏
µi(d)≥0

µi(d)−1∏
k=0

Di,kτGX,−(α, q, z)

=
∑

d∈HG2 (X)

qd
µi(d)−1∏
k=0

(1−Xiz
µi(d)−k) exp

(
Ψd(α)

1− z−1

)
∏k
j=1

∏0
m=−∞(1−X−1

j zm)∏k
j=1

∏µj(d)
m=−∞(1−X−1

j zm)
. (1.36)

This equals

qd
∏

µi(d)<0

−µi(d)∏
k=1

Di,kτGX,−

hence the relation (1.34). By 1.5 one obtains quantum Stanley-Reisner

relations as in (1.3).

1.6 Wall-crossing in K-theory

In this section we recall results on the dependence of the K-theoretic

invariants of the quotient on the choice of polarization due to Kalkman

[36], in the case of cohomology, and Metzler [45], in the case of K-theory.

1.6.1 The master space and its fixed point loci.

The geometric invariant theory quotients for two different polarizations

may be written as quotients by a circle group action on a master space.

Let L± → X two G-polarizations of X. Define

Lt := L(1−t)/2
− ⊗ L(1+t)/2

+ , t ∈ (−1, 1) ∩Q (1.37)

the one-parameter family of rational polarizations given by interpolation.

Definition 1.1. The wall-crossing datum (L−,L+) is simple if the fol-

lowing conditions are satisfied:

a. The only singular value is t = 0, this is,

Xss(±) := Xss(Lt), 0 < ±t ≤ 1

is constant. We assume that stable equals semi-stable for t 6= 0, that
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is, there are no positive-dimensional stabilizer subgroups of points in

the semi-stable locus.

b. The strictly semistable set Xss(L0) \ (Xss(+) ∪Xss(−)) is connected.

c. The only infinite stabiliser subgroup is a circle group:

Gx ∼= C×, ∀x ∈ Xss(L0) \ (Xss(+) ∪Xss(−)), dim(Gx) > 0.

Given a simple wall-crossing, choose a one-parameter subgroup λ :

C× → G, a connected component Zλ of the semi-stable fixed points

Xss(L0)λ.

Definition 1.2. The master space introduced Dolgachev-Hu [13] and

Thaddeus [51] is defined as follows. The projectivization P(L−⊕L+)→
X of the direct sum L−⊕L+ → X is itself a G-variety, and has a natural

polarization given by the relative hyperplane bundleOP(L−⊕L+)(1) of the

fibers, with stalks

OP(L−⊕L+)(1)[l−,l+] = span(l− + l+)∨. (1.38)

Let π : P(L− ⊕ L+) → X denote the projection. The group C× acts

on P(L− ⊕ L+) by rotating the fiber w[l−, l+] = [l−, wl+]. The space

of sections of OP(L−⊕L+)(k) has a decomposition under the natural C×-

action with eigenspaces given by the sections of

π∗Lk−− ⊗ π∗L
k+

+ , k− + k+ = k, k± ≥ 0.

The G-semistable locus in P(L− ⊕ L+) is the union of loci of invariant

eigensections and so the union of π−1(Xss,t) where Xss,t ⊂ X is the

semistable locus for

Lt = L(1−t)/2
− ⊗ L(1+t)/2

+ , t ∈ [−1, 1].

Let

X̃ := P(L− ⊕ L+)//G

denote the geometric invariant theory quotient, by which we mean the

stack-theoretic quotient of the semistable locus. The assumption on the

action of the stabilizers implies that the action of G on the semistable

locus in P(L−⊕L+) is locally free, so that stable=semistable for P(L−⊕
L+). It follows that X̃ is a proper smooth Deligne-Mumford stack. The

quotient X̃ contains the quotients of P(L±) ∼= X with respect to the

polarizations L±, that is, X//±G. Moreover the quotient X̃ss(t)/C× with

respect to the C×-linearisation O(t) is isomorphic to Xss(Lt)/G. This

ends the definition.
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Next we recall from [24] the fixed point sets for the circle action on

the master space.

Lemma 1.3. The fixed point set X̃C× is the union of the quotients

X//±G and the locus in XC×,ss in XC× that is semistable for some t ∈
(−1, 1). The normal bundle of XC×,ss in X̃ is isomorphic to the normal

bundle in X, while the normal bundles of X//±G are isomorphic to L±1
± .

Proof Any fixed point is a pair [l−, l+] with a positive dimensional sta-

biliser under the action of C×. Necessarily the points with l− = 0, l+ = 0

are fixed and they correspond to the quotients X//±G. However there

are other fixed points when l−, l+ are both non-zero when the projection

to X is fixed by a one-parameter subgroup, as we now explain. For any

ζ ∈ g, we denote by Gζ ⊂ G the stabiliser of the line Cζ under the

adjoint action of G. If [l] ∈ X̃C× , with l ∈ P(L− ⊕ L+) then [l] ∈ X̃ξ,

where ξ is a generator of the Lie algebra of C× and X̃ξ is the zero set of

the vector field ξX̃ generated by ξ. Since X̃ is the quotient of P(L−⊕L+)

by G, if ξL denotes the vector field on P(L− ⊕L+) generated by ξ then

ξL(l) = ζL(l) for some ζ ∈ g. Since G acts locally freely ζ must be

unique. Integrating gives z · l = zζ l for all z ∈ C×. By uniqueness of ζ,

this holds for every point in the component of X̃ξ containing [l]. Thus

for any fixed point x̃ ∈ X̃C× with x̃ = [l] for some l ∈ P(L−⊕L+), there

exists ζ ∈ g such that

∀z ∈ C×, z · l = zζ l,

where z 7→ zζ is the one-parameter subgroup generated by ζ. By the

definition of semistability, the argument above and our wall-crossing

assumption, any fixed point x̃ ∈ X̃C× is in the fibre over x ∈ X that

is 0-semistable and has stabilizer given by the one-parameter subgroup

generated by ζ ∈ g, that is, the weight of the one-parameter subgroup

generated by ζ on (Lt)x vanishes:

zζ l = l, ∀l ∈ (Lt)x.

Denote by Xζ//0(Gζ/C×ζ ) the quotient [Xss(L0)ζ/(Gζ/C×ζ )]. Conversely,

taking any lift gives a morphism

ιζ : Xζ//0(Gζ/C×ζ )→ X̃C× .

The argument above shows that any (l−, l+) with both non-zero is in

the image of some ιζ . The normal bundle νX̃C× of X̃C× in X̃ restricted

to the image of ιζ is isomorphic to the quotient of the normal bundle
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of G×Gζ P(L− ⊕ L+)ξ+ζ by G, which in turn is isomorphic via projec-

tion to the quotient of the normal bundle of P(L− ⊕ L+)ξ+ζ by g/gζ ,

and then by the induced action of the smaller group Gζ/C×ζ . Gζ/C×ζ
acts canonically on the normal bundle νXζ/(g/gζ) and induces a bun-

dle (νXζ/(g/gζ))//(Gζ/C×ζ ) over Xζ//0(Gζ/C
×
ζ ). The pull-back of the

normal bundle ι∗ζ(νX̃C× ) is canonically isomorphic to the quotient of

νXζ/(g/gζ) by Gζ/C×ζ , by an isomorphism that intertwines the action

of C×ζ on (νXζ/(g/gζ))//(Gζ/C×ζ ) with the action of C× on νX̃C× . The

final claim is left to the reader.

Definition 1.4. We introduce the following notation. Denote by Xζ,0 ⊂
Xζ the fixed point loci Xss(L0)ζ that are 0-semistable. Denote by νXζ,0

the C×ζ -equivariant normal bundle of Xζ,0 modulo g/gζ , quotiented by

Gζ/C×ζ .

A natural collection of K-theory classes on the master space is ob-

tained by pull back. The projection P(L− ⊕ L+) → X is G-equivariant

and C×-invariant by construction. Consider the canonical map

δ : K0
G(X)→ K0

C×(X̃). (1.39)

obtained by composition of the natural pull-back

K0
G(X)→ K0

G×C×(P(L− ⊕ L+))

with the Kirwan map

K0
G×C×(P(L− ⊕ L+))→ KC×(P(L− ⊕ L+)//G) = K0

C×(X̃).

The composition of δ with the Kirwan map

κ̃C
×

X,t : K0
C×(X̃)→ K(X̃//tC×) = K(X//tG)

agrees with the pull-back to the Lt-semistable locus Xss(Lt). It follows

that

κ̃C
×

X,t ◦ δ = κGX,t : K0
G(X)→ K(X//tG),

is the Kirwan map for the geometric invariant theory quotient of X with

respect to the polarisation Lt. In particular, δ(α) ∈ K0
C×(X̃) restricts to

κGX,±α on the two distinguished fixed point components X//±G ⊂ X̃C× .

The restrictions of these classes to fixed point sets are described as

follows. After passing to a finite cover, we may assume that Gζ splits

as the product Gζ/C×ζ × C×ζ . For any α ∈ K0
G(X), the pull-back of

κ̃C
×

X,0|X̃C× (α) under ιζ is equal to the image of α under the restriction

map K0
G(X) → KC×ζ

(Xζ//0(Gζ/C×ζ )). Indeed TX|Xζ is the quotient
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of TP(L− ⊕ L+)|π−1(Xζ) by C×. Hence the action of Gζ on TP(L− ⊕
L+)|π−1(Xζ) induces an action of Gζ/C× on TX|Xζ . After identifying

C× ∼= C×ζ , we have that ιζ ◦ κ̃C
×

X,0 is the pullback to Xζ//0(Gζ/C×ζ ). For

α ∈ K0
G(X) we will denote by

α0 ∈ KG(Xζ//0(Gζ/C×ζ ))

its restriction.

1.6.2 The Atiyah-Segal localization formula

In this section we review the Atiyah-Segal localization formula in equiv-

ariant K-theory [2], which expresses Euler characteristics as a sum over

fixed point loci. Recall the definition of the Euler class in K-theory. Sup-

pose Y is a smooth variety. For a vector bundle E → Y and a formal

variable q denote the graded exterior power by

∧
qE =

∞∑
k=0

qk
∧k

E ∈ K0(Y )[q]. (1.40)

The K-theoretic Euler class of E is defined by

Eul(E) =
∧
−1E

∨ = 1− E∨ +
∧2

E∨ − · · · ∈ K0(Y ).

Suppose now that T = C× acts trivially on Y , and that a = C(1) is the

weight 1 one-dimensional representation. Thus the equivariant K-theory

of Y is given by

K0
T (Y ) = K0(Y )⊗K0

T (pt) = K0(Y )⊗ Z[z, z−1].

If E is a coherent T -equivariant sheaf, its decomposition into isotypical

components will be denoted

E =

k⊕
i=1

zµiEi (1.41)

where µi ∈ Z is the weight of the action on Ei. The K-theoretical equiv-

ariant Euler class of E is given by

EulT (E) =
∏
i

Eul(zµiEi) ∈ KT (Y ).

The localization formula involves an integral over fixed point compo-

nents with insertion of the inverted Euler class. Suppose that T = C×
acts on X (non-trivially) and with fixed point set XT . The previous
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paragraph discussion applies to the T -equivariant normal bundle νXT ,

that is, the Euler class

EulT (νXT ) ∈ KT (XT ) = K(XT )[z, z−1]

has been formally inverted through localisation. Denote by K loc
T (X), the

equivariant K-theory ring localized at the ideal of R(T ) generated by the

Euler classes of representations Cµi with weights µi, i = 1, . . . , k (or more

alternatively, one could localize at the roots of unity in the equivariant

parameter).3 The K-theoretic localisation formula of Atiyah-Segal [2],

see also [12, Chapter 5]) states that in K loc
T (X)

[OX ] = [ι∗
(
OXT ⊗ EulT (ν∨XT )−1

)
] =

[ ∑
F→XT

OF ⊗ EulT (ν∨F )−1

]
(1.42)

for the inclusion ι : XT → X. Here the sum runs over all fixed compo-

nents F of XT . In terms of Euler characteristics we have

χ(X;F) =
∑

F→XT
χ(F ;F ⊗ EulT (ν∨F )−1) ∈ R(T ).

The Atiyah-Segal localization formula implies a wall-crossing formula

for K-theoretic integrals under variation of geometric invariant theory

quotient due to Metzler [45]. Metzler’s formula uses the following notion

of residue, related to a power series expansion in a localized ring. For

any T -equivariant locally free sheaf F of rank r on a variety Y with

trivial T -action the class

F0 = F − rOY ∈ KT (Y )

is nilpotent (c.f. [12, Prop. 5.9.5]). By taking exterior powers with nota-

tion as in (1.40) we have∧
qF =

∧
q(F0 + rOY ) = (1 + q)r

∧
q

1+q
F0 ∈ KT (Y )[q].

Using this formula on the weight µi bundle Ei gives

EulT (Ei) = (1− z−µi)ri(1 +Ni)

where ri = rankEi, and Ni ∈ K(Y ) ⊗ Z[z, z−1] is a combination of

nilpotent elements in K(Y ) whose coefficients are monomials of the form

3 In the orbifold case, one must localize at the roots of unity that appear in the
denominators in the Riemann-Roch formula as in Tonita [53].
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z−µi

1−z−µi . Thus

EulT (E) =
∏
i

(1− z−µi)ri(1 +Ni), (1.43)

where

Ni =
∑

Nk,isk(z) ∈ K(Y )⊗ Z[[z, z−1]]. (1.44)

The equation (1.44) is a finite sum where Nk,i is a nilpotent element in

K(Y ) and sk(z) is a rational function in z that has no pole at z = 0 nor

z = ∞. Thus EulT (E)−1 has only poles at roots of unity. In particular

the Euler classes can formally be inverted, since the leading term is

invertible.

Example 1.5. We give the following example of formal power series

associated to inverted Euler classes. Let L→ Y be a T -equivariant line

bundle of weight µ = ±1. Then

EulT (L) = 1− z∓1L∨ ∈ KT (Y ).

This expression can be expanded, using the nilpotent element L0 =

L∨ − 1, as

1− z∓1L∨ = 1− z∓1(1 + L0) = (1− z∓1)

(
1 +

z∓1L0

1− z∓1

)
.

This ends the example.

The residue of a K-theoretic class is a difference between the residues

of the characters at zero and infinity. For any class α ∈ K loc
T (Y ) there

exist unique expansions

α =
∑
n≥0

α0,nz
n ∈ K(Y )[z−1, z]], α0,n ∈ K(Y )

and

α =
∑
n≥0

α∞,nz
−n ∈ K(Y )[[z−1, z], α∞,n ∈ K(Y ).

The residue is the map

Resid : K loc
T (Y )→ K(Y ); α 7→ α∞,0 − α0,0 (1.45)

assigning the difference of the constant coefficients in the power series

expansions above.

Lemma 1.6. Let α ∈ K loc
T (Y ) be a class in the image of the inclusion

KT (Y )→ K loc
T (Y ). Then Residα = 0.
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Proof In this case the coefficients α0,i = α∞,i are the coefficients of zi

in α, hence in particular α0,0 = α∞,0.

Example 1.7. Let Y be a point and E = C(1) the representation with

weight one. The inverted Euler class of E is defined formally by the

associated series

Eul(C(1))
−1 = (1− z−1)−1 = 1 + z−1 + z−2 + . . .

Eul(C(1))
−1 = (1− z−1)−1 =

−1

z−1(1− z)
= −z − z2 − z3 + . . . .

It follows that the residue of the inverted Euler class is

Resid(Eul(C(1))) = 1− 0 = 1 ∈ K(pt) ∼= Z.

Similarly

Resid(Eul(C(−1))) = 0− 1 = −1 ∈ K(pt) ∼= Z.

More generally for any line bundle L of weight ±1, by Example 1.5 we

have

Resid Eul(L)−1 = Resid

(
1

1− L∨

)
= ±1. (1.46)

Example 1.8. Suppose that T acts trivially on Y and that E → Y is

a bundle with isotypical decomposition as in (1.41). Let

S+, S− ⊂ {1, . . . , k}

denote the index sets for positive and negative weights µi respectively.

Using (1.43), we have

EulT (E)−1 =

∏
i∈S+

(1− z−µi)ri(1 + E+,i)
∏
i∈S−

(1− z−µi)ri(1 + E−,i)

−1

where both E± ∈ K loc
T (X) are as in Equation (1.44). To compute the

residue, we may ignore the Ni terms. In this case the lowest order terms

in the power series expansions in both z and z−1 have degree given by∏
i∈S+

µiri and
∏
i∈S−(−µi)ri respectively. If both S± are non-empty,

then Resid EulT (E)−1 = 0.

In general one can make different choices of residues, and the choice

depends on the problem at hand, see [45, Section 4] for other examples.
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1.6.3 The Kalkman-Metzler formula

The formulas of Kalkman and Metzler describe the wall-crossing of K-

theoretic integrals under variation of geometric invariant theory quo-

tient. We follow the same notations as in Section 1.6.1. Consider family

of polarisations Lt → X with a simple wall crossing at the singular time

t = 0 with an associated master space X̃. Let

Xζ,0 = Xss(L0) ∩XC×

be the fixed point component of the one-parameter subgroup generated

by ζ involved in the wall-crossing.

Definition 1.9. For an element ζ ∈ g, define the fixed point contribution

τX,ζ,0 : K0
G(X)→ Z,

α 7→ χ

(
Xζ,0//(Gζ/C×ζ ); Resid

(
α0

EulC×ζ
(νXζ,0)

))
. (1.47)

Here α0 is the image of α under the map K0
G(X)→ K0

C×ζ
(Xζ,0).

A version of the following formula was proved by Metzler [45, Theorem

1.1] in the differential geometric setting of manifolds with circle actions.

Theorem 1.10 (Kalkman-Metzler wall-crossing). Let X be a smooth G-

variety (projective or affine) and suppose that L± → X are polarizations

inducing a simple wall-crossing. Then

τX//+Gκ
G
X,+ − τX//−Gκ

G
X,− = τX,ζ,0. (1.48)

Example 1.11. Our first example concerns the passage from projective

space to the empty set by variation of git quotient. Consider G = C×
acting on X = Cn+1 diagonally with weight one. A polarisation is given

by a choice of another character ` ∈ Z. For ` < 0 the quotient is empty

and for ` > 0, X//G = Pn. Let C(k) be the weight k ≥ 0 representation.

The sheaf F = OX ⊗ C(k) descends to O(k) → Pn. The fixed point

set XG is the single point 0 ∈ X whose normal bundle is identified

with Cn+1 itself. The inverted Euler class is (1− z−1)−(n+1) and can be

identified with the class of the symmetric algebra Sym(z−1Cn+1). The

fixed point contribution of the wall crossing formula (1.48) equals

O(k)|0 ⊗ Sym(z−1Cn+1) = zk Sym(z−1Cn+1).

The residue, corresponding to the z0 coefficient is the degree k part
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Symk(Cn+1). The wall crossing formula now reads

χ(Pn,O(k)) = χ(XG,Symk(Cn+1)) = dim Symk(Cn+1) =

(
n+ k

k

)
.

Similarly, if one considers O(−k) and the identity

SymV = (−1)n+1 detV ∨ ⊗ SymV ∨,

we get that the wall crossing contribution is

Resid z−kzn+1 Sym(Cn+1).

This is the degree k − n− 1 part Symk−n−1(Cn+1), hence

χ(Pn,O(−k)) = (−1)nχ(XG,Symk−n−1(Cn+1)) = (−1)n
(

k − 1

k − n− 1

)
.

Example 1.12. Our second example concerns the Cremona transfor-

mation. Let X = (P1)3 with polarization

L = OP1(c1)�OP1(c2)�OP1(c3), c1 < c2 < c3.

Consider G = C× acting on each factor P1 by t[z0, z1] = [z0, tz1] and

the action on OP1(n) so that the weights at the fibres over the fixed

points [1, 0], [0, 1] are n/2,−n/2. We consider the family of polarizations

Lt = L⊗Ct obtained by shifting L by a trivial line bundle weight weight

t. The singular values t are given by the weights (±c1 ± c2 ± c3)/2 of

the action on the fibre Lt|p at the fixed points. Hence, there are eight

chambers for t on which the geometric invariant theory quotient X//tG

is constant. Two have empty git quotients. In the first and last chamber,

we have X//tG ∼= P(C3) resp. P((C3)∨), while the six intermediate wall-

crossings induce three blow-ups and three blow-downs involved in the

classic Cremona transformation of P2.

We consider how the Euler characteristic of the structure sheaf changes

under wall-crossing. Consider the structure sheaf OX , whose restriction

to any of the chambers is again the respective structure sheaf Ot. We

now describe the change in the Euler characteristic χ(X//tG,Ot) as we

vary t under the wall-crossing from the chamber t < −c1− c2− c3 to the

first non-empty chamber t ∈ (c1 − c2 − c3,−c1 + c2 − c3), corresponding

to the wall defined by the fixed point x = ([1, 0], [1, 0], [1, 0]) ∈ X. Since

all weights of the action on the tangent bundle at this fixed point x ∈ X
are 1, we have that the Euler class at this fixed point is (1− z−1)3. The

wall crossing formula yields

χ(P2,O) = 0 + χ

(
x,Resid

O|x
(1− z−1)3

)
= 1
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as expected.

The next wall-crossing, corresponds to the blow-up Bl(P2) of P2 at a

fixed point. The normal bundle at this point has weights −1, 1, 1 and

thus the wall crossing formula yields

χ(Bl(P2),O) = χ(P2,O) + χ

(
x,Resid

O|x
(1− z)(1− z−1)2

)
= χ(P2,O) + 0 = 1

since the residue is zero each time there are contributions with both

positive and negative weights (since the numerator is trivial) which is

consistent, since the Euler characteristic χ(X,OX) is a birational invari-

ant. In fact the invariance of the Euler characteristic χ(X//G,OX//G)

under git birational transformation follows from Example 1.8.

Proof of Theorem 1.10 Consider the master space X̃ associated to the

wall-crossing. Let α ∈ K0
G(X), and consider its image δ(α) ∈ K0

C×(X̃)

of (1.39). Using K-theoretic localization (1.42) on the C×-space X̃, and

the identification of the fixed point components and normal bundles with

those in the ambient space we obtain the relation

δ(α) = ι∗
κGX,−(α)

EulC×(ν−)
+ ι∗

κGX,+(α)

EulC×(ν+)
+ ι∗

α0

EulC×ζ
(νXζ,0)

,

where ι : F → X̃C× is the inclusion of (each) fixed point components.

By applying residues and Euler characteristics

χ
(
X̃; Resid δ(α)

)
= χ

(
X//−G; Resid

κGX,−(α)

EulC×(ν−)

)

+ χ

(
X//+G; Resid

κGX,+(α)

EulC×(ν+)

)
+ χ

(
Xζ,0; Resid

α0

EulC×(νXζ,0)

)
.

(1.49)

The left hand side of (1.49) is zero by the definition of residue (c.f.

Remark 1.6) . The group C× acts on ν± with weights ∓1 on the nor-

mal bundles ν± → X//±G of X//±G in X̃ respectively, since they are

canonically identified with (L+ ⊗ L−)±1. Hence one obtains

0 = −τX//+Gκ
G
X,+α+τX//−Gκ

G
X,−α+χ

(
Xζ,0; Resid

α0

EulC×ζ
(νXζ,0)

)
as claimed.
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We remark that Kalkman-Metzler wall-crossing formula Theorem 1.10

can be generalised to more complicated wall-crossing, such as when there

are multiple singular times and fixed components. The details are left

to the reader.

1.6.4 The virtual wall-crossing formula

A virtual version of the Kalkman-Metzler formula follows from a vir-

tual version of localization in K-theory proved by Halpern-Leistner [28,

Theorem 5.7]. Let X be a Deligne-Mumford G-stack with coarse moduli

space X. Let L± → X be G-polarizations of X . That is, L± are G-line

bundles which are ample on the coarse moduli space X. Let

PicQ(X ) = Pic(X )⊗Z Q

denote the rational Picard group and

Lt := L(1−t)/2
− ⊗ L(1+t)/2

+ ∈ PicQ(X ), t ∈ (−1, 1) ∩Q. (1.50)

The family (1.50) is a one-parameter family of rational polarizations

given by interpolation. We will also assume, for simplicity that there is

a simple wall-crossing:

Assumption 1.13. There is only one singular value t = 0, such that

the semistable loci

X ss(+) := X ss(Lt), X ss(−) := X ss(Lt)

are constant for ±1 ≤ t < 0. We assume that stable equals semi-stable

for t 6= 0. Moreover X ss(L0) \ (X ss(+) ∪ X ss(−)) is connected. Assume

that the stabiliser Gx for x ∈ X ss(L0) \ (X ss(+)∪X ss(−)) is isomorphic

to C×.

Consider the case that the given stack has an equivariant perfect ob-

struction theory. The G-action on X induces a canonical morphism

a∨ : LX → g∨ ⊂ LX×G = LX × g∨

that we call the infinitesimal action. Composing with the morphism

E → LX gives a natural lift ã∨ : E → g∨. Let X ss be the semistable

locus for some polarization and assume stable=semistable, that is all

the stabilisers are finite. Let Ess, LX ss etc. be the restrictions to the

semistable locus.

Lemma 1.14. The perfect obstruction theory Ess → LX ss := LX |X ss

descends to a perfect obstruction theory on the quotient X ss/G.
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Proof From the fibration π : X ss → X ss/G one obtains an exact

triangle of cotangent complexes

LX ss/G → LX ss
a∨→ g∨ → LX ss/G[1], (1.51)

thus we can consider LX ss → g∨ as the cotangent complex of X ss/G.

Let Cone(ã∨) denote the mapping cone of ã∨. Then the exact triangle

Cone(ã∨)→ Ess ã
∨

→ g∨ → Cone(ã∨)[1]

admits a morphism to (1.51), in particular making Cone(ã∨)→ LX ss/G

into an obstruction theory with amplitude in [−1, 1]. By the assumption

on the finite stabilizers, this obstruction theory is perfect.

The perfect obstruction theories on the stack induce perfect obstruc-

tion theories on the fixed point components. Assume again that X is

equipped with a G action. For any ζ ∈ g, consider the fixed point stacks

X ζ . The restriction of the perfect obstruction theory E•|X ζ decomposes

as

E•|X ζ = E•,mov + E•,fix

where E•,mov is the moving part and E•,fix the fixed part. By results

of [21], E•,fix yields an equivariant perfect obstruction theory for X ζ ,
which is compatible with that on X . Denote by

a∨ζ : LX/Gζ → (gζ/Cζ)∨

the map given by the infinitesimal action of Gζ/C×ζ on X/Gζ . Denote

by

νX ζ ∈ Ob(Db Coh(X ζ/Gζ))

the moving part of the mapping cone Cone(aζ); this is the conormal

complex for the embedding X ζ/Gζ → X/Gζ except for the factor Cζ of

automorphisms of the fixed point set. Denote by X ζ,0 the locus of X ζ
which is L0-semistable and by νX ζ,0 the restriction of νX ζ to X ζ,0.

A virtual version of localization in K-theory for stacks is proved in

Halpern-Leistner [28, Theorem 5.7]. A special case is the following: As-

sume that a torus T acts on X (e.g. the action of C× on a master space

for wall-crossing) and let X T denote the fixed locus. The virtual tangent

space restricted to X T decomposes into

Def −Obs |XT = Deffix−Obsfix + Defmov−Obsmov

its fixed and moving parts consisting of T -modules with trivial and non-

trivial weights. The K-class νXT = (Defmov−Obsmov) is the virtual
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normal bundle. In the case T = C× this class splits into classes νXT ,±
corresponding to negative and positive weights and the inverted Euler

class of νXT maybe defined as the tensor product

Eul(νXT )−1 = Eul(νXT ,+)−1 Eul(νXT ,−)−1

where as in [28, Footnote 24]

Eul(νXT ,−)−1 = Sym(νXT ,−)

Eul(νXT ,+)−1 = Sym(ν∨XT ,+)⊗ det(νXT ,+)[− rank(νXT ,+)]

is an infinite sum of bundles such that each weight component is finite;

this suffices for the finiteness of the formulas below. The residue of such

classes is defined as before in (1.45), by taking the difference in expansion

as formal power series in z and z−1.

Theorem 1.15. (Virtual localisation) [28, 5.6,5.7] Suppose that X is

the a proper global quotient of a quasiprojective scheme by a reductive

group equipped with an equivariant T = C×-action, and E is a T -

equivariant sheaf on X . Then the Euler characteristic of E is computed

by

χvir(X , E) = χvir(X T , E ⊗ EulT (νXT )−1)

=
∑
F⊂XT

χvir(F,E ⊗ EulT (νF )−1)

for the inclusion ι : X T → X . Here the sum runs over all fixed compo-

nents F of X T and the Euler class EulT (νXT ) are defined as in 1.6.2,

and it is invertible in localised equivariant K-theory.

Proof This is stated for quasi-smooth schemes Y in [28, Theorem 5.7].

The statement for quasi-smooth global quotient stacks X = Y/G by re-

ductive groups G follows from the identification of the Euler character-

istic χ(X , E/G) on X with the invariant part of the Euler characteristic

χ(Y,E)G upstairs, where the Bialynicki-Birula decomposition satisfies

the requirements of the stratification by [29, Section 1.4.1].

The formula (1.52) implies a formula for Euler characteristics as a sum

over fixed point components, in which the fixed point contributions are

of the following form. Let EulC×ζ
(νX ζ,0) be the equivariant Euler class

of the normal bundle in K0
C×ζ

(X ζ,0), Let τX ,ζ,0 denote the equivariant

virtual Euler characteristic twisted by Eul−1

C×ζ
(νX ζ,0) combined with the
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residue

τX ,ζ,0 : K0
C×ζ

(X ζ,0) → Z; σ 7→ χvir
C×ζ

(
X ζ,0; Resid

σ

EulC×ζ
(νX ζ,0)

)
.

Let τX//±G denote the virtual Euler characteristic

τX//±G : K(X//±G)→ Z, α 7→ χvir (X//±G;α) ,

on the quotients as before. We have the following virtual Kalkman-

Metzler wall-crossing formula:

Theorem 1.16. Let X be a proper Deligne-Mumford global-quotient

G-stack equipped with a G-equivariant perfect obstruction theory which

admits a global resolution by vector bundles. Let L± → X be G-line

bundles whose associated wall-crossing is simple. Then

τX//+G κGX ,+ − τX//−G κGX ,− = τX ,ζ,0 (1.52)

Example 1.17. (Wall-crossing over a nodal fixed point) Suppose that

X = P1 ∪ P1 is a nodal projective line with a single node x0 ∈ X ,

equipped with the standard G = C× action on each component, so that

the weights of the action on the tangent spaces at the node are ±1. Equip

X with a polarization so that the weights are ±1 at the smooth fixed

points, and 0 at the nodal point x0 = X ζ,0. Then X//tG is a point for

t ∈ (−1, 1), and is singular for t = 0. Since X is a complete intersection,

X it has a perfect obstruction theory [4, Example before Remark 5.4] and

the virtual wall-crossing formula of Theorem 1.16 applies. We examine

the wall-crossing for the class OX at the singular value t = 0. The

virtual normal complex at the nodal point is the quotient of C1 ⊕ C−1,

the sum of one-dimensional representations with weights 1,−1, modulo

their tensor product C1 ⊗ C−1, which has weight 1 − 1 = 0. Hence the

normal complex has inverted Euler class

EulC×(νX ζ,0)−1 =
1

(1− z−1)(z − 1)

whose residue is zero by Example 1.8. The Euler characteristics on the

left and right hand sides are 1 while the wall-crossing term is

1− 1 = τX//+G κGX ,+ − τX//−G κGX ,−

= τX ,ζ,0 = χvir
(
x0,EulC×(νX ζ,0)−1

)
= 0

compatible with the wall-crossing formula.
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The proof of Theorem 1.16 uses the construction of a master space

for this set up. However, the same construction as before with small

modifications applies.

Lemma 1.18. There exists a proper Deligne-Mumford C×-stack X̃ equipped

with a line bundle ample for the coarse moduli space whose git quotients

X̃//tC× are isomorphic to those X//tG of X by the action of G with

respect to the polarization Lt and whose fixed point set X̃C× is given by

the union

X̃C× = (X//−G) ∪ (X//+G) ∪ ιζ(X ζ//0(Gζ/C×ζ )) (1.53)

where ιζ is the natural map to X̃ as before. Furthermore, X̃ has a per-

fect obstruction theory admitting a global resolution by vector bundles

with the property that the virtual normal complex of X ζ//0(Gζ/C×ζ ) is

isomorphic to the image of νX ζ/(g/Cζ) under the quotient map X ζ →
X ζ//(Gζ/C×ζ ), by an isomorphism that intertwines the action of C×ζ on

(νX ζ/(g/Cζ))//(Gζ/C×ζ ) with the action of C× on νX̃C× .

Proof The construction of the master space is the same as in the smooth

case, that is, the master space is the stack-theoretic quotient X̃ = P(L−⊕
L+)//G. The action of G on the semistable locus in P(L−⊕L+) is locally

free by assumption. It follows that X̃ is a proper Deligne-Mumford stack,

and by Lemma 1.14 has a perfect obstruction theory induced from the

natural obstruction theory on P(L− ⊕ L+) given by considering it as a

bundle over X . The quotient X̃ is such that X̃//tC× is isomorphic to

X//tG for t 6= 0. In fact it contains the quotients of P(L±) ∼= X with

respect to the polarizations L±, that is, X//±G.

The same argument as before describes the fixed point loci: they cor-

respond to fixed point loci in P(L−⊕L+) for one-parameter subgroups of

C××G. Given such a locus P(L−⊕L+)ξ+ζ , the pull-back of the virtual

normal complex is by definition the moving part of Cone(ã∨P(L−⊕L+)),

where

ã∨P(L−⊕L+) : EP(L−⊕L+) → g∨
ζ

is the lift of the infinitesimal action of Gζ . Consider the fibration π :

P(L− ⊕ L+)→ X . By definition EP(L−⊕L+) fits into an exact triangle

EX → EP(L−⊕L+) → Lπ → EX [1].

Over the complement P(L− ⊕ L+) \ (D0 ∪ D∞) ⊂ P(L− ⊕ L+) of the

sections at zero and infinity we may identify Lπ ∼= C using the C×-action
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on the fibers, by the assumption on the weights of the Cζ action on the

fiber. Thus the projection to X identifies

Cone(ã∨P(L−⊕L+)|P(L−⊕L+)ξ+ζ )→ π∗Cone(ã∨X ζ )

where

ã∨X ζ : EX |X ζ → (gζ/Cζ)∨

is the lift of the infinitesimal action of gζ/Cζ. Now the virtual normal

complex is by definition the C×-moving part of the perfect obstruction

theory; the Lemma follows.

Proof of Theorem 1.16 For any equivariant class α ∈ K0
G(X ), its pull-

back to P(L− ⊕ L+) descends to a class α̃ ∈ K0
G(X̃ ) whose restriction

to X//±G is κGX,±(α), and whose pullback under Xζ,0 → X̃C× is ιXζ,0α.

By virtual localisation (1.52) and the description of the fixed set, the

normal bundles in Lemma 1.18

0 = χvir(X̃ ; Resid δ(α)) =

χvir

(
X//−G; Resid

κGX ,−(α)

EulC×(ν−)

)
+ χvir

(
X//+G; Resid

κGX ,+(α)

EulC×(ν+)

)
+

χvir

(
X ζ,0/(Gζ/C×); Resid

ι∗X ζ,0α

EulC×ζ
(νX ζ,0)

)
. (1.54)

As in (1.7) we have

Residχ(X//∓G,
κGX ,∓(α)

EulC×(ν∓)
= ±χ(X//∓G, κGX ,∓(α).)

Indeed, by definition the normal bundle νF at X//∓G has virtual dimen-

sion one with positive resp. negative weight, and the inverted Euler class

Eul(ν)−1 is the symmetric product Sym(ν) for the Bialynicki-Birula de-

composition for positive weight, or Sym(ν∨) det(ν∨) for the decomposi-

tion with negative weight. 4 For χ(X//+G) the invariant part of the first

is the trivial line bundle, while for the second the invariant part vanishes

since the weights are positive so the difference in (1.45) of
κGX ,∓(α)

EulC× (ν∓) is

4 That these classes both agree with the inverted Euler class in localized K-theory
follows by inspection from Riemann-Roch [53]. In fact, the agreement with the
inverted Euler class is not necessary and one may take the difference in the
Halpern-Leistner version of virtual localization for the Bialynicki-Birula
decomposition and its opposite as the definition of residue.
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κGX ,∓(α). For χ(X//−G), the weight of ν is negative and Sym(ν) ap-

pears in the Bialynicki-Birula decomposition for negative weight. Thus

the residue is κGX ,∓(α), which completes the proof.

1.7 Wall-crossing in quantum K-theory

The main result in this section, Theorem 1.5 below, relates the quantum

K-theory pairings on both sides of a wall-crossing. Let X//±G denote

the associated quotient stacks [Xss(±)/G] at times t = ±1 and let

κGX,± : QK0
G(X,L±)→ QK0

C×(X//±G)

denote the associated quantum Kirwan maps. Consider the graph po-

tentials

τX//±G : QK0
C×(X//±G)→ ΛGX,L± .

Denote by

QK0,fin
G (X) ⊂ QK0

G(X,L−) ∩QK0
G(X,L+)

the subset of classes of sums lying in both completions; for example, any

finite sum lies in this intersection. We want to establish a formula for

the difference

τX//+G κGX,+ − τX//−G κGX,− : QK0,fin
G (X)→ ΛGX

as a sum of fixed point contributions given by gauged Gromov-Witten

invariants with smaller structure groups Gλ/C×λ .

1.7.1 Master space for gauged maps and wall-crossing

We recall from [24, Proposition 3.1] the construction of master space

whose quotients are the moduli stacks of Mundet stable gauged maps.

Proposition 1.1 (Existence of a master space). Under assumptions of

simple wall-crossing 1.13, for each equivariant degree d ∈ HG
2 (X) there

exists a proper Deligne-Mumford C×-stack MG

n (C,X,L−,L+, d) with

the following properties:

a. The stack MG

n (C,X,L−,L+, d) has a C×-equivariant perfect obstruc-

tion theory, relative over the moduli stack Mn(C) of prestable maps

to C of class [C].
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b. the git quotients of MG

n (C,X,L−,L+) by the C×-action are isomor-

phic to the moduli stacksMG

n (C,X,L(1−t)/2
− ⊗L(1+t)/2

+ ) for parameter

t ∈ (−1, 1);

c. the C×-fixed substack includesMG

n (C,X,L−, d) andMG

n (C,X,L+, d);

the other fixed point components are isomorphic to substacks of re-

ducible elements of MG

n (C,X,L(1−t)/2
− ⊗ L(1+t)/2

+ ) for t ∈ (−1, 1)

consisting of gauged maps with C×-automorphisms.

d. MG

n (C,X,L−,L+, d) admits an embedding in a non-singular Deligne-

Mumford stack.

For any fixed point component F ⊂ MG

n (C,X,L−,L+, d) denote by

νF the normal complex, that is, the C×-moving part of the perfect ob-

struction theory of Proposition 1.1 part (a). The following is a direct

application of virtual wall crossing applied to the master space. Denote

the evaluation map

ev :MG

n (C,X,L−,L+, d)→ (X/G)n.

Proposition 1.2. For any class α ∈ K0
G(X)n

χvir
(
MG

n (C,X,L+, d); ev∗ α
)
− χvir

(
MG

n (C,X,L−, d); ev∗ α
)

=
∑
F

χvir

(
F ; Resid

ι∗F ev∗ α

EulC×(νF )

)
(1.55)

where F ranges over the fixed point components of C× on the moduli

MG

n (C,X,L−,L+, d) that are not equal to MG

n (C,X,L±, d).

1.7.2 Reducible gauged maps

We analyze further the fixed point contributions in (1.55), which come

from reducible gauged maps. Let X be a smooth projective G-variety.

Let Z ⊂ G a central subgroup. For any principal G-bundle P → C,

the right action of Z on P induces an action on the associated bundle

P (X), and so on the space of sections of P (X). The fixed point set of

Z on P (X) is P (X)Z = P (XZ), the associated bundle with fiber the

fixed point set XZ ⊂ X. The action of Z on the space of sections of

P (X) preserves Mundet semistability, since the parabolic reductions are

invariant under the action and the Mundet weights are preserved. This

induces an action of Z on MG

n (C,X).
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Proposition 1.3. Let Z ⊂ G be a central subgroup. The fixed point

locus for the action of Z on MG

n (C,X) is the substack whose objects are

tuples

(p : P → C, u : Ĉ → P (X), z)

such that

a. u takes values in P (XZ) on the principal component C0;

b. for any bubble component Ci ⊂ Ĉ mapping to a point in C, u maps

Ci to a one-dimensional orbit of Z on P (X); and

c. any node or marking of Ĉ maps to the fixed point set P (XZ).

We introduce notation for the various substacks of reducible maps.

Let ζ ∈ g generate a one-parameter subgroup C×ζ ⊂ G. Recall that Gζ
denotes the centralizer in G and so it contains C×ζ as a central subgroup.

Let

MGζ
n (C,X,Lt, ζ, d)

denote the stack of Lt-Mundet-semistable morphisms from C to X/Gζ
that are C×ζ -fixed and take values in Xζ on the principal component and

in X/Gζ on the bubbles. Because these gauged maps correspond to the

smaller group Gζ , we call them as reducible gauged maps.

Each component of reducibles has an equivariant perfect obstruction

theory. Recall that the obstruction theory for the moduli of gauged maps

MG

n (C,X, d) is given by the complex Rp∗e
∗T∨X/G, which is relative with

respect to Mn(C). The moduli MGζ
n (C,X,L0, ζ, d) is an Artin stack,

and if every automorphism group is finite modulo C×ζ , it is a proper

Deligne-Mumford stack with a C×-equivariant relatively perfect obstruc-

tion theory over Mn(C). This follows from the fact that the relative per-

fect obstruction theory for MGζ
n (C,X,Lt, ζ, d) is pulled back from that

on the C×-fixed point set in the master space MG

n (C,X,L−,L+, d)C
×

.

This coincides with the C×ζ -equivariant obstruction theory on the stack

MGζ
n (C,X,L0, ζ, d) whose relative part is the cone with target the triv-

ial bundle C∨ζ with fiber the Lie algebra Cζ of C×ζ

Cone(Rp∗e
∗T∨X/G → C∨ζ )

given by the infinitesimal action of C×ζ . The complex Rp∗e
∗T∨X/G itself

is not perfect because of the C×ζ -automorphisms; taking the cone has

the effect of cancelling this additional automorphisms. Denote by ν0 the
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virtual (co)normal complex of the morphism

MGζ
n (C,X,Lt, ζ)→MG

n (C,X,L−,L+),

and as before, denote by

EulC×(ν0) ∈ K(MG

n (C,X,L0, ζ))

its Euler class.

Virtual Euler characteristics over the reducible gauged maps gives

rise to the fixed point contributions in the wall-crossing formula: these

are ζ-fixed K-theoretic gauged Gromov-Witten invariants. The ζ-fixed

K-theoretic gauged Gromov-Witten invariants that appear in the wall-

crossing formula involve further twists by the inverse of Euler classes of

the virtual normal complex EulC×(ν0)−1. Before we made this explicit,

we need to allow a slightly larger coefficient ring. Denote by

Λ̃GX := Map(HG
2 (X,Z),Q)

the space of Q-valued functions on HG
2 (X,Z) (cf. Equation (1.10)). Note

that Λ̃GX has no ring structure extending that on ΛGX . The space Λ̃GX can

be viewed as the space of distributions in the quantum parameter q, and

we use it as a master space interpolating Novikov parameters for the

quotients with respect to Lt as t varies. Let Λ̃GX,fin denote the subspace

of finite sums.

Definition 1.4. Let X,G,L±, ζ ∈ g as above, such that there is simple

wall-crossing at the unique singular time t = 0 and such that Xζ,0 is

non-empty. The fixed point potential associated to this data is the map

τX,ζ,0 : QK0,fin
G (X)→ Λ̃GX

α 7→
∑

d∈HG2 (X,Z)

∑
n≥0

χ

(
MG

n (C,X,L0, ζ, d); Resid
ev∗(α, . . . , α)

EulC×(ν0)

)
qd

n!
,

(1.56)

for α ∈ K0
G(X), extended to QK0,fin

G (X) by linearity. Here we omit the

restriction map K0,fin
G (X)→ K0

Gζ
(X) to simplify notation.

Remark. The fixed point potential τX,ζ,0 takes values in Λ̃GX rather than

in ΛGX(L0) because Gromov compactness fails for gauged maps in the

case that a central subgroup C×ζ acts trivially. Indeed, in this case, the

energy 〈d, c1(L)〉 of a gauged map of class d does not determine the

isomorphism class of the bundle, since twisting by a character of C×ζ
does not change the energy.
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1.7.3 The wall-crossing formula

We may now prove the quantum version of the Kalkman-Metzler for-

mula.

Theorem 1.5 (Wall-crossing for gauged potentials). Let X be a smooth

G-variety. Suppose that L± → X are polarizations such that there is sim-

ple wall-crossing. Then the gauged Gromov-Witten potentials are related

by

τGX,+ − τGX,− = τX,ζ,0 (1.57)

where the same Mundet semistability parameter should be used to define

the potentials on both sides of the equation.

Proof of Theorem 1.5 The statement follows from virtual Kalkman-

Metzler formula 1.16 applied to the master space MG

n (C,X,L−,L+)

and the identification of fixed point contributions as reducible gauged

maps described in sections 1.7.1,1.7.2.

Combining Theorem 1.5 with the adiabatic limit (1.30) yields:

Theorem 1.6 (Quantum Kalkman-Metzler formula). Suppose that X

is equipped with polarizations L± so that the wall crossing is simple (the

only singular polarisation is L0 ). Then the Gromov-Witten invariants

of X//±G are related by twisted gauged Gromov-Witten invariants with

smaller subgroup Gζ ⊂ G

τX//+G κGX,+ − τX//−G κGX,− = lim
ρ→0

τX,ζ,0. (1.58)

In other words, failure of the following square

QK0
G(X,L−) QK0,fin

G (X) QK0
G(X,L+)

QK(X//−G) QK(X//+G)

ΛGX,L− Λ̃GX ΛGX,L+

κGX,− κGX,+

τX//−G τX//+G

(1.59)

to commute is measured by an explicit sum of wall-crossing terms given

by the contribution of the fixed gauged potential. We remark that if

the wall-crossing is not simple, the contributions on the right-hand side

of the wall-crossing formula might come from several singular values

t ∈ (−1, 1) as the polarisations Lt varies; however a simple modification

of the argument above proves it as well.
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1.8 Crepant wall-crossing

In this section we use the quantum Kalkman-Metzler formula to prove a

version of the crepant transformation conjecture for K-theoretic Gromov-

Witten invariants, under some rather strong assumptions on the weights

involved in the wall-crossing. We assume the following symmetry con-

dition on the weights involved in the wall-crossing. Suppose we have a

birational transformation of git type

φ : X//−G 99K X//+G

defined by a simple wall-crossing induced by two polarisations L+,L−
as in the previous sections. Suppose that for ζ ∈ g, the fixed point

component Xζ,0 is the one contributing to the wall-crossing term, and

let νXζ,0 → Xζ,0 be its normal bundle in X. Let

νXζ,0 =
⊕
j

νj

be the isotypical decomposition so that C×ζ acts on νj with weight µj .

Note as before that all the µj 6= 0. Let rj = rank νj .

Definition 1.1. The birational transformation φ : X//−G→ X//+G is

simply crepant if the set of weights µi of the normal bundle of Xζ,0 in X

is invariant under multiplication by −1, that is, whenever µj is a weight

with multiplicity rj then so is −µj with the same multiplicity.

If the wall-crossing is not simple, it is simply crepant if the condition in

1.1 holds for all fixed point components contributing to the wall-crossing

terms.

We show invariance for the gauged potentials under crepant wall-

crossing if a certain symmetrised version of the Euler characteristics

are used. Let T be a torus acting on a Deligne-Mumford stack X , en-

dowed with a perfect obstruction theory. Suppose x ∈ X T is an isolated

fixed point. Locally the virtual tangent space

T vir
x := Defx−Obsx .

can be decomposed as

T vir
x =

⊕
i

Cai −
⊕
j

Cbj

where ai, bj are the weights of the deformation and obstruction spaces

respectively. Define

Ôvir
X := Ovir

X ,x ⊗ (Kvir
X )1/2, Kvir

X := (detT vir
X )−1
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where a square root can be defined in rational K-theory via the Chern

character [14]. The resulting K-theoretic Gromov-Witten invariants ob-

tained by replacing the virtual structure sheaf by this shift quantum

K-theory at level −1/2 in the language of Ruan-Zhang [47]. At an iso-

lated fixed point x we have

Ôvir
x :=

∏
j(b

1/2
j − b−1/2

j )∏
i(a

1/2
i − a−1/2

i )

where a
1/2
i , b

1/2
j are formal, since they represent weights only after pass-

ing to a cover T̂ → T .

The virtual localization formula may be re-written in terms of the

shifted structure sheaves. Let Â(·) be the denominator of the A-hat

genus, mapping R(T ) to the space of functions defined on some cover

Â(a1 + a2) = Â(a1)Â(a2); Â(a) =
1

a1/2 − a−1/2
.

where a is a weight (representation) of T . Define an extension to F ∈
K0
T (X) by

Â(F) =
∏
j

Â(yj),

where the product runs over the equivariant Chern roots yj ∈ K0
T (X)

of F . Then localization (1.52) becomes

Ôvir
X = ι∗(Â(T vir

XT ) Ôvir
XT ). (1.60)

This can be made more explicit as follows. For each component F ⊂ X T
we have a decomposition

T vir
X |F = T vir

F + νF

and therefore

(KX |F )1/2 = K
1/2
F (det νF )−1/2.

It follows that

OF ⊗ (Kvir
X |F )1/2

EulT (νF )
= OF ⊗ (Kvir

F )1/2 ⊗ (det νF )−1/2

EulT (νF )
. (1.61)

By considering the decomposition

νF =
⊕
i

zµiνF,i, (1.62)
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in isotypical components, we have

EulT (νF ) =
∏
i

EulT (zµiνF,i) =
∏
i,j

(1− z−µix−1
i,j )

where xi,j are the Chern roots of νF,i. Since (det νF )1/2 =
∏
i,j(z

µixij)
1/2

we have

EulT (νF )−1(det νF )−1/2 =
∏
i,j

Â(zµixij)
−1 = Â(νF )−1. (1.63)

For our arguments below, we need to discuss the asymptotic behaviour

of Â(νF ). Consider the decomposition of νF as in (1.62) and the Euler

class expansion (1.43) for each of its isotypical components. Thus

Â(νF ) =
(det νF )−1/2∏

i(1− z−µi)ri(1 +Ni)

with Ni ∈ K(F )⊗K loc
T (pt) as in (1.44). Therefore

Â(νF ) =
∏
i

(
z−µi/2

1− z−µi

)ri
·O(z) =

∏
i

Â(Cµi)ri ·O(z), (1.64)

where Cµi is the representation with weight µi and O(z) is a term that

converges to zero as z±1 → 0.

Symmetrised wall-crossing.

We can define symmetric versions of the gauged K-theoretic Gromov-

Witten potentials previously studied by considering Euler characteristics

with respect to Ôvir. In the following, we add a hat to any expression

whose definition now uses Ôvir rather than Ovir. The proof of the quan-

tum Kalkman formula in Theorem 1.6 relied on virtual localisation. If

instead we use localisation for the symmetrised virtual structure sheaf

we obtain the following:

τ̂X//+G κ̂GX,+ − τ̂X//−G κ̂GX,− = lim
ρ→0

τ̂X,ζ,0. (1.65)

The symmetrised virtual structure sheaves satisfy good properties un-

der the action of the Picard stack on the locus of reducible maps. Let

Pic(C) := Hom(C,BC×)

denote the Picard stack of line bundles on C. The Lie algebra gζ has a

distinguished factor generated by ζ, and using an invariant metric the

weight lattice of gζ has a distinguished factor Z given by its intersection

with the Lie algebra of C×ζ . After passing to a finite cover, we may
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assume that Gζ ∼= (Gζ/C×ζ ) × C×ζ . The Picard stack Pic(C) acts on

the moduli stack of reducible gauged mapsMGζ
n (C,X,L0, ζ) as follows.

Recall that a reducible gauged map (P, Ĉ, u), where P → C is a G-

bundle and u : Ĉ → P (X) is ζ-fixed. The restriction of u to the principal

component of C maps into the fixed point locus Xζ . For Q an object of

Pic(C) and (P, Ĉ, u) an object of MGζ
n (C,X,L0, ζ) define

Q(P, Ĉ, u) := (P ×C×ζ
Q, Ĉ, v) (1.66)

where the section v is defined as follows: We have an identification of

bundles (P×C×ζ
Q)(Xζ) ∼= P (Xζ) since the action of C×ζ on Xζ is trivial.

Hence the principal component u0, which is a section of P (Xζ) induces

the corresponding section v0 of (P ×C×ζ
Q)(Xζ). Each bubble component

of u maps into a fiber of P (X), canonically identified with X up to the

action of Gζ . So u induces the corresponding bubble map of v into a

fiber of (P ×C×ζ
Q)(X), well-defined up to isomorphism. Note that if the

degree of (P, Ĉ, u) is d the degree of Q(P, Ĉ, u) is d+ c1(Q).

The Picard action preserves semistable loci in the large area limit.

Indeed, because the Mundet weights µM (σ, λ) approach the Hilbert-

Mumford weight µHM (σ, λ) as ρ → 0, the limiting Mundet weight is

unchanged by the shift by Q in the limit ρ→ 0 and so Mundet semista-

bility is preserved. Thus for ρ−1 sufficiently large the action of an object

Q of Pic(C) induces an isomorphism

Sδ :MGζ
n (C,X,L0, ζ, d)→MGζ

n (C,X,L0, ζ, d+ δ) (1.67)

where δ = c1(Q).

Lemma 1.2. (Action of the Picard stack on fixed loci) The action of

Pic(C) in (1.67) induces isomorphisms of the relative obstruction the-

ories on MGζ
n (C,X,L0, ζ, d) preserving the restriction of symmetrised

virtual structure sheaves Ôvir
Mn(C,X,L0)

, and preserving the class ev∗ α for

any α ∈ K0
G(X)n.

Proof The action of Pic(C) lifts to the universal curves, denoted by

the same notation. Since the relative part of the obstruction theory on

MGζ
n (C,X,L0, ζ, d) is the C×ζ -invariant part of Rp∗e

∗T∨X/Gζ up to the

factor Cζ, the isomorphism preserves the relative obstruction theories

and so the virtual structure sheaves. (Note that on the principal compo-

nent, the invariant part is Rp∗e
∗T∨Xζ/Gζ which is unchanged by the ten-

sor product by C×ζ -bundles, while on the bubble components Rp∗e
∗T∨X/G
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is unchanged by the tensor product by Q.) Since the evaluation map is

unchanged by pull-back by Sδ (up to isomorphism given by twisting by

Q), the class ev∗ α is preserved.

Theorem 1.3 (Wall-crossing for crepant birational transformations of

git type). Suppose that X,G,L± define a simple wall-crossing, and C

has genus zero. If the wall-crossings is simply crepant then

τ̂X//−G ◦ κ̂
G
X,− =

a.e.
τ̂X//+G ◦ κ̂

G
X,+

almost everywhere (a.e.) in the quantum parameter q.

The following remark explains precisely in what sense a.e. is used in

Theorem 1.3.

Remark. In the Schwartz theory of distributions (Hörmander [32]) de-

note by T (S1) the space of tempered distributions. Fourier transform

identifies T (S1) with the space of functions on Z with polynomial growth.

The variable q is a coordinate on the punctured plane C× and any for-

mal power series in q, q−1 defines a distribution on S1, which is tem-

pered if the coefficient of qd has polynomial growth in d. In particular

the series
∑
d∈Z q

d is the delta function at q = 1, and its Fourier trans-

form is the constant function with value 1. Any distribution of the form∑
d∈Z f(d)qd, for f(d) polynomial, is a sum of derivatives of the delta

function (since Fourier transform takes multiplication to differentiation)

and so is almost everywhere zero.

We study the dependence of the fixed point contributions τX,ζ,d,0 with

respect to the Picard action defined in (1.66). Suppose that Q is a C×ζ -

bundle of first Chern class the generator of H2(C), after the identi-

fication C×ζ → C×. Denote the corresponding class in H
Gζ
2 (Xζ) by δ.

Consider the action of the Z-subgroup ZQ ⊂ Pic(C) generated by Q. The

contribution of any component MGζ
n (C,X,L0, ζ, d) of class d ∈ HG

2 (X)

differs from that from the component induced by acting by Q⊗r, r ∈ ZQ,

of class d+ rδ, by the ratio of symmetrised Euler classes of the moving

parts of the virtual normal complexes

Â((Rp∗e
∗T∨X/G)+)Â(Srδ,∗(Rp∗e∗T∨X/G)+)−1 (1.68)

As before, denote by νi be the subbundle of νXζ,0 of weight µi.

Lemma 1.4. The Â classes relate by

Â((Rp∗e
∗T∨X/G)+) = Â(Srδ,∗(Rp∗e∗T∨X/G)+)

(∏
i

Â (νi)
µi

)r
.
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Proof The Grothendieck-Riemann-Roch allows a computation of the

Chern characters of the (representable) push-forwards. Consider the iso-

typical decomposition into C×-bundles of the normal bundle to the fixed

component Xζ,0 in X

νXζ,0 =

k⊕
i=1

νi

where C× acts on νi with non-zero weight µi ∈ Z. By the discussion

above e∗T∨X/G is canonically isomorphic to Srδ(e∗T∨X/G) on the bubble

components, since the G-bundles are trivial on those components. Be-

cause the pull-back complexes are isomorphic on the bubble components,

the difference (e∗T∨X/G)+ −Srδ,∗(e∗T∨X/G)+ is the pullback of the differ-

ence of the restrictions to the principal part of the universal curve, that

is, the projection on the second factor

p0 : C ×MGζ
n (C,X,L0, ζ)→MGζ

n (C,X,L0, ζ).

These restrictions are given by

(e∗TX/G)+,prin ∼=
⊕
i

e∗νXζ,t,i

Srδ,∗(e∗TX/G)+,prin ∼=
⊕
i

e∗νXζ,t,i ⊗ (e∗CQ×C×ζ
Crµi)

where eC is the map from the universal curve to C. The projection p0

is a representable morphism of stacks given as global quotients. Let

σ :MGζ
n (C,X,L0, ζ)→ C ×MGζ

n (C,X,L0, ζ)

be a constant section of p0, so that c1(σ∗e∗νXζ,0,i) is the “horizontal”

part of c1(νXζ,0,i). By Grothendieck-Riemann-Roch for such stacks [52],
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[14]

TdM Ch(Srδ,∗ Ind(TX/G)+) = p0,∗(TdC×MCh(Srδ,∗TX/G)+)

= (1− g) + TdM p0,∗ Ch(Srδ,∗TX/G)+)

= (1− g) + TdM p0,∗
∑
i

Ch(e∗νXζ,t,i) Ch((e∗CQ×C×ζ
Crµi))

= (1− g) + TdM p0,∗
∑
i

Ch(e∗νXζ,t,i)(1 + rµiωC)

= p0,∗(TdC×MCh

(
Ind(TX/G)+ ⊕

⊕
i

(σ∗e∗νXζ,t,i)
⊕rµi

)

= TdMCh

(
Ind(TX/G)+ ⊕

⊕
i

(σ∗e∗νXζ,0,i)
⊕rµi

)
.

Hence

Ch(Srδ,∗ Ind(TX/G)+) = Ch

(
Ind(TX/G)+ ⊕

m⊕
i=1

(σ∗e∗νXζ,0,i)
⊕rµi

)
(1.69)

The equality of Chern characters above implies an isomorphism in ratio-

nal topological K-theory. The difference in Euler classes (1.68) is there-

fore given by the Euler class of the last summand in (1.69)

Â((Rp∗e
∗T∨X/G)+)

Â(Srδ,∗(Rp∗e∗T∨X/G)+)
= Â

(⊕
i

(σ∗e∗(νi))
⊕µir

)

=

(∏
i

Â (νi)
µi

)r
.

Proof of Theorem 1.3 Using the expansion of Euler classes as in (1.64)

and (1.43), we have that by setting ri = rank νi (on each component of

the inertia stack, in the orbifold case)

∏
i

Â (νi)
−µi =

∏
i

(ζ
1/2
i zµi/2 − ζ−1/2

i z−µi/2)−µiri(1 +N)

where ζi are the roots of unity appearing in orbifold Riemann-Roch [53]

and N is nilpotent. Let S−, S+ denote the indices for which µi is negative

and respectively positive. Define

∆(z) :=

∏
j∈S−(ζ

1/2
j zµj/2 − ζ−1/2

j z−µj/2)−µjrj∏
i∈S+

(ζ
1/2
i zµi/2 − ζ−1/2

i z−µi/2)µiri
(1.70)
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We can rewrite the difference(∏
i

Â (νi)
−µi

)r
= (∆(z)(1 +N))r

By the crepant wall-crossing assumption 1.1, the function ∆(z) is a

constant, denoted ∆. Summing the terms from Srδ, r ∈ Z we obtain

that the wall-crossing contribution is∑
r∈Z

qd+δr τ̂X,ζ,d+δr,0(α) =
∑
r∈Z

qd+rδ.χ0(r) (1.71)

where χ0(r) is polynomial in r, since each N is nilpotent and the bino-

mial coefficients from the expansion of (1 +N)r are polynomial. Now∑
r∈Z

qδr ∈ T (S1)

is a delta function and it vanishes almost everywhere in qδ, see Remark

1.8. Since χ0(r) is polynomial, (1.71) is the derivative of a delta function.

Since

κ̂G,+X τ̂X//+G − κ̂
G,−
X τ̂X//−G

is a sum of wall-crossing terms of the type in (1.71), this completes the

proof of Theorem 1.3.

1.9 Abelianization

In this section we compare the K-theoretic Gromov-Witten invariants

of a git quotient with the quotient by a maximal torus, along the lines

of the case of quantum cohomology investigated by Bertram-Ciocan-

Fontanine-Kim [5] and Ciocan-Fontanine-Kim-Sabbah [8]. The analo-

gous question for K-theoretic I-functions of git quotients was already

considered in Taipale [50] as well as Wen [56] and, around the same time

as the first draft of this paper, Jockers, Mayr, Ninad, and Tabler [35].

Recall that the equivariant cohomology may be identified with the

Weyl-invariant equivariant cohomology for the action of a maximal torus.

We assume that G is a connected complex reductive group. Choose

a maximal torus T and W its Weyl group. By a theorem of Harada-

Landweber-Sjamaar [31, Theorem 4.9(ii), Section 6] if X is either a

smooth projective G-variety or a G-vector space then restriction from
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the action of G to the action of the torus T defines an isomorphism onto

the space of W -invariants

RestrGT : K0
G(X) ∼= K0

T (X)W

for either the topological or algebraic K-cohomology. Given a polarisa-

tion L → X of the G action, consider the naturally induced T polarisa-

tion on X so that

Xss,G(L) ⊂ Xss,T (L).

We assume from now in this section that QK0
G(X) denotes the alge-

braic equivariant quantum K-cohomology. We relate the K-theoretic

potentials of the two geometric invariant theory quotients X//G, and

the abelian quotient X//T . Let νg/t denote the bundle over X//T in-

duced from the trivial bundle over X with fibre g/t. Consider the graph

potential

τX//T : QK0
T (X)→ ΛTX

twisted by the Euler class of the index bundle associated to g/t:

τX//T (α, q) :=∑
n≥0

∑
d∈HG2 (X,Q)

χvir
(
Mn(C,X//T, d); ev∗ αn Eul(Ind(g/t))

) qd
n!
. (1.72)

Similarly T -gauged potential τTX and the Kirwan map κX,T will from

now on denote the maps with the Euler twist above. The natural map

HT
2 (X,Q)→ HG

2 (X,Q) induces a map of Novikov rings

πGT : ΛTX → ΛGX ,
∑

d∈HT2 (X)

cqq
d 7→

∑
d∈HG2 (X)

cqq
π(d).

By abuse of notation, denote again by

Restr : QK0
G(X)→ QK0

T (X)

the map induced by the restriction map above and the inclusion of the

Weyl invariants ΛGX
∼= (ΛTX)W ⊂ ΛTX . As in Martin [44] the restriction

map

RestrTG : K(X//T )W → K(X//G)

is surjective and has kernel is the annihilator of Eul(g/t), the set of

classes that vanish when multiplied by Eul(g/t). This map naturally

extends to a map

RestrTG : QK(X//T )W → QK(X//G)
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by a similar definition on the twisted sectors. On the main sector RestrTG
is given by restriction of a class

α ∈ K(X//T ) = K(Xss(T )/T )

to Xss(G)/T then followed by the identification of the Weyl invariant

part with K(X//G) [44, Theorem A]. With these notations we have the

following result.

Theorem 1.1. (Quantum Martin formula in quantum K-theory) Let C

be a smooth connected projective genus 0 curve, X a smooth projective or

convex quasiprojective G-variety, and suppose that stable=semistable for

T and G actions on X. The following equality holds on the topological

quantum K-theory QK0
G(X):

τX//G ◦ κX,G = |W |−1πGT ◦ τ
g/t
X//T ◦ κ

g/t
X,T ◦ RestrGT .

Similarly for (J-functions) localised graph potentials

τX//G,− : QK0
G(X)→ QK(X//G)[z, z−1]]

τX//T,− : QK0
T (X)→ QK(X//T )[z, z−1]]

we have

τX//G,− ◦ κX,G = τGX,−

= RestrTG ◦Eul(g/t)−1τ
T,g/t
X,− ◦ RestrGT (1.73)

= RestrTG ◦Eul(g/t)−1τ
g/t
X//T,− ◦ κ

g/t
X,T ◦ RestrGT .

In particular commutativity of the following diagram holds:

QK0
G(X) QK0

T (X)W

QK(X//G) QK(X//T )

ΛGX ΛTX

κX,G

RestrGT

κX,T

τX//G |W |−1τX//T

πGT

Sketch of proof The argument is the same as that for cohomology in

[25, Section 4]. In the case of projective target X, one can vary the vortex

parameter ρ ∈ R>0 until one reaches the small-area chamber in which

every bundle P → C appearing in the vortex moduli space is trivial

(in genus zero). Indeed, for ρ−1 sufficiently large the Mundet weight is

dominated by the Ramanathan weight, and this forces the bundle to be
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semistable of vanishing Chern class and so trivial. It follows that both

MG
(C,X, d) and MT

(C,X, d) are quotients of open loci in the mod-

uli stacks of stable maps M0,n(X, d) by G resp. T . In the small-area

chamber abelianization holds for the localized potentials τX,G and τX,T
by virtual non-abelian localization [28]: For sufficiently positive equiv-

ariant vector bundles V overM0,n(X, d) denote by V//G the restriction

to MG
(C,X, d). Then

χ(MG
(C,X, d), V//G) = χ(M0,n(X, d), V )G

= |W |−1χ(M0,n(X, d), V ⊗ Eul(g/t))T

= |W |−1χ(MT
(C,X, d), (V ⊗ Eul(g/t))//T )

where the second equality holds by the Weyl character formula. If the

stabilizers are at most one-dimensional then the wall-crossing formula of

[24] implies that the variation in the gauged Gromov-Witten invariants

τGX with respect to the vortex parameter ρ is given by wall-crossing

terms τ
Gζ
X,ζ involving smaller-dimensional structure group given by the

centralizers Gζ , ζ ∈ g of one-parameter subgroups generated by ζ: For

any singular value ρ0 and ρ± = ρ0 ± ε for ε small we have

τGX,d(α, ρ+)− τGX,d(α, ρ−) =
∑
ζ

τ
Gζ
X,ζ(α, ρ0) (1.74)

where τ
Gζ
X,ζ is a moduli stack of ρ0-semistable gauged maps fixed by the

one-parameter subgroup generated by ζ as in Section 1.7. After possibly

adding a parabolic structure the stabilizers of gauged maps that are ρ0-

semistable are one-dimensional and so the wall-crossing formula (1.74)

holds. Furthermore, the fixed point components have structure group

that reduces to Gζ/C×ζ , which as such that objects in the fixed point

components have trivial stabilizer. By induction we may assume that

the abelianization formula holds for structure groups Gζ/C×ζ of lower

dimension, and in particular for the invariants τ
Gζ
X,ζ(α, ρ0). The result

for other chambers ρ ∈ (ρi, ρi+1) holds by the wall-crossing formula

Theorem 1.5 since, by the inductive hypothesis, the wall-crossing terms

are equal. The conclusion for the git quotients then follows from the

adiabatic limit theorem 1.4.

In the case of quasiprojective X we assume that G has a central fac-

tor C× ⊂ G and the moment map Φ : X → R for this factor on X is

bounded from below. Then a similar wall-crossing argument obtained

by varying the polarization λ(t) ∈ H2
G(X) from λ(0) = ω to to a cham-

ber corresponding to an equivariant symplectic class λ ∈ H2
G(X) where
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X//λ(1)G is empty, produces the same result [25]. Indeed the moduli

space of gauged mapsMG

n (P1, X) for the polarization λ(1) is also empty,

since for ρ small elements ofMG

n (P1, X) must be generically semistable.

On the other hand, the wall-crossing terms correspond to integrals over

gauged maps whose structure group Gζ is the centralizer of some one-

parameter subgroup generated by a rational element ζ ∈ t. By induction

on the dimension of Gζ we may assume that the wall-crossing terms for

MG

n (P1, X) andMT

n (P1, X) are equal and we obtain the abelianization

formula by induction.

For the localized potentials the same wall-crossing argument applied

to the C×-fixed point componentsMG

n (P1, X)C
×

andMT

n (P1, X)C
×

pro-

duces the abelianization formula

χ(MG

n (P1, X)C
×
, V ⊗ Eul(νG)−1)

= |W |−1χ(MT

n (P1, X)C
×
, V ⊗ Eul(Ind(g/t))) (1.75)

for any equivariant K-class V , where νG, νT are the normal bundles for

the inclusion of the fixed point sets of the action of C×. This formula

holds as well after restricting to fixed point components with markings

z1, . . . , zn mapping to 0 ∈ P1 and zn+1 mapping to ∞, and taking V

to be a class of the form ev∗1 α ⊗ . . . ev∗n α ⊗ ev∗n+1 α0. One obtains the

formula (with superscript class denoting the classical Kirwan map)

〈τGX,−(α), κclass
X,G (α0)〉 = |W |−1〈τT,g/tX,− (RestrGT α), κclass

X,T (α0)〉

= 〈RestrTG Eul(g/t)−1τ
T,g/t
X,− (RestrGT α), κclass

X,G (α0)〉

(the second by Martin’s formula [44]) from which the localized abelian-

ization formula (1.73) follows.

Example 1.2. The fundamental solution in quantum K-theory for the

Grassmannian G(r, n) is studied in Taipale [50, Theorem 1], Wen [56],

and Jockers, Mayr, Ninad, and Tabler [35]. Let

X = Hom(Cr,Cn), G = GL(r).

The group G acts on X by composition on the right: gx = x ◦ g. Choose

a polarization L = X × C corresponding a positive central character of

G. The semistable locus is then

Xss = {x ∈ X | rank(x) = r}

and the git quotient

X//G ∼= G(r, n).
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The torus T = (C×)r is a maximal torus of G and the git quotient by

the maximal torus is

X//T ∼= (Pn−1)r.

We claim that the localized gauged potential τGX,− is the restriction of

the Ind(g/t)-twisted potential τ
T,g/t
X,− given by

τ
T,g/t
X,− (α, q, z) =

∑
d

qdτ
T,g/t
X,−,d(α, q, z)

∏
1≤i<j≤r

(1−XiX
∨
j )X2ρ

τ
T,g/t
X,−,d(α, q, z) :=

∑
d1+...+dr=d

exp

(
Ψd(α)

1− z−1

)
(−1)d(r−1)z〈d+ρ,d+ρ〉−〈ρ,ρ〉

(∏
i<j(1−XiX

∨
j z

di−dj )∏r
i=1

∏di
l=1(1−Xizl)n

)
. (1.76)

Without the factors 1−XiX
∨
j z

di−dj and 1−XiX
∨
j the expression (1.76)

in the Lemma would be the formula (1.29) for τTX,− discussed previously

in the toric setting. The additional factors are given by the Euler class

of the index bundle

Eul(Ind(g/t)) =

∏
i<j

∏dj−di
k=0 (1−XiX

∨
j z

k)∏
i<j

∏dj−di−1
k=1 (1−XjX∨i z

k)
(1.77)

=

∏
i<j

∏dj−di
k=0 (1−XiX

∨
j z
−k)∏

i<j(−1)dj−di−2
∏dj−di−1
k=1 z−2kXjX∨i (1−XiX∨j z

k)

= (−1)d(r−1)z
∑
i<j −2(dj−di)(dj−di−1)/2∏

i<j

X2ρ(1−XiX
∨
j )(1−XiX

∨
j z

dj−di). (1.78)

= (−1)d(r−1)z〈d,d〉+2〈d,ρ〉∏
i<j

X2ρ(1−XiX
∨
j )(1−XiX

∨
j z

dj−di) (1.79)

= (−1)d(r−1)z〈d+ρ,d+ρ〉−〈ρ,ρ〉∏
i<j

X2ρ(1−XiX
∨
j )(1−XiX

∨
j z

dj−di) (1.80)

where 〈·, ·〉 is the Killing form. Note the missing factor of X2ρ in [50,

(20)]; this factor re-appears in [50, (31)] but without the powers of z.

As pointed out to us by M. Zhang, the additional factors arising from

the ρ-shift in (1.77) vanish when one uses the level −1/2-theory intro-

duced by Ruan-Zhang [47]. It would be interesting to know how the
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relations depend on the level structure, and whether at level −1/2 the

relations can be found using the difference module structure in (1.5); see

Jockers, Mayr, Ninad, and Tabler [35] for further developments.
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