MORPHISMS OF COHFT ALGEBRAS AND
QUANTIZATION OF THE KIRWAN MAP
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ABSTRACT. We introduce a notion of morphism of CohFT algebras, based on the analogy
with Ao morphisms. We outline the construction of a “quantization” of the classical Kirwan
morphism to a morphism of CohF'T algebras from the equivariant quantum cohomology of a G-
variety to the quantum cohomology of its geometric invariant theory or symplectic quotient,
and an example relating to the orbifold quantum cohomology of a compact toric orbifold.
Finally we identify the space of Cartier divisors in the moduli space of scaled marked curves;
these appear in the splitting axiom.
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1. INTRODUCTION

In order to formalize the algebraic structure of Gromov-Witten theory Kontsevich and Manin
introduced a notion of cohomological field theory (CohFT), see [26, Section IV]. The correlators
of such a theory depend on the choice of cohomological classes on the moduli space of stable
marked curves and satisfy a splitting axiom for each boundary divisor. In genus zero the moduli
space of stable marked curves may be viewed as the complexification of Stasheff’s associahedron
from [30], and the notion of CohFT may be related to the notion of A, algebra: dualizing
one of the factors gives rise to a collection of multilinear maps that we call a CohFT algebra.
The full CohFT is related to the CohFT algebra in the same way that a Frobenius algebra is
related to the underlying algebra. Recall that Dubrovin [13] constructed from any CohFT a
Frobenius manifold, which is a manifold with a family of multiplications on its tangent spaces
together with some additional data.

Here we introduce a notion of morphism of CohF'T algebras which is a “closed string” analog
of a morphism of A, algebras. The additional data in the structure maps is the choice of
cohomological classes on moduli space of stable scaled marked lines introduced in Ziltener [36].

K.N. was supported by Undergraduate Research Experience portion of NSF grant DMS060509. C.W. was
partially supported by NSF grant DMS0904358 and the Simons Foundation.
1



2 K. L. NGUYEN, C. WOODWARD, AND F. ZILTENER

This space was studied in Ma'u-Woodward [27] and identified with the complexification of
Stasheff’s multiplihedron appearing in the definition of A, map [30]. The splitting axiom for
a morphism of CohF'T algebras gives a relation on the structure maps for each divisor relation.
Any morphism of CohFT algebras has the property that the linearization at any point is an
algebra morphism in the usual sense. This fits in well with the language of Hertling-Manin [20]
of F'-manifolds.

The definition of morphism of CohFT algebra is motivated by an attempt to extend the
mirror theorems of Givental [17], Lian-Liu-Yau [25] and others beyond the case of semipositive
toric quotients, as has also been discussed by many authors, for example, Iritani [21]. In the
second part of the paper we describe a quantum Kirwan morphism of CohFT algebras from the
equivariant quantum cohomology QHg(X) of a smooth polarized projective G-variety X to
the (possibly orbifold) quantum cohomology QH (X //G) of the symplectic/git quotient X //G.
The existence of this morphism depends on results of the last two authors and Venugopalan;
see [33]. Morphisms of CohFT algebras provide an “algebraic home” for the counts of “vortex
bubbles” that first appeared in the study by Gaio-Salamon [15] of the relationship between
gauged Gromov-Witten invariants of a G-variety and the Gromov-Witten invariants of the
quotient X//G [33]. Applying the quantum Kirwan morphism to the special case of quotients
of vector spaces by tori, one obtains a Batyrev-style presentation of the (possibly orbifold)
quantum cohomology of a toric Deligne-Mumford stack at a special point; this reproduces
partial results by Coates-Corti-Lee-Tseng [8]. We discuss several conjectures (quantum Kirwan
surjectivity and quantum reduction in stages) which arise naturally in this context. In the last
part of the paper, we describe which combinations of boundary divisors in the moduli space of
stable scaled lines are Cartier, that is, have dual cohomology classes.

We thank Ezra Getzler, Sikimeti Ma'u, Joseph Shao, and Constantin Teleman for helpful
discussion and comments.

2. MORPHISMS OF COHFT ALGEBRAS

In this section we describe the definition of morphisms of CohFT algebras. Let M, denote
the Grothendieck-Knudsen moduli space of isomorphism classes of genus zero n-marked stable

curves [24], which is a smooth projective variety of dimension dim(M,) =n — 3.

Remark 2.1. (Boundary divisors for the Grothendieck-Knudsen space) The boundary of M,
consists of the following divisors: for each splitting {1,...,n} = I; U Iy with |L1],|I2] > 2 a
divisor

LIlUIz : DllUlz - Mn
corresponding to the formation of a separating node, splitting the curve into irreducible com-
ponents with markings Iy, I3. The divisor Dy, is isomorphic to M 41 X M, 41. Let

511U12 S H2(Mn)

denote its dual cohomology class. For any 5 € H(M,), let
(1) GhonB =Y B1;® B
J

denote the Kiinneth decomposition of its restriction to Dy, ur,-
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Definition 2.2. (CohFT algebras) An (even, genus zero) cohomological field theory algebra
over a Q-ring A is a datum (V, (u")n>2) where V' is a A-module and (p"),>2 is a collection of
multilinear composition maps

p iV x H(Mpi1,A) =V
such that each p" is invariant under the natural action of the symmetric group S, and the
maps (u")n>2 satisfy a splitting axiom: for each partition Iy Uy = {1,...,n},

P v BASuL) = Y p P (M (v i € T By ), 01,0 € s Bay)
J

where (31 j, f2; are as in (1).

Remark 2.3. It would be more natural to use tensor products in the above formula but the use
of symbols ® instead of commas , makes the formulas substantially longer.

Remark 2.4. (Filtered CohFT algebras) In our applications, A will be a filtered Q-ring by which
we mean a union of decreasing rings Ay, a € R:

A =UserAa, Ay D Apforalla<b, NeerA, = {0}.

A filtered CohFT algebra is a CohFT algebra V with a filtration (V;).cr compatible with the
A-module structure, that is, such that A,V C V,13,Va,b € R, and such that each structure
map p" maps V" x H(Mj,,) to V,, for all a € R.

Remark 2.5. (a) (Comparison with A, algebras) The collection of composition maps (1™)n>2
(which are termed in Manin [26] Commg-structures) may be viewed as “complex
analogs” of the A, -structure maps of Stasheff, in the sense that the relevant mod-
uli spaces have been “complexified”.

(b) (Relations via divisor equivalences) The various relations on the divisors in M, give
rise to relations on the maps p”. In particular the relation [Dyo 310¢1,23] = [D{o,13u12,3}]
in H2(M,) implies that u?: V x V — V is associative.

The notion of morphism of CohFT algebras is based on the geometry of the complezified
multiplihedron M, 1(A) introduced in Ziltener [36] and studied further in Ma’u-Woodward [27].

Definition 2.6. (Scalings on smooth curves)

(a) A non-degenerate scaling on a smooth genus zero complex projective curve C' with root
marking zo € C' is a meromorphic one-form \ : C — TV with the property that A has
a single pole of order two at zp, so that A equips C'— {zp} with the structure of an affine
line. Denote by ¥(C, z) the space of scalings on C' with pole at zy, and by %(C, zp) the
compactification %(C, 29) = X(C, z9) U {0, 00}.

(b) An n-marked scaled line is a smooth projective curve of genus zero equipped with a
non-degenerate scaling A € 3(C, zp) and a collection z1,...,2, € C of points distinct
from each other and from the root marking zg.

Let M, 1(A) denote the moduli space of isomorphism classes of n-marked scaled lines. We
may view M, 1(A) as the moduli space of isomorphism classes of n-markings on an affine line A,
where two sets of markings are isomorphic if they are related by translation. M, ;(A) admits
a compactification by allowing nodal curves with possible degenerate scalings as follows.
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Definition 2.7. (a) (Dualizing sheaf and its projectivization) Recall from e.g. [3, p.91]
that if C'is a genus zero nodal curve then the dualizing sheaf we on C' is locally free of
rank one, that is, a line bundle. Explicitly, if C' denotes the normalization of C' (the dis-
joint union of the irreducible components of C') with nodal points {{w}", w; },...,{w;",w; }}
then we is the sheaf of sections of ws 1= TV C whose residues at the points w;-r, w; sum

to zero, for j = 1,...,k. Denote by P(wc @ C) the fiber bundle obtained by adding in
a section at infinity.

(b) (Scalings on nodal curves) Let C' be a connected projective nodal curve of arithmetic
genus zero. A scaling on C is a section A : C' — P(we @ C) such that the restriction of
A to any irreducible component is a (possibly degenerate) scaling as in Definition 2.6.

(c) (Scaled affine lines) A nodal n-marked scaled line consists of
(i) a connected projective nodal curve C' of arithmetic genus zero,

(ii) a scaling A : C' — P(we & C), and

(iii) a collection of markings zo, ..., z, € C distinct from the nodes
such that the following monotonicity conditions are satisfied:

(i) for each ¢ = 1,...,n, there is exactly one irreducible component of C ; of C' on
the path of irreducible components between zy and z; on which X is finite and
non-zero, with double pole at the node which disconnects the component from
the root marking zp, and

(ii) the irreducible components other than Cy ; on the path of irreducible components
between z; and zy have either A = 0 (if they can be connected to z; without
passing through Cy ;) or A = oo (if they are connected to zy, without passing
through Cy ;).

A nodal marked scaled affine line is stable if each irreducible component with non-
degenerate scaling has at least two special points, and each irreducible component with
degenerate scaling has at least three special points.

(d) (Combinatorial types of scaled affine lines) The combinatorial type of a nodal scaled
affine line is the rooted colored tree ' = (V(T'), E(T")) whose vertices are the irreducible
components of C' and edges are the nodes and markings, equipped with a bijection
from the set of semi-infinite edges E(I") to {0,...,n} given by the markings, and a
subset of colored vertices VT (I') C V(I') corresponding to irreducible components with
non-degenerate scalings. This ends the definition.

Ezample 2.8. See Figure 1 for an example of a nodal scaled affine line, where irreducible
components with A = 0 resp. A finite and non-zero resp. A is infinite are shown with light resp.
medium resp. dark shading. The example shown is not stable, because several of the lightly
shaded components and darkly shaded components have less than three special points.

Remark 2.9. (Affine structures on the components with non-degenerate scalings) The mono-
tonicity condition implies that the restriction of A to any irreducible component C; ; has a
unique pole, hence a unique double pole at the nodal point 2; connecting C; 1 with the compo-
nent containing zp, and so defines an affine structure on the complement C; y — 2;. The other
components have no canonical affine structures.
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FIGURE 1. An nodal scaled line

Let M, 1 r(A) resp. Mml(A) denote the moduli space of isomorphism classes of stable scaled
n-marked affine lines of type I' resp. the union over combinatorial types. We call Mml(A) the
complezified multiplihedron.

Proposition 2.10. [27] The spaces M, 1(A) admit the structure of quasiprojective resp. pro-
jective varieties of dimension

(2) dim(M,, 1 r(A) =n—2— |Ecoo(D)| + |VT(T)|, dim(M,;(A)) =n— 1.

The space M, 1(A) was first studied in Ziltener’s thesis [36] in the context of gauged Gromov-
Witten theory on the affine line.

Ezample 2.11. (The second complexified multiplihedron) The moduli space M, 1(A) in the
first non-trivial case n = 2 admits an isomorphism

(3) MZl(A) — ]P, [21, Zg] = 21 — 29

(here P is the projective line) with two distinguished points given by nodal scaled affine lines,
appearing in the limit where the two markings become infinitely close or far apart, see Figures
2, 3. Here [z1, 22] € M5 1(A) is a point in the open stratum, given by markings at z;, zo modulo

translation only on A.

FIGURE 2. Two markings converging

Remark 2.12. (Embedding via forgetful morphisms) More generally, for arbitrary n there exists
for any choice {i,7} C {1,...,n} of subset of order 2 a forgetful morphism

fij i Mp1(A) — Maq(A)
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ee

Ficure 3. Two markings diverging

forgetting the markings other than 4, j and collapsing all unstable irreducible components, and
for any choice {4, j,k,l} C {0,...,n} of subset of order 4 a forgetful morphism

fijkr: Mp1(A) — My

given by forgetting the scaling and all markings except 1,7, k,l, and collapsing all unstable
irreducible components. The product of forgetful morphisms defines an embedding into a
product of projective lines.

The variety M, 1(A) is not smooth, but rather has toric singularities, see Section 4. The
boundary divisors are the closures of strata M, 1 of codimension one.

Remark 2.13. (Description of the boundary divisors of the complexified multiplihedron) From
the dimension formula (2) one sees that there are two types of boundary divisors. First, for
any I C {1,...,n} with |I| > 2 we have a divisor

Ly D[ — Mn,l(A)

corresponding to the formation of a single bubble containing the markings I. This divisor
admits a gluing isomorphism

(4) Dp — M40 X My_jpj51,1(A).

Call these divisors of type I. Second, for any unordered partition I; U...UI, of {1,...,n} with
r > 2 we have a divisor Dy, ., corresponding to the formation of r bubbles with markings
Ii,..., 1., attached to a remaining irreducible component with infinite scaling. This divisor
admits a gluing isomorphism

(5) Dpyt, = (HMI,-J(A)> X My
=1

Call these divisors of type I1. Note that the divisors of type I and type II roughly correspond
to the terms in the definition of A, functor.

Recall that a Weil divisor on a normal scheme X is a formal, locally finite sum of codimension
one subvarieties, while a Cartier divisor is a Weil divisor given as the zero set of a meromorphic
section of a line bundle with multiplicities given by the order of vanishing of the section [19,
Remark 6.11.2].  For smooth varieties, any Weil divisor is Cartier. Since M, 1(A) is not
smooth, Weil divisors are not necessarily Cartier, in particular, a Weil divisor may not admit
a dual cohomology class of degree 2. That is, for a Weil divisor

(6) D = ZnI[DI] + Z nn,..1.1Dn,..1,]
i

LU UL={1,..n}
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there may or may not exist a class 6 € H?(M, 1(A)) that satisfies

(8,[D]) = (BAG, [Mna(A)]).
Let (V, (4 )n>2) and (W, (i )n>2) be CohFT algebras over a Q-ring A.

Definition 2.14. (Morphisms of CohFT algebras) A morphism of CohF'T algebras from V to
W is a collection of S,,-invariant, multilinear maps

" VX H(Mp1(A) =W, n>0
such that for any Cartier divisor D of the form (6) with dual class § € H*(M,1(A)), any

veV™and any € H(M,1(A))

(1) 6", BN8) = nge" T (v i € 15), 05,5 ¢ 13)(56)
I

I .
+ Z iyt iy (0 (g0 € Ins ),
r<s,l1,...Ir

(bljr‘(vi?i € [T’; ')7 ¢0(1)7 s 7¢0(1); ')(Lz,...,lrﬁ)/(s - 7’)'
where - indicates insertion of the Kiinneth components of ¢7/3, L?h___’ 1,0, using the homeomor-
phisms (4), (5) and the sum on the right-hand side is, by assumption, finite. The element
#°(1) € W is the curvature of the morphism (¢"),>0, and (¢"),>0 is flat if the curvature van-
ishes. A morphism of filtered CohFT algebras V,W is a collection of maps ¢" as above such
that each ¢ preserves the filtrations in the sense that ¢™ maps V* x H(M,1(A)) to W, and
(7) is finite modulo W, for any a € R.

Ezample 2.15. Ms1(A) = P and so every Weil divisor is Cartier and any two prime Weil
divisors are linearly equivalent. In particular, the equivalence [Dy 93] = [Dy1} 23] holds in
H%*(M271(A),Q) = Q. Hence if (¢")n>0 : (V, (1§ )n>2) — (W, (4} )n>2) is a flat morphism of
CohFT algebras then ¢! : V. — W is a homomorphism, ¢! o u2, = 3, o (¢* x ¢1).

Recall that the notion of CohFT may be reformulated as a Frobenius manifold structure
of Dubrovin [13]. Such a structure consists of a datum (V, g, F,1,e) of an affine manifold V,
a metric g on the tangent spaces, a potential F' whose third derivatives provide the tangent
spaces T,V with associative multiplications %, : T2V — T,V a unity vector field 1 and an
Euler vector field e providing a grading. Any CohFT (V, (u"),>2) defines a formal Frobenius
manifold [26] with formally associative products

(8) *o T2V = TV,  (wy,ws) — Zu"+2(w1,w2,v, ...,v)/nl
n>0
Formal associativity means that the Taylor coefficients in the expansion of
(w1 *u w2) Ky W3 — W1 *y (w2 * ’LU3)

around v = 0 vanish to all orders for any w1, ws, w3 € T,V; in good cases one has convergence
of the corresponding infinite sums. Later, a weaker notion of F-manifold was introduced by
Manin and Hertling [20], which consists of a pair (Vo) where o is a family of multiplications
on the tangent spaces T,V satisfying a certain axiom. In other words, one forgets the data
g, 1, e. This weaker notion is compatible with the notion of morphism of CohFT algebras:
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Proposition 2.16. (Algebra homomorphisms on tangent spaces) Any morphism of CohF'T
algebras (¢™)n>0 from V to W defines a formal map

oV —W, UHZ%qW(U,...,’U;l)

n>0
with the property that for any v € V' the linearization Dy¢ : T,V — Ty )W is a x-homomorphism
in the sense that
(9) quﬁ(wl) *¢(v) Dv¢(w2) = DU¢(wl * ’wg), le, wy € T, V.

By a formal map we mean a map from a formal neighborhood of 0 in V' to a formal neighborhood
of ¢(0) in W. The equation (9) holds in the sense of Taylor expansion around v = 0 to all
order.

Proof. Consider the divisor relation Dy oy ~ Dy1y (23 on Ma1(A). Its pull-back to My 1(A) is
the relation
(10) > Dpypayet, ~ y, Dr

1131,1232,13,...,1 I5{1,2}
where the first sum is over unordered partitions Iy,...,I, with 1 € I1,2 € I3 and each [},j =
1,...,r non-empty, and the second is over subsets I C {1,...,n} with {1,2} C I. Indeed, the
map (3) composes with the forgetful map to give a rational function

fg’l . Mn,l(A) — MQJ(A) = ]P)

For n = 2, this map identifies Dy; oy — {0}, D1y 12y — {00}. For arbitrary n, one checks using
the charts in Ma'u-Woodward [27] that the order of vanishing of fo1 on Dy is 1 if {1,2} C I,
—1if Iy, I separate 1,2, and 0 otherwise. Since the partitions are unordered, if I, Is separate
1,2 we may assume that 1 € I; resp. 2 € I5. Note that the number of ways of choosing the

partition on the left-hand-side of (10) with sizes ij,...,4, is | . e 2 . .. We
11— 1ig—1143...1,

compute

1 n—i 1
Dydp(wy *p wa) = Zm¢ (w1, w250, 03 1) 0,0 051)

n,t

= Z((n — 2)!)_145"_'['“(/1'&'(101,wg,1), coaul) v 1)
n,I

= S (=2 L =01 gy (6 (wr,v, o),

1131,1532,13,...,1,
gbu?'(wg,v, ool <;5|13‘(v, ool ,gbur‘(v, vl 1)

1 .
- Z , 2)!u"}v(¢“(wl,v,...,v;1),

i io> 1 g in >0 (il — 1)!(i2 — 1)'13' tee Zr!(T —
2 (wa,v,...,v;1),6% (v,...,v;1),...,0" (v, ... v 1);1)
1
= 2 gt (Ded(wn), Do), 6(0), .., 0(0)

T

= qub(wl) *(v) DU¢(w2)
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where the right-hand-side is assumed to be a finite sum (modulo any W, for a morphism of
filtered CohFT algebras). Here the first equality is by definition of ¢, x, and the second replaces
the sum over ¢ with the sum over subsets I containing 1,2. The third follows from the splitting
axiom (7), where the elements of the partition I,..., I, may be empty. The fourth equality
replaces the sum over unordered partitions Iq,..., I, with I; > 1,15 > 2 with the sum over
their sizes i1, ..., 4,, with the additional factorial (r — 2)! arising from the possible orderings of
the subsets I3, ..., I.. The fifth equality follows by definition of ¢, uy -, and the last equality
follows by definition of %g(,). O

Remark 2.17. It would be interesting to characterize which x-morphisms arise from morphisms
of CohFT algebras. This would require a study of the cohomology ring of M, ;(A) along
the lines of Keel [22] for the moduli space of stable marked genus zero curves; this paper is
essentially a partial study of the second cohomology group only. The most naive possibility
would be an analog of Keel’s result [22], namely that H (M, 1(A)) is generated by the classes of
the Cartier boundary divisors modulo the relations given by the preimages of D142y — Dy1 2}
under the forgetful morphism f;; : M, 1(A) — Mo1(A), as 4,j range over distinct elements of

{1,...,n}, and the products D'D", if D" and D" are disjoint Cartier divisors.

3. QUANTUM KIRWAN MORPHISM

In this section we describe the motivating example for the theory of morphisms of CohFT
algebras in the previous section, the quantum Kirwan morphism. Let G be a compact Lie
group, G its complexification, and X be a smooth projective G¢-variety equipped with a
polarization (ample G-line bundle) such that G acts locally freely on the semistable locus.
The classical Kirwan morphism Hg(X) — H(X//G) is surjective by Kirwan’s thesis [23].
Computing the kernel of the Kirwan morphism therefore gives a presentation of the cohomology
ring of the quotient X //G. Let QHg(X) resp. QH(X//G) denote the corresponding quantum
cohomologies defined over the universal Novikov field. Each has the structure of a CohFT
algebra, with products given by suitable counts of genus zero stable maps. The quantum
version of the Kirwan morphism is a morphism of CohFT algebras

Qr: QHg(X) — QH(X//G).
The virtual fundamental cycles are constructed algebraically in [33]. We describe first the
symplectic approach.

From the symplectic point of view the quantum Kirwan morphism is defined by a count of
affine vortices introduced in Ziltener [36], [35]. There is also an algebro-geometric interpreta-
tion, as a count of certain morpisms to the quotient stack X/Gc, that we present later. Let
g denote the Lie algebra of G, and let ® : X — g¥ be a moment map for the action of G on
X arising from a unitary connection on the polarization. For any connection A € Q!(A, g), we
denote by F4 € Q%(A, g) its curvature. We assume that g is equipped with an invariant metric
inducing an identification g — gV.

Definition 3.1. (Affine symplectic vortices) An n-marked affine symplectic vortexr to X is a
datum (A, u,z), where A € Q'(A,g) is a connection on the trivial bundle, u : A — X is a

holomorphic with respect to the complex structure determined by A, z = (z1,...,2,) € A" is
a collection of distinct points, and

Fjp+u*® Voly = 0.
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Here Vol = %dz A dZ is the standard real area form on A.

An isomorphism of marked symplectic vortices (A;,u;, gj), j = 0,1 is an automorphism of
the trivial bundle ¢ : A x G — A x G such that ¢*A; = Ay and ¢*uy = u (thinking of ug, uq
as sections of the associated X-bundle) such that ¢ covers a translation on the base, that is,
there exists a 7 € C such that mo ¢(z,9) = z+ 7 for all z,g € A x G, and z;; = z;9 + 7 for
1=1,...,n.

The energy of a vortex (A, u, z) is given by

1 *
(1) E(Au) = ; /A\ (Idaul2 + | Fall? + [ ®]?) Vol .

This ends the definition.

Let Mgl (A, X) denote the moduli space of isomorphism classes of finite energy n-marked
vortices on A with values in X. The following Hitchin-Kobayashi correspondence gives an
algebro-geometric description of the moduli space of affine vortices by work of Venugopalan
[31], Xu [34], and Venugopalan-Woodward [32]. By definition [12] a morphism u from the
projective line P to the quotient stack X/G¢ consists of a Ge-bundle P — P together with
a section P — P x¢g. X. By the git quotient X//G¢ we mean the stack-theoretic quotient of
the semi-stable locus by the group action; if stable=semistable then X //G¢ has coarse moduli
space the projective variety considered in Mumford et al [28].

Theorem 3.2. (Classification of affine vortices) Suppose that X is a smooth polarized projective
Gc-variety such that G acts freely on the semistable locus of X. There is a bijection between
1somorphism classes of finite energy affine vortices and isomorphism classes of morphisms u
from the projective line P to the quotient stack X/Gc such that u(oo) lies in the semistable
locus X)|Ge € X/Ge.

The moduli space Mf 1(A, X) admits a compactification Mil(A, X) allowing nodal scaled
lines as the domain:

Definition 3.3. (Affine scaled gauged maps) An affine marked nodal scaled gauged map to X
is a marked nodal scaled line (C, A, z) together with a morphism u : C — X/G¢ such that

(a) (Semistable bundle where the scaling is zero) for each irreducible component C; with
zero scaling A\|C; = 0, the G-bundle on C} is semistable, hence trivializable;

(b) (Semistable point where the scaling is infinite) for each z € C' with A\(z) = oo, the image
u(z) lies in the semistable locus X //Gc.

A nodal scaled morphism is stable if it has no infinitesimal automorphisms, or equivalently, if
each irreducible component on which w is trivial has at least three special points, or two special
points and non-degenerate scaling. This ends the definition.

Remark 3.4. (a) (Evaluation and forgetful morphisms) Let Mil(A, X) denote the moduli

space of isomorphism classes of stable nodal scaled maps to X. Mil(A, X) admits an
evaluation map at the markings, and if the action of G on the semistable locus is free,
an additional evaluation map at infinity to X /G [36], [35]:

ev X eV M,GL,I(A,X) — (X/Ge)" x X)/Ge.
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For n > 0, there is a forgetful morphism to the moduli space of scaled lines,
—G —G
f : Mn,l(AvX) - Mml(A)
(b) (The locally free case) In the case that G acts only locally freely on the semistable
locus in X, the quotient X//G is an orbifold or smooth Deligne-Mumford stack. The
Hitchin-Kobayashi correspondence in this case relates affine vortices to representable

morphisms of a weighted projective line P(1,7) — X/Gc for some r > 0 such that oo
maps to the semistable locus, so that the evaluation map at infinity

_G —
Ve : Mml(A,X) — Ixjae
takes values in the rigidified inertia stack
IxyGe = Urz1 Hom™(P(r), X//Gc) /P(r)
of representable morphisms from P(r) = BZ, to X//G¢ modulo P(r), for some integer

r > 1. See Abramovich-Olsson-Vistoli [2] and Abramovich-Graber-Vistoli [1] for more
on the definition of TX//G.

The quantum Kirwan map is defined by virtual integration over the moduli space of affine
vortices introduced in the previous subsection. Existence and axiomatic properties of virtual
fundamental classes for the case of smooth projective varieties as target using the Behrend-
Fantechi [5] machinery are proved in [33]. Some results in the direction of establishing the
existence of fundamental classes for target compact Hamiltonian actions were taken in [35].
Here we review the case of algebraic target.

Definition 3.5. (a) (Novikov field) Given a smooth projective Ge-variety X and an equi-
variant symplectic class [wg] € HS (X) define the Novikov field AS for X as the set of
all maps A : HY(X) := H§(X,Q) — Q such that for every constant c, the set of classes

{de HF(X,Q), (w].d) < ¢}

on which A is non-vanishing is finite. The delta function at d is denoted ¢%. Addition
is defined in the usual way and multiplication is convolution, so that g% q% = ¢é1+dz,
(b) (Equivariant quantum cohomology) Define as vector spaces

QHY(X,Q) == HY(X,Q) @ A%
Let QH(X//G) denote the quantum cohomology defined over the Novikov field A§, that
is,
QH(X/G) = H(Ixye, Q) ® A%
(¢) (Quantum Kirwan morphism) For each n > 0 define a map

QK" : QHg(X)" x H(M,1(A)) — QH(X//G)

as follows. For o € Hg(X)", 5 € H*(M,,1(A)) let

QL™ (a, B), a0) = qd/ eviaU ffBUevi ax
@renod= 2 odfe

deHS (X,Q

using Poincaré duality; the pairing on the left is given by cup product and contraction
with the fundamental class of X //G.
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Theorem 3.6. [33] (Quantum Kirwan morphism) Suppose that X is a smooth polarized pro-
jective G-variety such that Ge acts locally freely on the semistable locus of X. The collection
(QE™)n>0 s a morphism of CohFT algebras from QHg(X) to QH(X//G). If X is G-Fano
in the sense that cf is positive on all rational curves to the quotient stack X/Gc, then the
curvature Qr° vanishes, so (QK")n>0 5 a flat morphism of CohFT algebras.

In order to compute presentations of the quantum cohomology of X//G one would like to
know that the quantum analog of Kirwan’s surjectivity theorem, namely that the linearization
of map QHg(X) — QH(X//G) at a generic point is surjective. In the case of free quotients
X//@G, the conjecture follows from Kirwan’s theorem and linearity over the Novikov ring, using
a filtration argument.

Next we describe the quantum Kirwan map in the case that G is a torus acting on a vector
space X, so that X//G is a toric orbifold. We sketch a proof that the kernel of the linearization
of the quantum Kirwan map is Batyrev’s quantization of the Stanley-Reisner ideal associated
to the toric fan. This reproduces for example the presentation of the quantum cohomology of
weighted projective planes described in Coates-Corti-Lee-Tseng [8] (see also [7] [9]).

Ezample 3.7. (Weighted Projective Line P(2,3) [18]) Let Cy resp. C3 denote the weight space
for Goc = C* with weight 2 resp. 3 so that X = Cy @ C3 and X//G = P(2,3). Let 0 resp. 0,
resp. 03 resp. 03 denote the generator of the component of QH(X//G) = H(Ixjc) ® A§ with
trivial isotropy resp. Zs isotropy resp. corresponding to exp(£27mi/3) € Zs. Let £ € Hé(X )
denote the integral generator corresponding to the representation with weight 1. Then we have
the following table for Qr'(£F):

k 01 2 3 4 5
QrYNEF) | 1] 61| ¢'/305/6 | ¢1/%02/18 | ¢*/302/36 | q/108 |

(12)

Indeed, identifying HS (X, Q) = Q so that HS (X, Z) = Z we see from Theorem 3.2 that
M1 (A, X,0) = {(ao,bo) # 0}/Gc = P(2,3)
M (A, X,1/3) = {(ag,biz+bo),b1 # 0}/Ge = C?/Z3
M (A, X,1/2) = {(a1z+ao,biz + by), a1 # 0}/Ge = C*/Z,
M (A, X,2/3) = {(a1z+ ao,bez® + byz + by), by # 0}/Ge = C*/Z3
Mfl (A, X,1) = {(ag2® + a1z + ag, b3z + baz® + byz + by), (az, b3) # 0}/Gc
The map
o My (A, X,1/3) = Co @ Cs,  u s u(0)

defines a section with a single transverse zero, leading to the integral

/ ev} 6¢% = / evi Eul(Cy ® C3) = 1/3.
My (AX,1/3) My (AX,1/3)

The pairing on the sector H(pt /Z3) ® A in QH(P(2,3)) is defined by contraction with the
orbifold fundamental class, that is, [pt]/3, which cancels the factor of 1/3 in the integral
above yielding the k& = 3 column. (Put another way, Qr1(6£2) is the push-forward under
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Mﬁl(A, X,1/3) — pt/Zs, whose fiber is Co @ C3.) The other integrals are similar. From (12)
one sees that Qx! is surjective with kernel £ — ¢/108. Hence

QH(P(2,3)) = AS[€]/(£° — q/108)

where Ag;( is the Novikov field of fractional powers of a single formal variable q. Note that the
quantum Kirwan map is not surjective in this case without inverting ¢, that is, over the Novikov
ring instead of the Novikov field, and that although the Novikov field involves fractional powers
of ¢, the relations have only integer powers.

More generally let X be a vector space and G a torus acting freely so that X //G is a proper
Deligne-Mumford toric stack (orbifold). We identify G = U(1)* and let py,..., pr € g¥ denote
the weights of the action on X with dim(X) = k. We also identify H$ (X, Z) with the coweight
lattice gz = exp~'(1) in the Lie algebra g.

Definition 3.8 (Quantum Stanley-Reisner Ideal). Let QSRY(X) C QHg(X) be the quantum
Stanley-Reisner ideal, generated by the elements for d € HQG (X,Z)

H PJ (d d H _pJ (d

p;(d)=>0

Batyrev [4] in the case of smooth toric varieties conjectured that the quantum cohomology
QH(X//G) has a presentation

(13) QH®(X)/QSRY(X) = QH(X/G),

This conjecture was proved for semipositive toric varieties by Givental in [16], Cox-Katz [10],
and is false in general as pointed out by Spielberg [29], at least for the obvious generators. Iritani
[21] proved that any smooth projective toric variety has quantum cohomology canonically
isomorphic to the Batyrev ring QHg(X)/QSRE(X), using corrected generators. Coates-Corti-
Lee-Tseng [8] generalized the presentation to the case of weighted projective spaces.

Ezample 3.9. If Gc = C* acts on X = C? with weights a,b € Z so that X //G is the weighted
projective line P(a,b) then the quantum Stanley-Reisner ideal is generated by (a&)?(b€)® —
Then with our conventions the quantum cohomology of P(a,b) has generators £ and fractional
powers of g, the single relation is (a&)®(b¢)? = ¢, c.f. [8].

Theorem 3.10. (Orbifold Batyrev conjecture) [18] After suitable completion, the linearization
DoQk is surjective and the kernel of DoQk is the quantum Stanley-Reisner ideal QSRE(X),
so that Tgu0)QH(X//G) = ToQH(X)/QSRY(X).

We give a partial proof by showing that for any d € HS (X, 7Z),
(14) / Eul(@,C% V) Uev,[pt] = 1.
VT (A.X.d)]

Let

—G max(0,p;(d))
(15) o : MyAXd) — ] SO0 (w2 e @ E@)er ety
pg(d)ZO
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denote the map constructed from the derivatives of the evaluation map at the marking z;. The
map o gives a transverse section with a single zero on the locus ev!(pt) C Mfl (A, X,d) and

the remaining factor Eul(@j(CE;in(O’pj (d))) is the obstruction bundle.

We claim that o is non-vanishing on the boundary strata. Let (C, A, z,u) be a stable scaled
map with reducible domain, and let d’ # d denote the homology class of the irreducible
component containing z;. Since at least two irreducible components have positive energy,
(lwal,d) < (Jwg],d). By assumption X//G is non-empty, which implies that the symplectic
class [wg] can be written as a positive combination of the weights p;. Hence p;(d') < p;(d) for
at least one j. Furthermore, among j such that p;(d’) < p;(d) there must exist at least one such
that u; is non-zero. Indeed the sum of C,; with p;(d’ — d) > 0 is part of the unstable locus in
X, and so no morphism u with only those irreducible components non-zero can be generically
semistable. The p;(d') + 1-st derivative of u; is then a non-zero constant, so o(u) # 0. The
equation (14) follows.

Finally we describe a notion of composition of morphisms of CohFT algebras. This will make
CohFT algebras into an infinity-category, whose higher morphisms are commutative simplices
of CohFT algebras. This composition plays a natural role in the quantum reduction with stages
conjecture relating the quantum Kirwan maps for G/K and K with that for G, when K C G
is a normal subgroup. The definition of composition of morphisms of CohFT algebras involves
a moduli space of s-scaled n-marked affine lines defined as follows.

Definition 3.11. (Multiply-scaled curves) An s-scaled, n-marked curve is a datum (C,z, \)
where (C, z) nodal marked curve and A = (\q,...,As) is an s-tuple of scalings as in Definition
2.7 and in addition satisfying the following balanced condition:

For each irreducible component C; of C' and any two scalings A;, A, not both 0 or both

o0, the ratio (A\;|C;)/(Ax|C;) € P is independent of the choice of C;.
An s-scaled, n-marked line C' is stable if each irreducible component with at least one non-
degenerate scaling has at least two marked or nodal points, and each irreducible component
with all degenerate scalings has at least three marked or nodal points. The combinatorial type
of an s-scaled, n-marked affine line C' is the tree whose vertices V(I') correspond to irreducible
components, finite edges E- (") to nodes, and equipped with a labelling of the semi-infinite
edges Eoo(T') by {0,...,n}, and distinguished subsets V(C') C V(C) corresponding to irre-
ducible components on which the i-th scaling A; is finite, satisfying combinatorial versions of
the monotone and balanced conditions which we leave to the reader to write out. This ends
the definition.

Remark 3.12. (More explanation of the balanced condition)

(a) On any irreducible component C; of C' on which A;, A\; are both non-zero and fi-
nite, A;, A\;; both have a double pole at the same point and so have constant ratio
(MG [ (Ak|Cs).

(b) The balanced condition is equivalent to the condition that for each marking z;, if C’;rj
denotes the unique component between zy and z; on which A; is finite, then one of
the three possibilities holds: C’:r] = C’;Fk for all ¢ and the ratio ()\]|C’Z+])/()\k|0:rk) is
independent of i; or C:rj is closer (in the sense of trees) to zp than C;r .. for all 4; or C'Z.+ i

is closer to zg than C’:r] for all 4.
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Let M, s(A) denote the moduli space of isomorphism classes of stable s-scaled, n-marked
curves.

Remark 3.13. (Boundary divisors of the moduli of multiply-scaled lines) The boundary of
M, s(A) can be described as follows.

(a) For any subset I C {1,...n} of order at least two there is a divisor
vy Dr — HH,S(A)
and an isomorphism
@r: Dp — M 11 X My_jg141,5(A)

corresponding to the formation of a bubble containing the markings z;,7 € I with zero
scaling on that bubble, and all scalings zero on that bubble.

(b) For any unordered partition /; U...U I, of {1,...,n} of order at least two with each I;
non-empty and non-empty subset J C {1,...,s} there is a divisor

Uyidod 2 D1y — My s(A)

with an isomorphism

T
Ol Diytpd = My ooy g)(A) x [ M 1,401,101 (A)

i=1
corresponding to the formation of r bubbles containing markings I;,7 = 1,...,r with
the scalings j € J becoming finite on those bubbles and infinite on the component

containing z, or, if J ={1,...,s},

T
Ot 2 D1 g = Mpgn X [[ Mg 41.5(A).
i=1
The union of these divisors is the boundary of M,, ,:

8Mn,s(A) - U D[ @] U DIly"'y-[T'vJ'
Ic{1,..n} Iv,..Ir,J

Definition 3.14. (Composition of morphisms of CohFT algebras) Let Uy, Uy, Us be CohFT
algebras. Given morphisms
do1: Up — U, ¢12 : Ur — Uz, o2 : Uy — Us

we say that ¢gg is the composition of ¢g1, ¢12 if the map

o201 1 Uy x H(M,2(A)) — Us

given by composing ¢z with the natural restriction map H (M, 2(A)) — H(M, 1(A)) agrees
with the map

(16) (¢12 ©) @01)” : U(? X H(Mmg(A)) — U2
(alu"'7an75)'_> Z ig2(¢‘()€1|(aluz€[17)7

r<s,;U..Ul,={1,...n}

t l)If‘(aiyi € IT; ')7 ¢81(1)7 s 7¢81(1); ')(L?l,...,lrﬂ)/(s - T)!a
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where the dots indicate insertion of the Kunneth components of lew, IT.(ﬁ) with respect to the
Kunneth decompositions, and is well-defined if it involves only finite sums on the right-hand-
side (modulo Uy, for any a € R if all CohFT algebras are filtered.) We call the resulting
diagram a commutative triangle of CohFT. Similarly one can define commutative simplices of
CohFT algebras of higher dimension.

We now define a moduli space of multiply scaled gauged maps that “lives above” M,, s(A).
Consider a chain of normal subgroups G = Go D G1 D ... D G,. Since G is normal and
compact, g splits as a sum g = g; © g}, so there exists a subgroup G; C G so that G; x G} — G
is a finite cover. Let X be a smooth projective G¢-variety.

Definition 3.15. (Multiply-scaled affine gauged maps) An s-scaled, n-marked stable affine
gauged map on the affine line A with values in X is a s-scaled, n-marked nodal curve C equipped
with a morphism u from C to the quotient stack X/Gc such that for each j =1,...,s,
(a) (G;-7(C—bundle where )\; is zero) on the irreducible components where \; vanishes, the
Gc-bundle defined by the composition of u with X/G¢ — B(Gc) is induced from a
" c-bundle;
(b) (Gjc-stable point where ); is infinite) if \;(z) = oo, then u(z) lies in the semistable
locus for the action of G c.
An s-scaled nodal affine gauged map is semistable if each irreducible component with some
non-degenerate scalings has at least two special points, and each bubble with all degenerate
scalings has at least three special points. A multiply scaled affine gauged map is stable if it has
finite automorphism group.

Let MS <(A, X) denote the moduli space of isomorphism classes of stable s-scaled, n-marked
affine gauged maps on C with values in X.

Remark 3.16. The divisor relations on M,, s(A) naturally induce divisor relations on Mf (A X).
In particular, M 2(A) is a projective line, and the linear equivalence between D1y 41y, the divi-
sor where the first scaling has become infinite, and the subspace M1 1(A) where the two scalings
have become equal induces an equivalence in homology in Mf 2(A, X) between Mil(A, X) (em-

bedded as the subspace where the scalings are equal) and the union of the pre-images of the
divisors Dy, . 1,1.41}-

Remark 3.17. (Equivariant quantum Kirwan morphism) The quantum Kirwan morphism has
the following equivariant generalization. If the action of G extends to an action of a group K
containing G as a normal subgroup, then the quotient group K/G acts on the moduli space

Mil(A, X) and one obtains a morphism

_G n
ev X Ve ! Mn,l(A,X)/(K/G)(c — (X/Ke)" x (X))G)/(K/G)c.
Pairing with the virtual fundamental class defines a map

QHg(X,Q)" x H(Mn1(A),Q) — QHgyx(X//G,Q).

After extending the coefficient ring of QHy/(X//G) from A to Ai/ég one expects this to

define a morphism of CohFT algebras
(17) (Qrk gInz0 : QHK(X) — QHy (X //G).
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Consider the equivariant quantum Kirwan morphisms

(QFK G0 1 QHK(X) — QHE/a(X//G)
(QrK c)n>0 : QHK)(X)/G) — QH(X//K)
defined in (17). The linear equivalence in Remark 3.16 leads naturally to the

Conjecture 3.18. (Quantum reduction in stages) Suppose that X, K,G are as above, and
the symplectic quotients by K and G are locally free. Then there is a commutative triangle of
CohFT algebras

QHr (X) QH(X/K)

\ /

QHg (X G)
In particular, there is an equality of formal, non-linear maps

QrK/q o Rk k = QKK.

More generally, given a chain G = Gy D G1 D ... G, as above one should obtain a commutative
simplex of CohFT algebras. We leave it to the reader to formulate the precise conjecture.

4. LOCAL DESCRIPTION OF BOUNDARY DIVISORS

In this section and the next we give a precise description of the group of invariant Cartier
divisors on the moduli space of scaled lines M, 1(A). We begin with a review of the local
description of M, 1(A) given in Ma’u-Woodward [27].

Definition 4.1. (Colored trees) A colored tree I' is a finite tree consisting of a set of vertices
V(T) ={v1,...,om}
a set of (finite and semi-infinite) edges
ET) =Ecoo(T) UE(T), Ex(T)={eo,...,en}
and a subset of colored vertices
VHI) c V(D)
such that the following condition is satisfied:

(Monotonicity condition) Any non-self-crossing path in I" from the root edge ey to any
other semi-infinite edge e;,i > 0 crosses exactly one colored vertex v € V7 (I).

The tree I' is stable if the valency of any colored resp. uncolored vertex is at least two resp.
three.

We say that a vertex is above the colored vertices if it can be connected to the root edge
without crossing a colored vertex. Let V*°(I") be the set of vertices above the colored vertices.
For any v € V*°(T'), let V' (v) be the set of colored vertices v' € VT (I') that are below v, that
is, connected by paths in I' that move away from the root.
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Definition 4.2. (Balanced Labellings) A map ¢ : E< (') — C is balanced if for all v € V*°(T")
and v' € VT (v), the product
IT «e

e€y(v,v')
over edges e in the non-self-crossing path v(v,v’) from v to v’ is independent of the choice of
a colored vertex v'. Let V(I') denote the set of balanced labellings:

(18) V(T) := {g: E<oo(I") — C| ¢ is balanced}.
The subset
T(T) :=V(I') N Map(E<(T"),C*)
of points with non-zero labels is the kernel of the homomorphism
Map (B (T), ©) — Map(V(T), C*)

given by taking the product of labels from the given vertex to the colored vertex above it, and
is therefore an algebraic torus.

Ezample 4.3. The tree I' in Figure 4 is a balanced colored tree with n = 4 and g = 3. The
space of balanced labellings is

V(T) = {(21,..,76) € C°| 2173 = 124 = 2275 = T2T6, T3 = T4, T5 = T6}
and admits an action of the torus
T(T) = {(@1,.76) € V(T) | @i # 0} = (C*)?.

Proposition 4.4. [27] (Local structure of the moduli space of scaled lines) There exists an
isomorphism of a Zariski open neighborhood of My 1r in My 1r x V(I') with a Zariski open
neighborhood of M,y 1 in anl(A).

We comment briefly on the proof. Given a stable scaled line, one can remove small disks
around the nodes and glue together annuli using a map z — ¢(e)/z to produce a curve with
fewer nodes, where ¢(e) is the gluing parameter associated to the node. In the case of the genus
zero curves, the local coordinates used to produce the disks are essentially canonical, and the
balanced condition guarantees that the scalings on the resulting curve are well-defined.

€1 €2

es €4 es €6

FIGURE 4. A colored tree

Recall that normal affine toric varieties are classified by finitely generated cones [11], [14].
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Definition 4.5. (Affine toric variety associated to a cone) Let Vz C V be a lattice, and C C V
a strictly convex rational cone. The affine toric variety corresponding to the cone C' is the
spectrum V(C) of the ring R(CY) corresponding to the semigroup C'¥ N'V,/, that is, the ring
generated by symbols f, for p € C¥ NV, modulo the ideal generated by relations

(19) D i =y myuy = [ fi =111

Any normal affine toric variety is of the form V(C) for some cone C, obtained from X by
letting CV be the cone generated by the weights of the action of T on the coordinate ring and
C' the dual cone of CV.

We wish to show that the space V' (I") of balanced labellings (18) is the toric variety associated
to some cone C(T"). Note that the part of I' separated by the colored vertices from the root
of T" trivially affects V(I') by adding additional independent variables. Hence, for the rest of
this section, it suffices to assume that the colored tree I' does not contain any vertex below
any colored vertex. Let €1,...,€, be a basis of t, and €}, ..., ¢ the dual basis of t'. Define a
labelling

w: Eog(l) — ¥

recursively as follows.

Definition 4.6. (Principal subtree and branch) We say that a subtree IV C T" is a principal
subtree if it is a component of the tree obtained by removing the vertex adjacent to the root
edge. The edge adjacent to the root edge of I' is called a principal branch of T.

Let I'y,...,I', be the principal subtrees of I" and dy, ..., d, the principal branches.

Ezample 4.7. For the example in Figure 4, there are two principal subtrees, with principal
branches eq, es.

Definition 4.8. (Sum of Labels) Given a labelling w denote by s(I', w) the sum of the labels
of the edges of a non-self-crossing path from the principal vertex to a colored vertex; a priori
this depends on the choice of path but each labelling we construct will have the property that
s(I', w) is independent of the choice of path.

Definition 4.9. (Labelling of edges of a colored tree by weights) Let I be a subtree of T.

(Case 1) I' is a tree with one non-colored vertex v;. Label the edges below the vertex v; by €/,
that is, define w(e) = ¢ for every edge e of I".

(Case 2) T has g > 1 non-colored vertices. By induction, assume that we have equipped the
edges of the principal subtrees I}, ..., T', of I with labellings w;. We have thus labelled
all the edges of I' except for the principal branches; we denote s; := s(I';, w}). Define

(20) s=s(I",w') =€) +s1+ ...+ 5.
Label the principal branch d; € E<o(I') with
(21) w(d;) :s—si:e;/—stj.
J#i

By induction all the edges e of I" become labelled by weights w(e).
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FIGURE 5. An example of a labelling

Ezample 4.10. Figure 5 illustrates the labels of the edges of I' from Example 4.3. If we denote
the left and right principal branches by di and dy respectively, then s; = €/, s0 = €3,5 =
VoLV oV
€3 + €5 + €.

Lemma 4.11. s = s(I',w) is the sum of the labels of the edges of a non-self-crossing path from
the principal vertex vy to a colored vertex and s is independent of the path chosen.

Proof. By (21) the sum over a path through T'; is s; + w(d;) = s, independent of i. O

Let C(T")Y be the convex cone generated by the labels above,
crmy = hullg., {w(e) [ e € E<x(I)}

p
= hullg., [ JCT)Y Ulwle)|1<i<p)
Jj=1

and let C(T") denote the dual cone of C'(T")".
Theorem 4.12. (Explicit description of the cone associated to balanced labellings) The variety

V(T') is the toric variety associated to C(T") in the sense of Definition 4.5, in particular, V(I")
is normal.

The proof will be given after the following lemma.

Definition 4.13. (Equivalence of sets of edges) Suppose E', E” are two disjoint subsets of
E(T). We write E' ~ E” if there exists a vertex and two non-self-crossing paths v and 7o
from that vertex to some two colored vertices so that E’ and E” respectively contain exactly
the edges of the paths v; and ~s.

Ezample 4.14. The set E' = {e1, ez} is equivalent to E” = {e3, €6} in Example 4.3.
Lemma 4.15. Suppose E' and E" are two disjoint multisets of elements of E(T'). Then

(22) Z w(e) = Z w(e”)
e CE e B

if and only if E' and E" can be partitioned into disjoint unions of {E},...,E.} and {EY,...,E/'}
where E] ~ E} for 1 <1 <r.
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Ezample 4.16. In Example 4.3, let E' = {3e1,2e3,¢e4,e5} and E” = {3ey,4eg} which satisfy
(22). We can write Ei = {61,63} ~ Ei’ = {62,66},Eé = {61,63} ~ Eé, = {62,66},Eé =
{e1,ea} ~ B3 = {ez,e6}, By = {es} ~ Ef = {es}.

Proof of Lemma 4.15. One direction of the implication, that the equality (22) holds if £ and
E" can be partitioned, is immediate from the definitions. We only need to show the other
direction. As before, it suffices to consider the case that there are no non-colored vertices
below the colored vertices. When the number of non-colored vertices is 1, the statement of
the lemma is trivial. Assume the proposition holds for any tree with number of vertices less
than g. Consider a tree I' with g non-colored vertices. Denote by n1,...,n, and mq,...,m, the
multiplicities of the principal branches ey, ...,e, in E’ and E”. Since E' N E” = (), we have
n;m; = 0 for all i. Equation (22) and the fact that eg appears only on the edges adjacent to
the root edge imply

Similarly, the fact that the labels from each principal branch are independent implies that

—n;8; + Z w(e’) = —m;S; + Z w(e")

¢'€E'NE<oo(T) " €E"NE< oo (Ty)

for every 1 <14 < p. For a fixed i, without loss of generality, we can assume m; = 0. Then

Z w(e') = ngs; + Z w(e”).

e’eE'Nly e’eRB"Nl;
Noting that s; is the sum of labels over a non-self-crossing path from v; to a colored vertex, we
may replace E" = E'NE<o(I';) with an equivalent set which contains n; copies Eff, j = 1,...,n;
of the edges in such a path. The complement of E;i,j =1,...,n; in E” has the same sum

of labels as E" = E" N E.o(T}), so by the inductive hypothesis there exists a partition of
E'NEc<x(I';) and E”" NEo(T;) into {EY, ..., E'} and {EY", ..., E" } such that for 1 < j < ny,

E;Z are equal and for n; +1 < j < r;,
17 11
(24) Ej ~ Ej".

Since E’ contains n; principal branches d;, we can add one edge d; in each E;Z for every

1 < j < n;. Hence, after the modification, each set E;’ contains exactly all the edges of a path
from the root of I' to a colored vertex in I'; . Applying the same process for each 1 <7 < p,
by the first equality in (23) and by (24), we can partition E' and E” into {E], ..., E.} and
{E],...,E'} such that E/ ~ E! for every 1 <i <r. O

Proof of Theorem 4.12. We must show that the balanced relations for V(I") in Definition 4.2 are
exactly those in the definition of the affine toric variety associated to C(I") in (19). So suppose
that E' = {nieq,...,nyen} and E” = {mei,...,mnyen} are such that > nw(e;) = Y mjw(e;),
and so define a relation as in (19). Lemma 4.15 yields that £’ and E” can be partitioned into

1 Bl EY, .. Bl sothat E] ~ E! for 1 <i <r. But these are exactly the balanced relations
in 4.2. U
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It follows from the theorem that the cone C(I") corresponding to the toric variety V(T') is
the cone dual to the Q>¢-span of C(I')Y. Next we find a minimal set G(I') of generators of
C(T") by an inductive argument on the number of non-colored vertices g of T.

Definition 4.17. (Generators of the cone associated to balanced labellings) Define G(I") in-
ductively as follows for subtrees IV C I':

(a) If g(I") = 1 with vertex v;, then G(I") = ¢;.

(b) If g > 1, then G(I") = {eg + ni1(vi — €g) + ... + np(vp — €g)| v; € G(I'}), n; € {0,1}}.

Note that the elements in G(I') are in the lattice Z9 spanned by the vectors ey, ..., €.
Theorem 4.18. G(I') is a minimal set of generators of C(T').

Example 4.19. The tree I' in Figure 5 can be split into two principal subtrees I'1 and I's. Since
G(T1) = {e1} and G(I'2) = {e2}, we obtain G(I') = {e1, €2, €3, €1 + €2 —e3}. The cone generated
by {€1,€2,€3,€1 + €2 — €3} is the cone C(I') corresponding to the toric variety V(I').

Denote by C(I') the g-dimensional cone spanned by the vectors in G(I'). To prove Theorem
4.18 we must show that C(I") = C(I").

Lemma 4.20. For s as in (20), for every v € G(I'), (s,v) = 1.

Proof. This follows by induction on the number of vertices from the observation that (s,v) =

P
1+2ni(<si,vi>—1). O
i=

Proof of Theorem 4.18. We show C(I') ¢ C(I") by induction on the number g of non-colored
vertices. The case g = 1 is obvious. Suppose the claim is true for all colored trees with less
than g vertices. Let v € G(I') with coefficients n;,i = 1,...,p and w € C(T')V. If v € G(I;)
then (w,v) = n;(w,v;) and the claim follows by the inductive hypothesis. Otherwise, since
C(I')Y is spanned by w(e),e € F<(T), we may assume that w = w(e;) for some 1 < i < p.
By Lemma 4.20,

(w,v) = (s—s;4,v)
= (s,vi) —ni(si, vi)
= 1- n;

Hence (w,v) > 0. Since this holds for all v,w, we have C(I") ¢ C(I).

Conversely, given v € C(T"), we claim that v is a non-negative linear combination of elements
in G(I'). For g = 1, the claim is trivial. Assume the claim is true for all trees with less than
g non-colored vertices. Let I" be a tree with g vertices and v € C(I"). In particular, v pairs
non-negatively with the weights w(e), e € E«(I';) so by the inductive hypothesis we can write

v as a sum )
V= —Cg€q + Z Z AWy
i=1 veG(T;)

where )\g,i) > 0. If ¢4 <0 then the claim follows since ¢, € G(I'). If ¢4 > 0, let

M= S0,

’UEG(Fi)
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We remark by Lemma 4.20,
(25) 0 < (w(e;),v) = —cg+ YA
j#i
To write v as a non-negative linear combination of elements in G(I'), we proceed as follows.

Without loss of generality, suppose that A, is the minimum of {\; # 0}, that is, the smallest
positive Aj,j = 1,...,p. Split each sum

S = Y Aut 3 6l

veG(Ty) veG(Ty;) veG(ly)

where ’yff),&(,i) >0, ’yi(,i) + &(,i) = )\g,i) and ) (L(,i) = \p. We can write v as the sum of

veG(Ty)
p—1
(26) — (=g + > (> D)+ > AP
=1 weG(Ty) vEG(Ty)
and
p—1
(27) — Cyeg + Z Z ~ v
i=1 veG(T;)
where
(28) — = —cg+ (p =1\,
Since
Z 6 = Z AP) = Ap»
veG(T;) veG(Tp)

the expression (26) is a non-negative linear combination of elements of G(T'). If —¢; > 0, the
expression (27) is already a nonnegative linear combination of elements of G(I') and we are
done. Otherwise, consider the smaller tree I obtained from I' by removing I') and observe

that (27) lies in C'(I”). Indeed, by definition, we know ’yf)i) > 0 and therefore it is sufficient to
check that

p—1
AP
jAig=1
However, by definition and the equation (25) we have

p—1 p—1
—cy + Z Vi = —cg+ -1+ Z (A —Ap)
J#ig=1 J#ij=1

P
= —cg+ Y A=0
=Ly
Thus, the expression (27) is in C(I'"). By the inductive hypothesis, (27) is a nonnegative linear
combination of elements of G(I''). Hence v is a nonnegative linear combination of elements in
G(I'). Thus C(I') ¢ C(I') and therefore, C(T') = C(T).
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We argue by induction that G(T') is a minimal set of generators of C(I') and C(TI') is non-
degenerate, i.e no positive linear combinations of vectors in the cone are 0. It is easy to check
the claim when ¢(I') = 1. Given a tree I' with ¢(I') non-colored vertices and G(I';) the con-
structed minimal set of generators for each nondegenerate cone C (T;), suppose v € G(I') is a
non-negative linear combination of other elements in G(I'). By the induction hypothesis, the
projection of v onto the space spanned by G(T';) is 0 for each ¢ and thus by the nondegeneracy
induction hypothesis, it follows that v = 0. Now, suppose that a positive linear combination of
some elements in G(I") is 0. In particular, its projections onto the space spanned by G(T';) is 0
for each i. Hence by the nondegeneracy induction hypothesis, all the elements in the combina-
tion are 0. Therefore, G(T') is a minimal set of generators of C(I') and C(I') is nondegenerate,
concluding the theorem. O

By the description of the cone, the dimension of V(I') equals the number of non-colored
vertices g above the colored vertices plus the number of edges below the colored vertices. On
the other hand, by the balanced condition in 4.2,

dim(V(T')) = dim(T'(T") = | E<oo(T)] = [ VH(I)] + 1.

The two formulas are easily seen to be equivalent, by considering the map from vertices to
edges given by taking the adjacent edge in the direction of the root edge. We also have a
formula for the number of rays in C(I"), which follows immediately from Theorem 4.18:

Corollary 4.21. If the number of 1 dimensional faces of C(T';) is r; for 1 < i < p, then the
number of 1 dimensional faces of C(I') is r = (r1 +1)...(1p + 1).

Next we describe the Weil and Cartier divisors in the local toric charts. Recall the description
of invariant Weil divisors of an affine toric variety V(C') with cone C ( see [14] or in the more
general setting of spherical varieties, [6]):

Proposition 4.22. (a) (Classification of invariant Weil divisors) There is a bijection be-
tween invariant prime Weil divisors of V(C) and the one dimensional faces of C.
(b) (Classification of invariant Cartier divisors) There is a bijection between invariant Cartier
divisors on V(C) and linear functions on C' taking integer values on the intersection
cnvy.

We sketch the construction of the bijections. For the classification of invariant Weil divisors,
any one-dimensional face C; of C' corresponds to a codimension-one face C) of CV. The
projection of semigroup rings R(C"Y) — R(CY’) defines an inclusion of the corresponding affine
toric varieties V(C7) — V(C). For the classification of Cartier divisors, recall that a Weil
divisor is Cartier if it is the zero set of a section of a line bundle. On a normal affine toric
variety, any line bundle is trivial and any invariant Cartier divisor is defined by a function that
is semi-invariant under the torus action. Such functions correspond to lattice points A € V),
where the corresponding function is regular if A € C¥ C V. If v € C is any vector generating
an extremal ray, then the order of vanishing of A on the divisor D(v) C V(C) corresponding
to v is A(v). Thus one sees that a combination > n,D(v) of invariant Weil divisors is Cartier
iff there is an element A € C'V such that A\(v) = n, for such v € C. More generally, for a not-
necessarily affine toric variety, an invariant Weil divisor is Cartier if there exists a piecewise
linear function on the fan whose values on the rays are the multiplicities of the invariant prime
WEeil divisors.
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We now specialize to the case of the toric variety V(I') associated to the cone C(I') with
generators G(I') identified in the previous section. We identify the invariant prime Weil divisors
of V(I') as follows.

Definition 4.23 (Minimally complete edge sets). A subset E C E. () is minimally complete
if and only if each non-self crossing path from v, to a colored vertex contains exactly one edge
in .

Denote by E,.(T") the set of minimally complete subsets £ C E-o(T).

Ezample 4.24. The minimally complete subsets of E(T"), where I" is the tree in Figure 4, are
{e1,e2}, {e1, 65,66}, {e2,e3,ea}, {€3,e4,65,¢€6}

Proposition 4.25. If the number of minimally complete subsets of Ecoo(IT';) is r;, then the
number of minimally complete sets of E«oo(I') is r = (r1 +1)...(1p + 1).

Proof. Let dy,...,d, denote the edges adjacent to the root edge. Each minimally complete
set either contains d;, or induces a minimally complete set in the principal branch I';, for each
i=1,...,p. The claim follows. O

From Corollary 4.21 and Proposition 4.25, we obtain

Corollary 4.26. The number of one dimensional faces of C'(T') equals the number of minimally
complete subsets of Eoo(T).

We can now describe the set of invariant Weil divisors of V(I") as follows.

Proposition 4.27. There is a bijection between the set of invariant prime Weil divisors and
the set Eme(T). More explicitly, each prime invariant Weil divisor has the form

Dg :={(z1,..,zn) € V(I') | x; =0 Ve; € E}
for some minimally complete subset E.

Proof. Given a minimally complete edge set E C E.(I"), for each principal subtree I'; of I,
either x4, = 0 or Dg induces a minimally complete subset E; € D(I';). By induction on the
number of non-colored vertices, the dimension of Dg is g(I'1) + ... + g(I'p,) = g — 1. Thus Dg
is a subvariety of V(I') of codimension 1. Since V(T') is the closure of T'(I'), the subvariety
Dp, is the closure of the orbit D NT(I") and so a prime Weil divisor. From Proposition 4.22
and Proposition 4.26, the number of prime Weil divisors equals the number of one dimensional
faces of C(I') which equals the number of minimally complete subset of E-(I'). Therefore
the invariant prime Weil divisors of V(I') are exactly all Dg, where E C E(I') is minimally
complete. O

We now describe inductively the correspondence between the rays of C(I') and elements in
Eme(l'). Let D = Dg be a Weil divisor as above. Unless ¢4, € E, the principal subtree I';
has an induced Weil divisor Dg, C V(I';). Suppose that the one dimensional face of C(I';)
corresponding to the Weil divisor Dp, is generated by v; € G(I';) C G(T'). Let

I(E) = {i]eq ¢ E,1<i<p}.
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Proposition 4.28. Let E € &,.('). The one-dimensional face of C(T') corresponding to the
Weil divisor D C V(') is generated by

(29) Vg = €5+ Z (vi — €g)-

icl(E)

Proof. We must show that vg is non-zero exactly on the weights w(e) for e € E. This is
automatically true by the inductive hypothesis for the edges except for the principal branches,
that is, if e € E«o(I";) then (vg, w(e)) = (v, w(e)) # 0 iff e € E;. For the principal branches,
the claim follows from 4.20. O

Next we identify the invariant Cartier divisors in V(I'). For each vertex vy of I', denote by
I'). the subtree below v in I' and which contains the edge right above v, as its distinguished
root. That is, I'y is the connected component of I' — {v;} not containing the root edge. We
define

Dy ={Dp | E € Ene(T), ENEcoo(Ty) #0}, Dr= > D.
DED,
Hence if Dg € Dy, E does not contain edges of I' which are above vy.

Proposition 4.29. The group of invariant Cartier divisors is generated by D1, ..., Dy.

Ezample 4.30. The group of invariant Cartier divisors of V(I'), where I' is the tree in Figure
1, is generated by

Doy + Dpsey + Prasay + Disaseys Diasay + Disaser Disey + Disasey )

Thus ng oy Doy + nizaseyDizase + nseyDisey + 14234 D(234) 18 a Cartier divisor if
and only if ng o) +ny3456) = N{15,6) + N{234)-

Proof of Proposition 4.29. We first check that Dy is a Cartier divisor. Recall the notation in
(20), sk = s(Tx) € t for each vertex v,. Note that sj satisfies (sg,vp) = 1 if E € Dy and
(sk,vEg) = 0 otherwise. Indeed, for each £ € Dy, Dg induces a Cartier divisor Dg, for the
toric variety corresponding to I';, and by 4.20, we have (sj,vg, ) = 1. This implies (s, vg) = 1.
On the other hand, if E ¢ Dy, then E does not contain any edges in I'y. Thus, (s;,vg) = 0.
Hence Dy, is a Cartier divisor.

Next we check that Dy, k = 1,..., g generate the group of invariant Cartier divisors. Note
that s = e mod €y,...,¢/ ;. It follows by an inductive argument that sq,...,s, generate
t) so that Dy, ..., D, generate the group of Cartier divisors of V(I'). O

We have the following description of the group of invariant Cartier divisors of V(I"). Let w
be the number of prime Weil invariant divisors of V(I).

Theorem 4.31. Y npD is a Cartier divisor of V(I') if and only if > mpnp = 0 for every
D D
(mp)p € Z™ that satisfies >, mp, =0 for every edge e € E«(T).
E:ecE

Proof. The group of Cartier boundary divisors of V' (I') forms a sublattice of the group of Weil
boundary divisors Z*, isomorphic to the weight lattice ty = Z9. Suppose (mp)p € Z" satisfies
the condition in the Theorem,

> mpgy =0, Ve€Ecx(l).
E:ecE
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Consider a non-self-crossing path v from a vertex v to a colored vertex. By summing over

edges of v, we obtain
S o= Y Y o -0
DeDy, ecy F.eeFE

Thus, if Y npD is a Cartier divisor, then D is a combination of Dy, ..., Dgandso Y, mpnp =
D

0. On the other hand, the set of (mp)p € Z" that satisfies the condition in the Theorem forms
a sublattice with dimension at least w — g, since the conditions are linearly independent.
Therefore, the space of np satisfying the condition in the Theorem form a lattice of dimension
g, which is the same as that of the space of Cartier boundary divisors. This shows that the
two spaces are the same, up to torsion.

To show that the lattices are in fact the same, suppose that (np)p € Z" satisfies the
condition in the Theorem. By the previous paragraph,

1 g
ED:T?,DD: ;;TZDZ

for some integers r; and s such that s > 0. It is suffices now to show that s|r; for every
1 <1 < g. To see this, note that

g

ZnDD:% > (ri Y D) :% (> mD
D

i=1  DeD; D i:DeD;
Thus )
i:DED;
For the principal vertex vy, define DY = D where E = {dj, ...;dp}. More generally, for any

vertex vy, let v, be the down-path from v, to vg, and let DF to be the divisor D¥ = D where
E is the set of edges immediately below the vertices in 7. Then

1
(30) npr =~ Y riel
Vi €Yk
Since np1 € Z, we obtain s|ry, and similarly for any vertices adjacent to the semi-infinite edges
besides the root edge. Induction on the length of the path ~; gives s|ry. O

One can reformulate the result of Theorem 4.31 as follows. Given an element E € &,.(T'),
the set of colored vertices V(") is partitioned by the subsets of colored vertices below e € FE.
Denote by Par(T") the set of such partitions of V*(T'). Also, define P(I") the power set of
V().

Ezample 4.32. The invariant prime Weil divisors of V(I') from Example 4.3 are Dy 9y, D1 5 6}
Dy234y, D{3,45,6), corresponding to the partitions

{({1,25,{3, 433 {40, 28, {35, {43}, {1}, {21, {3, 43 1, {{1}, {2}, {3}, {4}}
of the labels of the markings {1,2,3,4}.

Theorem 4.31 can be reformulated as
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Corollary 4.33. A sum > nr,...1,Drn...1. is a Cartier divisor of V(') if and only
{I,....Ir}€Par(T)
if (N, 1 ){10,..., I, }yePar(T) 15 in the orthogonal complement of the kernel of tr, where

tr gPar(l) _, ZP(F)7 (tr(m))(S) = Z My I,
SE{Il,...,IT-}

5. GLOBAL DESCRIPTION OF BOUNDARY DIVISORS

In this section we give a criterion for a boundary divisor in the moduli space of scaled lines
Mml(A) to be Cartier. By the local description of the moduli space in Section 4, any divisor
of type I is Cartier, so it suffices to consider divisors of type II. To describe the answer, let
I ={1,...,n}, let Par(I) be the set of non-trivial partitions of I, and P(I) the power set of
non-empty subsets of I. We identify the set of prime Weil boundary divisors of type I with
the subset of elements of P(I) of size at least two, and the prime Weil boundary divisors of
type II with Par(7). Thus in particular the space of Weil boundary divisors of type II becomes
identified with ZP2*@) by the map

{ZZ(P)DP} —Z"0 N UP)Dp 1.
P P

Let Z(I) denote the natural incidence relation,
Z(I)={(S,P) e P(I) x Par(l)|S € P}.
We have a natural map from the space of functions on Par(I) to functions on P(I) given by
pullback and push-forward:
(31) tzPD — zZPU (¢ (h)(S) = D h(P).
SepP

A relation on the group of Cartier boundary divisors is a collection of coefficients {my, 1.} €
7zPar({L,.n}) quch that

g mr,.. 1 ln,...0. =0
Ilv"'v-[T'

for every Cartier divisor D = ) Nl lr,,...1,Dr, .. 1.- The space of relations forms a subgroup
of ZPar([) )

Theorem 5.1. (Relations on Cartier boundary divisors) The group of relations on the group
of Cartier boundary divisors of type II is the kernel of t.

Ezample 5.2. For n = 2 there are two boundary divisors, and there is only the zero relation. For
n = 3 there are eight boundary divisors, and there is only the zero relation. For n = 4 there are
|P({1,2,3,4})| —4 = 11 boundary divisors of type I, and | Par({1,2,3,4})] = 14+6+3+4 = 14
boundary divisors of type II. A divisor

D = Z lry,..1.Dr, . 1.

is Cartier only if the three relations (as i, j, k, [ vary)

(32) iy b0y Hay ey — Yagh ey — Wi g1 00040
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In,.1, Iy
FIGURE 6. The trees I'r and I'y, 1,

hold. Thus the space of Cartier boundary divisors of type II is an 11-dimensional subspace of
the space of the 14-dimension space of Weil boundary divisors of type II.

Definition 5.3. (Compatible subsets and partitions with a tree)

(a) A tree I' is simple if it has a single vertex.

(b) For each partition {Iy,..., I} of I = {1,...,n}, define the tree I'y, ;. as follows: I'y, .
has r principal subtrees which are respectively the simple colored trees I';,j = 1,...,r
whose semi-infinite edges labeled by i € I;.

(c) For each subset I C {1,...,n}, let I'1 denote the colored tree with a single colored
vertex and a single non-colored vertex with semi-infinite edges labelled by i € I.

(d) Given v,v € Vert(I'), we write vED if there is an edge connecting v and 0. A tree
homomorphism f : Vert(I') — Vert(I"”) is a map that maps the vertices and edges of T’
to the vertices and edges of I respectively and satisfies:

(i) f maps the principal vertex vy of I' to the principal vertex v of I'.
(ii) If v, 0 € Vert(I") satisfies vED, then either f(v)Ef(0) or f(v) = f(?).
(iii) f maps the colored vertices of T" to the colored vertices of T”.

(e) Asubset I C {1,...n}is compatible with I" if there exists a tree homomorphism I" — T';.

(f) A partition {Iy,..., I, } of {1,...,n} is compatible with I" if there exists a tree homomor-
phism f:I' = T7  g,.

See Figure 6 for the trees I'7, ;. and I';. Denote by Par(I") the set of compatible partitions
of {1,...,n}, and by P(T") the set of compatible subsets of {1,...,n}.

Proposition 5.4. There is a canonical bijection between the set of minimally complete subsets
of E<oo(T') and the set of compatible partitions Par(T).

Ezample 5.5. For the tree I' in Figure 4, the correspondence between the minimally complete
subsets of E.(I") and the compatible partitions of {1,...,n} is

{61762} — {172}7 {374}7 {61765766} — {172}7 {3}7 {4}
{627 €3, 64} — {1}7 {2}7 {37 4}7 {637 €4, €5, 66} — {1}7 {2}7 {3}7 {4}
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I3
nonrn n
FIGURE 7. The tree I' compatible with the four-term relation

Proof. Given a minimally complete subset F, we obtain a partition by removing the edges in
FE and considering the partition of the semi-infinite edges induced by the decomposition into
connected components; that is, two semi-infinite edges are in the same set in the partition if they
can be connected by a path in the complement of F. There is a morphism of trees I' — I'y, 1.
given by collapsing each connected component of I' — F to a point, which shows that the
partition is compatible. Conversely, given a compatible partition, consider the corresponding
morphism of trees I' — I'y, ;. and let E denote the subset of edges of I" that are not collapsed
under the morphism. Since the finite edges of I'7, . 7, form a minimally complete subset of
Ecoo(T'ry,...1,), the set E is also minimally complete. The reader may check that these two
maps of sets are inverses. O

From Proposition 5.4 we obtain a bijective correspondence between compatible partitions and
the prime invariant Weil divisors of V(I"). For each compatible partition {Iy, ..., I} € Par(T),
denote by Dy, 1, the corresponding invariant prime Weil divisor of V(I").

Lemma 5.6. (Four-term relation) Suppose that {I1,...,I,} is a partition with at least two
elements of size at least two. Then there exists a colored tree T so that {Iy,...,I.} € Par(T),
and a relation m € Kertr so that
(a) m({1,...,I,}) = 1.
(b) For any partition {J1, ..., J) € Par(T") distinct from {1, ..., 1.}, we have m({Jy, ..., J}) =
0 unless v’ > r.

Proof. Without loss of generality suppose that |I1|,|I2| are both at least two, and so admit
partitions I} = If UI{, I = I, UI]. Let I' be the tree with r + 2 colored vertices, as in Figure
7. Then the sum of delta functions

Orf 10, 1,1 I3,y — Oy I 1Y I3, e — OIL I I I, I + O11 I I5,...,1, € Kertp

is a relation since each subset in each partition occurs an equal number of times with opposite
signs. U

Lemma 5.7. Let m € Ker(t) be a relation and r € {1,...,n—1}. Assume that m vanishes on
every partition of length less than r. Then m vanishes on every partition that consists of r — 1
singletons and a set of sizen —r+ 1. If r =n — 1 then m is constantly equal to zero.
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Proof. To prove the first assertion, let S be a set of size n —r + 1. We denote by P the unique
partition consisting of S and r — 1 singletons. Every partition containing S, other than P, has
length less than r. Hence by assumption, m vanishes on such a partition. Using the hypothesis
tm = 0 and the definition (31) of ¢, it follows that m(P) = 0. The first assertion follows.

To prove the second assertion, consider the case r = n — 1. Every partition of length n — 1
consists of n — 2 singletons and one set of size two. By the first assertion, m vanishes on every
such partition. Since by hypothesis m vanishes on every partition of length less than n — 1, it

follows that m vanishes on all partitions, except possibly on {{1}, . ,{n}} However, since
tm = 0, equality (31) with S = {1} implies that m vanishes on this partition, as well. This
proves the second assertion. O

Proof of Theorem 5.1. A Weil divisor is Cartier if and only if its restriction to every affine
Zariski open subset is Cartier. Hence it suffices to check if a divisor

D= Z lry,..r. D1y, 1.

is Cartier in every chart in Proposition 4.4. Note that each Dy, . corresponds to a non-
empty Weil boundary divisor in V(T") iff {I;,..., .} € Par(T"). A criterion for a Weil boundary
divisor in V(I") to be Cartier is given above in Lemma 4.33. There is a natural embedding
mr of Kertr, as in 4.33, in Kert¢ which preserves my, . p, if {I1,...,I,} € Par(I') and maps the
other my, 1., where {Iy,...,I,} ¢ Par(I'), to 0. The image of 71 is a subspace of Kert¢ and
D is a Cartier divisor of V/(I') if and only if (I;, ... 1) € coker mp. Hence, D is a Cartier divisor
of all V(T') if and only if (I7, .. s,) is in the orthogonal complement of the image 7 in ZP>(/)

for all I'. Thus, it suffices to show that
(33) Kert C hully image 7.

For this let m € Kert be a relation. Assume that m is nonzero on some partition of length
< n—2,and let {Iy,..., .} apartition of minimal length, on which m is nonzero. It follows from
Lemma 5.7 that {I,..., I} contains at least two sets of size at least two. Hence by Lemma
5.6 there exists a colored tree I' such that {I,...,I.} € Par(l'), and a relation m’ € Kertp
that attains the value 1 on {Iy,..., I} and vanishes on all other partitions of length at most
r. The relation m —my, ., m’ is non-zero on fewer partitions of length r than m. Continuing
in this way we obtain a relation which vanishes on all partitions of length less than n — 1. By
the second statement in Lemma 5.7, any such relation must be zero. It follows that m is a
linear combination of elements of Ker ¢tp, where I" ranges over all colored trees. This proves the
inclusion (33) and completes the proof of Theorem 5.1. O
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