
ON THE QUANTUM PRODUCT OF SCHUBERT CLASSESW. FULTON AND C. WOODWARDAbstra
t. We give a formula for the smallest powers of the quantum parametersq that o

ur in a produ
t of S
hubert 
lasses in the (small) quantum 
ohomology ofgeneral 
ag varieties G=P . We also in
lude a 
omplete proof of Peterson's quantumversion of Chevalley's formula, also for general G=P 's.1. Introdu
tionThe Grassmannian was the �rst variety whose quantum 
ohomology was studied byphysi
ists [36℄, and the �rst whose stru
ture was worked out rigorously by mathemati-
ians [34℄, [7℄, [5℄. Other homogeneous varieties G=P have been studied (see below), butthe story here remains far from 
omplete. Quantum 
ohomology has gone far beyondthese beginnings, with all smooth proje
tive varieties (or 
ompa
t symple
ti
 manifolds)enjoying a version of quantum 
ohomology. However, there are still interesting questionsto be answered about the 
ase of G=P in general, and Grassmannians in parti
ular. Ouraim in this paper is to give an expli
it formula for lowest degrees that o

ur in quantumprodu
t of S
hubert 
lasses.The 
lassi
al 
ohomology of a Grassmannian Gr(k; n) of k-planes in C n has a basisof S
hubert 
lasses ��, as � varies over partitions whose Young diagram �ts in a k byn� k re
tangle. The (
omplex) 
odimension of �� is j�j =P�i, the number of boxes inthe Young diagram. The Littlewood-Ri
hardson rule gives the 
oeÆ
ients of a S
hubert
lass �� in a produ
t �� ���, for j�j = j�j+ j�j. It is an easy and well-known fa
t that the
lassi
al produ
t �� � �� is nonzero pre
isely when � and the 180Æ rotation of � �t in thek by n � k re
tangle without overlap; for example, the dual 
lass to �� is the 
lass ��,for � = �_ the partition su
h that � and the rotated � exa
tly �ll the re
tangle withoutoverlap.The quantum 
ohomology of the Grassmannian is a free module over the polynomialring Z[q℄, with a basis of S
hubert 
lasses; the variable q has (
omplex) degree n. Thequantum produ
t �� ? �� is a �nite sum of terms qd�� , the sum over d � 0 and j�j =j�j+j�j�d n, ea
h o

urring with a nonnegative 
oeÆ
ient (a Gromov-Witten invariant);those with d = 0 are the 
lassi
al Littlewood-Ri
hardson 
oeÆ
ients. This ring wasstudied in [6℄, where an algorithm involving removing rim hooks was given for 
al
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2 W. FULTON AND C. WOODWARDthese produ
ts. It remains an important open problem to give a 
ombinatorial formulafor these 
oeÆ
ients (one that shows them to be nonnegative) when d > 0.A simple argument due to Agnihotri showed that the quantum produ
t �� ? �� of twoS
hubert 
lasses in a Grassmannian 
an never be zero (see [6℄,x5), so some qd�� mustappear in su
h a produ
t with positive 
oeÆ
ient. The problem we address here is to�nd the smallest power of q that o

urs in a produ
t �� ? ��. The eviden
e from smallexamples, together with the role that rim hooks play in the quantum multipli
ation, leadone to 
onje
ture that this smallest power of d is the number of rim hooks it takes to
over the overlap of � and the 180Æ rotation of � in the k by n�k re
tangle. Equivalently,d is the maximum for whi
h there is a diagonal sequen
e of boxes, from northwest tosoutheast, in this overlap. Here is an example, for k = 4, n = 9, � = (5; 4; 4; 3), and� = (5; 4; 4; 1):
The overlap of � with the rotation of � is shaded, and one of the ways of 
overing theoverlap with two rim hooks is indi
ated. In fa
t,1�5 4 4 3 ? �5 4 4 1 = q2(�5 3 2 2 + �5 3 3 1 + �5 4 2 1) + q3(�3 + 2�2 1 + �1 1 1):This 
onje
ture is proved in this paper.2 It would be interesting to give a 
riterion forexa
tly whi
h powers of q appear, or even for whi
h 
oeÆ
ients appear; for appli
ationsof su
h 
riteria, see [1℄. In the 
lassi
al 
ase, our understanding of this has in
reaseddramati
ally re
ently, thanks to Klya
hko, Knutson, and Tao, see [19℄, [1℄. A. Yong hasshown re
ently [37℄ that if one of the diagrams of � or � has no northwest to southeastsequen
e of e boxes, then qe 
annot appear in �� ? ��.In fa
t, we prove a generalization of this 
onje
ture for any G=P . In general the degreed is an sequen
e of nonnegative integers, one for ea
h 1-dimensional S
hubert 
lass. Wegive a formula, in terms of the 
ombinatori
s of the Bruhat order, for the smallest degreesd su
h that qd o

urs in a produ
t of S
hubert 
lasses. It follows in parti
ular that thesequantum produ
ts 
an never be zero.An understanding of (small) quantum 
ohomology for a G=P requires �rst a presenta-tion of the ring QH?(G=P ), and se
ond, a \quantum Giambelli formula" for the 
lass ofa S
hubert variety in terms of this presentation. This has been worked out for the varietyof 
omplete 
ags ([21℄, [16℄, [18℄, [15℄) and partial 
ags ([2℄, [27℄, [17℄, [15℄), and re
ently1We re
ommend the program of Anders Bu
h (www.math.mit.edu/~abu
h/lr
al
/) for 
omputing
lassi
al and quantum Littlewood-Ri
hardson 
oeÆ
ients.2Bu
h [11℄, P. Belkale [4℄ and A. Yong [37℄ have re
ently given proofs of stronger versions of thisresult for the Grassmannians.



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 3for the Lagrangian Grassmannian [32℄. Des
riptions of the quantum 
ohomology ringhave been given for general 
omplete 
ag varieties G=B [26℄, and partial des
riptions forgeneral G=P by Peterson [33℄, but Giambelli formulas are not yet known in general.Most of what is known about quantum Giambelli formulas 
omes from 
omputingformulas for degenera
y lo
i on 
ertain Quot s
hemes (although A. Bu
h [11℄ has re
entlygiven a proof for the Grassmannian, and Bu
h, Kres
h, and Tamvakis [12℄ for someothers, that does not depend on moduli spa
es).Given this limited knowledge about quantum 
ohomology of general G=P 's, it is some-what surprising that we are able to solve this problem for other G=P 's. On the otherhand, it indi
ates that, even in type A, we will not use algebrai
 formulas for quan-tum S
hubert 
lasses, and we will not use Quot s
hemes. Rather, we use the spa
esM 0;n(X; d) of stable maps from genus 0 
urves with n marked points to X = G=P ,whi
h were 
onstru
ted by Kontsevi
h to prove the asso
iativity of quantum produ
ts[31℄, see [20℄.In the next few se
tions we lay out the ne
essary notation, re
alling the standard fa
tsabout the geometry of G=P 's and quantum 
ohomology that are needed to state thetheorem pre
isely. Re
all that the S
hubert 
lasses �u are parametrized by elements uin W=WP , where W and WP are the Weyl groups of G and P . The idea behind oneimpli
ation of this formula 
an be explained roughly as follows. If a produ
t �u ? �v
ontains a term qd�w, in the spa
e M0;3(X; d) the lo
us of stable maps of degree d toX that map the �rst marked point to a S
hubert variety for �u and the se
ond markedpoint to an opposite S
hubert variety for �v must 
ontain a point that is �xed by themaximal torus T of G. This �xed point is a map from a 
urve C into X, where C is atree of P1's. The images of the interse
tions of the 
omponents of C are �xed points of Tin X, whi
h are also indexed by elements ofW=WP . This produ
es a 
hain of elements ofW=WP , and this 
hain for
es the elements u and v to be 
lose to ea
h other in a 
ertainway. In the 
ase of the Grassmannian, this 
loseness translates to the 
ondition that theoverlap des
ribed above 
an be 
overed by d rim hooks.For the 
onverse, any su
h 
hain does arise from a �xed point in su
h a moduli spa
e,but it is not obvious when a point 
orresponds to a non-vanishing Gromov-Witten in-variant. The key to this is provided by our transversality result in x7, whi
h we dedu
efrom Kleiman's general transversality theorem [28℄. Similar ideas 
an be used to provePeterson's quantum extension of Chevalley formula for multiplying a general S
hubert
lass by a 
odimension one S
hubert 
lass. We have taken this opportunity to in
lude a
omplete proof of this formula in x10.The use of torus a
tion in this setting goes ba
k to Kontsevi
h [30℄, who was inspiredby Ellingsrud and Str�mme. It has been used many times sin
e, see [25℄, [35℄. Theidea that S
hubert varieties of opposite Borel subgroups are in general position for thepurposes of quantum 
ohomology we learned from Peterson.We thank Anders Bu
h and Alex Yong for several helpful 
onversations.



4 W. FULTON AND C. WOODWARD2. Lo
alizationThe following lemma, whi
h is a spe
ial 
ase of a theorem of Bott [9℄, provides simpleproofs of the basi
 fa
ts we need about divisors and 
urves on homogeneous varieties.Lemma 2.1 (Lo
alization). Suppose a torus T a
ts on a 
urve C �= P1, with �xed pointsp 6= q, and suppose L is a T -equivariant line bundle on C. Let �p and �q be the weightsof T a
ting on the �bers Lp and Lq, and let  p be the weight of T a
ting on the tangentspa
e to C at p. Then �p � �q = n p;where n = RC 
1(L) is the degree of L.Note that  q = � p, so the result is independent of ordering of p and q. Note alsothat both sides vanish if T a
ts trivially on C.3. S
hubert varieties in G=PWe re
all some basi
 notions about S
hubert varieties and S
hubert 
lasses for a varietyX = G=P , in order to �x our notation. As usual, G denotes a 
onne
ted, simply
onne
ted, semisimple 
omplex Lie group, in whi
h we have �xed a Borel subgroup Band a maximal torus T in B. We use the notation W for the Weyl group N(T )=T ,R = R+ [ R� for the roots (positive and negative), and � for the simple roots; there
e
tions s� in W are indexed by the positive roots �; they are simple re
e
tionsif � is in �. The length `(w) of an element w of W is the minimum number of simplere
e
tions whose produ
t is w. The element of longest length is denoted wo. Theopposite Borel subgroup is B = woBwo.The paraboli
 subgroups P ofG 
orrespond 
anoni
ally to subsets �P of �. Let R+P bethe set of positive roots that 
an be written as sums of roots in �P . If g = t �L�2R g�is the root spa
e de
omposition of the Lie algebra of G, then the Lie algebra p of P isthe dire
t sum of t and all g� for � in R+ [ (�R+P ). The group WP , generated by there
e
tions s�, for � in �P , is the Weyl group of a Levi subgroup of G 
orresponding toP ; in parti
ular, R+P is the 
orresponding set of positive roots, whi
h 
onsists of those �in R+ su
h that s� is in WP .For an element u in W=WP , `(u) denotes the minimum length of a representative inW . In fa
t, ea
h u has a unique representative of minimum length; ea
h element w of W
an be written uniquely as a produ
t a � b, with a the element of minimal length in the
oset of w and b in WP , and with `(w) = `(a) + `(b). (For these fa
ts see [24℄, x1.10.)The Weyl group a
ts on the left on W=WP . For u in W=WP , we write u_ in pla
e ofwou.For u in W=WP , we let X(u) = BuP=P be the 
orresponding S
hubert variety.(The u on the right of this equation should be repla
ed by a representative �rst inW , and then by a representative in N(T ), but, as the result is independent of these
hoi
es, we follow the 
ommon 
onvention of omitting them.) This is a subvariety ofX = G=P of dimension `(u); we denote its 
ohomology 
lass [X(u)℄ by �(u). Similarly,



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 5we let Y (u) = B uP=P be the opposite S
hubert variety; it is of 
odimension `(u),and we denote its 
ohomology 
lass by �u. Sin
e Y (u) = woX(u_), and translations ofsubvarieties by elements of G have the same 
ohomology 
lasses, we have�u = [Y (u)℄ = �(u_) = [X(u_)℄ in H2`(u)(X):(Cohomology here will always be taken with integer 
oeÆ
ients.) These 
lasses form anadditive basis for H?(X). For w in W , we sometimes write �w for the 
lass (and X(w)and Y (w) for the S
hubert varieties) 
orresponding to the 
oset wWP 
ontaining w.For any u in W=WP , we let x(u) = uP=P be the 
orresponding point in X. These arethe �xed points of the a
tion of T on X. The varieties X(u) and Y (u) meet transver-sally at the point x(u), and the 
lasses �u and �u_ = �(u) are dual 
lasses under theinterse
tion pairing: RX �u � �v is 1 if v = u_, and 0 otherwise.The S
hubert 
lasses of dimension one have the form �(s�) as � varies over �r�P .By a degree d we mean a nonnegative integral 
ombination d = P d� �(s�) of these
lasses; a degree may be identi�ed with a 
olle
tion of nonnegative integers (d�)�2�r�P .The degrees are the 
lasses of 
urves on X. If d and d0 are degrees, we write d � d0 tomean that d� � d0� for all �.For any positive root �, write � =Pn�� � as the nonnegative sum of simple roots �;then de�ne the degree d(�) of � byd(�) = X�2�r�P n�� (�; �)(�; �) �(s�):Here as usual ( ; ) is a W -invariant inner produ
t on the real subspa
e of t? spanned byR. If h� = 2�=(�; �), and !� is the fundamental weight 
orresponding to � (so that theweights h� and !� are dual bases, for � in �), then h�(!�) = n��(�; �)=(�; �), so thisde�nition is equivalent to settingd(�) = X�2�r�P h�(!�) �(s�):Lemma 3.1. If w is in WP , then d(w(�)) = d(�).Proof. It suÆ
es to prove this for a generator w = s
, for 
 in �P . Sin
e s
(�) =��2(�; 
)=(
; 
) 
, the 
oeÆ
ients of all � in the expansions of � and w(�) are the samefor � in �P . Noting that (w(�); w(�)) = (�; �) for all w and �, the result follows.For any positive root � that is not in R+P , there is a unique T -invariant 
urve C�in X that 
ontains the points x(1) and x(s�). Indeed, C� = Z� � P=P , where Z� isthe 3-dimensional subgroup of G whose Lie algebra is g� � g�� � [g�; g��℄. To seethat C� is unique, by the Bruhat de
omposition there is a neighborhood of x(1) thatis T -equivariantly isomorphi
 to u� = g=p (see [8℄, x14); the T -invariant 
urves in u�
orrespond to weight spa
es g�� for � in R+rR+P . If � is in �r�P , then C� = X(s�)is one of our basi
 S
hubert varieties. If � is in R+P , then Z� � P=P is the point x(1).



6 W. FULTON AND C. WOODWARDIf � is a weight that vanishes on all � in �P , it determines a 
hara
ter on P , and soa line bundle L(�) = G�P C (�) on G=P .Lemma 3.2. RC� 
1(L(�)) = h�(�).Proof. Lemma 2.1 gives RC� 
1(L(�)) = (�� s�(�))=� = h�(�).Applying this to � = !� and � = � in �, we dedu
e:Lemma 3.3. For � in �r�P , 
1(L(!�)) = �s� .Lemma 3.4. The degree [C�℄ of C� is d(�).Proof. This is proved in [14℄, pp. 14{19. It follows more easily from the pre
eding twolemmas, sin
e �s� � [C�℄ = h�(!�) implies that [C�℄ =P h�(!�) �(s�).Lemma 3.5. The degree of the �rst Chern 
lass of X on C� is n� = 4(�P ; �)=(�; �),where �P = 12P 
, with the sum over the positive roots 
 not in R+P . In parti
ular,
1(TX) = 4 X�2�r�P (�P ; �)(�; �) �s� = 2 X�2�r�P h�(�P ) �s� :Proof. This 
an also be proved by lo
alization. Note that the tangent spa
e to X atx(1) is g=p = L�2R0 g��, where the sum is over the set R0 = R+rR+P . So Tx(u)X =L�2u�R0 g��. The weight of the tangent spa
e to C� at x(1) is ��. By Lemma 2.1,ZC� 
1(TX) = �X
2R0 s�(
)� 
�=(��) = X
2R0 2(
; �)(�; �) :4. Chains in the Bruhat graphWe need a 
ombinatorial notion 
orresponding to the notion of a T -invariant 
urvejoining the points x(u) and x(v) in X = G=P .Lemma 4.1. Let u and v be unequal elements in W=WP . The following are equivalent:(i) There is a re
e
tion s in W su
h that v = s � u.(ii) There are representatives ~u for u and ~v for v in W , and a re
e
tion t in W su
hthat ~v = ~u � t.(iii) For any representative ~u of u in W , there is a re
e
tion s (resp. a re
e
tion t) su
hthat s � ~u (resp. ~u � t) is a representative of v.The re
e
tion s of (i) is uniquely determined. The re
e
tion t of (ii) is determinedup to 
onjugation by an element of WP .Proof. (i) holds when there are representatives ~u for u and ~v for v su
h that ~v = s � ~u.Equivalently ~v = ~u � t, with t = ~u�1 � s � ~u, whi
h is (ii). In either 
ase the representative~u 
an be 
hosen arbitrarily. Both uniqueness assertions will follow from the



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 7Claim. Let s and s0 be re
e
tions, not inWP . If s0 = s �a for some a inWP , then s0 = s.Granting the 
laim, in (i), if s0 � u = s � u 6= u, then for any representative ~u of u,s0 � ~u = s � ~u � a for some a in WP . Then ~u�1 � s0 � ~u = ~u�1 � s � ~u � a, and sin
e ~u�1 � s � ~u isnot in WP , the 
laim implies that ~u�1 � s0 � ~u = ~u�1 � s � ~u, so s0 = s. Similarly in (ii), if~v = ~u � t and ~v � a = ~u � b � t0 for some a and b in WP , then b � t0 = t � a, so b � t0 � b�1 = t � 
,with 
 = a � b�1 in WP . The 
laim implies that t = b � t0 � b�1, as required.Proof of the 
laim. Let v be a weight su
h that (�; v) = 0 for all � in �P , and(�; v) > 0 for all � in �r�P . For any w in W , we have w(v) = v if and only if w isin WP ([10℄ V, x4.6). In parti
ular s0(v) = s(v) 6= v. If s = s� and s0 = s
, for � and
 positive roots, then v � 2(�; v)=(�; �) � � = v � 2(
; v)=(
; 
) � 
. This implies that �and 
 are proportional, whi
h 
annot happen unless � = 
.The 
laim amounts to the fa
t that if � and 
 are distin
t positive roots that are notsums of roots in �P , then the 
osets of s� and s
 in W=WP are distin
t.We will say that two unequal elements u and v in W=WP are adja
ent if they arerelated as in Lemma 4.1. Note that this is a symmetri
 relation. In this 
ase we de�ned(u; v) to be the degree d(�), where t = s� is a re
e
tion relating them as in (ii). If t isrepla
ed by w � t � w�1 = sw(�), for w in WP , the degree does not 
hange (Lemma 3.1),so d(u; v) depends only on u and v. Note that if u and v are adja
ent, then for any w inW , w � u and w � v are also adja
ent, and d(w � u; w � v) = d(u; v). In parti
ular, u_ andv_ are also adja
ent, with d(u_; v_) = d(u; v).Lemma 4.2. Elements u and v in W=WP are adja
ent if and only if x(u) 6= x(v) andthere is a T -invariant 
urve C 
ontaining x(u) and x(v). If this is true, the 
urve C isunique, isomorphi
 to P1, and its 
lass [C℄ in H2(X) is equal to d(u; v).Proof. We have seen that the T -invariant 
urves 
ontaining x(1) are exa
tly the 
urvesC�, whi
h also 
ontains x(s�), for � in R+rR+P . General T -invariant 
urves in Xtherefore have the form w � C�, for some � in R+rR+P and w in W . This 
urve is theunique T -invariant 
urve 
ontaining x(w) = w � x(1) and x(w � s�) = w � x(s�). Theresult then follows from Lemmas 3.1, 3.4, and 4.1. (For more about T -invariant 
urvesin general, see [13℄.)We use also the Bruhat order on W=WP , whi
h sets u � v if X(u) � X(v).Lemma 4.3. For u and v in W=WP , the following are equivalent:(i) u � v;(ii) for any sequen
e of `(v) simple transpositions whose produ
t represents v, a repre-sentative of u 
an be obtained by removing some of these transpositions;(iii) x(u) 2 X(v);(iv) v_ � u_;(v) x(v) 2 Y (u).



8 W. FULTON AND C. WOODWARDProof. For the equivalen
e of (i), (ii), and (iv), see [24℄, x5.9, 5.10. The equivalen
eof (i) and (iii) follows from the fa
t that X(u) is the 
losure of B � x(u). Then (iv) isequivalent to x(v_) being in X(u_), or to x(v) = wox(v_) being in woX(u_) = Y (u),whi
h is (v).Now de�ne a 
hain from u to v in W=WP to be a sequen
e u0; u1; : : : ; ur in W=WPsu
h that ui and ui�1 are adja
ent for 1 � i � r, and, in addition, u � u0 and ur � v_.For any 
hain u0; u1; : : : ; ur we de�ne the degree of the 
hain to be the sum of thedegrees d(ui�1; ui), for 1 � i � r. Note that su
h a 
hain from u to v determines a 
hainfrom v to u, by v � ur_; : : : ; u0_ � u_, and these 
hains have the same degree. Notealso that there is a 
hain of degree 0 between u and v exa
tly when u � v_.A 
hain from u to v determines, and is determined by, a sequen
e of T -invariant 
urvesC1; C2; : : : ; Cr inX, ea
h meeting the next, with C1 meeting Y (u) and Cr meetingX(v_).Indeed, Ci is the T -invariant 
urve that 
onne
ts x(ui�1) to x(ui). The degree of the
hain is the sum of the 
lasses [Ci℄ of the 
urves.5. Interpretation for the GrassmannianFor the Grassmannian Gr(r; n), G is SLn(C ), B is the subgroup of upper triangularmatri
es, T the diagonal matri
es in B, and W is identi�ed with the symmetri
 groupSn. The simple roots are � = f�i = ei � ei+1; 1 � i � n� 1g. The paraboli
 subgroupP 
onsists of matri
es in G that map the subspa
e of C n spanned by the �rst r basi
ve
tors to itself, and �P 
onsists of all simple roots with the ex
eption of �r. The Weylgroup WP is identi�ed with Sr � Sn�r. The minimal representative of a u in W=WP isa permutation w su
h that w(1) < w(2) < : : : < w(r) and w(r + 1) < : : : < w(n). Fromthis we form a partition�(u) = (w(r)� r; w(r � 1)� (r � 1); : : : ; w(2)� 2; w(1)� 1);with n � r � �1(u) � : : : � �r(u) � 0. This sets up natural bije
tions between: (i)elements of W=WP ; (ii) partitions inside the r by n � r re
tangle; and (iii) subsetsof f1; : : : ; ng with r elements. With this notation, the subset 
orresponding to u isfw(1); w(2); : : : ; w(r)g, for any representative w of u in Sn. Note that u � v if and onlyif �(u) is 
ontained in �(v), i.e., �i(u) � �i(v) for 1 � i � r.Lemma 5.1. In the Grassmann 
ase, u is adja
ent to v if and only if one of �(u) and�(v) is 
ontained in the other, and the di�eren
e is a (
onne
ted, nonempty) rim hook.In this 
ase the degree d(u; v) is 1.Proof. Let I and J be the subsets of f1; : : : ; ng 
orresponding to u and v. Then u andv are adja
ent exa
tly when I and J di�er by one element, i.e., there is a p in IrJ anda q in JrI with I [ q = J [ p; in this 
ase, v = (p; q) � u. If p < q, then �(u) is obtainedfrom �(v) by removing a rim hook of q� p boxes, starting at the end the kth row, wherek� 1 is the number of elements in J that are bigger than q. The transposition t has theform (i; j) for i � r < j, and one sees readily that d(ei � ej) = 1.



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 9The Bruhat graph for this 
ase is known as the Johnson graph. The �gure shows theJohnson graph for Gr(2; 4), labeled by the partitions � with 2 � �1 � �2 � 0.(0,0)
(2,0)

(2,2)
(1,1) (1,0)

Remark 5.2. In this Grassmann 
ase, it is not hard to see that if there is a 
hain ofdegree d from u to v, then there is a monotone 
hain of degree at most d from u to v,i.e., a 
hain that starts with u0 equal to u, removes a rim hook at ea
h stage, and endsat a ur with �(ur) 
ontained in the 180Æ rotation of �(v).6. The quantum 
ohomology of G=PWe next des
ribe the (small) quantum 
ohomology of X. Take a variable q� for ea
h� in �r�P , and let Z[q℄ be the polynomial ring with these q� as indeterminants, butgiving q� the degree 2n�, where n� = R�(s�) 
1(TX) from Lemma 3.5. For a degreed =P d� �(s�), we write qd for the monomial Q� qd�� . The small quantum 
ohomologyring QH?(X) is, as a Z[q℄-module, simply H?(X)
ZZ[q℄, so the same S
hubert 
lasses�u = �u
1 form a basis for QH?(X) over Z[q℄. The multipli
ation is a deformation ofthe 
lassi
al multipli
ation: �u ? �v = Xd qdXw Nwu;v(d) �w;where the �rst sum is over all degrees d, and the se
ond is over all w in W=WP su
hthat `(w) = `(u) + `(v)�P� d�n�. The 
oeÆ
ient Nwu;v(d) is a Gromov-Witten (GW)invariant: it is the number of morphisms ' : P1 ! X of degree d (i.e., '?[P1℄ = d inH2(X)), su
h that, for three given distin
t points p1; p2; p3 in P1, and three general g1; g2,and g3 in G, '(p1) is in g1 � Y (u), '(p2) is in g2 � Y (v), and '(p3) is in g3 �X(w). Whend = 0, this is the usual 
oeÆ
ient of �w in the 
lassi
al produ
t �u ��v, whi
h is the sameas the interse
tion number RX �u � �v � �w_.More generally, the (small) GW-invariant h�u1; �u2 ; : : : ; �unid 
an be de�ned wheneverP `(ui) = dim(X)+P� n�d�. Fix general distin
t points p1; : : : ; pn in P1. This invariantis the number of maps ' from P1 to X su
h that '(pi) is in gi � Y (ui), for 1 � i � n,



10 W. FULTON AND C. WOODWARDand g1; : : : ; gn general elements of G. This 
an be interpreted in the 
ohomology ofappropriate moduli spa
es. As we will need these spa
es in our proofs, we des
ribe themnow.Let M 0;n(X; d) be the moduli spa
e of stable maps of degree d of n-pointed genus0 
urves into X; a point is written (C; p1; : : : ; pn; '), where C is a 
onne
ted tree ofproje
tive lines, meeting in nodes, p1; : : : ; pn are distin
t nonsingular points of C, and' : C ! X is a morphism with '?[C℄ = d, with the property that any 
omponent of Cthat is mapped to a point by ' must have at least three points that are either markedpoints or interse
tion points with other 
omponents. This moduli spa
e is a proje
tivevariety of dimensiondim(M 0;n(X; d)) = dim(X) + X� n� d� + n � 3:It 
omes equipped with n evaluation maps ei :M 0;n(X; d)! X, taking (C; p1; : : : ; pn; ')to '(pi), and a forgetful map f : M0;n(X; d) ! M0;n, where the latter is the spa
eof stable n-pointed 
urves of genus 0; f takes (C; p1; : : : ; pn; ') to (C; p1; : : : ; pn), butsuitably stabilized by 
ollapsing 
omponents of C that have fewer than three markingsor interse
tions with other 
omponents. We refer to [20℄ for 
onstru
tion and basi
properties of these spa
es and mappings, as well as Kontsevi
h's proof of the asso
iativityof the quantum produ
t.The GW-invariant h�u1 ; : : : ; �unid is then the interse
tion number RM0;n(X;d) f ?([p℄) �e1?(�u1) � e2?(�u2) � : : : � en?(�un), where p is a point in M 0;n. Equivalently, it is the
oeÆ
ient of the fundamental 
lass 1 = [M 0;n℄ in the 
lassf?�e1?(�u1) � e2?(�u2) � : : : � en?(�un)� in H0(M0;n):In parti
ular, this shows that the Gromov-Witten invariants are the same whether one
hooses any distin
t points p1; : : : ; pn in P1 instead of general points (see [5℄).The 
oeÆ
ient Nwu;v(d) is equal to h�u; �v; �w_id . In fa
t, these invariants 
an be usedto multiply several S
hubert 
lasses dire
tly:�u1 ? �u2 ? : : : ? �un =Xd qdXw h�u1 ; : : : ; �un ; �w_id �w:7. TransversalityThe results of this se
tion are the main tools needed to prove our theorem. We givehere a simple proof based on Kleiman's transversality theorem. An alternative proof issket
hed brie
y at the end of this se
tion.Lemma 7.1. Let U � G�G be open, nonempty, and invariant under the left diagonalmultipli
ation by G. Let u1 and u2 be in W=WP . Then for any g1; g2 in G su
h thatg1Bg1�1 and g2Bg2�1 interse
t in a maximal torus, there is a (h1; h2) in U su
h thath1X(u1) = g1X(u1) and h2X(u2) = g2X(u2):



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 11Proof. Take (h1; h2) in the interse
tion of U with the open set of pairs (h1; h2) su
h thath1Bh1�1 and h2Bh2�1 are opposite Borels, i..e., h1Bh1�1 \ h2Bh2�1 is a maximal torus.By [8℄, x14.1, Cor. 3, there is a g in G su
h that g(hiBhi�1)g�1 = giBgi�1 for i = 1; 2.Sin
e B is its own normalizer, this implies that ghiB = giB for i = 1; 2. Then (gh1; gh2)is in U , and ghiX(ui) = giX(ui) for i = 1; 2.Lemma 7.2. Let Z be an irredu
ible G-variety, and let F : Z ! X � X be a G-equivariant morphism, where G a
ts diagonally on X � X. Then, for any u and v inW=WP , the subs
heme F�1(Y (u)�X(v)) is redu
ed, lo
ally irredu
ible, of 
odimension`(u) + `(v_), and nonsingular at any nonsingular point of Z that maps to a nonsingularpoint of Y (u)�X(v).Proof. Consider the diagram X(u_)�X(v)#Z �! X �Xwith G�G a
ting on X�X. Kleiman's transversality theorem [28℄ produ
es a nonemptyopen set U of pairs (g1; g2) in G � G su
h that F�1(g1X(u_) � g2X(v)) satis�es the
on
lusions of the lemma. (The dimension assertion would be valid in all 
hara
teristi
s;the others use the 
hara
teristi
 zero assumption.) This set U is invariant by the leftdiagonal a
tion of G be
ause the morphism F is G-equivariant.Now apply Lemma 7.1 to (u1; u2) = (u_; v) and (g1; g2) = (wo; 1). This produ
es a(h1; h2) in U su
h that h1X(u_) = woX(u_) = Y (u) and h2X(v) = X(v), and Lemma7.2 follows.A point � = (C; p1; : : : ; pn; ') in a moduli spa
e M 0;n(X; d) of stable maps 
onsists ofa tree C of P1's, and marked points on some of its 
omponents, with a stable map fromC to X. Su
h a point lies in a unique lo
ally 
losed subs
heme V , for whi
h the treeof 
urves has the same topologi
al type (or 
ombinatorial 
on�guration), with markedpoints on 
orresponding 
omponents (see [3℄, [20℄). The 
odimension of V is the numberof nodes of C.When n and d are understood, we setE(u; v) = e1�1(Y (u)) \ e2�1(X(v));a 
losed subs
heme of M 0;n(X; d).Lemma 7.3. If E(u; v) is not empty, then E(u; v) is a redu
ed, lo
ally irredu
ible, sub-s
heme of M 0;n(X; d), of pure 
odimension `(u) + `(v_), any 
omponent of whi
h whi
hmeets any stratum V properly. In parti
ular, ea
h irredu
ible 
omponent of E(u; v) meetsthe lo
us M0;n(X; d) 
onsisting of those (C; p1; : : : ; pn; ') with C �= P1.Proof. This follows from Lemma 7.2, and the fa
t that the strata are lo
ally 
losed,G-invariant subvarieties in M0;n(X; d).



12 W. FULTON AND C. WOODWARDLemma 7.4. For any degree d, for n >Pn�d�, and for any distin
t points p1; : : : ; pnin P1 and any points x1; : : : ; xn in X, there are only �nitely many morphisms ' : P1 ! Xof degree d with '(pi) = xi for 1 � i � n.Proof. Let Hom(P1; X)d be the spa
e of morphisms of degree d from P1 to X, and lete : Hom(P1; X)d ! Xn be the morphism obtained by evaluating at the given pointsp1; : : : ; pn. We show that e is unrami�ed, and hen
e has �nite �bers. This will be trueif its tangent map [29℄�(P1; '?(TX)) �! �ni=1'?(TX)(pi) = �ni=1Txi(X)is inje
tive. Now '?(TX) = �O(mj), with mj � 0, andPmj =Pn�d� < n, so mj < nfor all j. The lemma follows from the elementary fa
t that �(P1;O(m))! �ni=1O(m)(pi)is inje
tive for m < n (sin
e a nonzero polynomial of degree m 
annot vanish at morethan m points).The transversality Lemma 7.3 
an also be proved by showing that, given a �xed point� = (C; p1; : : : ; pn; ') with '(p1) = x(u) and '(p2) = x(v), the map from Hom(C;X)d toX2 given by the �rst two evaluation maps is transversal to the subvariety Y (u)�X(v)at the point x(u)� x(v). One shows that the map from the tangent spa
e �(C; '?(TX))to the normal spa
e to Y (u) �X(v) at x(u) � x(v) is surje
tive. This 
an be a
hievedby T -equivariantly de
omposing the bundle '?(TX) as a dire
t sum of line bundles, andusing the fa
t that the weights of the normal spa
es of Y (u) at x(u) and X(v) at x(v)are disjoint. 8. Chevalley's formula in the paraboli
 
aseChevalley's formula [14℄ generalizes Monk's formula from the 
lassi
al 
ag variety toan arbitrary G=B, giving a formula for the produ
t of a 
odimension one S
hubert 
lass�s� and an arbitrary S
hubert 
lass �w. We will need the analogous formula on a generalG=P . Although it is not hard to dedu
e su
h a formula from Chevalley's, by means ofthe proje
tion G=B ! G=P , we in
lude a proof, whi
h 
ombines Chevalley's geometri
ideas with our 
al
ulations here.Re
all that for a simple root �, and a positive root �, h�(!�) = n�� (�;�)(�;�) , where n�� isthe 
oeÆ
ient of � in its expansion as a positive linear 
ombination of simple roots (seex3).Lemma 8.1 (Chevalley's formula). Let � be in �r�P , let u be in W=WP , and let ~u bethe minimal length representative of u in W . Then�s� � �u =Xh�(!�) �~us�;the sum over all positive roots � su
h that `(~us�) = `(~u) + 1.Proof. We must prove that, for v inW=WP with `(v) = `(u)+1, RX �u ��v_ ��s� = h�(!�)if u and v are adja
ent, and u has a representative ~u su
h that ~u � s� is a representativefor v; and that RX �u � �v_ � �s� = 0 if u and v are not adja
ent. Note that if �u � �_v



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 13is not zero, then Y (u) \X(v) is not empty. This lo
us is �xed by the torus T , and its�xed points 
onsist of those x(w) with u � w � v (Lemma 4.3). Sin
e `(u) = `(v)� 1,the only �xed points are x(u) and x(v). It follows that, set-theoreti
ally at least, thisinterse
tion is the 
urve C(u; v). We 
laim that Y (u) interse
ts X(v) properly, withmultipli
ity 1, in the 
urve C(u; v). In 
hara
teristi
 zero this follows from Lemma 7.3.3Therefore �u � �v_ = [Y (u)℄ � [X(v)℄ = [C(u; v)℄ = d(�) =X� h�(!�) �(s�);the last by formulas in x3.Lemma 8.2. If u � v in W=WP , there is a w in W=WP su
h that �u � �w 
ontains �vwith positive 
oeÆ
ient.Proof. This is trivial if u = v. If `(u) = `(v)�1, and ~u is the minimal length representa-tive of u, there is an � in R+ su
h that ~u � s� is a representative of v (see [24℄,x5.11), and� is not in R+P sin
e u 6= v. In this 
ase, if we 
hoose � so that h�(!�) 6= 0, then �s� � �u
ontains �v with positive 
oeÆ
ient by Lemma 8.1. In general, indu
t on `(v)� `(u), by
hoosing u0 not equal to u or v with u � u0 � v. If �w(1) � �u 
ontains �u0 with positive
oeÆ
ient, and �w(2) � �u0 
ontains �v with positive 
oeÆ
ient, some �w that appears in�w(1) � �w(2) must have �v o

urring in �w � �u with positive 
oeÆ
ient.9. The TheoremThe 
lasses qd�w, as d varies over degrees, and w varies over W=WP , form a basis forthe quantum 
ohomology ring QH?(X) over Z. Given any element � in QH?(X), we saythat qd o

urs in � if the 
oeÆ
ient of qd�w is not zero for some w. When � is a produ
tof S
hubert 
lasses, we know that all su
h 
oeÆ
ients are nonnegative. For example, qdo

urs in �u ? �v exa
tly when there is a w_ for whi
h the GW-invariant h�u; �v; �w_idis positive.We now 
ome to our main result. The theorem gives three equivalent 
riteria for adegree to be minimal, while the proof shows these are equivalent to eight other related
riteria.Theorem 9.1. Let u and v be in W=WP , and let d be a degree. The following areequivalent:(1) There is a degree 
 � d su
h that q
 o

urs in �u ? �v.(2) There is a 
hain of degree 
 � d between u and v.(3) There is a morphism ' : P1 ! X with '?[P1℄ � d su
h that '(P1) meets Y (u) andX(v_).3In arbitrary 
hara
teristi
, Chevalley argues as follows. Sin
e Y (u) meets X(u) transversally at thepoint x(u), and x(u) is a nonsingular point on X(v) (sin
e X(v) is nonsingular in 
odimension 1 and
odim(X(u); X(v)) = 1), it follows that Y (u) meets X(v) transversally at x(u).



14 W. FULTON AND C. WOODWARDProof. We �rst state the eight equivalent 
onditions, and then we 
onstru
t enoughimpli
ations to show that ea
h of the eleven implies the others.(4) There is a degree 
 � d, a u0 � u, and a v0 � v su
h that q
 o

urs in �u0 ? �v0 .(5) There is a � in QH?(X) su
h that qd o

urs in �u ? �v ? � .(6) The same as in (5), but with � = �w1 ? : : : ? �wr , for some w1; : : : ; wr in W=WP .(7) There is a sequen
e C0; : : : ; Cr of T -invariant 
urves on X, with C0 meeting Y (u)and Cr meeting X(v_), with Ci�1 meeting Ci for 1 � i � r, and withPri=0[Ci℄ � d.(8) There is a 
onne
ted 
urve C in X with [C℄ � d, meeting Y (u) and X(v_).(9) There is an n � 3 and w3; : : : ; wn in W=WP , and a 
 � d, su
h that, with ei :M 0;n(X; 
)! X the evaluation maps, and f :M0;n(X; 
)!M 0;n the forgetful map,f?�e1?(�u) � e2?(�v) � e3?(�w3) � : : : en?(�wn)� = � � 1in H0(M 0;n), with � > 0.(10) There is a w in W=WP and a 
 � d su
h thatZM0;3(X;
) e1?(�u) � e2?(�v) � e3?(�w) 6= 0:(11) There is a 
 � d su
h that the lo
us E(u; v_) = e1�1(Y (u)) \ e2�1(X(v_)) is notempty in M0;3(X; 
).(1), (4). The impli
ation (1)) (4) is trivial, so assume (4). Sin
e u � u0, it followsfrom Lemma 8.2 that there is a u00 so that �u0 o

urs in the 
lassi
al produ
t �u � �u00with positive 
oeÆ
ient. Take similarly v00 for v � v0. The fa
t that all 
oeÆ
ients ofall quantum produ
ts of S
hubert 
lasses are nonnegative implies that �u ? �u00 ? �v ? �v00
ontains all the terms that o

ur in �u0 ? �v0 , so it must 
ontain some q
 � � , � 6= 0. Butthis is a produ
t of �u?�v and a nonnegative 
ombination of powers of q's times S
hubert
lasses, so �u ? �v must 
ontain some qe, with e � 
.(6) ) (5) and (5) ) (4) and (10) ) (9) are trivial.(1)) (10). If �u?�v 
ontains q
�w with positive 
oeÆ
ient �, then f?�e1?(�u)�e2?(�v)�e3?(�w_)� = � � 1 in H0(M 0;3), and M 0;3 is a point.(9)) (6). (9) implies that q
�wn_ o

urs with 
oeÆ
ient � in �u ?�v ?�w3 ? : : : ?�wn�1 .(7)) (2). This follows from the 
orresponden
e between T -invariant 
urves and pairsof adja
ent elements of W=WP (x4).(2) ) (3). A 
hain of degree 
 between u and v 
orresponds to a 
hain of T -invariant
urves between x(u) and x(v). We may assume that no 
urve appears more than on
e,sin
e removing dupli
ates only de
reases the degree. This 
orresponds to a point � =(C; p1; p2;  ) in M 0;2(X; 
), with  : C ! X an embedding,  (p1) = x(u), and  (p2) =x(v). If 
 = 0, we are in the 
lassi
al 
ase, and u � v_, so x(u) is in Y (u)\X(v_), and the
onstant map from P1 to x(u) satis�es the 
onditions of (3). We may therefore assumethat 
 > 0. By Lemma 7.3, E(u; v_) is not 
ontained in any boundary 
omponent. Ittherefore 
ontains a point (P1; p1; p2; '), and thus we have a map ' : P1 ! X with'?[P1℄ = 
 and '(p1) in Y (u) and '(p2) in X(v_).



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 15(3) ) (8). With ' : P1 ! X as in (3), the image 
urve '(P1) is 
onne
ted and joinsthe two S
hubert varieties, and its degree is at most '?[P1℄.(8) ) (7). This is a 
onsequen
e of the a
tion of the torus T on a Hilbert s
heme (orChow variety) of 
urves on X that join the two (T -invariant) S
hubert varieties, see [23℄.There must be a 
urve in su
h a spa
e that is �xed by T , and, being a limit of 
onne
ted
urves, it is 
onne
ted.(10) ) (11) follows from the fa
t that lo
i representing 
ohomology 
lasses withnonzero produ
t must interse
t, and e1?(�u) � e2?(�v) lives on the lo
us E(u; v_).(11) ) (7). Sin
e the torus preserves E(u; v_), there must be a point � in E(u; v_)that is �xed by T . Writing � = (C; p1; p2; p3; '), the image of ea
h irredu
ible 
omponentof C must be a T -invariant 
urve in X, and the image of ea
h '(pi) must be a point�xed by T ; and we must have '(p1) in Y (u) and '(p2) in X(v_). Sin
e the image is
onne
ted one 
an extra
t from it a 
hain of T -invariant 
urves from '(p1) to '(p2), andthe degree of this 
hain is at most '?[C℄ = 
.(2) ) (9). Suppose we have a 
hain of degree 
 � d. Dis
arding extra 
urves in the
hain, we may assume it is minimal. Take n larger thanPn�
� +2. The lo
us E(u; v_)in M0;n(X; 
) has pure 
odimension `(u)+ `(v), and it meets the open set M0;n(X; 
), byLemma 7.3. Set e0 = e3 � : : :� en : M 0;n(X; 
)! Xn�2:Take a point p inM0;n, i.e., 
hoose n distin
t points in P1. By Lemma 7.4, the restri
tionof e0 to f�1(p) \ M0;n(X; 
) is a �nite to one mapping. It follows that (e0)?[f�1(p) \E(u; v_)℄ 6= 0. Hen
e there are w3; : : : ; wn in W=WP su
h that(e0)?[f�1(p) \ E(u; v_)℄ � ��w3 � : : :� �wn� = � � [point℄;for some � 6= 0. This means thatf?�e1?(�u) � e2?(�v) � e3?(�w3) � : : : � en?(�wn)� = � � 1in H0(M 0;n), as required.10. Peterson's quantum Chevalley formula in the paraboli
 
aseThe quantum Chevalley formula in G=P gives the formula for a quantum produ
t�s� ? �u, for � in �r�P and u in W=WP . It starts with the 
lassi
al produ
t �s� � �ugiven in Lemma 8.1. The terms with qd for positive degrees d have a similar 
ombinatorialdes
ription. This had been proved for the Grassmannian Gr(r; n) [5℄ and the 
omplete
ag manifold Fl(C n) [18℄. For a positive root �, we use the notation n� for RC� 
1(TX)as in Lemma 3.5; and, for a simple root �, h�(!�) as before Lemma 3.1. For P = B,this formula was stated by Peterson [33℄.Theorem 10.1 (Quantum Chevalley Formula). For � in �r�P , u in W=WP , with ~uits minimal length representative in W ,�s� ? �u =X� h�(!�)�~us� +X� qd(�)h�(!�)�~us�;



16 W. FULTON AND C. WOODWARDthe �rst sum over roots � in R+rR+P for whi
h `(v) = `(u)+1, where v is the 
oset of ~us�in W=WP , and the se
ond sum over roots � in R+rR+P for whi
h `(v) = `(u) + 1� n�.Proof. Let qd�v be a term appearing in �s� ? �u with nonzero 
oeÆ
ient �, i.e.,� = h�u; �v_ ; �s�id = ZM0;3(X;d) e1?(�u) � e2?(�v_) � e3?(�s�) > 0:It suÆ
es to 
onsider the 
ase d 6= 0, sin
e the 
lassi
al 
ase is 
overed by Chevalley's for-mula 8.1. Set E = E(u; v) inM 0;3(X; d). By the transversality Lemma 7.3, E is redu
ed,lo
ally irredu
ible, purely 1-dimensional, with ea
h 
omponent meeting M0;3(X; d), andwith [E℄ = e1?([Y (u)℄) � e2?([X(v)℄) = e1?(�u) � e2?(�v_):So � is the 
oeÆ
ient of �(s�) in the 
lass (e3)?[E℄.We 
laim that e1(E) = x(u) and e2(E) = x(v). Indeed, ea
h of the lo
i ei(E) is T -invariant, and if e1(E) 6= x(u), then e1(E) would 
ontain some other T -�xed point x(u0),with u � u0, u 6= u0. But then E would be 
ontained in E(u0; v), whi
h (by transversalityagain) has larger 
odimension than E, a 
ontradi
tion; and similarly if e2(E) 
ontainsx(v0), with v0 � v.Note that 
odim(E) = `(u) + dim(X) � `(v) = dim(M 0;3(X; d)) � 1 = dim(X) +Rd 
1(TX), so `(v) = `(u) + 1� Zd 
1(TX):In parti
ular, `(v) < `(u), sin
e, by Lemma 3.5, Rd 
1(TX) � 2.A point of E not in the boundary has the form � = (P1; p1; p2; p3; '), with ' : P1 ! X,'?[P1℄ = d, and '(p1) = x(u) and '(p2) = x(v). Given su
h a map ', one 
an produ
ea 
urve in E 
ontaining this point by varying where ' maps p3 in the 
urve '(P1),i.e., varying ' by ' Æ #, where # is an automorphism of P1 that �xes p1 and p2. Itfollows that ea
h irredu
ible 
omponent Z of E must 
onsist generi
ally of su
h maps.It follows from this that '(P1) = e3(Z). Sin
e e3(Z) is invariant by T , it follows that'(P1) is T -invariant, and, sin
e it 
ontains x(u) and x(v), we must have '(P1) = C(u; v).In parti
ular, u and v must be adja
ent.We 
laim next that ' maps P1 isomorphi
ally onto C(u; v). If not, '?[P1℄ = k[C(u; v)℄,for k > 1. Consider the 
orresponding lo
us E 0 = E(u; v) inM 0 =M 0;3(C(u; v); k[C(u; v)℄)
onsisting of maps to C(u; v) of degree k that take p1 to x(u) and p2 to x(v). The
odimension of E 0 in M 0 is at most 2 (in fa
t, equal to 2 by Lemma 7.3 applied to thevariety C(u; v) in pla
e of X). But the dimension of M 0 is 2k+ 1, and sin
e E 0 � E, wemust have 2k � 1 � 1, i.e., k = 1.It follows that d = [C(u; v)℄ = d(u; v) = d(�), where ~us� is a representative of v.It also follows that ea
h 
omponent Z of E is equal to the lo
us E 0 des
ribed in thepre
eding paragraph. In parti
ular, there is only one irredu
ible 
omponent E = E 0 of
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an be realized from the blow-up of C(u; v)� C(u; v) along the two pointsx(u)� x(u) and x(v)� x(v); the ex
eptional divisors be
ome the extra fa
tors in 
urves
orresponding to the two boundary points of E.) It also follows from this des
riptionthat e3 maps E isomorphi
ally onto C(u; v). Therefore (e3)?[E℄ = [C(u; v)℄ = d(�), so� is the 
oeÆ
ient of �(s�) in d(�), whi
h is h�(!�), as we saw in Lemma 3.4. Thisargument, run ba
kwards, shows that ea
h su
h v does o

ur, and 
ompletes the proofof the theorem.Remark 10.2. The element ~us� is not in general a minimal length representative for v.For the 
lassi
al 
ag manifold Fl(C n), the positive roots and re
e
tions 
orrespond to� = (a; b), 1 � a < b � n, and h(a;b)(!(r;r+1)) is 1 if a � r < b and is 0 otherwise. So onere
overs the quantum Monk formula of [18℄.Peterson's generalization of the Chevalley formula allows the quantum produ
ts of
lasses in the subalgebra generated (using the quantum produ
t) by H2(G=P;Z)
 Z[q℄to be 
omputed re
ursively. S. Fomin has pointed out that this subalgebra is the fullquantum 
ohomology ring QH�(G=P ) whenever the 
lassi
al ring H�(G=P ) is generatedby H2(G=P ). (The proof is by indu
tion on the degree.) This holds on the 
ag varietiesG=B.Peterson has also given an expli
it formula for any Gromov-Witten invariant on anyG=P as another Gromov-Witten invariant on the 
orresponding G=B. A proof of this,whi
h uses some of the ideas of this paper, will be given in another paper by the se
ondauthor. Referen
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