
ON THE QUANTUM PRODUCT OF SCHUBERT CLASSESW. FULTON AND C. WOODWARDAbstrat. We give a formula for the smallest powers of the quantum parametersq that our in a produt of Shubert lasses in the (small) quantum ohomology ofgeneral ag varieties G=P . We also inlude a omplete proof of Peterson's quantumversion of Chevalley's formula, also for general G=P 's.1. IntrodutionThe Grassmannian was the �rst variety whose quantum ohomology was studied byphysiists [36℄, and the �rst whose struture was worked out rigorously by mathemati-ians [34℄, [7℄, [5℄. Other homogeneous varieties G=P have been studied (see below), butthe story here remains far from omplete. Quantum ohomology has gone far beyondthese beginnings, with all smooth projetive varieties (or ompat sympleti manifolds)enjoying a version of quantum ohomology. However, there are still interesting questionsto be answered about the ase of G=P in general, and Grassmannians in partiular. Ouraim in this paper is to give an expliit formula for lowest degrees that our in quantumprodut of Shubert lasses.The lassial ohomology of a Grassmannian Gr(k; n) of k-planes in C n has a basisof Shubert lasses ��, as � varies over partitions whose Young diagram �ts in a k byn� k retangle. The (omplex) odimension of �� is j�j =P�i, the number of boxes inthe Young diagram. The Littlewood-Rihardson rule gives the oeÆients of a Shubertlass �� in a produt �� ���, for j�j = j�j+ j�j. It is an easy and well-known fat that thelassial produt �� � �� is nonzero preisely when � and the 180Æ rotation of � �t in thek by n � k retangle without overlap; for example, the dual lass to �� is the lass ��,for � = �_ the partition suh that � and the rotated � exatly �ll the retangle withoutoverlap.The quantum ohomology of the Grassmannian is a free module over the polynomialring Z[q℄, with a basis of Shubert lasses; the variable q has (omplex) degree n. Thequantum produt �� ? �� is a �nite sum of terms qd�� , the sum over d � 0 and j�j =j�j+j�j�d n, eah ourring with a nonnegative oeÆient (a Gromov-Witten invariant);those with d = 0 are the lassial Littlewood-Rihardson oeÆients. This ring wasstudied in [6℄, where an algorithm involving removing rim hooks was given for alulatingDate: November 12, 2001.Partially supported by NSF grant DMS9970435.Partially supported by NSF grant DMS9971357.1



2 W. FULTON AND C. WOODWARDthese produts. It remains an important open problem to give a ombinatorial formulafor these oeÆients (one that shows them to be nonnegative) when d > 0.A simple argument due to Agnihotri showed that the quantum produt �� ? �� of twoShubert lasses in a Grassmannian an never be zero (see [6℄,x5), so some qd�� mustappear in suh a produt with positive oeÆient. The problem we address here is to�nd the smallest power of q that ours in a produt �� ? ��. The evidene from smallexamples, together with the role that rim hooks play in the quantum multipliation, leadone to onjeture that this smallest power of d is the number of rim hooks it takes toover the overlap of � and the 180Æ rotation of � in the k by n�k retangle. Equivalently,d is the maximum for whih there is a diagonal sequene of boxes, from northwest tosoutheast, in this overlap. Here is an example, for k = 4, n = 9, � = (5; 4; 4; 3), and� = (5; 4; 4; 1):
The overlap of � with the rotation of � is shaded, and one of the ways of overing theoverlap with two rim hooks is indiated. In fat,1�5 4 4 3 ? �5 4 4 1 = q2(�5 3 2 2 + �5 3 3 1 + �5 4 2 1) + q3(�3 + 2�2 1 + �1 1 1):This onjeture is proved in this paper.2 It would be interesting to give a riterion forexatly whih powers of q appear, or even for whih oeÆients appear; for appliationsof suh riteria, see [1℄. In the lassial ase, our understanding of this has inreaseddramatially reently, thanks to Klyahko, Knutson, and Tao, see [19℄, [1℄. A. Yong hasshown reently [37℄ that if one of the diagrams of � or � has no northwest to southeastsequene of e boxes, then qe annot appear in �� ? ��.In fat, we prove a generalization of this onjeture for any G=P . In general the degreed is an sequene of nonnegative integers, one for eah 1-dimensional Shubert lass. Wegive a formula, in terms of the ombinatoris of the Bruhat order, for the smallest degreesd suh that qd ours in a produt of Shubert lasses. It follows in partiular that thesequantum produts an never be zero.An understanding of (small) quantum ohomology for a G=P requires �rst a presenta-tion of the ring QH?(G=P ), and seond, a \quantum Giambelli formula" for the lass ofa Shubert variety in terms of this presentation. This has been worked out for the varietyof omplete ags ([21℄, [16℄, [18℄, [15℄) and partial ags ([2℄, [27℄, [17℄, [15℄), and reently1We reommend the program of Anders Buh (www.math.mit.edu/~abuh/lral/) for omputinglassial and quantum Littlewood-Rihardson oeÆients.2Buh [11℄, P. Belkale [4℄ and A. Yong [37℄ have reently given proofs of stronger versions of thisresult for the Grassmannians.



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 3for the Lagrangian Grassmannian [32℄. Desriptions of the quantum ohomology ringhave been given for general omplete ag varieties G=B [26℄, and partial desriptions forgeneral G=P by Peterson [33℄, but Giambelli formulas are not yet known in general.Most of what is known about quantum Giambelli formulas omes from omputingformulas for degeneray loi on ertain Quot shemes (although A. Buh [11℄ has reentlygiven a proof for the Grassmannian, and Buh, Kresh, and Tamvakis [12℄ for someothers, that does not depend on moduli spaes).Given this limited knowledge about quantum ohomology of general G=P 's, it is some-what surprising that we are able to solve this problem for other G=P 's. On the otherhand, it indiates that, even in type A, we will not use algebrai formulas for quan-tum Shubert lasses, and we will not use Quot shemes. Rather, we use the spaesM 0;n(X; d) of stable maps from genus 0 urves with n marked points to X = G=P ,whih were onstruted by Kontsevih to prove the assoiativity of quantum produts[31℄, see [20℄.In the next few setions we lay out the neessary notation, realling the standard fatsabout the geometry of G=P 's and quantum ohomology that are needed to state thetheorem preisely. Reall that the Shubert lasses �u are parametrized by elements uin W=WP , where W and WP are the Weyl groups of G and P . The idea behind oneimpliation of this formula an be explained roughly as follows. If a produt �u ? �vontains a term qd�w, in the spae M0;3(X; d) the lous of stable maps of degree d toX that map the �rst marked point to a Shubert variety for �u and the seond markedpoint to an opposite Shubert variety for �v must ontain a point that is �xed by themaximal torus T of G. This �xed point is a map from a urve C into X, where C is atree of P1's. The images of the intersetions of the omponents of C are �xed points of Tin X, whih are also indexed by elements ofW=WP . This produes a hain of elements ofW=WP , and this hain fores the elements u and v to be lose to eah other in a ertainway. In the ase of the Grassmannian, this loseness translates to the ondition that theoverlap desribed above an be overed by d rim hooks.For the onverse, any suh hain does arise from a �xed point in suh a moduli spae,but it is not obvious when a point orresponds to a non-vanishing Gromov-Witten in-variant. The key to this is provided by our transversality result in x7, whih we deduefrom Kleiman's general transversality theorem [28℄. Similar ideas an be used to provePeterson's quantum extension of Chevalley formula for multiplying a general Shubertlass by a odimension one Shubert lass. We have taken this opportunity to inlude aomplete proof of this formula in x10.The use of torus ation in this setting goes bak to Kontsevih [30℄, who was inspiredby Ellingsrud and Str�mme. It has been used many times sine, see [25℄, [35℄. Theidea that Shubert varieties of opposite Borel subgroups are in general position for thepurposes of quantum ohomology we learned from Peterson.We thank Anders Buh and Alex Yong for several helpful onversations.



4 W. FULTON AND C. WOODWARD2. LoalizationThe following lemma, whih is a speial ase of a theorem of Bott [9℄, provides simpleproofs of the basi fats we need about divisors and urves on homogeneous varieties.Lemma 2.1 (Loalization). Suppose a torus T ats on a urve C �= P1, with �xed pointsp 6= q, and suppose L is a T -equivariant line bundle on C. Let �p and �q be the weightsof T ating on the �bers Lp and Lq, and let  p be the weight of T ating on the tangentspae to C at p. Then �p � �q = n p;where n = RC 1(L) is the degree of L.Note that  q = � p, so the result is independent of ordering of p and q. Note alsothat both sides vanish if T ats trivially on C.3. Shubert varieties in G=PWe reall some basi notions about Shubert varieties and Shubert lasses for a varietyX = G=P , in order to �x our notation. As usual, G denotes a onneted, simplyonneted, semisimple omplex Lie group, in whih we have �xed a Borel subgroup Band a maximal torus T in B. We use the notation W for the Weyl group N(T )=T ,R = R+ [ R� for the roots (positive and negative), and � for the simple roots; thereetions s� in W are indexed by the positive roots �; they are simple reetionsif � is in �. The length `(w) of an element w of W is the minimum number of simplereetions whose produt is w. The element of longest length is denoted wo. Theopposite Borel subgroup is B = woBwo.The paraboli subgroups P ofG orrespond anonially to subsets �P of �. Let R+P bethe set of positive roots that an be written as sums of roots in �P . If g = t �L�2R g�is the root spae deomposition of the Lie algebra of G, then the Lie algebra p of P isthe diret sum of t and all g� for � in R+ [ (�R+P ). The group WP , generated by thereetions s�, for � in �P , is the Weyl group of a Levi subgroup of G orresponding toP ; in partiular, R+P is the orresponding set of positive roots, whih onsists of those �in R+ suh that s� is in WP .For an element u in W=WP , `(u) denotes the minimum length of a representative inW . In fat, eah u has a unique representative of minimum length; eah element w of Wan be written uniquely as a produt a � b, with a the element of minimal length in theoset of w and b in WP , and with `(w) = `(a) + `(b). (For these fats see [24℄, x1.10.)The Weyl group ats on the left on W=WP . For u in W=WP , we write u_ in plae ofwou.For u in W=WP , we let X(u) = BuP=P be the orresponding Shubert variety.(The u on the right of this equation should be replaed by a representative �rst inW , and then by a representative in N(T ), but, as the result is independent of thesehoies, we follow the ommon onvention of omitting them.) This is a subvariety ofX = G=P of dimension `(u); we denote its ohomology lass [X(u)℄ by �(u). Similarly,



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 5we let Y (u) = B uP=P be the opposite Shubert variety; it is of odimension `(u),and we denote its ohomology lass by �u. Sine Y (u) = woX(u_), and translations ofsubvarieties by elements of G have the same ohomology lasses, we have�u = [Y (u)℄ = �(u_) = [X(u_)℄ in H2`(u)(X):(Cohomology here will always be taken with integer oeÆients.) These lasses form anadditive basis for H?(X). For w in W , we sometimes write �w for the lass (and X(w)and Y (w) for the Shubert varieties) orresponding to the oset wWP ontaining w.For any u in W=WP , we let x(u) = uP=P be the orresponding point in X. These arethe �xed points of the ation of T on X. The varieties X(u) and Y (u) meet transver-sally at the point x(u), and the lasses �u and �u_ = �(u) are dual lasses under theintersetion pairing: RX �u � �v is 1 if v = u_, and 0 otherwise.The Shubert lasses of dimension one have the form �(s�) as � varies over �r�P .By a degree d we mean a nonnegative integral ombination d = P d� �(s�) of theselasses; a degree may be identi�ed with a olletion of nonnegative integers (d�)�2�r�P .The degrees are the lasses of urves on X. If d and d0 are degrees, we write d � d0 tomean that d� � d0� for all �.For any positive root �, write � =Pn�� � as the nonnegative sum of simple roots �;then de�ne the degree d(�) of � byd(�) = X�2�r�P n�� (�; �)(�; �) �(s�):Here as usual ( ; ) is a W -invariant inner produt on the real subspae of t? spanned byR. If h� = 2�=(�; �), and !� is the fundamental weight orresponding to � (so that theweights h� and !� are dual bases, for � in �), then h�(!�) = n��(�; �)=(�; �), so thisde�nition is equivalent to settingd(�) = X�2�r�P h�(!�) �(s�):Lemma 3.1. If w is in WP , then d(w(�)) = d(�).Proof. It suÆes to prove this for a generator w = s, for  in �P . Sine s(�) =��2(�; )=(; ) , the oeÆients of all � in the expansions of � and w(�) are the samefor � in �P . Noting that (w(�); w(�)) = (�; �) for all w and �, the result follows.For any positive root � that is not in R+P , there is a unique T -invariant urve C�in X that ontains the points x(1) and x(s�). Indeed, C� = Z� � P=P , where Z� isthe 3-dimensional subgroup of G whose Lie algebra is g� � g�� � [g�; g��℄. To seethat C� is unique, by the Bruhat deomposition there is a neighborhood of x(1) thatis T -equivariantly isomorphi to u� = g=p (see [8℄, x14); the T -invariant urves in u�orrespond to weight spaes g�� for � in R+rR+P . If � is in �r�P , then C� = X(s�)is one of our basi Shubert varieties. If � is in R+P , then Z� � P=P is the point x(1).



6 W. FULTON AND C. WOODWARDIf � is a weight that vanishes on all � in �P , it determines a harater on P , and soa line bundle L(�) = G�P C (�) on G=P .Lemma 3.2. RC� 1(L(�)) = h�(�).Proof. Lemma 2.1 gives RC� 1(L(�)) = (�� s�(�))=� = h�(�).Applying this to � = !� and � = � in �, we dedue:Lemma 3.3. For � in �r�P , 1(L(!�)) = �s� .Lemma 3.4. The degree [C�℄ of C� is d(�).Proof. This is proved in [14℄, pp. 14{19. It follows more easily from the preeding twolemmas, sine �s� � [C�℄ = h�(!�) implies that [C�℄ =P h�(!�) �(s�).Lemma 3.5. The degree of the �rst Chern lass of X on C� is n� = 4(�P ; �)=(�; �),where �P = 12P , with the sum over the positive roots  not in R+P . In partiular,1(TX) = 4 X�2�r�P (�P ; �)(�; �) �s� = 2 X�2�r�P h�(�P ) �s� :Proof. This an also be proved by loalization. Note that the tangent spae to X atx(1) is g=p = L�2R0 g��, where the sum is over the set R0 = R+rR+P . So Tx(u)X =L�2u�R0 g��. The weight of the tangent spae to C� at x(1) is ��. By Lemma 2.1,ZC� 1(TX) = �X2R0 s�()� �=(��) = X2R0 2(; �)(�; �) :4. Chains in the Bruhat graphWe need a ombinatorial notion orresponding to the notion of a T -invariant urvejoining the points x(u) and x(v) in X = G=P .Lemma 4.1. Let u and v be unequal elements in W=WP . The following are equivalent:(i) There is a reetion s in W suh that v = s � u.(ii) There are representatives ~u for u and ~v for v in W , and a reetion t in W suhthat ~v = ~u � t.(iii) For any representative ~u of u in W , there is a reetion s (resp. a reetion t) suhthat s � ~u (resp. ~u � t) is a representative of v.The reetion s of (i) is uniquely determined. The reetion t of (ii) is determinedup to onjugation by an element of WP .Proof. (i) holds when there are representatives ~u for u and ~v for v suh that ~v = s � ~u.Equivalently ~v = ~u � t, with t = ~u�1 � s � ~u, whih is (ii). In either ase the representative~u an be hosen arbitrarily. Both uniqueness assertions will follow from the



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 7Claim. Let s and s0 be reetions, not inWP . If s0 = s �a for some a inWP , then s0 = s.Granting the laim, in (i), if s0 � u = s � u 6= u, then for any representative ~u of u,s0 � ~u = s � ~u � a for some a in WP . Then ~u�1 � s0 � ~u = ~u�1 � s � ~u � a, and sine ~u�1 � s � ~u isnot in WP , the laim implies that ~u�1 � s0 � ~u = ~u�1 � s � ~u, so s0 = s. Similarly in (ii), if~v = ~u � t and ~v � a = ~u � b � t0 for some a and b in WP , then b � t0 = t � a, so b � t0 � b�1 = t � ,with  = a � b�1 in WP . The laim implies that t = b � t0 � b�1, as required.Proof of the laim. Let v be a weight suh that (�; v) = 0 for all � in �P , and(�; v) > 0 for all � in �r�P . For any w in W , we have w(v) = v if and only if w isin WP ([10℄ V, x4.6). In partiular s0(v) = s(v) 6= v. If s = s� and s0 = s, for � and positive roots, then v � 2(�; v)=(�; �) � � = v � 2(; v)=(; ) � . This implies that �and  are proportional, whih annot happen unless � = .The laim amounts to the fat that if � and  are distint positive roots that are notsums of roots in �P , then the osets of s� and s in W=WP are distint.We will say that two unequal elements u and v in W=WP are adjaent if they arerelated as in Lemma 4.1. Note that this is a symmetri relation. In this ase we de�ned(u; v) to be the degree d(�), where t = s� is a reetion relating them as in (ii). If t isreplaed by w � t � w�1 = sw(�), for w in WP , the degree does not hange (Lemma 3.1),so d(u; v) depends only on u and v. Note that if u and v are adjaent, then for any w inW , w � u and w � v are also adjaent, and d(w � u; w � v) = d(u; v). In partiular, u_ andv_ are also adjaent, with d(u_; v_) = d(u; v).Lemma 4.2. Elements u and v in W=WP are adjaent if and only if x(u) 6= x(v) andthere is a T -invariant urve C ontaining x(u) and x(v). If this is true, the urve C isunique, isomorphi to P1, and its lass [C℄ in H2(X) is equal to d(u; v).Proof. We have seen that the T -invariant urves ontaining x(1) are exatly the urvesC�, whih also ontains x(s�), for � in R+rR+P . General T -invariant urves in Xtherefore have the form w � C�, for some � in R+rR+P and w in W . This urve is theunique T -invariant urve ontaining x(w) = w � x(1) and x(w � s�) = w � x(s�). Theresult then follows from Lemmas 3.1, 3.4, and 4.1. (For more about T -invariant urvesin general, see [13℄.)We use also the Bruhat order on W=WP , whih sets u � v if X(u) � X(v).Lemma 4.3. For u and v in W=WP , the following are equivalent:(i) u � v;(ii) for any sequene of `(v) simple transpositions whose produt represents v, a repre-sentative of u an be obtained by removing some of these transpositions;(iii) x(u) 2 X(v);(iv) v_ � u_;(v) x(v) 2 Y (u).



8 W. FULTON AND C. WOODWARDProof. For the equivalene of (i), (ii), and (iv), see [24℄, x5.9, 5.10. The equivaleneof (i) and (iii) follows from the fat that X(u) is the losure of B � x(u). Then (iv) isequivalent to x(v_) being in X(u_), or to x(v) = wox(v_) being in woX(u_) = Y (u),whih is (v).Now de�ne a hain from u to v in W=WP to be a sequene u0; u1; : : : ; ur in W=WPsuh that ui and ui�1 are adjaent for 1 � i � r, and, in addition, u � u0 and ur � v_.For any hain u0; u1; : : : ; ur we de�ne the degree of the hain to be the sum of thedegrees d(ui�1; ui), for 1 � i � r. Note that suh a hain from u to v determines a hainfrom v to u, by v � ur_; : : : ; u0_ � u_, and these hains have the same degree. Notealso that there is a hain of degree 0 between u and v exatly when u � v_.A hain from u to v determines, and is determined by, a sequene of T -invariant urvesC1; C2; : : : ; Cr inX, eah meeting the next, with C1 meeting Y (u) and Cr meetingX(v_).Indeed, Ci is the T -invariant urve that onnets x(ui�1) to x(ui). The degree of thehain is the sum of the lasses [Ci℄ of the urves.5. Interpretation for the GrassmannianFor the Grassmannian Gr(r; n), G is SLn(C ), B is the subgroup of upper triangularmatries, T the diagonal matries in B, and W is identi�ed with the symmetri groupSn. The simple roots are � = f�i = ei � ei+1; 1 � i � n� 1g. The paraboli subgroupP onsists of matries in G that map the subspae of C n spanned by the �rst r basivetors to itself, and �P onsists of all simple roots with the exeption of �r. The Weylgroup WP is identi�ed with Sr � Sn�r. The minimal representative of a u in W=WP isa permutation w suh that w(1) < w(2) < : : : < w(r) and w(r + 1) < : : : < w(n). Fromthis we form a partition�(u) = (w(r)� r; w(r � 1)� (r � 1); : : : ; w(2)� 2; w(1)� 1);with n � r � �1(u) � : : : � �r(u) � 0. This sets up natural bijetions between: (i)elements of W=WP ; (ii) partitions inside the r by n � r retangle; and (iii) subsetsof f1; : : : ; ng with r elements. With this notation, the subset orresponding to u isfw(1); w(2); : : : ; w(r)g, for any representative w of u in Sn. Note that u � v if and onlyif �(u) is ontained in �(v), i.e., �i(u) � �i(v) for 1 � i � r.Lemma 5.1. In the Grassmann ase, u is adjaent to v if and only if one of �(u) and�(v) is ontained in the other, and the di�erene is a (onneted, nonempty) rim hook.In this ase the degree d(u; v) is 1.Proof. Let I and J be the subsets of f1; : : : ; ng orresponding to u and v. Then u andv are adjaent exatly when I and J di�er by one element, i.e., there is a p in IrJ anda q in JrI with I [ q = J [ p; in this ase, v = (p; q) � u. If p < q, then �(u) is obtainedfrom �(v) by removing a rim hook of q� p boxes, starting at the end the kth row, wherek� 1 is the number of elements in J that are bigger than q. The transposition t has theform (i; j) for i � r < j, and one sees readily that d(ei � ej) = 1.



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 9The Bruhat graph for this ase is known as the Johnson graph. The �gure shows theJohnson graph for Gr(2; 4), labeled by the partitions � with 2 � �1 � �2 � 0.(0,0)
(2,0)

(2,2)
(1,1) (1,0)

Remark 5.2. In this Grassmann ase, it is not hard to see that if there is a hain ofdegree d from u to v, then there is a monotone hain of degree at most d from u to v,i.e., a hain that starts with u0 equal to u, removes a rim hook at eah stage, and endsat a ur with �(ur) ontained in the 180Æ rotation of �(v).6. The quantum ohomology of G=PWe next desribe the (small) quantum ohomology of X. Take a variable q� for eah� in �r�P , and let Z[q℄ be the polynomial ring with these q� as indeterminants, butgiving q� the degree 2n�, where n� = R�(s�) 1(TX) from Lemma 3.5. For a degreed =P d� �(s�), we write qd for the monomial Q� qd�� . The small quantum ohomologyring QH?(X) is, as a Z[q℄-module, simply H?(X)
ZZ[q℄, so the same Shubert lasses�u = �u
1 form a basis for QH?(X) over Z[q℄. The multipliation is a deformation ofthe lassial multipliation: �u ? �v = Xd qdXw Nwu;v(d) �w;where the �rst sum is over all degrees d, and the seond is over all w in W=WP suhthat `(w) = `(u) + `(v)�P� d�n�. The oeÆient Nwu;v(d) is a Gromov-Witten (GW)invariant: it is the number of morphisms ' : P1 ! X of degree d (i.e., '?[P1℄ = d inH2(X)), suh that, for three given distint points p1; p2; p3 in P1, and three general g1; g2,and g3 in G, '(p1) is in g1 � Y (u), '(p2) is in g2 � Y (v), and '(p3) is in g3 �X(w). Whend = 0, this is the usual oeÆient of �w in the lassial produt �u ��v, whih is the sameas the intersetion number RX �u � �v � �w_.More generally, the (small) GW-invariant h�u1; �u2 ; : : : ; �unid an be de�ned wheneverP `(ui) = dim(X)+P� n�d�. Fix general distint points p1; : : : ; pn in P1. This invariantis the number of maps ' from P1 to X suh that '(pi) is in gi � Y (ui), for 1 � i � n,



10 W. FULTON AND C. WOODWARDand g1; : : : ; gn general elements of G. This an be interpreted in the ohomology ofappropriate moduli spaes. As we will need these spaes in our proofs, we desribe themnow.Let M 0;n(X; d) be the moduli spae of stable maps of degree d of n-pointed genus0 urves into X; a point is written (C; p1; : : : ; pn; '), where C is a onneted tree ofprojetive lines, meeting in nodes, p1; : : : ; pn are distint nonsingular points of C, and' : C ! X is a morphism with '?[C℄ = d, with the property that any omponent of Cthat is mapped to a point by ' must have at least three points that are either markedpoints or intersetion points with other omponents. This moduli spae is a projetivevariety of dimensiondim(M 0;n(X; d)) = dim(X) + X� n� d� + n � 3:It omes equipped with n evaluation maps ei :M 0;n(X; d)! X, taking (C; p1; : : : ; pn; ')to '(pi), and a forgetful map f : M0;n(X; d) ! M0;n, where the latter is the spaeof stable n-pointed urves of genus 0; f takes (C; p1; : : : ; pn; ') to (C; p1; : : : ; pn), butsuitably stabilized by ollapsing omponents of C that have fewer than three markingsor intersetions with other omponents. We refer to [20℄ for onstrution and basiproperties of these spaes and mappings, as well as Kontsevih's proof of the assoiativityof the quantum produt.The GW-invariant h�u1 ; : : : ; �unid is then the intersetion number RM0;n(X;d) f ?([p℄) �e1?(�u1) � e2?(�u2) � : : : � en?(�un), where p is a point in M 0;n. Equivalently, it is theoeÆient of the fundamental lass 1 = [M 0;n℄ in the lassf?�e1?(�u1) � e2?(�u2) � : : : � en?(�un)� in H0(M0;n):In partiular, this shows that the Gromov-Witten invariants are the same whether onehooses any distint points p1; : : : ; pn in P1 instead of general points (see [5℄).The oeÆient Nwu;v(d) is equal to h�u; �v; �w_id . In fat, these invariants an be usedto multiply several Shubert lasses diretly:�u1 ? �u2 ? : : : ? �un =Xd qdXw h�u1 ; : : : ; �un ; �w_id �w:7. TransversalityThe results of this setion are the main tools needed to prove our theorem. We givehere a simple proof based on Kleiman's transversality theorem. An alternative proof isskethed briey at the end of this setion.Lemma 7.1. Let U � G�G be open, nonempty, and invariant under the left diagonalmultipliation by G. Let u1 and u2 be in W=WP . Then for any g1; g2 in G suh thatg1Bg1�1 and g2Bg2�1 interset in a maximal torus, there is a (h1; h2) in U suh thath1X(u1) = g1X(u1) and h2X(u2) = g2X(u2):



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 11Proof. Take (h1; h2) in the intersetion of U with the open set of pairs (h1; h2) suh thath1Bh1�1 and h2Bh2�1 are opposite Borels, i..e., h1Bh1�1 \ h2Bh2�1 is a maximal torus.By [8℄, x14.1, Cor. 3, there is a g in G suh that g(hiBhi�1)g�1 = giBgi�1 for i = 1; 2.Sine B is its own normalizer, this implies that ghiB = giB for i = 1; 2. Then (gh1; gh2)is in U , and ghiX(ui) = giX(ui) for i = 1; 2.Lemma 7.2. Let Z be an irreduible G-variety, and let F : Z ! X � X be a G-equivariant morphism, where G ats diagonally on X � X. Then, for any u and v inW=WP , the subsheme F�1(Y (u)�X(v)) is redued, loally irreduible, of odimension`(u) + `(v_), and nonsingular at any nonsingular point of Z that maps to a nonsingularpoint of Y (u)�X(v).Proof. Consider the diagram X(u_)�X(v)#Z �! X �Xwith G�G ating on X�X. Kleiman's transversality theorem [28℄ produes a nonemptyopen set U of pairs (g1; g2) in G � G suh that F�1(g1X(u_) � g2X(v)) satis�es theonlusions of the lemma. (The dimension assertion would be valid in all harateristis;the others use the harateristi zero assumption.) This set U is invariant by the leftdiagonal ation of G beause the morphism F is G-equivariant.Now apply Lemma 7.1 to (u1; u2) = (u_; v) and (g1; g2) = (wo; 1). This produes a(h1; h2) in U suh that h1X(u_) = woX(u_) = Y (u) and h2X(v) = X(v), and Lemma7.2 follows.A point � = (C; p1; : : : ; pn; ') in a moduli spae M 0;n(X; d) of stable maps onsists ofa tree C of P1's, and marked points on some of its omponents, with a stable map fromC to X. Suh a point lies in a unique loally losed subsheme V , for whih the treeof urves has the same topologial type (or ombinatorial on�guration), with markedpoints on orresponding omponents (see [3℄, [20℄). The odimension of V is the numberof nodes of C.When n and d are understood, we setE(u; v) = e1�1(Y (u)) \ e2�1(X(v));a losed subsheme of M 0;n(X; d).Lemma 7.3. If E(u; v) is not empty, then E(u; v) is a redued, loally irreduible, sub-sheme of M 0;n(X; d), of pure odimension `(u) + `(v_), any omponent of whih whihmeets any stratum V properly. In partiular, eah irreduible omponent of E(u; v) meetsthe lous M0;n(X; d) onsisting of those (C; p1; : : : ; pn; ') with C �= P1.Proof. This follows from Lemma 7.2, and the fat that the strata are loally losed,G-invariant subvarieties in M0;n(X; d).



12 W. FULTON AND C. WOODWARDLemma 7.4. For any degree d, for n >Pn�d�, and for any distint points p1; : : : ; pnin P1 and any points x1; : : : ; xn in X, there are only �nitely many morphisms ' : P1 ! Xof degree d with '(pi) = xi for 1 � i � n.Proof. Let Hom(P1; X)d be the spae of morphisms of degree d from P1 to X, and lete : Hom(P1; X)d ! Xn be the morphism obtained by evaluating at the given pointsp1; : : : ; pn. We show that e is unrami�ed, and hene has �nite �bers. This will be trueif its tangent map [29℄�(P1; '?(TX)) �! �ni=1'?(TX)(pi) = �ni=1Txi(X)is injetive. Now '?(TX) = �O(mj), with mj � 0, andPmj =Pn�d� < n, so mj < nfor all j. The lemma follows from the elementary fat that �(P1;O(m))! �ni=1O(m)(pi)is injetive for m < n (sine a nonzero polynomial of degree m annot vanish at morethan m points).The transversality Lemma 7.3 an also be proved by showing that, given a �xed point� = (C; p1; : : : ; pn; ') with '(p1) = x(u) and '(p2) = x(v), the map from Hom(C;X)d toX2 given by the �rst two evaluation maps is transversal to the subvariety Y (u)�X(v)at the point x(u)� x(v). One shows that the map from the tangent spae �(C; '?(TX))to the normal spae to Y (u) �X(v) at x(u) � x(v) is surjetive. This an be ahievedby T -equivariantly deomposing the bundle '?(TX) as a diret sum of line bundles, andusing the fat that the weights of the normal spaes of Y (u) at x(u) and X(v) at x(v)are disjoint. 8. Chevalley's formula in the paraboli aseChevalley's formula [14℄ generalizes Monk's formula from the lassial ag variety toan arbitrary G=B, giving a formula for the produt of a odimension one Shubert lass�s� and an arbitrary Shubert lass �w. We will need the analogous formula on a generalG=P . Although it is not hard to dedue suh a formula from Chevalley's, by means ofthe projetion G=B ! G=P , we inlude a proof, whih ombines Chevalley's geometriideas with our alulations here.Reall that for a simple root �, and a positive root �, h�(!�) = n�� (�;�)(�;�) , where n�� isthe oeÆient of � in its expansion as a positive linear ombination of simple roots (seex3).Lemma 8.1 (Chevalley's formula). Let � be in �r�P , let u be in W=WP , and let ~u bethe minimal length representative of u in W . Then�s� � �u =Xh�(!�) �~us�;the sum over all positive roots � suh that `(~us�) = `(~u) + 1.Proof. We must prove that, for v inW=WP with `(v) = `(u)+1, RX �u ��v_ ��s� = h�(!�)if u and v are adjaent, and u has a representative ~u suh that ~u � s� is a representativefor v; and that RX �u � �v_ � �s� = 0 if u and v are not adjaent. Note that if �u � �_v



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 13is not zero, then Y (u) \X(v) is not empty. This lous is �xed by the torus T , and its�xed points onsist of those x(w) with u � w � v (Lemma 4.3). Sine `(u) = `(v)� 1,the only �xed points are x(u) and x(v). It follows that, set-theoretially at least, thisintersetion is the urve C(u; v). We laim that Y (u) intersets X(v) properly, withmultipliity 1, in the urve C(u; v). In harateristi zero this follows from Lemma 7.3.3Therefore �u � �v_ = [Y (u)℄ � [X(v)℄ = [C(u; v)℄ = d(�) =X� h�(!�) �(s�);the last by formulas in x3.Lemma 8.2. If u � v in W=WP , there is a w in W=WP suh that �u � �w ontains �vwith positive oeÆient.Proof. This is trivial if u = v. If `(u) = `(v)�1, and ~u is the minimal length representa-tive of u, there is an � in R+ suh that ~u � s� is a representative of v (see [24℄,x5.11), and� is not in R+P sine u 6= v. In this ase, if we hoose � so that h�(!�) 6= 0, then �s� � �uontains �v with positive oeÆient by Lemma 8.1. In general, indut on `(v)� `(u), byhoosing u0 not equal to u or v with u � u0 � v. If �w(1) � �u ontains �u0 with positiveoeÆient, and �w(2) � �u0 ontains �v with positive oeÆient, some �w that appears in�w(1) � �w(2) must have �v ourring in �w � �u with positive oeÆient.9. The TheoremThe lasses qd�w, as d varies over degrees, and w varies over W=WP , form a basis forthe quantum ohomology ring QH?(X) over Z. Given any element � in QH?(X), we saythat qd ours in � if the oeÆient of qd�w is not zero for some w. When � is a produtof Shubert lasses, we know that all suh oeÆients are nonnegative. For example, qdours in �u ? �v exatly when there is a w_ for whih the GW-invariant h�u; �v; �w_idis positive.We now ome to our main result. The theorem gives three equivalent riteria for adegree to be minimal, while the proof shows these are equivalent to eight other relatedriteria.Theorem 9.1. Let u and v be in W=WP , and let d be a degree. The following areequivalent:(1) There is a degree  � d suh that q ours in �u ? �v.(2) There is a hain of degree  � d between u and v.(3) There is a morphism ' : P1 ! X with '?[P1℄ � d suh that '(P1) meets Y (u) andX(v_).3In arbitrary harateristi, Chevalley argues as follows. Sine Y (u) meets X(u) transversally at thepoint x(u), and x(u) is a nonsingular point on X(v) (sine X(v) is nonsingular in odimension 1 andodim(X(u); X(v)) = 1), it follows that Y (u) meets X(v) transversally at x(u).



14 W. FULTON AND C. WOODWARDProof. We �rst state the eight equivalent onditions, and then we onstrut enoughimpliations to show that eah of the eleven implies the others.(4) There is a degree  � d, a u0 � u, and a v0 � v suh that q ours in �u0 ? �v0 .(5) There is a � in QH?(X) suh that qd ours in �u ? �v ? � .(6) The same as in (5), but with � = �w1 ? : : : ? �wr , for some w1; : : : ; wr in W=WP .(7) There is a sequene C0; : : : ; Cr of T -invariant urves on X, with C0 meeting Y (u)and Cr meeting X(v_), with Ci�1 meeting Ci for 1 � i � r, and withPri=0[Ci℄ � d.(8) There is a onneted urve C in X with [C℄ � d, meeting Y (u) and X(v_).(9) There is an n � 3 and w3; : : : ; wn in W=WP , and a  � d, suh that, with ei :M 0;n(X; )! X the evaluation maps, and f :M0;n(X; )!M 0;n the forgetful map,f?�e1?(�u) � e2?(�v) � e3?(�w3) � : : : en?(�wn)� = � � 1in H0(M 0;n), with � > 0.(10) There is a w in W=WP and a  � d suh thatZM0;3(X;) e1?(�u) � e2?(�v) � e3?(�w) 6= 0:(11) There is a  � d suh that the lous E(u; v_) = e1�1(Y (u)) \ e2�1(X(v_)) is notempty in M0;3(X; ).(1), (4). The impliation (1)) (4) is trivial, so assume (4). Sine u � u0, it followsfrom Lemma 8.2 that there is a u00 so that �u0 ours in the lassial produt �u � �u00with positive oeÆient. Take similarly v00 for v � v0. The fat that all oeÆients ofall quantum produts of Shubert lasses are nonnegative implies that �u ? �u00 ? �v ? �v00ontains all the terms that our in �u0 ? �v0 , so it must ontain some q � � , � 6= 0. Butthis is a produt of �u?�v and a nonnegative ombination of powers of q's times Shubertlasses, so �u ? �v must ontain some qe, with e � .(6) ) (5) and (5) ) (4) and (10) ) (9) are trivial.(1)) (10). If �u?�v ontains q�w with positive oeÆient �, then f?�e1?(�u)�e2?(�v)�e3?(�w_)� = � � 1 in H0(M 0;3), and M 0;3 is a point.(9)) (6). (9) implies that q�wn_ ours with oeÆient � in �u ?�v ?�w3 ? : : : ?�wn�1 .(7)) (2). This follows from the orrespondene between T -invariant urves and pairsof adjaent elements of W=WP (x4).(2) ) (3). A hain of degree  between u and v orresponds to a hain of T -invarianturves between x(u) and x(v). We may assume that no urve appears more than one,sine removing dupliates only dereases the degree. This orresponds to a point � =(C; p1; p2;  ) in M 0;2(X; ), with  : C ! X an embedding,  (p1) = x(u), and  (p2) =x(v). If  = 0, we are in the lassial ase, and u � v_, so x(u) is in Y (u)\X(v_), and theonstant map from P1 to x(u) satis�es the onditions of (3). We may therefore assumethat  > 0. By Lemma 7.3, E(u; v_) is not ontained in any boundary omponent. Ittherefore ontains a point (P1; p1; p2; '), and thus we have a map ' : P1 ! X with'?[P1℄ =  and '(p1) in Y (u) and '(p2) in X(v_).



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 15(3) ) (8). With ' : P1 ! X as in (3), the image urve '(P1) is onneted and joinsthe two Shubert varieties, and its degree is at most '?[P1℄.(8) ) (7). This is a onsequene of the ation of the torus T on a Hilbert sheme (orChow variety) of urves on X that join the two (T -invariant) Shubert varieties, see [23℄.There must be a urve in suh a spae that is �xed by T , and, being a limit of onnetedurves, it is onneted.(10) ) (11) follows from the fat that loi representing ohomology lasses withnonzero produt must interset, and e1?(�u) � e2?(�v) lives on the lous E(u; v_).(11) ) (7). Sine the torus preserves E(u; v_), there must be a point � in E(u; v_)that is �xed by T . Writing � = (C; p1; p2; p3; '), the image of eah irreduible omponentof C must be a T -invariant urve in X, and the image of eah '(pi) must be a point�xed by T ; and we must have '(p1) in Y (u) and '(p2) in X(v_). Sine the image isonneted one an extrat from it a hain of T -invariant urves from '(p1) to '(p2), andthe degree of this hain is at most '?[C℄ = .(2) ) (9). Suppose we have a hain of degree  � d. Disarding extra urves in thehain, we may assume it is minimal. Take n larger thanPn�� +2. The lous E(u; v_)in M0;n(X; ) has pure odimension `(u)+ `(v), and it meets the open set M0;n(X; ), byLemma 7.3. Set e0 = e3 � : : :� en : M 0;n(X; )! Xn�2:Take a point p inM0;n, i.e., hoose n distint points in P1. By Lemma 7.4, the restritionof e0 to f�1(p) \ M0;n(X; ) is a �nite to one mapping. It follows that (e0)?[f�1(p) \E(u; v_)℄ 6= 0. Hene there are w3; : : : ; wn in W=WP suh that(e0)?[f�1(p) \ E(u; v_)℄ � ��w3 � : : :� �wn� = � � [point℄;for some � 6= 0. This means thatf?�e1?(�u) � e2?(�v) � e3?(�w3) � : : : � en?(�wn)� = � � 1in H0(M 0;n), as required.10. Peterson's quantum Chevalley formula in the paraboli aseThe quantum Chevalley formula in G=P gives the formula for a quantum produt�s� ? �u, for � in �r�P and u in W=WP . It starts with the lassial produt �s� � �ugiven in Lemma 8.1. The terms with qd for positive degrees d have a similar ombinatorialdesription. This had been proved for the Grassmannian Gr(r; n) [5℄ and the ompleteag manifold Fl(C n) [18℄. For a positive root �, we use the notation n� for RC� 1(TX)as in Lemma 3.5; and, for a simple root �, h�(!�) as before Lemma 3.1. For P = B,this formula was stated by Peterson [33℄.Theorem 10.1 (Quantum Chevalley Formula). For � in �r�P , u in W=WP , with ~uits minimal length representative in W ,�s� ? �u =X� h�(!�)�~us� +X� qd(�)h�(!�)�~us�;



16 W. FULTON AND C. WOODWARDthe �rst sum over roots � in R+rR+P for whih `(v) = `(u)+1, where v is the oset of ~us�in W=WP , and the seond sum over roots � in R+rR+P for whih `(v) = `(u) + 1� n�.Proof. Let qd�v be a term appearing in �s� ? �u with nonzero oeÆient �, i.e.,� = h�u; �v_ ; �s�id = ZM0;3(X;d) e1?(�u) � e2?(�v_) � e3?(�s�) > 0:It suÆes to onsider the ase d 6= 0, sine the lassial ase is overed by Chevalley's for-mula 8.1. Set E = E(u; v) inM 0;3(X; d). By the transversality Lemma 7.3, E is redued,loally irreduible, purely 1-dimensional, with eah omponent meeting M0;3(X; d), andwith [E℄ = e1?([Y (u)℄) � e2?([X(v)℄) = e1?(�u) � e2?(�v_):So � is the oeÆient of �(s�) in the lass (e3)?[E℄.We laim that e1(E) = x(u) and e2(E) = x(v). Indeed, eah of the loi ei(E) is T -invariant, and if e1(E) 6= x(u), then e1(E) would ontain some other T -�xed point x(u0),with u � u0, u 6= u0. But then E would be ontained in E(u0; v), whih (by transversalityagain) has larger odimension than E, a ontradition; and similarly if e2(E) ontainsx(v0), with v0 � v.Note that odim(E) = `(u) + dim(X) � `(v) = dim(M 0;3(X; d)) � 1 = dim(X) +Rd 1(TX), so `(v) = `(u) + 1� Zd 1(TX):In partiular, `(v) < `(u), sine, by Lemma 3.5, Rd 1(TX) � 2.A point of E not in the boundary has the form � = (P1; p1; p2; p3; '), with ' : P1 ! X,'?[P1℄ = d, and '(p1) = x(u) and '(p2) = x(v). Given suh a map ', one an produea urve in E ontaining this point by varying where ' maps p3 in the urve '(P1),i.e., varying ' by ' Æ #, where # is an automorphism of P1 that �xes p1 and p2. Itfollows that eah irreduible omponent Z of E must onsist generially of suh maps.It follows from this that '(P1) = e3(Z). Sine e3(Z) is invariant by T , it follows that'(P1) is T -invariant, and, sine it ontains x(u) and x(v), we must have '(P1) = C(u; v).In partiular, u and v must be adjaent.We laim next that ' maps P1 isomorphially onto C(u; v). If not, '?[P1℄ = k[C(u; v)℄,for k > 1. Consider the orresponding lous E 0 = E(u; v) inM 0 =M 0;3(C(u; v); k[C(u; v)℄)onsisting of maps to C(u; v) of degree k that take p1 to x(u) and p2 to x(v). Theodimension of E 0 in M 0 is at most 2 (in fat, equal to 2 by Lemma 7.3 applied to thevariety C(u; v) in plae of X). But the dimension of M 0 is 2k+ 1, and sine E 0 � E, wemust have 2k � 1 � 1, i.e., k = 1.It follows that d = [C(u; v)℄ = d(u; v) = d(�), where ~us� is a representative of v.It also follows that eah omponent Z of E is equal to the lous E 0 desribed in thepreeding paragraph. In partiular, there is only one irreduible omponent E = E 0 of



ON THE QUANTUM PRODUCT OF SCHUBERT CLASSES 17E. (This E an be realized from the blow-up of C(u; v)� C(u; v) along the two pointsx(u)� x(u) and x(v)� x(v); the exeptional divisors beome the extra fators in urvesorresponding to the two boundary points of E.) It also follows from this desriptionthat e3 maps E isomorphially onto C(u; v). Therefore (e3)?[E℄ = [C(u; v)℄ = d(�), so� is the oeÆient of �(s�) in d(�), whih is h�(!�), as we saw in Lemma 3.4. Thisargument, run bakwards, shows that eah suh v does our, and ompletes the proofof the theorem.Remark 10.2. The element ~us� is not in general a minimal length representative for v.For the lassial ag manifold Fl(C n), the positive roots and reetions orrespond to� = (a; b), 1 � a < b � n, and h(a;b)(!(r;r+1)) is 1 if a � r < b and is 0 otherwise. So onereovers the quantum Monk formula of [18℄.Peterson's generalization of the Chevalley formula allows the quantum produts oflasses in the subalgebra generated (using the quantum produt) by H2(G=P;Z)
 Z[q℄to be omputed reursively. S. Fomin has pointed out that this subalgebra is the fullquantum ohomology ring QH�(G=P ) whenever the lassial ring H�(G=P ) is generatedby H2(G=P ). (The proof is by indution on the degree.) This holds on the ag varietiesG=B.Peterson has also given an expliit formula for any Gromov-Witten invariant on anyG=P as another Gromov-Witten invariant on the orresponding G=B. A proof of this,whih uses some of the ideas of this paper, will be given in another paper by the seondauthor. Referenes[1℄ S. Agnihotri and C. Woodward, Eigenvalues of produts of unitary matries and quantum Shubertalulus, Math. Res. Lett., 5(6):817{836, 1998.[2℄ A. Astashkevih and V. Sadov, Quantum ohomology of partial ag manifolds Fn1���nk , Comm.Math. Phys., 170:503{528,1995.[3℄ K. Behrend and Yu. Manin, Staks of stable maps and Gromov-Witten invariants, Duke Math. J.,1:1{60, 1996.[4℄ P. Belkale. Transformation formulas in Quantum Cohomology, 2001. preprint.[5℄ A. Bertram, Quantum shubert alulus, Adv. Math., 128:289{305, 1997,[6℄ A. Bertram, I. Cioan-Fontanine, and W. Fulton, Quantum multipliation of Shur polynomials,J. Algebra, 219(2):728{746, 1999.[7℄ A. Bertram, G. Daskalopoulos, and R. Wentworth, Gromov invariants for holomorphi maps fromRiemann surfaes to Grassmannians, J. Amer. Math. So., 9:529{571, 1996.[8℄ A. Borel, Linear algebrai groups, Springer-Verlag, New York, seond edition, 1991.[9℄ R. Bott, A residue formula for holomorphi vetor-�elds, J. Di�erential Geometry, 1:311{330, 1967,[10℄ N. Bourbaki, �El�ements de math�ematique. Fas. XXXIV. Groupes et alg�ebres de Lie. Chapitre IV:Groupes de Coxeter et syst�emes de Tits. Chapitre V: Groupes engendr�es par des r�eexions. ChapitreVI: syst�emes de raines, Hermann, Paris, 1968.[11℄ A. Buh, Quantum ohomology of Grassmannians, preprint, 2001.[12℄ A. Buh, A. Kresh, and H. Tamvakis, to appear.
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