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FLOER COHOMOLOGY AND GEOMETRIC COMPOSITION OFLAGRANGIAN CORRESPONDENCESKATRIN WEHRHEIM AND CHRIS T. WOODWARDAbstrat. We prove an isomorphism of Floer ohomologies under geometri ompositionof Lagrangian orrespondenes in exat and monotone settings.1. IntrodutionLagrangian orrespondenes were desribed by Weinstein [27, 26℄ as generalizations ofsympletomorphisms, in an attempt to build a sympleti ategory with omposable mor-phisms between non-sympletomorphi manifolds. By de�nition a Lagrangian orrespon-dene from M0 to M1 is a Lagrangian submanifold in the produt, L01 � M�0 � M1,with respet to the sympleti struture (�!M0)� !M1 . The basi examples are graphs ofsympletomorphisms. Composition of sympletomorphisms generalizes to geometri om-position of Lagrangian orrespondenes L01 �M�0 �M1, L12 �M�1 �M2, de�ned by(1) L01 Æ L12 := �(x0; x2) 2M0 �M2 ��9x1 : (x0; x1) 2 L01; (x1; x2) 2 L12	:In general this will be a singular subset ofM�0 �M2 with isotropi tangent spaes. However,if we assume transversality of the intersetion L01�M1L12 := �L01�L12�\�M�0 ��M1�M2�,then the restrition of the projetion �02 :M�0 �M1�M�1 �M2 !M�0 �M2 to L01�M1L12is an immersion [4, 20℄, and hene L01 Æ L12 � M�0 � M2 is an immersed Lagrangianorrespondene. We will study the lass of embedded geometri ompositions, for whih inaddition �02 is injetive, and hene L01 Æ L12 is a smooth Lagrangian orrespondene.Lagrangian orrespondenes arise naturally in in various ontexts. Perutz [10, 11℄ pro-posed a onstrution of three and four-manifold invariants, de�ned by Floer ohomology ofLagrangian orrespondenes in symmetri produts. Seidel proposed a generalized versionof his exat triangle in Floer ohomology [15℄ for �bered versions of sympleti Dehn twists,whose vanishing yle is a spherially �bered Lagrangian orrespondene. Seidel and Smith[17℄ proposed a sympleti de�nition of Khovanov homology, using Lagrangians onstrutedas geometri ompositions of the �bered vanishing yles. Finally, moduli spaes of at bun-dles on three-dimensional obordisms de�ne Lagrangian orrespondenes [24℄ between themoduli spaes of bundles on the boundary surfaes, suh that omposition of obordismsorresponds to geometri omposition. The orresponding Floer ohomology groups maybe viewed as sympleti versions of instanton Floer homology for three manifolds.Naturally the question arises of how omposition of orrespondenes a�ets Floer o-homology. In this paper we prove that Floer ohomology is isomorphi under embeddedgeometri omposition. For a preise general statement, it is best to use the language ofquilted Floer ohomology developed in [20℄ whih de�nes HF (L01; L12; : : : ; L(k�1)k) for ayli sequene of Lagrangian orrespondenes L(`�1)` � M �̀�1 �M` between sympletimanifoldsM0;M1; : : : ;Mk =M0. If the omposition L(`�1)` ÆL`(`+1) is embedded, then weobtain under suitable monotoniity assumptions a anonial isomorphism(2) HF (: : : ; L(`�1)`; L`(`+1); : : :) �= HF (: : : ; L(`�1)` Æ L`(`+1); : : :):1
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2 KATRIN WEHRHEIM AND CHRIS T. WOODWARDHere the quilted Floer ohomology on the left hand side ounts k-tuples of holomor-phi strips (uj : R � [0; 1℄ ! Mj)j=0;:::;k�1, whose boundaries math up via the La-grangian orrespondenes, (uj�1(s; 1); uj(s; 0)) 2 L(j�1)j . On the right hand side of (2),no strip in M` is taken into aount, and the strips M`�1 and M`+1 math up diretly via(u`�1(s; 1); u`+1(s; 0)) 2 L(`�1)` Æ L`(`+1). Rather than going through the general de�nitionin detail, we will prove in detail the following representative example in the familiar notationof Floer ohomology for pairs of Lagrangians in the same sympleti manifold.Theorem 1.0.1. Let M0;M1;M2 be sympleti manifolds and letL0 �M0; L01 �M�0 �M1; L12 �M�1 �M2; L2 �M�2be ompat Lagrangian submanifolds suh that the geometri omposition L01 Æ L12 is em-bedded. Then the anonial bijetion (L0 � L12) \ (L01 � L2) �= (L0 � L2) \ (L01 Æ L12)indues an isomorphism(3) HF (L0 � L12; L01 � L2) �! HF (L0 � L2; L01 Æ L12);provided the following assumptions hold:(a) Eah of M0;M1;M2 is monotone with the same monotoniity onstant � � 0, thatis [!Mi ℄ = � � 1(TMi) for i = 0; 1; 2. Note that � = 0 is the ase of exat sym-pleti manifolds, whih are neessarily nonompat. We thus require that eah ofM0;M1;M2 is ompat or satis�es the "bounded geometry" assumptions as in [16℄.(b) The pair (L0 � L12, L01 � L2) of Lagrangian submanifolds in M0 �M�1 �M2 ismonotone for Floer theory, that is with the � � 0 from (a) we have2R v�!N = � � IMaslov(v�T (L0 � L12); v�T (L01 � L2))for all maps from the annulus v : S1 � [0; 1℄ ! M0 �M�1 �M2 with Lagrangianboundary onditions v(S1�f0g) � L0�L12 and v(S1�f1g) � L01�L2. The Maslovindex is de�ned by hoosing a trivialization v�T (M0�M�1 �M2) �= S1� [0; 1℄� C n ,then IMaslov(v�T (L0�L12); v�T (L01�L2)) is the di�erene of Maslov indies of thetwo loops in the Lagrangian Grassmannian of C n .() The minimal positive Maslov index in (b) is 2, that is there exists no annulus v withIMaslov(v�T (L0 � L12); v�T (L01 � L2)) = 1.(d) Eah of the L0; L01; L12; L2 has minimal Maslov index � 3. (Here the minimalMaslov index of L �M is the positive generator of IMaslov(�2(M;L)) � Z.)Assumptions (b) and () are met, for example, if all Lagrangians are orientable and exat,or if they are orientable, monotone, and the image of either �1(L0�L12) or �1(L01�L2) in�1(M0�M1�M2) is torsion. In this paper, the isomorphism (3) of Floer ohomology groupsis ompletely proven only with Z2-oeÆients; to redue the length, we banished the disus-sion of oherent orientations { in the presene of orientations and relative spin strutureson the Lagrangians { to a separate paper [23℄. There should also be versions of this resultfor Floer ohomology with gradings, oeÆients in at vetor bundles, and Novikov rings.We give a detailed statement and proof for the gradings in [20℄. Below we explain the ne-essity of the monotoniity and Maslov index assumptions. In [21℄ we give some alternativeassumptions and generalizations, and in [25℄ generalize Theorem 1.0.1 to an isomorphismin the derived ategory of matrix fatorization, allowing to drop assumption (d).Throughout we will use the onstrution of Floer ohomology, mainly due to Floer [2℄,Oh [9℄, and Floer-Hofer-Salamon [3℄. The Floer di�erential for (L0 �L12; L01 �L2) ountstriples of holomorphi strips inM0;M�1 ;M2 (see Figure 1 below). In the standard de�nition,



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 3
L01L2 M2M�1M0

L12L0 M2M0L01 Æ L12
L2L0

Figure 1. Tuples of holomorphi strips that are ounted for HF (L0 �L12; L01 � L2) and for HF (L0 � L2; L01 Æ L12)one would take the width of all three strips to be equal, but in fat one an allow thewidths of the strips to di�er. (These domains are not onformally equivalent due to theidenti�ation between boundary omponents.) The main diÆulty then is to prove thatunder the stated assumptions and with the width of the middle strip suÆiently lose tozero, the triples of holomorphi strips in M0;M�1 ;M2 are in one-to-one orrespondenewith the pairs of holomorphi strips inM0;M2 that are ounted in the Floer di�erential for(L0�L2; L01ÆL12). As in similar situations in Floer theory, the proof is an appliation of theimpliit funtion theorem, on one hand, and ompatness results for ertain J -holomorphistrips, on the other. In the limit various kinds of bubbling an our: sphere bubbles inM0, M1, or M2; disk bubbles in (M0 �M1; L01), (M1 �M2; L12), or (M0 �M2; L01 Æ L12);and a novel type of bubble whih we all a �gure eight bubble. The latter is a triple ofJ -holomorphi maps v0 : R � (�1;�1℄!M0; v1 : R � [�1; 1℄!M1; v2 : R � [1;1)!M2suh that (v0(�;�1); v1(�;�1)) 2 L01, (v1(�; 1); v2(�; 1)) 2 L12.Viewed from z = 1 the lines Im(z) = �1 appear as a �gure eight, as in Figure 2.We onjeture that the maps (v0; v1; v2) an be extended ontinuously to S2 by a point(v0(1); v1(1); v2(1)) that lies in both L01 �M2 and M0 � L12.
M1

M2
M0

L 01

L 12 1/z

M1

M2

M0

L 01

L 12Figure 2. Figure Eight bubbleHowever, we annot in general prove this removal of singularities at z = 1 for �gureeight bubbles and thus are laking the onstrution of a moduli spae of �gure eight bubbles.Instead, as in [19℄ we exlude bubbling by energy quantization without giving a geomet-ri desription of the bubble. However, this method hinges on strit monotoniity withnonnegative onstant � � 0 as well as the 2-grading assumption (d).



4 KATRIN WEHRHEIM AND CHRIS T. WOODWARDA few of the appliations of the result of this paper are the following. First, there arevarious appliations to sympleti topology: Using the result we prove in [21℄ the nondis-plaeability of a Lagrangian 3-sphere � � (C P2)�� C P1, whose projetion to C P2 ontainsthe nondisplaeable Cli�ord torus. An appliation to non-triviality of sympleti mappinglass groups is given in [25℄. Seond, our isomorphism is key to proving the topologialinvariane of various groups de�ned using Floer ohomology and deomposition in low-dimensional topology; for example, the sympleti version of instanton knot homology on-struted in [25℄, Seidel-Smith homology and Heegard-Floer homology, for whih it providesalternative onstrutions [12℄, [7℄.From a more oneptual point of view, the results of this paper are used in [20℄ to givea solution to the problem in Weinstein's onstrution that omposition of Lagrangian or-respondenes is not always de�ned. Using the result here, one may onstrut a sympleti2-ategory, in whih all Lagrangian orrespondenes are omposable morphisms and Floerohomology groups (as 2-morphism spaes) are well de�ned. Thus one removes the quotesin Weinstein's "ategory" by promoting the onstrution to a 2-ategory, using Floer theory.We thank Paul Seidel and Ivan Smith for enouragement and helpful disussions.2. Floer ohomology for monotone Lagrangian orrespondenesIn this setion we �rst explain why both Floer ohomologies in Theorem 1.0.1 are wellde�ned. Then we give a spei� "quilted" setup and hoie of perturbations for both thatredue the isomorphism of Floer ohomologies to a bijetion of moduli spaes that is provenin Setion 3.2.1. Monotoniity assumptions and index identities. The signi�ane of the mono-toniity and Maslov index assumptions in Theorem 1.0.1 is the following energy-index re-lation and relative grading.Proposition 2.1.1. Suppose that the pair (L0; L1) of Lagrangians in M is monotone,transverse, and has minimal annulus Maslov index N � 2. (That is, N is the positivegenerator of fIMaslov(v�TL0; v�TL1) j v : S1 � [0; 1℄ !M;v(S1 � fjg) � Ljg � Z.)Then for any x� 2 L0 \ L1 there exist onstants (x�; x+) 2 R and �(x�; x+) 2 Zsuh that for all strips u : R � [0; 1℄ ! M with boundary values in (L0; L1) and limitsu(�1; �) = x� we have(4) 2E(u) = � � Ind(Du) + (x�; x+); Ind(Du) � �(x�; x+) mod N:Here E(u) = R u�! is the energy and Du the linearized Cauhy-Riemann operator at u.Proof. Given two strips u1; u2 : R � [0; 1℄ ! M glue them together (reversing the ori-entation of u2) to an annulus v : S1 � [0; 1℄ ! M , then R v�! = E(u1) � E(u2) andIMaslov(v�TL0; v�TL1) = Ind(Du1) � Ind(Du2). So the energy-index relation follows frommonotoniity, and the index identity follows from IMaslov(v�TL0; v�TL1) � NZ. �The energy-index relation ensures energy bounds for the moduli spaes of �xed indexand thus ompatness up to bubbling and breaking of trajetories. Together with theindex identity it exludes bubbling in moduli spaes of index less than N as follows: Anybubbling leads to a new (possibly broken) trajetory onneting the same points but withless energy. By monotoniity, less energy means stritly less index. By the index identitymod N that means negative index. By transversality (previously established for moduli



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 5spaes of negative index) that means an empty set: The new trajetory doesn't exist, sothe bubbling didn't happen. We spelled out this argument beause we will use it again toexlude �gure eight bubbling { by only proving energy loss, not atually giving a geometridesription of the bubble.Working withN = 2 there is just one point in the onstrution of Floer ohomology wherethis argument fails: The 1-dimensional moduli spaes of self-onneting Floer trajetorieshave index 2, so bubbling ould lead to an index 0 solution (whih are always onstant due tothe R-ation). Assumption (d) serves to exlude this senario by index additivity arguments:Any holomorphi disk bubble with boundary on L will redue the index by at least NL,the minimal Maslov index on �2(M;L). So NL � 3 ensures that the remaining solutionwould have negative index (and the same holds for sphere bubbles whose Chern numberwould be at least 12NL). Note that this argument, unlike the previous bubbling exlusionby energy loss, requires an identi�ation of the bubbles as spheres and disks. In our aseit also requires that we work with a split almost omplex struture (preserving the fatorsof M0 �M�1 �M2), otherwise holomorphi disks in the produt manifold don't neessarilyhave the minimal index of a disk in one of the fators. We will show in Setion 2.2 that wean ahieve transversality with a split almost omplex struture, and hene our assumptionsindeed ensure that the Floer ohomology HF (L0 � L12; L01 � L2) is well de�ned.The next Lemma shows that the Floer ohomology HF (L0 �L2; L01 Æ L12) for the om-posed Lagrangian orrespondene is also well de�ned.Lemma 2.1.2. In the setting of Theorem 1.0.1, the assumptions (b) and () imply theanalogous assumptions for the pair (L0 � L2; L01 Æ L12) of Lagrangians in M0 �M�2 . As-sumption (d) implies that �2 = 0 on CF (L0�L2; L01ÆL12), and hene the Floer ohomologyis well de�ned.Proof. Consider any annulus (u0 � u2) : S1� [0; 1℄!M0�M�2 with Lagrangian boundaryonditions (u0�u2)(S1�f0g) � L0�L2 and (u0�u2)(S1�f1g) � L01ÆL12. By the embeddedomposition there exists a unique lift u1 : S1 !M�1 suh that (u0jt=1 � u1)(S1) � L01 and(u1 � u2jt=1)(S1) � L12. Now we an reverse the parametrization in u2(s; t) := u2(s; 1� t)and extend u1 onstant along [0; 1℄ to de�ne an annulus (u0 � u1 � u2) : S1 � [0; 1℄ !M0 �M�1 �M2 as in (b). Here u�1!1 = 0, hene R (u0 � u1 � u2)�(!0 � (�!1) � !2) =R (u0 � u2)�(!0 � (�!2)). To identify the Maslov indies, pik the same trivializationsu�jTMj �= S1 � [0; 1℄ � Vj for j = 0; 2 in both ases, then equality follows from the identity(5) I(01) + I(12) = I(01 � 12) = I(02)for loops of Lagrangians 01 : S1 ! Lag(V �0 � V1), 12 : S1 ! Lag(V �1 � V2), and 02 :S1 ! Lag(V �0 �V2) given by 02(s) = (01(s)�12(s))\ (V0��V1 �V2). The �rst equalityis simply additivity of the Maslov index. To see the seond equality we �x Lagrangians�j � Vj for j = 0; 2, then the Maslov indies an be expressed as the intersetion numberwith �0 ��V1 � �2 resp. �0 � �2. With this hoie the intersetions are identi�ed,K(s) := �01(s)� 12(s)� \ ��0 ��V1 � �2� �= 02(s) \ ��0 � �2�:Now we need to ompare the rossing forms �0112(s);�02(s) : K(s)! R at regular rossingss 2 S1. Fix a Lagrangian omplement 02(s) � V0 � V �2 , then 02(s) ��V1 , after appro-priate transposition of fators, is a Lagrangian omplement for 01(s) � 12(s), due to theassumption of transversality (L01�L12) t (M0��M1�M2). So for v0112 = (v0; v1; v1; v2) 2K(s) one �nds (w0; w2)(t) 2 02(s) and w1 2 V1 suh that v + (w0; w1; w1; w2)(t) 2



6 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(01 � 12)(s + t). For the orresponding vetor v02 = (v0; v2) 2 K(s) this automatiallygives v02 + (w0; w2)(t) 2 02(s+ t). With this we identify the rossing forms�0112(s)v0112 = ddt ��t=0(!0 ��!1 � !1 ��!2)�v0112; (w0; w1; w1; w2)(t)�= ddt ��t=0��!0(v0; w0) + !1(v1; w1)� !1(v1; w1) + !2(v2; w2)�= ddt ��t=0(!0 ��!2)�v02; (w0; w2)(t)� = �02(s)v02:This proves equality of the Maslov indies in (5) and this �nishes the proof of (b) and ().In the absene of assumption (d) we have �2 = wId a multiple of the identity in both Floertheories, see [9℄ and [25℄. A derived version of Theorem 1.0.1 implies that the value of w isthe same for both theories, see Remark 2.2.3. Assuming (d) for the pair (L0�L12; L01�L2)we obtain w = 0 and thus also �2 = 0 on CF (L0 � L2; L01 Æ L12). �The index alulation in (5) analogously holds for strips. This identi�es the index onthe two omplexes in Theorem 1.0.1. Reall here from [2℄ that the index of the linearizedCauhy-Riemann operator Du at a map u : R � [0; 1℄ ! M with Lagrangian boundaryonditions u(R � fig) � Li for i = 0; 1 and limits u(s; �) �!s!�1 L0 t L1 at transverseintersetion points is given by the Maslov-Viterbo index,Ind(Du) = IMV (u) := I(0; 1); i(s) = Tu(s;i)Li:Here the Maslov index of the pair of paths is de�ned by hoosing a trivialization u�TM �=R�[0; 1℄�V (independent of t 2 [0; 1℄ for s! �1 ) so that i beomes a path of Lagrangiansubspaes in the sympleti vetor spae V .Lemma 2.1.3. Let L0 � M0, L01 � M�0 � M1, L12 � M�1 � M2, and L2 � M�2 beLagrangians suh that the omposition L01 Æ L12 =: L02 is embedded. Suppose that theintersetion L0 � L12 \ L01 � L2 (and hene also L0 � L2 \ L01 Æ L12) is transverse andonsider a map (u0; u2) : R�[0; 1℄ !M0�M2 taking boundary values in (L0�L2; L01ÆL12),and limiting to intersetion points as s! �1. Let (u0; u1; u2) : R� [0; 1℄ !M0�M1�M2be the orresponding map whih takes boundary values in (L0 �L12; L01 �L2) and satis�es�tu1 = 0. (Here u2 reverses the [0; 1℄-parametrization of u2.) Then the indies of thelinearized operators and the energies are equal,Ind(D(u0;u2)) = Ind(D(u0;u1;u2)); E((u0; u2)) = E((u0; u1; u2)):Proof. The identity of Maslov indies follows as in Lemma 2.1.2. Alternatively, it ould bededued from a more general result of Viterbo [18, Proposition 3℄. For the energies justnote that R u�2!2 = R u�2(�!2) and R u�1!1 = 0. �2.2. Quilted setup for Floer ohomology. As in Theorem 1.0.1 let M0;M1;M2 besympleti manifolds and letL0 �M0; L01 �M�0 �M1; L12 �M�1 �M2; L2 �M�2be Lagrangian submanifolds suh that the geometri omposition L02 := L01 Æ L12 is em-bedded. The aim of this setion is to introdue the "quilted" setup and give ompatiblehoies of perturbation data for the two Floer ohomologies HF (L0 � L12; L01 � L2) andHF (L0 � L2; L02).First, we need to �x Hamiltonians suh that the perturbed intersetion points are �-nite and nondegenerate. In fat, the following Proposition shows that we an pik aHamiltonian of split type whih ahieves simultaneous transversality for the intersetion



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 7points in both Floer theories. Given a pair of time-dependent Hamiltonian funtions(H0;H2) 2 C1([0; 1℄ �M0) � C1([0; 1℄ �M2) onsider the Hamiltonians H02(t; x0; x2) =H0(t; x0) � H2(1 � t; x2) on M0 � M2 and H012(t; x0; x1; x2) = H0(t; x0) + H2(t; x2) onM0 � M1 � M2 and denote their time 1 ows by �H02 and �H012 . Then the perturbedintersetion points �H02(L0 � L2) \ L02 an be identi�ed withL0��H0L02��H2L2 = �(m0;m2) 2M0�M2 ��m0 2 L0; (�H0(m0);m2) 2 L02; �H2(m2) 2 L2	and analogously�H012(L0 � L12) \ (L01 � L2) �= L0 ��H0 L01 ��H1 L12 ��H2 L2;where �Hj is the time 1 ow of the Hamiltonian Hj and we use the trivial funtion H1 � 0on M1. Note that the Hamiltonians are onstruted suh that the perturbed intersetionpoints for the two Floer theories are still anonially identi�ed. Indeed, by assumptionevery point in L02 = L01 Æ L12 has a unique lift to L01 �IdM1 L12.Proposition 2.2.1. There is a dense open subset Ham(L0; L02; L2) � C1([0; 1℄ �M0) �C1([0; 1℄ �M2) suh that for every (H0;H2) 2 Ham(L0; L02; L2) and H1 � 0 the de�ningequations for both sets L0��H0L02��H2L2 and L0��H0L01��H1L12��H21 L2 are transversal.Proof. By assumption L0; L02; L2 are embedded submanifolds and so loally they are thezero sets of submersions  0 : M0 ! Rn0 ,  02 : M0 �M2 ! Rn0+n2 ,  2 : M2 ! Rn2 . Thenthe de�ning equations for L0 ��H0 L02 ��H2 L2 are(6)  0(m0) = 0;  02��H0(m0);m2� = 0;  2��H2(m2)� = 0:Consider the universal moduli U spae of data (H0;H2;m0;m2) satisfying (6), where noweah Hj has lass C` for some ` � 2. The linearized equations for U are(7) D 0(v0) = 0; D 02(D�H0(h0; v0); v2) = 0; D 2�D�H2(h2; v2)� = 0:for vj 2 TmjMj and hj 2 C`([0; 1℄�Mj). The produt of the operators on the left-hand sidesof (7) are surjetive sine eah of the maps C`([0; 1℄�Mj)! T�Hj (mj)Mj , hj 7! D�Hj (hj ; 0)is surjetive. So by the impliit funtion theorem U is a smooth Banah manifold, and weonsider its projetion to C`([0; 1℄�M0)�C`([0; 1℄�M2). By the Sard-Smale theorem, theset of regular values is dense. On the other hand, the set of regular values is learly open.Hene the set of smooth funtions that are regular values is open and dense. This is exatlythe set of funtions H = (H0;H2) suh that the perturbed intersetion L0��H0 L02��H2 L2is transversal.Moreover, the perturbed intersetion L0 ��H0 L01 ��H1 L12 ��H21 L2 is also transversal,sine by assumption L01 � L12 is transverse to the diagonal M0 ��M1 �M2. �In the following, instead of working with perturbed intersetion points, we will apply theHamiltonian di�eomorphisms to the Lagrangians to ahieve transversality. Replaing L0with L00 = �H0(L0) and L2 with L02 = (�H2)�1(L2) the generators of the two Floer haingroups are the transverse intersetions(L00 � L02) \ L01 �= L00 �IdM0 L02 �IdM2 L02;(L00 � L12) \ (L01 � L02) �= L00 �IdM0 L01 �IdM1 L12 �IdM2 L02:



8 KATRIN WEHRHEIM AND CHRIS T. WOODWARDThe forgetful map (m0;m1;m2) 7! (m0;m2) is a bijetion from I to (L00�L02)\L01 sine byassumption L01�IdM1 L12 ! L02 is bijetive. So, after a generi Hamiltonian perturbation,we have a natural isomorphism of the Floer hain groups(8) CF (L0 � L12; L01 � L2) �! CF (L0 � L2; L02)and it remains to identify the Floer di�erentials. For that purpose we now drop the Hamil-tonian from the notation: By abuse of notation we an assume to start out with unperturbedtransverse intersetions and a natural bijetionI := (L0 � L2) t L01 �= (L0 � L12) t (L01 � L2):To investigate the Floer trajetories note that we onsider (L0 � L2; L02) as a pair ofLagrangians in M0 � M�2 and (L0 � L12; L01 � L2) as a pair of Lagrangians in M0 �M�1 � M2. For any sympleti manifold M let J (M) be the spae of almost omplexstrutures on M that are ompatible with the sympleti struture !M . We pik time-dependent almost omplex strutures J0 2 C1([0; 1℄;J (M0)) and J2 2 C1([0; 1℄;J (M2)),then J0(t;m0)�(�J2(1�t;m2)) de�nes a ompatible almost omplex struture onM0�M�2 .Now any pseudoholomorphi strip w02 : R � [0; 1℄ ! M0 �M�2 with boundary values on(L0�L2; L02) orresponds by "unfolding" w02(s; t) = (u0(s; t); u2(s; 1�t)) to a pair of strips�ui : R � [0; 1℄!Mi�i=0;2 satisfying�su0 + J0(t; u0)�tu0 = 0; �su2 + J2(t; u2)�tu2 = 0;(9) u0(s; 0) 2 L0; (u0(s; 1); u2(s; 0)) 2 L02; u2(s; 1) 2 L2:Similarly, pik an almost omplex struture J1 2 J (M1), then J0 � (�J1) � J2 de�nes aompatible almost omplex struture on M0 �M�1 �M2 and any pseudoholomorphi stripwith boundary values on (L0�L12; L01�L2) orresponds by "unfolding" to a triple of strips�vi : R � [0; 1℄ !Mi�i=0;1;2 satisfying�sv0 + J0(t; v0)�tv0 = 0; �sv1 + J1(v1)�tv1 = 0; �sv2 + J2(t; v2)�tv2 = 0;(10) v0(s; 0) 2 L0; (v0(s; 1); v1(s; 0)) 2 L01; (v1(s; 1); v2(s; 0)) 2 L12; v2(s; 1) 2 L2:In both ases, the trajetories have �nite energy Pi R j�suij2 resp. Pi R j�svij2 i� theyonverge uniformly to intersetion points(11) lims!�1(u0; u2)(s; �) = (x�0 ; x�2 ) 2 I resp. lims!�1(v0; v1; v2)(s; �) = (x�0 ; x�1 ; x�2 ) 2 I:For any x�; x+ 2 I let us denote byfM10(x�; x+) = �(u0; u2) �� (9); (11); Ind(D(u0;u2)) = 1	the one dimensional (i.e. index 1) omponent of the moduli spae of Floer trajetoriesfor (L0 � L2; L02). One an ahieve transversality of these moduli spaes (of any index� 1) by hoosing t-dependent almost omplex strutures J0 and J2 that are onstant neart = 0 and t = 1.1 Note that we annot expet a bijetion with the moduli spaes of Floer1 Indeed, note that the unique ontinuation theorem [3, Thm.4.3℄ applies to the interior of eah non-onstant strip ui : R � (0; 1) ! Mi. It implies that the set of regular points, (s0; t0) 2 R � (0; 1) with�sui(s0; t0) 6= 0 and u�1i (uj(R [ f�1g); t0) = f(s0; t0)g, is open and dense. These points an be used toprove surjetivity of the linearized operator for a universal moduli spae of solutions with respet to splitalmost omplex strutures (J0; J2). (The onstant solutions are automatially transverse due to the previ-ously ensured transversality of the intersetion points.) Note that it suÆes to work with almost omplexstrutures that are t-independent outside of [ 13 ; 23 ℄. The existene of a Baire seond ategory set of regular(J0; J2) then follows from the usual Sard-Smale argument as in [8℄.



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 9trajetories for (L0�L12; L01�L2) as in (10). However, by the independene theorem in [21℄,the ohomology de�ned from the above Floer di�erential is isomorphi to the ohomologyde�ned by the "quilted Floer di�erential" arising from the moduli spaesfM1Æ(x�; x+) = �(v0; v1; v2) �� (10)Æ; (11); Ind(D(v0;v1;v2)) = 1	for any hoie of Æ > 0. Here we onsider strips v0; v2 of width 1 as before but middlestrips v1 : R � [0; Æ℄ ! M1 of width Æ > 0, and (10)Æ denotes the same boundary valueproblem as above exept for the seam ondition (v1(s; Æ); v2(s; 0)) 2 L12. Moreover, we usealmost omplex strutures J0;Æ; J2;Æ that onverge to J0; J2 in the C1-topology as Æ ! 0.The spei� hoie follows from the onstrutions in the proof 2 and will also ensure thatthe moduli spaes fM1Æ(x�; x+) are ut out transversely for Æ > 0 suÆiently small.
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Figure 3. Shrinking the middle stripIn order to prove Theorem 1.0.1 it now suÆes to show that the isomorphism (8) of haingroups desends to ohomology for an appropriate hoie of Æ > 0. We will prove this byestablishing a bijetion between the Floer trajetories for (L0; L02; L2) on strips of width(1; 1) and those for (L0; L01; L12; L2) on strips of width (1; Æ; 1) for suÆiently small widthÆ > 0 of the middle strip. These Floer trajetories are holomorphi quilts assoiated tothe pitures in Figure 3. More preisely, we will onsider the (zero dimensional, ompat)moduli spaes of Floer trajetories modulo R-translation and prove the following.Theorem 2.2.2. Under the assumptions (a), (b), () of Theorem 1.0.1 and for all suÆ-iently small Æ > 0, the moduli spaes fM1Æ(x�; x+) are regular and there is a bijetionTÆ : M10(x�; x+) := fM10(x�; x+)=R �! fM1Æ(x�; x+)=R =:M1Æ(x�; x+):Remark 2.2.3. In the situation of Theorem 1.0.1 exept for assumption (d), the onstrutionsin this setion provide naturally isomorphi hain groups CF (L0 � L1; L02) and CF (L0 �L12; L01 � L2) and well de�ned di�erentials �0 resp. �Æ on them, de�ned from the modulispaes M10(x�; x+) and M1Æ(x�; x+). As disussed in Setion 2.1, due to obstrutions fromdisks of minimal Maslov index 2, both di�erentials square to a multiple of the identity, see[9℄ and [25℄. So we have �20 = w0Id and �2Æ = wÆId for any Æ > 0 (as long as the modulispaesM1Æ(x�; x+) are regular). Now Theorem 2.2.2 implies that for suÆiently small Æ > 0and any x 2 I (viewed as generator in both hain groups) we have w0hxi = �20hxi = �2Æ hxi =wÆhxi, and hene w0 = wÆ. (If I is empty then both theories are trivial.)2 Due to more tehnial folding, J0;Æ ; J2;Æ are given by resaling J0 to [0; 1� Æ=2℄ and J2 to [Æ=2; 1℄, andextending them onstantly by J0(1) and J2(0) respetively. The onvergene holds sine eah Ji is smoothand onstant near t = 0; 1.



10 KATRIN WEHRHEIM AND CHRIS T. WOODWARDIf wÆ = 0 (e.g. by assumption (d)) or w0 = 0 for some other reason, then this proves thatboth Floer ohomologies are well de�ned and (again by Theorem 2.2.2) are isomorphi.For any value of w0 = wÆ this proves that there exists a anonial isomorphism�CF (L0 � L12; L01 � L2); �0� ��! �CF (L0 � L2; L01 Æ L12); �Æ�in the derived ategory of fatorizations of w0Id.3. Bijetion of moduli spaes under strip shrinkingIn this setion we prove Theorem 2.2.2. We start by desribing the strategy of proof andintroduing the relevant notations. First we use the assumption that L01 ÆL12 is embeddedby �02. Consider a solution u = (u0; u2) 2 fM10(x�; x+), that is a pair u0 : R � [0; 1℄!M0,u2 : R � [0; 1℄!M2 of index 1, with limits lims!�1(u0; u2)(s; �) = x�, and satisfying�J0u0 = 0; �J2u2 = 0;u0jt=0 2 L0; (u0jt=1; u2jt=0) 2 L02; u2jt=1 2 L2:We an identify (u0; u2) with the map u02 : R � [0; 1℄ ! M0 �M2 given by u02(s; t) =(u0(s; 1� t); u2(s; t)), whih satis�es lims!�1 u02(s; �) = x� and�J02u02 = 0; u02jt=0 2 L02; u02jt=1 2 L0 � L2:Here we denoted J02(s; t) := (�J0(s; 1� t); J2(s; t)). We will also denote �J02 := J02jt=0 and�u02 := u02jt=0 : R ! L02. Finally, we will denote by (L01�L12)T �M0�M2�M1�M1 theobvious transposition of fators. Sine �02 : L01 �M1 L12 ! L02 � M0 �M2 is transversaland embedded, there is a unique smooth map `1 : L02 !M1 suh that(12) (x02; `1(x02); `1(x02)) 2 (L01 � L12)T 8x02 2 L02:This provides the lift �u1 := `1 Æ �u02 : R ! M1. We also denote by �u := (�u02; �u1; �u1) theextension R�[0; Æ℄ !M0�M2�M1�M1 that is onstant along [0; Æ℄. Given Æ these hoiesare unique, so we an identify u with the pair (u02; �u). In the same spirit we �nd uniquepoints x�1 2 M1 suh that (x�; x�1 ) 2 (L0 � L12) \ (L01 � L2) � M0 �M1 �M2. In thisnotation we have the limit lims!�1 �u1(s) = x�1 . Given u 2 fM10(x�; x+) as above and Æ > 0we wish to �nd a orresponding (v0; v1; v2) 2 fM1Æ(x�; x+), that is a triple v0 : R � [0; 1℄ !M0, v1 : R � [0; Æ℄ ! M1, v2 : R � [0; 1℄ ! M2 with limits lims!�1(v0; v2)(s; �) = x�,lims!�1 v1(s; �) = x�1 , and satisfying�J0;Æv0 = 0; �J1v1 = 0; �J2;Æv2 = 0;v0(s; 0) 2 L0; (v0(s; 1); v1(s; 0)) 2 L01; (v1(s; Æ); v2(s; 0)) 2 L12; v2(s; 1) 2 L2:Here J0;Æ; J2;Æ are given by linearly resaling J0 to [0; 1�Æ=2℄ and J2 to [Æ=2; 1℄, and extendingthem onstantly by J0(1) and J2(0) respetively. This hoie of almost omplex struturesis more natural in the following reformulation of the Æ-moduli spaes.Let �Æ := Æ=(2 � Æ) (or equivalently Æ = 2�Æ=(1 + �Æ)). Instead of the triple strip weonsider a quadruple of maps v = (v02; v002; v1; v01) with v02 2 C1(R � [0; 1℄;M0 � M2),v002 2 C1(R�[0; �Æ ℄;M0�M2), v1; v01 2 C1(R�[0; �Æ ℄;M1) that have limits lims!�1 v02(s; �) =



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 11lims!�1 v002(s; �) = x�, lims!�1 v1(s; �) = lims!�1 v1(s; �) = x�1 , and satisfy�J02v02 = 0; �� �J02v002 = 0; ��J1v01 = 0; �J1v1 = 0;(v002; v02)jt=0 2 �0 ��2; (v01; v1)jt=0 2 �1;(13) (v002; v01; v1)jt=�Æ 2 (L01 � L12)T ; v02jt=1 2 L0 � L2:For notational onveniene we will also group these quadruples of maps as v = (v02; v̂)with v̂ = (v002; v1; v01). Then we an abbreviate J = (J02; Ĵ) with Ĵ := (� �J02;�J1; J1), andreformulate (13) as�Jv := ��J02v02 ; �Ĵ v̂� = 0;(v02; v̂)jt=0 2 �0 ��2 ��1; v̂t=�Æ 2 (L01 � L12)T ; v02jt=1 2 L0 � L2:We denote the moduli spae of suh solutions v = (v02; v̂) by M1�Æ(x�; x+). It is in one-to-one orrespondene to fM1Æ(x�; x+) as follows: Given v = (v02; v002; v01; v1) 2 M1�Æ(x�; x+) weobtain �v = (v0; v1; v2) 2 fM1Æ(x�; x+) from�v0(s; 1� t); v2(s; t)� = � v002((1 + �Æ)s; �Æ � (1 + �Æ)t) for 0 � t � 12Æ;v02((1 + �Æ)s; (1 + �Æ)t� �Æ) for 12Æ � t � 1;v1(s; t) = � v01((1 + �Æ)s; �Æ � (1 + �Æ)t) for 0 � t � 12Æ;v1((1 + �Æ)s; (1 + �Æ)t� �Æ) for 12Æ � t � Æ:The two di�erent formulations for double and triple strips eah are indiated in Figure 4.The bijetion TÆ to the moduli spae M10(x�; x+) an then be established via a bijetion

v002 v02L0
L2u02�u02�u1 L0

L2�u1 MÆ : v01v1 L12L01�0�1�2
�0L01�1L12�2

u2 v0 v2L0 L0L02 L2 L12 L2L01u0 ~MÆ : v1~M0 :

Figure 4. Double and triple strips(14) T�Æ :M10(x�; x+)!M1�Æ(x�; x+) := M1�Æ(x�; x+)=R:This map will be onstruted by the impliit funtion theorem 3.1.1. We prove injetivityin orollary 3.1.6, and the surjetivity will follow from the ompatness theorem 3.3.1.



12 KATRIN WEHRHEIM AND CHRIS T. WOODWARD3.1. Impliit funtion theorem. The purpose of this setion is to onstrut the mapTÆ :M10(x�; x+)!M1Æ(x�; x+) of Theorem 2.2.2. We will do this by onstruting the map(14), with �Æ replaed by Æ, from the following impliit funtion theorem.Theorem 3.1.1. There exist onstants C0, � > 0, and Æ0 > 0 suh that the following holdsfor every Æ 2 (0; Æ0℄. For every u 2 fM10(x�; x+) there exists a unique vu 2 M1Æ(x�; x+)suh that vu = eu(�) with � 2 �1;Æ(�) \K0. The solution moreover satis�es(15) k�kH21;Æ � C0pÆ:Here eu(�) := (v02; v002; v01; v1) is given in terms of u = (u02; �u) and � = (�02; �̂) with�02 2 �(u�02T (M0 �M2)) and �̂ = (�002; �01; �1) 2 �(�u�T (M0 �M2 �M1 �M1)). The preisede�nitions of the exponential map eu, the �-ball �1;Æ(�), the H21;Æ-norm, and the loal slieK0 of the R-shift symmetry will be given in the proess of the proof.To prove the theorem we �x a solution u 2 fM10(x�; x+), and in the following will allowall onstants to depend on u up to translation in R. (Sine M10(x�; x+) is �nite we anthen easily �nd uniform onstants C0 and Æ0 > 0.) We will then roughly solve �Jeu(�) = 0for setions � = (�02; �̂), �̂ = (�002; �01; �1) satisfying the boundary onditions(�002; �02)jt=0 2 T(�u02;�u02)�M0�M2 ; (�01; �1)jt=0 2 T(�u1;�u1)�1;(16) �̂jt=Æ = (�002; �01; �1)jt=Æ 2 T�u(L01 � L12)T ; �02jt=1 2 Tu02(L0 � L2):The exponential map eu(�) will then be onstruted suh that the nonlinear Lagrangianboundary onditions are satis�ed automatially. The index of the new solution vu willoinide with that of the given solution u due to Lemma 2.1.3. Here we identi�ed vu witha solution �vu 2 fM1~Æ(x�; x+), ~Æ = 2Æ=(1 + Æ). Then the homotopy between vu = eu(�) and(u02; �u) indues a homotopy �vu �= (u0; �u1; u2).To set up the impliit funtion theorem we introdue the spae ofHk-setions over (u02; �u)for k 2 N0 , Hk1;Æ := 8>><>>:(�02; �002; �01; �1) �������� �02 2 Hk(R � [0; 1℄; u�02T (M0 �M2));�002 2 Hk(R � [0; Æ℄; �u�02T (M0 �M2));�01; �1 2 Hk(R � [0; Æ℄; �u�1TM1) 9>>=>>; :We also write these setions as � = (�02; �̂) 2 Hk1;Æ, where the subsripts indiate the widthof the domains of �02 and �̂ = (�002; �01; �1) 2 Hk(R� [0; Æ℄; �u�T (M0�M2�M1�M1)). Theorresponding Hk-norm on this spae is(�02; �002; �01; �1)2Hk1;Æ := k�022Hk(R�[0;1℄) + k�̂2Hk(R�[0;Æ℄)= k�022Hk(R�[0;1℄) + k�0022Hk(R�[0;Æ℄) + k�012Hk(R�[0;Æ℄) + k�12Hk(R�[0;Æ℄):We denote the spae of H2-setions satisfying the boundary onditions by�1;Æ := �� 2 H21;Æ �� (16)	and equip this spae with the norm��1;Æ := k�H21;Æ + kr�L41;Æ ;



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 13with the L4-norm kr(�02; �̂)kL41;Æ := �kr�02k4L41;Æ(R�[0;1℄)+kr�̂k4L41;Æ(R�[0;Æ℄)�1=4 on the multi-strip. We denote the �-ball in �1;Æ by�1;Æ(�) := �� 2 H21;Æ �� k�k�1;Æ < �; (16)	:We equip the target spae 
1;Æ := H11;Æ with the normk�k
1;Æ := k�kH11;Æ + k�kL41;Æ :The reason for adding the L4-norms in domain and target is that we do not have uniformSobolev embeddings on the strips of varying width. Instead, we build the neessary Sobolevmultipliation properties into the norms.Next, we make some preparations for de�ning an exponential map that is ompatiblewith the boundary onditions (16).Lemma 3.1.2. (Existene of ompatible quadrati orretions) There exists �0 > 0 andsmooth families of maps (de�ned on the �0-balls)Qs : T�u(s)�M0 �M2 �M1 �M1� � B�0 ! T�u(s)�M0 �M2 �M1 �M1�; 8s 2 R;Q02s;t : Tu02(s;t)(M0 �M2) � B02�0 ! Tu02(s;t)(M0 �M2) 8(s; t) 2 R � [0; 1℄;that are a di�eomorphism onto their image and have the following properties:(Quadrati): Qs(0) = 0, dQs(0) � 0, Q02s;t(0) = 0, and dQ02s;t(0) � 0 for all (s; t) 2R�[0; 1℄. In partiular, there is a onstant CQ suh that for all �̂ 2 B�0 and �02 2 B02�0(17) jQs(�̂)j � CQj�̂j2; jQ02s;t(�02)j � CQj�02j2:(Linearizing L01 � L12): exp�u(s) Æ (1 + Qs) maps T�u(s)(L01 � L12)T \ B�0 to (L01 �L12)T .(Linearizing M0 �M2 ��1): exp�u(s) Æ (1 + Qs) maps T�u(s)(M0 �M2 � �1) \ B�0to M0 �M2 ��1.(Linearizing L02): expu02(s;1) Æ (1 +Q02s;1) maps Tu02(s;1)L02 \B02�0 to L02.(Compatible): Restriting Qs to T�u(M0 �M2 ��1) and omposing it with the pro-jetion Pr02 : T(�u02;�u1;�u1)(M0 �M2 �M1 �M1)! T�u02(M0 �M2) yields a map thatis independent of the T(�u1;�u1)�1-omponent. The resulting familyQ02s : T�u02(s)(M0 �M2) � B02�0 ! T�u02(s)(M0 �M2)oinides with Q02s;0.Proof. We �x s 2 R and restrit the exponential map exp�u(s) to a geodesi ball around0. The subsequent onstrutions will depend smoothly on s 2 R, whih we drop fromnow on. By assumption the submanifold L0211 := exp�1�u (L01 � L12)T in the vetor spaeX := T�u(M0�M2�M1�M1) is transverse to the subspae � := T�u(M0�M2��1). Theirintersetion L̂02 := L0211 \ � is di�eomorphi to the submanifold L02 := exp�1�u02(L02) �T�u02(M0 �M2) by a map (m0;m2) 7! (m0;m2;m1;m1) with uniquely determined m1 =m1(m0;m2). So we have a diret sum deomposition� = T�u02(M0 �M2)� T(�u1;�u1)�1 = T0L̂02 � �(T0L02)? � f0g�� �f0g � T(�u1;�u1)�1�:As a submanifold we an now write L̂02 � � as the graph of a map  over a suÆientlysmall �-ball,  =  ?02 �  11 : T0L̂02 � B� ! �T0L02�? � T(�u1;�u1)�1



14 KATRIN WEHRHEIM AND CHRIS T. WOODWARDwith  (0) = 0 and d (0) � 0. We moreover pik a omplement C of T0L̂02 � T0L0211,T0L0211 = C � T0L̂02;then the transversality X = T0L0211 +� implies the splitting(18) X = C � T0L̂02 � �T0L02�? � f0g � f0g � T(�u1;�u1)�1:We write X 3 x = xC + x02 + (x?02; 0) + (0; x11) in this splitting and de�ne a map 	 : X �B� ! X by 	(x) := x+ ( ?02(x02); 0) + (0;  11(x02))= xC + x02 + (x?02 +  ?02(x02); 0) + (0; x11 +  11(x02)):
L̂02L0211 �T0L02 

This map linearizes the intersetion, 	(T0L̂02) = L̂02, and we have 	(0) = 0 and d	(0) =Id. In order to linearize the entire Lagrangian L0211 we remark that T0�	�1(L0211)� =d	(0)�1T0L0211 = T0L0211. So we an write 	�1(L0211) as graph of a map� = �?02 � �11 : T0L0211 � B� ! �T�u02L02�? � T(�u1;�u1)�1with �(0) = 0, d�(0) � 0, and by the previous onstrution �jT0L̂02 � 0.
�T0	�1(L̂02)=	�1(L̂02)

	�1L0112T0	�1L0112



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 15Finally we de�ne the entire linearization � : X � B� ! X by�(x) := 	�x+ (�?02(xC + x02); 0) + (0; �11(xC + x02))�for x = xC + x02 + (x?02; 0) + (0; x11) in the splitting (18). Now Qs := � � Id is quadratiand linearized (L01 � L12)T by onstrution. Expliitly, we have(19) Qs(x) = � ?02(x02) + �?02(xC + x02);  11(x02) + �11(xC + x02)�:The onstrution moreover ensures that Qs linearizes M0 �M2 � �1, that is �(�) � �,sine x 2 � = fxC = 0g is mapped to �(x) = x+ � ?02(x02);  11(x02)� 2 �.To onstrut Q02s ompatible with Qs note that for x = (m0;m2;m1;m1) 2 T�u(M0 �M2 ��1) � X we have a splittingx = (m0;m2; 0; 0) + (0; 0;m1;m1) = xC + x02 + (x?02; 0) + (0; x11 + (m1;m1));where xC ; x02; x?02; x11 only depend on (m0;m2). With this we an see in (19) that in-deed Qs(m0;m2;m1;m1) is independent of m1. We then simply de�ne Q02s;0(m0;m2) :=Pr02Qs(m0;m2; 0; 0). Moreover, a graph onstrution as above provides a map Q02s;1 :Tu02(s;1)(M0 � M2) � B02� ! Tu02(s;1)(M0 � M2) that is quadrati and linearizes L02.Now the two families Q02s;0 and Q02s;1 an easily be interpolated by the smooth familyQ02s;t := (1� t)Q02s;0 + tQ02s;1 of quadrati maps. �With these quadrati orretions we an now de�ne the exponential map eu by eu(�) :=(eu02(�02); e�u(�̂)) for � = (�02; �̂) 2 �1;Æ(�), whereeu02(�02) := expu02 Æ (1 +Q02)(�02); e�u(�̂) := exp�u Æ (1 +Q)(�̂):(20)Note that we have the usual properties of an exponential map,eu(0) = (u02; �u); deu(0) = Id:To de�ne eu on �1;Æ(�) the � > 0 should be hosen suh that k�02kC0 and k�̂kC0 are suÆientlysmall for the quadrati orretions in Lemma 3.1.2 to be de�ned. Lemma 3.1.4 belowensures that we an pik a uniform � > 0 for all Æ > 0. Now solutions vu 2 M1Æ(x�; x+) ina neighborhood of u orrespond to zeroes of the map Fu : �1;Æ(�)! 
1;Æ given byFu(�) := ��u02(�02)�1(�J02eu02(�02)) ; ��u(�̂)�1(� Ĵe�u(�̂)) �:Here �u(�) denotes the parallel transport TuM ! Teu(�)M along the path � 7! eu(��).For �u02 this parallel transport on T (M0�M2) an simply use the Levi-Civita onnetion.In the de�nition of ��u we however use a Hermitian onnetion ~r on the tangent bundleT (M0�M2�M1�M1) that leaves Ĵ invariant. This an be done by the same onstrutionas in [8, Proposition 3.1.1℄, whih brings the linearized operator into simple form.Next, we introdue projetions related to the various Lagrangians:�?0211 2 Aut�C1(R; �u�T (M0 �M2 �M1 �M1))�;�02 ; �?02 2 Aut�C1(R; �u�02T (M0 �M2))�are linear operators, given by pointwise orthogonal projetion onto the subspaes (T (L01�L12)T )? � T (M0 �M2 �M1 �M1) resp. TL02; (TL02)? � T (M0 �M2). The followinglemma ontains the estimates resulting from the transversality assumption.Lemma 3.1.3. (Quantitative transversality) There exists a onstant C suh that the fol-lowing holds.



16 KATRIN WEHRHEIM AND CHRIS T. WOODWARD(a) For every s 2 R and �̂ = (�002; �01; �1) 2 T�u(s)(M0 �M2 �M1 �M1)j�̂j � C�j�02�002j+ ���01 � �1��+ ���?0211�̂���;j�?02�002j � C�j�?0211�̂j+ j�01 � �1j�:(b) For every �̂ 2 C1(R; �u�T (M0 �M2 �M1 �M1))k�̂kH1(R) � C�k�02�002kH1(R) + k�01 � �1kH1(R) + k�?0211�̂kH1(R)�;and the same holds with H1 replaed by C1 or Lp for any p � 1. Moreover,k�?02�002kL2(R) � C�k�?0211�̂kL2(R) + k�01 � �1kL2(R)�;k�?02�002kH1(R) � C�k�?0211�̂kH1(R) + k�01 � �1kH1(R) + j�s�uj � j�̂jL2(R)�:Proof. The Lagrangian L01�L12 intersetsM0��1�M2 transversally in L̂02, whih injetsto L02 �M0 �M2. So at every point of L̂02 we have a deomposition T (M0 �M2 �M1 �M1) = T L̂02 � (T L̂02)?, where we an hange the �rst fator to TL02 � f0g. On the otherhand, the transverse intersetion implies(21) (T L̂02)? = �f0g � (T�1)?�� T (L01 � L12)?;so we obtain a splitting(22) T (M0 �M2 �M1 �M1) = �TL02 � f0g�� �f0g � (T�1)?�� T (L01 � L12)?:This means that the produt of the three orthogonal projetions onto the fators de�nes anisomorphism. The norm of this isomorphism is bounded at eah �u(s) 2 L̂02, so for every�̂ = (�002; �01; �1) 2 T�u(s)(M0 �M2 �M1 �M1) we havej�̂j � C�j�02�002j+ ���01 � �1��+ ���?0211�̂���with a uniform onstant C as laimed in (a). (Here the projetion onto (T�1)? is given by(�002; �01; �1) 7! 12(�01 � �1; �1 � �01).) Moreover, the splitting (22) ommutes withT (M0 �M2) = TL02 � (TL02)?via the anonial projetion on the left hand side, and on the right hand side the identity onTL02 ombined with a bounded map �f0g � (T�1)?�� T (L01�L12)? ! TL02� (TL02)?.This implies that j�?02�002j � C�j�?0211�̂j+ j�01 � �1j�with another uniform onstant C. This proves (a). For �̂ 2 C1(R; �u�T (M0�M2�M1�M1))we an then apply the pointwise estimates to �̂(s) and integrate over s 2 R to obtain forany p � 1 inluding p =1k�̂kLp(R) � C�k�02�002kLp(R) + k�01 � �1kLp(R) + k�?0211�̂kLp(R)�;(23) k�?02�002kLp(R) � C�k�?0211 �̂kLp(R) + k�01 � �1kLp(R)�:In order to prove the H1- and C1-estimates we also apply the pointwise estimates to rs�̂(s),jrs�̂j � C�j�02(rs�002)j+ ��rs�01 �rs�1��+ ���?0211(rs�̂)���;j�?02(rs�002)j � C�j�?0211(rs�̂)j+ jrs�01 �rs�1j�:



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 17Here we will need the inequalitiesj�02(rs�002)j � C�jrs(�02(�002))j+ j�̂j�;j�?0211(rs�̂)j � C�jrs(�?0211(�̂))j+ j�s�uj � j�̂j�;jrs(�?02(�002))j � C�j�?02(rs�002)j+ j�s�uj � j�̂j�:The �rst inequality (and similarly the others) an be seen by writing �002 in a loal orthonor-mal frame given by (i(s))i=1;:::;k 2 �u02(s)�TL02 and (�i(s))i=1;:::;K 2 �u02(s)�(TL02)?. Writ-ing �̂ =P�ii +P�i�i we have���02(rs�002)�rs(�02(�002))�� = ���X�i��02(rsi)�rsi�+X�i�02rs(�i)���� Cj�s�u02j � j�002j:Note here that rsi = r�s�u02i and rs�i = r�s�u02�i are uniformly bounded. Puttingthings together we obtain the �rst estimate in (b) with an extra k�̂kL2(R) or k�̂kC0(R) on theright hand side, for whih we an use (23). For the last estimate in (b) we obtainkrs(�?02�002)kL2(R) � C�krs(�?0211�̂)kL2(R) + krs�01 �rs�1kL2(R) + j�s�uj � j�̂jL2(R)�:This �nishes the proof of (b). �The following lemma ontains a Sobolev estimate with a onstant independent of thewidth Æ of the middle strip; here the transversality assumption is used in a ruial way.Lemma 3.1.4. (Uniform Sobolev Estimate) There is a onstant CS suh that for all Æ 2(0; 1℄ and � = (�02; �̂) 2 H21;Æk�02kC0([0;1℄;H1(R)) + k�̂kC0([0;Æ℄;H1(R))� CS�k�kH21;Æ + k(�02 � �002)jt=0kH1(R) + k(�1 � �01)jt=0kH1(R) + k�?0211�̂jt=ÆkH1(R)�:In partiular, for all p > 2 inluding p = 1 and for � 2 �1;Æ satisfying the boundaryonditions (16), k�02kLp(R�[0;1℄) + k�̂kLp(R�[0;Æ℄) � CSk�kH21;Æ :Proof. The C0- and Lp-estimates will follow from the ontinuous embeddings H1(R) ,!C0(R) and H1(R) ,! Lp(R) for p � 2. So it suÆes to suppose by ontradition that thereare sequenes Æ� > 0 and �� 2 H21;Æ� with k��02kC0([0;1℄;H1(R)) + k�̂�kC0([0;Æ� ℄;H1(R)) = 1 butk��kH21;Æ� + k(��02� �0�02)jt=0kH1(R)+ k(��1 � �0�1 )jt=0kH1(R)+ k�?0211�̂� jt=Æ�kH1(R) ! 0. By thestandard Sobolev embeddingH2([0; 1℄ � R) � H1([0; 1℄;X) ,! C0([0; 1℄;X) with X = H1(R)this implies k��02kC0([0;1℄;H1(R)) ! 0, and so(24) k�0�02jt=0kH1(R) � k��02jt=0kH1(R) + k(��02 � �0�02)jt=0kH1(R) ! 0:We an moreover integrate for all t0 2 [0; Æ� ℄ to obtain(25) k�̂� jt=t0 � �̂� jt=Æ�k2H1(R) � Æ� Z Æ�0 krt�̂�k2H1(R) � Æ�k�̂�k2H2(R�[0;Æ� ℄) ! 0:



18 KATRIN WEHRHEIM AND CHRIS T. WOODWARDUsing Lemma 3.1.3 we then obtaink�̂� jt=Æ�kH1(R)� C�k�02�0�02jt=Æ�kH1(R) + k(��1 � �0�1 )jt=Æ� kH1(R) + k�?0211�̂� jt=Æ�kH1(R)�� C�k�02(�0�02jt=Æ� � �0�02jt=0)kH1(R) + k�02(�0�02)jt=0kH1(R)+ k(��1 � �0�1 )jt=0kH1(R) + 2k�̂� jt=Æ� � �̂� jt=0kH1(R) + k�?0211�̂� jt=Æ�kH1(R)�! 0with uniform onstants C;C 0 by (16), (24), (25), and a bound on the operator norm of �02.Now ombining k�̂� jt=Æ�kH1(R) ! 0 with (25) proves k�̂�kC0([0;Æ� ℄;H1(R)) ! 0 in ontraditionto the assumption and the previously established fat that k��02kC0([0;1℄;H1(R)) ! 0. �The solution u of the 0-equation orresponds to � = 0, whih is an almost zero of Fu.This and a quadrati estimate for dFu near 0 is the ontent of the next lemma. For laterpurposes we also ompare dFu(�) with the linearized operator Deu(�) of �J = (�J02 ; � Ĵ) ateu(�). To state the omparison we will need the pointwise linear operatorEu(�)� := dd� eu(� + ��)j�=0:It satis�es Eu(0) = Id, and sine eu maps �1;Æ to the spae of maps satisfying the bound-ary onditions in (13), the linearization Eu(�) maps �1;Æ to the spae of setions � 2�(v�02TM02)� �(v̂�TM0211) over v = (v02; v̂) := eu(�), that satisfy the linearized boundaryonditions(�02; �)jt=0 2 Tv(�0 ��2 ��1); �̂jt=Æ 2 Tv̂(L01 � L12); �02jt=1 2 Tv02(L0 � L2):The linearized operator Dv ats on this spae of setions and is given byDv� = ~r��Jev(��)j�=0;with the onnetion ~r introdued on page 15. In this notation we have Deu(0) = dFu(0).Lemma 3.1.5. (Uniform quadrati and error estimates) There are uniform onstants � > 0and C1; C2; C3 suh that for all Æ 2 (0; 1℄ and � 2 �1;Æ(�), � 2 �1;ÆkFu(0)k
1;Æ � C1pÆ;kdFu(�)� � dFu(0)�k
1;Æ � C2k�k�1;Æk�k�1;Æ ;kdFu(�)� � �u(�)�1Deu(�)Eu(�)�k
1;Æ � C3k�k�1;Æk�k�1;Æ :Proof. To estimate Fu(0) we reall that u02 is holomorphi and �u is onstant in t, sokFu(0)k2
1;Æ = k(0; �s�u)k2H11;Æ = Æ�k�su02jt=0k2H1(R) + 2k�s�u1k2H1(R)� = C21Æ:Here �su02 ! 0 onverges exponentially as s! �1, and so does �s�u1 = d`1(�s�u02), where`1 from (12) has bounded di�erential. This shows that the above onstant C1 is indeed �nite.For the third estimate we di�erentiate as in [8, p.68℄ the identity �u(� + ��)Fu(� + ��) =�J(eu(� + ��)) to obtain(26) �u(�)dFu(�)� �Deu(�)Eu(�)� = �	u(�; �;Fu(�));where the estimate for the right hand side	u(�; �; �) := ~r� (�u(� + ��)�)j�=0



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 19is part of the estimates below. The �rst omponent of Fu is independent of Æ, so thequadrati estimates for it simply follow from the ontinuous di�erentiability of Fu. For theseond omponent we follow the argument in [8, Prop.3.5.3.℄ to obtain a uniform onstantfor all Æ 2 (0; 1℄. We need to onsiderF�u(�̂) := ��u(�̂)�1(� Ĵe�u(�̂));where e�u(�̂) = exp�u(�̂ +Q(�̂)) is the exponential map with quadrati orretion de�ned in(20). Note that our parallel transport ��u(�̂) is de�ned with respet to the path � 7! e�u(� �̂)and the Hermitian onnetion ~r on T (M0 �M2 �M1�M1) that leaves Ĵ invariant. Sinee�u(0) = �u and de�u(0) = Id, the same path an be used in the de�nition of r�̂ instead of thegeodesi. Now let �; � 2 �1;Æ with k�kH21;Æ � �. Then by Lemma 3.1.4k�̂kC0 � CSk�kH21;Æ � CS� =: 0; k�̂kC0 � CSk�kH21;Æwith a uniform onstant CS thus a uniform onstant 0 that only depends on �. In thefollowing, all onstants will be uniform in the sense that they only depend on 0 and hene�. Next, we onsiderE�u(�̂)�̂ := dd� e�u(�̂ + � �̂)j�=0; 	�u(�̂; �̂; �) := ~r� (��u(�̂ + � �̂)�)j�=0:Note that E�u(0) = Id and that 	(0; �̂; �) = 0 sine the ovariant derivative exatly uses theparallel transport ��u(� �̂). Moreover, these maps are linear in �̂ and �, and they dependsmoothly on �̂. So given � and thus j�̂j � 0 we have linear boundsjE�u(�̂)j � 1; jr(E�u(�̂))j � 1�jr�̂j+ jd�ujj�̂j�; j	�u(�̂; �̂; �)j � 1j�̂jj�̂jj�jwith a uniform onstant 1. With these preparations we alulate from (26), using thenotation of [8, Prop.3.5.3.℄,��u(�̂)�dF�u(�̂)�̂ � dF�u(0)�̂�= �	�u(�̂; �̂;F�u(�̂)) + �r(E�u(�̂))�̂�0;1 + ��E�u(�̂)� ��u(�̂)�r�̂�0;1� 12 Ĵ(e�u(�̂))��(r(E�u(�̂)�̂���u(�̂)�̂)Ĵ)(e�u(�̂))���u(�̂)d�u�0;1� 12 Ĵ(e�u(�̂))��(r��u(�̂)�̂Ĵ)(e�u(�̂))� ��u(�̂)(r�̂ Ĵ)(�u)��u(�̂)�1���u(�̂)d�u�0;1� 12 Ĵ(e�u(�̂))�(rE�u(�̂)�̂Ĵ)(e�u(�̂))(d(e�u(�̂))� ��u(�̂)d�u)�0;1:We then use the uniform bounds on krĴk1, jd�uj, j�̂j, and the estimatesjF�u(�̂)j � jd(e�u(�̂))j � 2�jr�̂j+ jd�uj�; jd(e�u(�̂))� ��u(�̂)d�uj � 2�jr�̂j+ jd�ujj�̂j�;��E�u(�̂)� ��u(�̂)�� � 2j�̂j; ��(r��u(�̂)�̂Ĵ)(e�u(�̂))� ��u(�̂)(r�̂ Ĵ)(�u)��u(�̂)�1�� � 2j�̂jj�̂jwith a uniform onstant 2 to obtain with a further uniform onstant 3��dF�u(�̂)�̂ � dF�u(0)�̂�� � 3�j�̂jj�̂j+ j�̂jjr�̂j+ j�̂jjr�̂j�:So far these pointwise estimates were standard alulations. Now we have to hek thatthey atually lead to uniform bounds in the Æ-dependent norms. The zeroth order part of



20 KATRIN WEHRHEIM AND CHRIS T. WOODWARDthe 
1;Æ-norm over R � [0; Æ℄ an be estimated with the help of Lemma 3.1.4 bydF�u(�̂)�̂ � dF�u(0)�̂L2 � 3�k�̂kL4k�̂kL4 + k�̂kC0kr�̂kL2 + k�̂kC0kr�̂kL2�� 3(C2S + 2CS)k�kH21;Æk�kH21;Æ ;dF�u(�̂)�̂ � dF�u(0)�̂L4 � 3�k�̂kL8k�̂kL8 + k�̂kC0kr�̂kL4 + k�̂kC0kr�̂kL4�� 3(C2S + 2CS)�k�kH21;Æ + k�kL41;Æ��k�kH21;Æ + kr�kL41;Æ�:For the �rst order part of the 
1;Æ-norm one di�erentiates the above identity and usesfurther bounds on kr2Ĵk1 and jrd�uj to �nd a pointwise bound��r�dF�u(�̂)�̂ � dF�u(0)�̂��� � 4�j�̂j+ jr�̂j��j�̂j+ jr�̂j�+ 4�jr2�̂jj�̂j+ jr�̂j2j�̂j+ jr�̂jjr�̂j+ j�̂jjr2�̂j�:Then we again use Lemma 3.1.4 and kr�̂kL2 � � to obtain with a �nal uniform onstant 5r�dF�u(�̂)�̂ � dF�u(0)�̂�L2� 4�k�̂kL4 + kr�̂kL4��k�̂kL4 + kr�̂kL4�+ 4�kr2�̂kL2k�̂kC0 + kr�̂kL2kr�̂kL4k�̂kL4 + kr�̂kL4kr�̂kL4 + k�̂kC0kr2�̂kL2�� 5�k�kH21;Æ + kr�kL41;Æ��k�kH21;Æ + kr�kL41;Æ�: �Theorem 3.1.1 now follows from the impliit funtion theorem [8, A.3.4℄ if we an establishsurjetivity and a uniform bound on the right inverse for the linearized operatorDÆ : �1;Æ ! 
1;Æ; DÆ� := dFu(0)� = �Du02�02 ; D�u�̂�;(27) Du02�02 = rs�02 + J(u02)rt�02 +r�02J02(u02)�tu02;D�u�̂ = rs�̂ + Ĵ(�u)rt�̂ + 12r�̂Ĵ(�u)Ĵ(�u)�s�u:Here Du02 and D�u are the linearized operators of �J02 at u02 (whih is holomorphi) and of�Ĵ at �u (whih satis�es �t�u = 0) respetively. (See [8, Prop.3.1.1.℄ for an expliit alulationof the linearized operators, and note that we identify 
0;1(R� [0; 1℄; u�TM) with setions ofu�TM by ds+Jdt 7! .) We an identify the okernel of DÆ with (imDÆ)? � (H11;Æ)�. Byellipti regularity any element in this okernel an be represented by the L2-inner produth�; imDÆi = 0 with a smooth setion �. Partial integration then shows that � 2 �1;Æsatis�es the boundary onditions (16) and lies in the kernel of the formal adjoint operator,(DÆ)�� = 0. Note that (DÆ)� is given by ��rs+J02(u02)rt;�rs+Ĵ(�u)rt� plus lower orderterms. So (DÆ)� has the same analyti properties as DÆ, and we will prove the surjetivityof DÆ by establishing injetivity for (DÆ)�.By our assumptions on the index and regularity of (u0; u2) 2 fM10(x�; x+) we know thatthe operator Du02 � �?02 on the spae of setions in H2(u�02T (M0 �M2)) with boundaryonditions at t = 1 in T (L0 � L2) (where �?02 is the projetion at t = 0) is surjetive andhas a one dimensional kernel ker(Du02 ��?02). This is not a subspae of �1;Æ, but we will �xa omplement for every Æ > 0 in the following sense,K0 := �� = (�02; �̂) 2 �1;Æ �� h�02; ker(Du02 � �?02)iL2 � 0	:Here we used the L2-inner produt on H2(R � [0; 1℄; u�02T (M0 �M2)).



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 21Combining the uniform linear estimates Lemma 3.2.1 and Lemma 3.2.2 we an hooseÆ0 := 1162122 > 0 suh that for all Æ 2 (0; Æ0) and � 2 �1;Æ(1 + �12 )k(DÆ)��k
1;Æ � 12k(DÆ)��kH11;Æ + 12k(DÆ)��kL41;Æ + �12 kD�u02�02kH1(R�[0;1℄)� 121k�k�1;Æ � �12 pÆkrt�̂kH1(R�[0;Æ℄) � 141k�k�1;Æ ;and similarly for all � 2 �1;Æ \K0kDÆ�k
11;Æ � 124(2 + 1)k�k�1;Æ :(28)The �rst estimate shows that (DÆ)� is injetive and hene DÆ is surjetive. The seondestimate shows that its right inverse is uniformly bounded. It remains to hek that DÆstays surjetive when restrited to K0. This follows from the fat that both Du02 withboundary onditions in (L02; L0 � L2) and DÆ = (Du02 ;D�u) with boundary onditions(16) are surjetive and have the same index 1 by Lemma 2.1.3 and the identi�ationfM1�Æ(x�; x+) �= M1�Æ(x�; x+). So DÆ has a 1-dimensional kernel, whih is transversal toK0 by the last estimate, and hene DÆjK0 must be surjetive. This �nishes the proof oftheorem 3.1.1. Here � > 0 is �xed suh that the exponential map eu is de�ned on �1;Æ(�)and suh that Lemma 3.1.5 holds.Corollary 3.1.6. There exists Æ0 > 0 suh that the map TÆ : M10(x�; x+) !M1Æ(x�; x+)given by TÆ([u℄) := [vu℄ is well de�ned and injetive for all Æ 2 (0; Æ0℄.Proof. We hoose Æ0 � �2C�20 suh that Theorem 3.1.1 applies. Then let vu = eu(�) be thesolution onstruted from u 2 fM10(x�; x+) and onsider a shifted 0-solution ~u = u(�+ �) 2[u℄. Then ~� := �(� + �) satis�es k~�k = k�k � C0pÆ � �, Fu(~�) = 0, and the orthogonalityondition to ker(D~u02��?02). Hene v~u = eu(�+�)(�(�+�)) = vu(�+�) 2 [vu℄, so TÆ([u℄) = [vu℄is well de�ned.The injetivity of TÆ follows from the fat that M10(x�; x+) onsists of isolated points,so the C0-distane dC0([u℄; [u0℄) > �0 is bounded below by some �0 > 0 for all [u℄ 6= [u0℄.On the other hand, dC0([�u℄;TÆ([u℄) � C0CS(1 +CQ)pÆ by (15), (17), and Lemma 3.1.4. Soif we had TÆ([u℄) = TÆ([u0℄) then dC0([u℄; [u0℄) � dC0([�u℄; [�u0℄) � 2C0CS(1 + CQ)pÆ . Thisimplies [u℄ = [u0℄ whenever Æ � Æ0, where we hoose Æ0 � (2C0CS(1 + CQ))�2�20. �3.2. Uniform estimates. In this setion we establish the uniform linear and nonlinearestimates that are used in Setions 3.1 and 3.3. We will work in the setup of setion 3.1and �x a solution u 2 fM10(x�; x+). For onveniene we denote the target spaes by M02 :=M0�M2 andM0211 :=M0�M2�M1�M1 and the sympleti strutures by !02 = (�!0)�!2and !0211 = !0 � (�!2)� (�!1)� !1 respetively. The nonlinear equation for v = (v02; v̂),v02 : R � [0; 1℄!M02, v̂ : R � [0; Æ℄!M0211 is�Jv := �sv + J(v)�tv := ��sv02 + J02(v02)�tv02 ; �sv̂ + Ĵ(v̂)�tv̂�:We will need uniform estimates for the nonlinear operator � 7! �Jeu(�) on � 2 �1;Æ(�) andthe linearized operator DÆ. For that purpose we use the Levi-Civita onnetion onM =M02and M = M0211 respetively to identify TuM � TuM �= T�TuM for every � 2 TuM . Withthis we deompose Te(u; �) : T�TuM ! Teu�M asTe(u; �)(X; �) = �1e(u; �)X + deu(�)� 8�;X; � 2 TuM:



22 KATRIN WEHRHEIM AND CHRIS T. WOODWARDWe denote the pullbak almost omplex struture on H21;Æ under deu(�) byJ(�) := (J02(�02); Ĵ(�̂)):= �(deu02(�02))�1J02(eu02(�02))deu02 (�02); (de�u(�̂))�1Ĵ(e�u(�̂))de�u(�̂)�for � = (�02; �̂) 2 �1;Æ(�). With this we an express(29) �J(eu(�)) = deu(�)�rs� + J(�)rt��+ �1e(u; �)�su+ J(u)�1e(u; �)�tuin terms of the nonlinear operator on H21;Æ,rs� + J(�)rt� := �rs�02 + J02(�02)rt�02 ; rs�̂ + Ĵ(�̂)rt�̂�:Note that J(0) = (J02; Ĵ) is the usual almost omplex struture, so we an express thelinearized operator (27) asDÆ� = rs� + J(0)rt� + �r�02J02(u02)�tu02 ; 12r�̂Ĵ(�u)Ĵ(�u)�s�u�:The following lemma provides uniform ellipti estimates.Lemma 3.2.1.(a) There is a onstant C1 suh that for all Æ 2 (0; 1℄ and � 2 �1;Æ����Zf1g�R !02(�02;rs�02)����+ ����ZfÆg�R !0211(�̂;rs�̂)���� � C1�k�02jt=1kH0(R) + k�̂jt=ÆkH0(R)�2;����Zf1g�R !02(rs�02;r2s�02)����+����ZfÆg�R !0211(rs�̂;r2s �̂)���� � C1�k�02jt=1kH1(R) + k�̂jt=ÆkH1(R)�2:(b) There is a onstant � > 0 and for every 0 > 0 there is a onstant C1 suh that forall Æ 2 (0; 1℄ and �; � 2 H21;Æ with k�k1 � �, kr�k1 � 0k�kH11;Æ � C1�krs� + J(�)rt�kH01;Æ + k�kH01;Æ+ ����ZfÆg�R !0211(�̂;rs�̂)����1=2 + ����Zf1g�R !02(�02;rs�02)����1=2�;k�kH21;Æ � C1�krs� + J(�)rt�kH11;Æ + k�kH01;Æ+ ����ZfÆg�R !0211(�̂;rs�̂)����1=2 + ����ZfÆg�R !0211(rs�̂;r2s �̂)����1=2+ ����Zf1g�R !02(�02;rs�02)����1=2 + ����Zf1g�R !02(rs�02;r2s�02)����1=2�;kr�kL41;Æ � C1�k�kH21;Æ + krs� + J(�)rt�kL41;Æ + k�̂jt=ÆkH1(R)�:() There is a onstant 1 > 0 suh that for all Æ 2 (0; 1℄ and � 2 �1;Æ1k�kH21;Æ � kDÆ�kH11;Æ + k�kH01;Æ + k�̂jt=ÆkH1(R) + k�02jt=1kH1(R);1kr�kL41;Æ � kDÆ�kH11;Æ + kDÆ�kL41;Æ + k�kH01;Æ + k�̂jt=ÆkH1(R) + k�02jt=1kH1(R);



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 23and the same holds with DÆ replaed by (DÆ)�.Proof. We prove (a) in general for RR !(�;rs�) and RR !(rs�;r2s�) with a Lagrangian se-tion � : R ! u�TL over a path u : R ! L. These expressions vanish if L is totallygeodesi. To estimate them in general we pik a smooth family of orthonormal frames(i(s))i=1;:::;k 2 u(s)�TL, then� =X�ii; rs� =X��s�ii + �irsi�; r2s� =X��2s�ii + 2�s�irsi + �ir2si�with � : R ! Rk . By the orthonormality we have j�(s)j = j�(s)j, and using (; J) as atrivialization for the de�nition of Sobolev norms on u�TM we obtain k�kHs(R) = k�kHs(R).We now use the identities !(i; j) = 0 to obtain����ZR !(�;rs�)���� � ����ZRCj�(s)jj�(s)jds���� = Ck�k2L2(R);����ZR !(rs�;r2s�)���� � ����ZRC�jrs�jj�j+ jrs�jj�s�j+ j�s�j2 + j�j2����� � 4Ck�k2H1(R);where the onstant C only depends on  (that is on u : R ! L) up to third derivatives.Here we used partial integrationZRXi;j �i�2s�j!(rsi; j) = �ZRXi;j ��s�i�s�j!(rsi; j) + �i�s�j�s!(rsi; j)�:To prove () we an replae DÆ by rs� + J(0)rt� sine the di�erene of the operators isbounded in the di�erent omponents and norms byr�02J02(u02)�tu02H0(R�[0;1℄) + r�̂Ĵ(�u)J(�u)�s�uH0(R�[0;Æ℄) � C�H01;Æ ;r�02J02(u02)�tu02L4(R�[0;1℄) � Cr�02J02(u02)�tu02H1(R�[0;1℄) � C�H11;Æ ;r�̂Ĵ(�u)J(�u)�s�uH1(R�[0;Æ℄) � C�H11;Æ ;(30) r�̂Ĵ(�u)J(�u)�s�uL4(R�[0;Æ℄) � CkrĴk1k�s�uk1k�̂kL4(R�[0;Æ℄) � C�H21;Æ ;where C denotes any uniform onstant. The extra terms on the right hand side will �t intothe proof and will be realled for the relevant estimates. The proof for (DÆ)� is ompletelyanalogous. We will use the notation rs�+J(��)rt� to make partial integration alulationsfor the nonlinear (� = 1) and linear (� = 0) operator at the same time. In the nonlinear asethe almost omplex struture J(�) is not skew-adjoint. In order to restore this propertywe work with the L21;Æ(��)-metri, whih uses the pullbak metri g�� = h�; �i�� underdeu02(��02) on M02 and de�u(��) on M0211 respetively. In the linear ase � = 0 nothinghas happened; in the nonlinear ase we an pik � > 0 and hene k�k1 suÆiently smallsuh that deu(�) is C0-lose to the identity, and hene the indued L21;Æ(�)-norm is uniformlyequivalent to the standard L21;Æ-norm. With this in mind we start by alulating for any�; � 2 H21;Æ with k�k1 � � (unless otherwise spei�ed integrals are over two in�nite stripsof width Æ and 1)krs� + J(��)rt�k2L21;Æ(��)= Z �jrs�j2�� + jrt�j2�� + hrs�; J(��)rt�i�� � hrt�; J(��)rs�i���



24 KATRIN WEHRHEIM AND CHRIS T. WOODWARD= kr�k2L21;Æ(��) � Z �rsg����; J(��)rt���rtg����; J(��)rs���� Z �h�; �rs�J(��)rt���rt�J(��)rs���i���� limS!1Zfs=�Sgh�; J(��)rt�i�� + limS!1Zfs=Sgh�; J(��)rt�i��+ Zf0g�Rh�; J(��)rs�i�� � Zf1g�Rh�02; J02(��02)rs�02i��02 � ZfÆg�Rh�̂; Ĵ(��̂)rs�̂i��̂� kr�k2L21;Æ(��) � Z C�(1 + �0)j�jjr�j + j�j2�� 
02(�02jt=1)� 
0211(�̂jt=Æ);where we abbreviated
02(�02jt=1) := ����Zf1g�R !02(�02;rs�02)����; 
0211(�̂jt=Æ) := ����ZfÆg�R !0211(�̂;rs�̂)����:These boundary terms our on the right hand side of () and they will be estimated by (a)to prove (b). The boundary term at t = 0 vanishes by the diagonal boundary onditions,and the boundary terms at S ! �1 vanish sine �jfs2[S;S+1℄g ! 0 in the H21;Æ-norm. Theerror term an be estimated byZ C�(1 + �0)j�jjr�j + j�j2� � Ck�k2L21;Æ(��) + 12kr�k2L21;Æ(��) + 12C2(1 + �0)2k�k2L21;Æ(��);where the highest order term kr�k an be absorbed on the right hand side. From now onC will denote any uniform onstant (whih is allowed to depend on 0 in the nonlinear ase� = 1). In summary, the estimates for � = � and � = rs� are1C kr�k2L21;Æ � rs� + J(��)rt�2L21;Æ + k�k2L21;Æ +
02(�02jt=1) + 
0211(�̂jt=Æ);1C krrs�k2L21;Æ � rs�rs� + J(��)rt��2L21;Æ + kr�k2L21;Æ+
02(rs�02jt=1) + 
0211(rs�̂jt=Æ):This already proves the �rst estimate in (b). We an moreover use the identity rt� =J(��)rs� � J(��)(rs� + J(��)rt�) to obtainkrrt�kL21;Æ � krrs�kL21;Æ + kr(rs� + J(��)rt�)kL21;Æ + Ckr�kL21;Æ + �C0kr�kL21;Æ :In the linear ase () these estimates ombined with (a) and (30) to prove the �rst estimate:1k�kH21;Æ � DÆ�H11;Æ + k�02jt=1kH1(R) + k�̂jt=ÆkH1(R) + k�kL21;Æwith a uniform onstant 1 > 0. In the nonlinear ase (b) we obtain similarlyC�11 k�kH21;Æ � rs� + J(�)rt�H11;Æ + k�kL21;Æ +
02(�02jt=1) + 
0211(�̂jt=Æ)+ 
02(rs�02jt=1) + 
0211(rs�̂jt=Æ)with a onstant C1 that depends on kr�k1 � 0.The L4-estimate for the linear and nonlinear operators will arise by resaling from thefollowing basi estimate. Here û : R � [0; 1℄ ! M0211 will be given by û(s; t) = �u(Æs) forany Æ 2 (0; 1℄. Then for every �̂ 2 H1(R � [0; 1℄; û�TM0211)k�̂kL4(R�[0;1℄) � C0�k�̂jt=1kL2(R) + kr�̂kL2(R�[0;1℄)�:



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 25This simply follows from the Sobolev embedding H1(R � [0; 1℄) ,! L4(R � [0; 1℄) andk�̂k2L2(R�[0;1℄) � Z 10 �̂(�; 1) � Z 1t rt�̂(�; �)d�2L2(R)dt � 2k�̂jt=1k2L2(R) + 2krt�̂k2L2(R�[0;1℄):When applying this to �̂(s; t) := rs�̂(Æs; Æt) we enounter the following terms:k�̂k2L4(R�[0;1℄) = �ZR�[0;1℄ jrs�̂(Æs; Æt)j4dsdt�1=2 = Æ�1krs�̂k2L4(R�[0;Æ℄);k�̂jt=1k2L2(R) = ZR jrs�̂(Æs; Æ)j2ds = Æ�1krs�̂jt=Æk2L2(R);kr�̂k2L2(R�[0;1℄) = ZR�[0;1℄ Æ2jrrs�̂(Æs; Æt)j2dsdt = krrs�̂k2L2(R�[0;Æ℄):Putting this together we �nd thatkrs�̂kL4(R�[0;Æ℄) � C0�krs�̂jt=ÆkL2(R) + krrs�̂kH2(R�[0;Æ℄)� � C0�k�̂jt=ÆkH1(R) + k�kH21;Æ�;where the estimate for k�kH21;Æ is already established. The L4-estimate for r�02 follows fromthe Sobolev embedding H1(R� [0; 1℄) ,! L4(R� [0; 1℄), and for the last omponent we havekrt�̂kL4(R�[0;Æ℄) � krs�̂ + Ĵ(��̂)rt�̂kL4(R�[0;Æ℄) + krs�̂kL4(R�[0;Æ℄):This �nishes the proof of the seond estimate, where we allow krs�+J(��)rt�kL41;Æ on theright hand side, and the onstant in the nonlinear ase depends on kr�k1 � 0. In thelinear ase the di�erene to kDÆ�kL41;Æ in (30) is bounded by the previous estimate. �The lemma below gives ontrol of the lower-order terms appearing in Lemma 3.2.1 andin partiular will be used to prove surjetivity of the linearized operator.Lemma 3.2.2. (a) There is a onstant � > 0 and for every 0 > 0 there is a onstantC2 suh that for all Æ 2 (0; 1℄ and �; � 2 H21;Æ with k�k1 � �, kr�k1 � 0 we havek�̂jt=ÆkH1(R) + k�02jt=1kH1(R)� C2�krs�02 + J02(�02)rt�02kH1(R�[0;1℄) +pÆkrt�̂kH1(R�[0;Æ℄) + k�?0211�̂jt=ÆkH1(R)+ k�02kL2(R�[0;1℄) + k(�01 � �1)jt=0kH1(R) + k(�002 � �02)jt=0kH1(R)�:(b) There is a onstant 2 > 0 suh that for all Æ 2 (0; 1℄ and � 2 �1;Æ2�k�̂jt=ÆkH1(R) + k�02jt=1kH1(R) + k�kH01;Æ� � kD�u02�02kH1(R�[0;1℄) +pÆkrt�̂kH1(R�[0;Æ℄);and for all � 2 �1;Æ \K02�k�̂jt=ÆkH1(R) + k�02jt=1kH1(R) + k�kH01;Æ� � kDu02�02kH1(R�[0;1℄) +pÆkrt�̂kH1(R�[0;Æ℄):Proof. The onstant � > 0 in ase (a) is hosen suh that eu02(�02) and thus J02(�02)is de�ned. To prove (a) (and similar for (b)) we assume by ontradition that we havesequenes Æ� > 0 and �� ; �� 2 H21;Æ� suh that k�̂� jt=Æ�kH1(R) + k��02jt=1kH1(R) = 1 (in ase(b) add k��kH01;Æ here), but the right hand sides onverges to zero. For tehnial reasons we



26 KATRIN WEHRHEIM AND CHRIS T. WOODWARDassume in addition k��02kH1(R�[0;1℄) � 1, whih we will also disprove (i.e. we atually prove astronger estimate with this term on the left hand side). First we integrate for all t 2 [0; Æ� ℄(31) k�̂� jt=t0 � �̂� jt=Æ�kH1(R) � Z Æ�0 krt�̂�kH1(R) � pÆ�krt�̂�kH1(R�[0;Æ� ℄) ! 0:Next, Lemma 3.1.3 impliesk�?02��02jt=0kL2(R) � k�?02�0�02jt=Æ�kL2(R) + k�0�02jt=0 � �0�02jt=Æ�kL2(R) + k(�0�02 � ��02)jt=0kL2(R)� C�k�?0211�̂� jt=Æ�kL2(R) + k�̂� jt=0 � �̂� jt=Æ�kL2(R)+ k(�0�1 � ��1 )jt=0kL2(R) + k(�0�02 � ��02)jt=0kL2(R)�! 0;k�?02��02jt=0kH1(R) � k�?02�0�02jt=Æ�kH1(R) + k�0�02jt=0 � �0�02jt=Æ�kH1(R) + k(�0�02 � ��02)jt=0kH1(R)(32) � C�k�?0211�̂� jt=Æ�kH1(R) + k�̂� jt=0 � �̂� jt=Æ�kH1(R) + k(�0�1 � ��1 )jt=0kH1+ k(�0�02 � ��02)jt=0kH1(R) + j�s�uj � j�̂� jt=Æ� jL2(R)�:In the two ases of (b) we use the boundary onditions for �� 2 �1;Æ here. In all threeases the hardest step is now to prove that j�s�uj � j�̂� jt=Æ� jL2(R) ! 0. Here we exploitthe assumption that k��02kH1(R�[0;1℄) is bounded. This implies a bound on k��02jt=0kL2(R).Now we �nd a onvergent subsequene ��02 ! �102 2 H1(R � [0; 1℄; u�02TM02) in the weakH1-topology, and at the same time ��02jt=0 ! �102 jt=0 in the L2-norm on every ompat set.(The Sobolev embedding H1(
) ,! L2(�
)) is ompat for ompat domains 
 � R� [0; 1℄with smooth boundary �
, see e.g. [1, Theorem 6.3℄.) In ase (a) the limit has to be �102 = 0sine k�102kL2(R�[0;1℄) � lim inf�!1 k��02kL2(R�[0;1℄) = 0. This also holds in ase (b) sine thelimit satis�es with D = Du02 or D = D�u02kD�102kL2(R�[0;1℄) � lim inf�!1 kD��02kL2(R�[0;1℄) = 0;k�?02�102 jt=0kL2(R) � lim inf�!1 k�?02��02jt=0kL2(R) = 0:Sine u02 is assumed regular, D�u02 � �?02 is injetive, and in the seond part of ase (b) wehave in addition �102 2 ker(Du02 � �?02)?. So in all three ases we obtaink��02jt=0kL2(R) � C and k��02jt=0kL2([�T;T ℄) ! 0 for all T > 0:The same holds for �̂� jt=Æ� sine we an apply Lemma 3.1.3 on the interval (�T; T ) for anyT 2 (0;1℄ to obtaink�̂� jt=Æ�kL2 � C�k�02�0�02jt=Æ�kL2 + k�?0211�̂� jt=Æ�kL2 + k(�0�1 � ��1 )jt=Æ�kL2�� C 0�k��02jt=0kL2 + k(�0�02 � ��02)jt=0kL2 + k�̂� jt=0 � �̂� jt=Æ�kL2+ k�?0211 �̂� jt=Æ�kL2 + k(�0�1 � ��1 )jt=0kL2�:This together with the fat that supjsj�T j�s�u(s)j ! 0 as T ! 1 implies that j�s�uj �j�̂� jt=Æ� jL2(R) ! 0 and hene k�?02��02jt=0kH1(R) ! 0 by (32). From this we will move on toprove that(33) k��02kH3=2(R�[0;1℄) ! 0:For that purpose we denote by D any of the three operators rs + J02(�02)rt in ase (a)and D�u02 or Du02 in ase (b). Then we use the fat that in all three ases the operator



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 27D��?02 is Fredholm on the spae of setions � that satisfy the boundary onditions �jt=1 2Tu02(L0 � L2), see e.g. [5, Theorem 20.1.2℄ for ompat domains. The orrespondingestimates add up tok��02kH3=2(R�[0;1℄) � C�kD��02kH1(R�[0;1℄) + k�?02��02jt=0kH1(R) + k��02kH0(R�[0;1℄)�:(34)In the nonlinear ase (a) the onstant in this estimate depends ontinuously on J02(�02) inthe C1-topology, see e.g. [8, Appendix B℄. In this ase the above estimate already impliesthe laim (33) sine we assumed k��02kL2 ! 0. In the linear ases we need to use theinjetivity of the operators to remove the last term from the right hand side of (34). SineH3=2(R) ,! H0((�T; T )) is ompat only for T <1, we �rst have to ahieve a lower orderterm on a ompat domain:Consider the operator Dx� = �s � A, where A := �J(x�)�t (or A := J(x�)�t in thease D = D�u02) is self-adjoint and invertible on its onstant domain H1([0; 1℄; Tx�M02) withboundary onditions �jt=0 2 Tx�L02, �jt=1 2 Tx�(L0 �L2). Then abstrat theory (e.g. [13,Lemma 3.9, Proposition 3.14℄) implies the Fredholm property and bijetivity,k�kH1(R�[0;1℄) � CkDx��kH0(R�[0;1℄):In order to apply this estimate to ��02 we �rst �nd an extension � 2 H1(R � [0; 1℄) of�jt=0 = �?02��02jt=0 suh that k�kH1 � Ck�?02��02jt=0kH1=2 . We moreover �x a uto� funtionh 2 C10 (R; [0; 1℄) with hjfjsj�T�1g � 0 and hjfjsj�Tg � 1, where we �x T > 1 suÆiently largesuh that u02jsupp(h) = ex�(#02) for some smooth map #02 : f�s � (T � 1)g ! Tx�M02.Then we an apply the estimate to � := �x�(#02)�1�h(��02 � �)�, where �x�(#02) denotesparallel transport along the path [0; 1℄ 3 � 7! ex�(�#02). We obtain, denoting all uniformonstants by C,kh��02kH1(R�[0;1℄)� Ck�kH1(R�[0;1℄) + kh�kH1(R�[0;1℄)� C�k�Dx� �D Æ �x�(#02)��kH0(R�[0;1℄) + kD(h��02)kH0(R�[0;1℄) + kh�kH1(R�[0;1℄)�� C�k�Dx� �D Æ �x�(#02)���fjsj>T�1gk � kh(��02 � �)kH1(R�[0;1℄) + kD��02kH0(R�[0;1℄)+ k��02kH0([�T;T ℄�[0;1℄) + k�?02��02jt=0kH1=2(R)�:Here the di�erene of the operators goes to zero for T !1 sine u02jfjsj�T�1g ! x� withall derivatives. Thus for suÆiently large T > 0 we an absorb the �rst term into the lefthand side and kh�kH1 � Ck�?02��02jt=0kH1=2 . After all this we an �nally replae the lastterm in (34) by k��02kH0([�T;T ℄�[0;1℄).Now in the �rst ase of (b) we an dedue (33) from the fat thatDu02��?02 is surjetive byassumption and hene D�u02��?02 is injetive. So the ompat embedding H3=2(R� [0; 1℄) ,!H0([�T; T ℄� [0; 1℄) allows the removal of the lower order term. Similarly, in the seond aseof (b) we an employ the injetivity of the operator on ker(Du02 � �?02)? 3 ��02 to dedue(33).



28 KATRIN WEHRHEIM AND CHRIS T. WOODWARDNext, (33) and the Sobolev trae theorem provide k��02jt=0kH1(R) + k��02jt=1kH1(R) ! 0,and again using Lemma 3.1.3 we an dedue thatk�̂� jt=Æ�kH1(R)� C�k�02�0�02jt=Æ�kH1(R) + k�?0211 �̂� jt=Æ�kH1(R) + k(�0�1 � ��1 )jt=Æ�kH1(R)�� C�k��02jt=0kH1(R) + k(�0�02 � ��02)jt=0kH1(R) + k�?0211�̂� jt=Æ�kH1(R)+ k�̂� jt=0 � �̂� jt=Æ�kH1(R) + k(�0�1 � ��1 )jt=0kH1(R)�! 0:Finally, ombining this with (31) in ase (b) impliesk�̂�kL2(R�[0;Æ� ℄) ! 0in ontradition to the assumption. �Finally, we establish uniform exponential deay for the solutions of Floer's equation (13)on the triple strip. For that purpose we introdue the following notation for integrationover �nite strips,Z[0;1℄t[0;Æ℄ j�sv(s; t)j2 dt := Z 10 j�sv02(s; t)j2 dt+ Z Æ0 j�sv̂(s; t)j2 dt;and similarly for the C0-normk�svkC01;Æ([s0;s1℄) := k�sv02kL1([s0;s1℄�[0;1℄) + k�sv̂kL1([s0;s1℄�[0;Æ℄);dC01;Æ([s0;s1℄)(v; x�) := sup(s;t)2[s0;s1℄�[0;1℄dM02(v02(s; t); x�);+ sup(s;t)2[s0;s1℄�[0;Æ℄dM0211 (v̂(s; t); (x�; x�1 ; x�1 )):Lemma 3.2.3. There are onstants ~;� > 0 and C suh that the following holds for everyÆ 2 (0; 1℄. If v 2 MÆ(x�; x+) is a smooth solution of (13) satisfying(35) Z 10 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2 dtds < ~;then for every S � 3dC01;Æ([S;1))(v; x+)2 + k�svk2C01;Æ([S;1)) � Ce��S Z 20 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2 dtds;and the analogous statement holds on (�1; 0℄ for the onvergene to x�.Proof. Step 1: For every � > 0 there is an �� > 0 suh that the following holds for allÆ 2 (0; 1℄. If v 2 MÆ(x�; x+) satis�es (35) with ~ = ��, then(36) k�svkC01;Æ([ 12 ;1)) � �:Assume by ontradition that this is wrong. Then there exist � > 0 and sequenes Æ� 2 (0; 1℄and v� 2 MÆ� (x�; x+) suh that(37) lim�!1Z 10 Z[0;1℄t[0;Æ� ℄ j�sv�(s; t)j2 dtds = 0;but the assertion fails. So after a time-shift we an assume thatk�sv�kC01;Æ� ([ 12 ;1℄) > 12�:



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 29The equation �Jv� = 0 together with (37) implies that dv� js�0 ! 0 in the L2-norm. IfÆ� is bounded away from zero, then the standard ompatness for holomorphi urves withLagrangian boundary onditions implies that dv� js>0 ! 0 in C1 on every ompat set(for a subsequene), in ontradition to the assumption. In the ase Æ� ! 0 the standardompatness theory still implies dv�02j(0;1℄�(0;1) ! 0 in C1 on every ompat set. For v̂and v02 near the boundary t = 0 we obtain a C1-bound from Lemma 3.3.2. So we obtainC0-onvergene of a subsequene v�02 ! x02, v̂� ! (x02; x1; x1) to onstants x02 2 L0 � L2,x1 2 M1 suh that (x02; x1; x1) 2 L01 � L12. Now we an use the same ompatnessarguments as in the proof of Lemma 3.3.2 (step 2, using a uto� funtion only in s) todedue that dv� js2[ 12 ;1℄ ! 0 in the C0-norm. This again is a ontradition.Step 2: There are onstants �1 > 0 and C1 suh that the following holds for all Æ 2 (0; 1℄.If v 2 MÆ(x�; x+) satis�es (35) with ~ = �1, thenk�sv(1; �)k2C0([0;1℄t[0;Æ℄) � C1 Z[0;1℄t[0;Æ℄ jrt�sv(1; t)j2 dt:By ontradition we �nd sequenes Æ� 2 (0; 1℄ and v� 2 MÆ� (x�; x+) that satisfy (37),but there is no uniform onstant C1 with whih the estimate holds. Then as in Step 1 weobtain (for a subsequene) C1-onvergene v� ! x = (x02; x̂) on [12 ; 2℄ � ([0; 1℄ t [0; Æ� ℄) toonstants x02 2 L0 � L2, x1 2 M1 with x̂ = (x02; x1; x1) 2 L01 � L12. By assumption L02and (L0�L2) interset transversely in x02, and hene we have for all �02 : [0; 1℄! Tx02M02with �02(1) 2 Tx02(L0 � L2)k�02kC0([0;1℄) � C�krt�02kL2([0;1℄) + ���?02�02(0)���:Now onsider in addition �̂ : [0; Æ℄ ! Tx̂M0211 suh that �̂(Æ) 2 Tx̂(L01 � L12) and �jt=0 =(�02; �̂)jt=0 2 Tx(�M0�M2 ��1). We integrate for all t 2 [0; Æ℄(38) ���̂(t)� �̂(Æ)�� � Z Æ0 jrt�̂(t)jdt � pÆ�Z Æ0 jrt�̂(t)j2dt�1=2:Combining this with Lemma 3.1.3 and using the boundary onditions we obtain���?02�02(0)�� � ���?0211�̂(Æ)��+ ���?0211��̂(0)� �̂(Æ)���+ ���01(0)� �1(0)�� � CpÆ�Z Æ0 jrt�̂(t)j2dt�1=2;and thus k�02k2C0([0;1℄) � C2 Z[0;1℄t[0;Æ℄ jrt�j2 dt:We moreover obtain from Lemma 3.1.3 with uniform onstants C;C 0; C 00���̂(Æ)�� � C����02�002(Æ)�� + ��(�01(Æ)� �1(Æ))���� C 0����02(0)��+ ���̂(0) � �̂(Æ)��� � C 00�Z[0;1℄t[0;Æ℄��rt(�02; �̂)��2dt�1=2:Together with (38) this impliesk�k2C0([0;1℄t[0;Æ℄) � C1 Z[0;1℄t[0;Æ℄ jrt�j2 dtwith some uniform onstant C1 for all Æ 2 (0; 1℄ and all setions � over x satisfying theboundary onditions. Due to the C1-onvergene v� ! x this estimate ontinues to hold



30 KATRIN WEHRHEIM AND CHRIS T. WOODWARDwith a uniform onstant for suÆiently large � for setions �02 2 C1([0; 1℄; v�02js=1�TM02),�̂ 2 C1([0; Æ� ℄; v̂j�s=1TM0211) that satisfy the analogous boundary onditions. (We an writev� js=1 = ex(��) with k��kC1 ! 0 and use dex(��)�1 to map (�02; �̂) to a setion over x.This preserves the boundary onditions by onstrution of e.) In partiular, we an applythis new estimate to � = �sv� js=1, whih provides a uniform estimate and thus �nishes theproof by ontradition.Step 3: There are uniform onstants �2;� > 0 and C2 suh that the following holds for allfor all Æ 2 (0; 1℄. If v 2 MÆ(x�; x+) satis�es (35) with ~ = �2, then for all s0 � 2Z[0;1℄t[0;Æ℄ j�sv(s0; t)j2dt � C2e��s0 Z 21 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2dtds:Consider the funtion f : [1;1)! [0;1) de�ned byf(s) := 12 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2dt:We an use the equation �Jv = ��sv02 + J02(v02)�tv02 ; �sv̂ + Ĵ(v̂)�tv̂� = 0 and the boundk�svk1 � � from Step 1 to alulate for s � 1f 00(s) = Z[0;1℄t[0;Æ℄�jrs�svj2 + h�sv ; r2s�svi�= Z[0;1℄t[0;Æ℄�jJrt�sv + (r�svJ)�tvj2 � h�sv ; Jrtrs�svi�� Z[0;1℄t[0;Æ℄�h�sv ; JR(�sv; �tv)�sv + 2(r�svJ)rs�tv +rs(r�svJ)�tvi�� Z[0;1℄t[0;Æ℄�2jJrt�svj2 + �t�!(�sv;rs�sv)�� Cj�svj2�j�svj2 + jrt�svj��� �2� C�� Z[0;1℄t[0;Æ℄ jJrt�sv(s; t)j2dt � C 0��+ �2�k�sv(s; �)k2C0([0;1℄[[0;Æ℄):The last step uses 2j�svj2jrt�svj � �j�svj2 + �jrt�svj2 and the laim����Z[0;1℄t[0;Æ℄ �t�!(�sv;rs�sv)����� � C�j�sv02(1)j3 + j�sv̂(Æ)j3�:To prove the laim we �rst use the diagonal boundary onditions to obtain����Z[0;1℄t[0;Æ℄ �t�!(�sv;rs�sv)����� = ��!02(�sv02;rs�sv02)jt=1 + !02(�sv̂;rs�sv̂)jt=Æ��:Then we use a smooth family of orthonormal frames (i)i=1;:::;k 2 �(T (L0 � L2)) nearw(s) := v02(s; 1) (and similarly for v̂),�sw(s) =X �i(s)i(w(s)); rs�sw(s) =X��s�i(s)i(w(s)) + �i(s)r�sw(s)i�with � : R ! Rk . By the orthonormality we have j�(s)j = j�sw(s)j, and using the identities!(i; j) = 0 one obtains ��!(�sw;rs�sw)�� � Cj�swj3, where the onstant C only dependson ri. Sine L is ompat this holds with a uniform onstant.



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 31We an now hoose � > 0 suÆiently small and then �x ~ � minf�1; ��g suh that Step 1and Step 2 (applied to time-shifts of v) together with the above alulation yield for alls � 1f 00(s) � Z[0;1℄t[0;Æ℄ jJrt�sv(s; t)j2dt � ((1 + Æ)C1)�1 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2dt � �2f(s)with � > 0. Any suh nonnegative onvex funtion satis�es for all s � 2 and T � sf(s) � Ce��s�Z[1;2℄ f(t)dt+ Z[2T;2T+1℄ f(t)dt�with a onstant C that only depends on �. A detailed proof an be found in e.g. [14,Lemma 3.7℄ (use the estimate for f̂(s � T � 1), where the funtion f̂ is shifted by T + 1).If we let T ! 1 then R[2T;2T+1℄ f(t)dt ! 0 by the �nite energy ondition R10 f(s)ds < ~,and this proves the laim.Step 4: There are onstants �3 > 0 and C3 suh that the following holds for all Æ 2 (0; 1℄.If v 2 MÆ(x�; x+) satis�es (35) with ~ = �3, thenk�svkC01;Æ([1;2℄) � C3 k�svkL21;Æ([ 12 ; 52 ℄) :By ontradition we �nd sequenes Æ� 2 (0; 1℄ and v� 2 MÆ� (x�; x+) that satisfy (37),but the assertion fails, i.e. we annot �nd a onstant C3 for whih the estimate is satis�ed.Then as in Step 1 we obtain (for a subsequene) C1-onvergene v� ! x = (x02; x̂) on[12 ; 52 ℄�([0; 1℄t[0; Æ� ℄) to onstants x02 2 L0�L2, x1 2M1 with x̂ = (x02; x1; x1) 2 L01�L12.So we an �nd setions �� 2 �1;Æ� over u = x suh that v� js2[ 12 ; 52 ℄ = ex(��). The equation�Jv� then beomes rs�� + J(��)rt�� = 0and we have the boundary onditions rs��02jt=1 2 Tx02(L0 � L2) and rs�̂� jt=Æ� 2 Tx̂(L01 �L12). We �x two uto� funtions h; ~h 2 C1(R; [0; 1℄) with hj[1;2℄ � 1, ~hjsupp h � 1 andsupp(h); supp(~h) � (12 ; 52) and onsider the setions h�� ; ~h�� 2 �1;Æ� . Note that �sv� =dex(��)rs�� with dex(��) � Id. So for suÆiently large � we havek�sv�kC01;Æ� ([1;2℄) � 2khrs��kC01;Æ� � 2CSkhrs��kH21;Æ� ;krs��kL21;Æ� ([ 12 ; 52 ℄) � 2k�sv�kL21;Æ� ([ 12 ; 52 ℄);where we used Lemma 3.1.4. Now we apply Lemma 3.2.1 (b) to the setions � = hrs��and � = ~hrs�� (for whih the boundary terms vanish sine rs�� ;r2s�� ;r3s�� satisfy theboundary onditions) and � = �� (whih satisfy k��k1 ! 0 and kr��k1 ! 0) to obtainwith uniform onstants C;C 0khrs��kH21;Æ� � C1�k�rs + J(��)rt�hrs��kH11;Æ� + khrs��kH01;Æ� �= C1�kh0rs��kH11;Æ� + khrs��kH01;Æ� �� Ckrs��kH11;Æ� (supp h) � Ck~hrs��kH11;Æ�� CC1�k�rs + J(��)rt�~hrs��kH01;Æ� + k~hrs��kH01;Æ� �� C 0krs��kH01;Æ� ([ 12 ; 52 ℄:



32 KATRIN WEHRHEIM AND CHRIS T. WOODWARDNow the ontradition follows,k�sv�kC01;Æ� ([1;2℄) � 2khrs��kH21;Æ� � 2C 0krs��kH01;Æ� ([ 12 ; 52 ℄) � 4C 0k�sv�kL21;Æ� ([ 12 ; 52 ℄):Step 5: We prove the laim, that is for every s � 3dC0([0;1℄t[0;Æ℄)(v(s; �); x+)2 + k�sv(s; �)k2C0([0;1℄t[0;Æ℄) � Ce��sE0(v)with E0(v) := Z 20 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2dtds:We hoose ~ = minf�2; �3g, then Step 3 and Step 4 (applied to appropriately shifted solu-tions) ombine as follows for all s � 3k�svk2C01;Æ([s� 12 ;s+ 12 ℄) � C23 Z s+1s�1 Z[0;1℄t[0;Æ℄ j�sv(s; t)j2dt� C23C2 Z s+1s�1 e��sE0(v)ds � C23C2��1e�e��sE0(v):This proves the seond part of the laim. The estimate on dC0([0;1℄t[0;Æ℄)(v(S; �); x+) nowsimply follows by integration: For all S � 3 and t 2 [0; 1℄dM02(v02(S; t); x+) � Z 1S j�sv02(s; t)jds� C Z 1S e��s=2pE0(v)ds= 2C��1e��S=2pE0(v);and similarly for v̂. �3.3. Compatness. The surjetivity of the map TÆ : M10(x�; x+) ! M1Æ(x�; x+), as in-trodued in the previous setion, will be a diret onsequene of the following ompatnessresult. Here we hoose �0 2 (0; �℄ with � > 0 from in Theorem 3.1.1. Then v = eu(�) with� 2 �1;Æ(�0) \K0 implies that [vu℄ = TÆ([u℄) by the de�nition of TÆ via theorem 3.1.1. Wewill denote the time-shift by ��v(s; t) := v(� + s; t).Theorem 3.3.1. Given �0 > 0 there exists Æ0 > 0 suh that for every Æ 2 (0; Æ0℄ and v 2M1Æ(x�; x+) there exist u 2 fM10(x�; x+) and � 2 R suh that ��v = eu(�) with � 2 �1;Æ\K0and k�k�1;Æ � �0. Moreover, the moduli spae M1Æ(x�; x+) is regular for all Æ 2 (0; Æ0℄ inthe sense that the linearized operator Dv is surjetive for every v 2 M1Æ(x�; x+).Proof. We assume by ontradition that there is an �0 > 0, a sequene Æ� ! 0, and solutionsv� = (v�02; v̂�) 2 M1Æ� (x�; x+) for whih the assertion of the theorem fails. Their energy is�xed, E(v�) = 12� + 12(x�; x+), by the analogue of Proposition 2.1.1 for strips of di�erentwidths: For any pair of maps (v02; v̂) that are not neessarily holomorphi but satisfy thelimits and seam onditions of M1Æ(x�; x+) we haveE(v02; v̂) = Z v�02�(�!0)� !2�+ Z v̂��!0 � (�!2)� (�!1)� !1�= 12� Ind(D(v02 ;v̂)) + 12Æ(x�; x+):(39)



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 33Here Æ(x�; x+) is independent of Æ sine the equations for di�erent Æ apply to the samemap, resaled to di�erent widths, whih has the same energy and index. Next, we anexlude bubbling by the following argument based on Lemma 3.3.2 below:If jdv�02j is unbounded near a point z 2 R � (0; 1℄, then the standard resaling methodgives rise to a nontrivial holomorphi sphere or disk in (M0; L0), or in (M2; L2), or in both.Thus some �xed amount of energy ~ > 0 would have to onentrate near z. The same energyquantization holds for blowup of dv̂ or dv02jt=0 by Lemma 3.3.2. So the energy densitiesjdv� j an only blow up at �nitely many points. On the omplement the same ompatnessproof as in the next paragraph provides a C0lo onvergent subsequene v�02 ! u02, where thelimit orresponds to a solution u 2 fM0(y�; y+) with �nitely many singularities and energyE(u) < E(v�). The singularities an be removed by the standard proofs for pseudoholo-morphi urves with Lagrangian boundary ondition [8, Theorem 4.1.2℄, so we would obtaina solution ~u 2 fM0(y�; y+) of energy E(~u) < E(v�). Its limits y� may not be the same asthose of v� , in whih ase we �nd a sequene of trajetories ~u = (~u1; : : : ; ~uN ) � fM0(�; �) on-neting x� to x+, with total energy E(~u) =PE(~uj) < E(v�). We laim that monotoniityfores ~u to have total index P Ind(D~uj ) < Ind(Dv� ) = 1, and hene by regularity of themoduli spaes fM0(�; �) onsists of a single onstant trajetory. This however would meanthat v� were self-onneting trajetories of x� 6= x+, i.e. we have annuli with Ind(Dv� ) = 1{ in ontradition to assumption (d).To ontrol the index of ~u we glue the trajetories to a single map ~w : R�[0; 1℄ !M�0 �M2satisfying all limit and boundary onditions of fM0(x�; x+) exept for holomorphiity. Itsindex and energy oinide with the total energy and index of ~u. With that we obtain� Ind(D ~w) + (x�; x+) = 2E( ~w) < 2E(v�) = � + (x�; x+)from the monotoniity formula (39) together with the index and energy identities in Lemma 2.1.3applied to ( ~w; ŵ), where ŵ is the t-independent map given by the lift of ~wjt=0 � L02 to(L01 ��1 L12)T . This proves P Ind(D~uj ) � 0 as laimed and hene exludes bubbling.So from now on we assume that jdv� j � C0 is uniformly bounded. Then we havedC0�v�02jt=Æ� ; L02� ! 0 sine as in Lemma 3.1.3 it is bounded by dC0�v0�1 jt=Æ� ; v�1 jt=Æ� � �dC0�v̂� jt=Æ� ; v̂� jt=0� � C0Æ� . So we an �x p > 2 and �nd a subsequene and mapu02 2 C0 \ W 1;plo (R � [0; 1℄;M0 � M2) suh that v�02 ! u02 in the C0-topology and theweak W 1;p-topology on every ompat subset of R � [0; 1℄. The limit u02 orresponds toa solution (u0; u2) 2 fM10(x�; x+). We also onlude that v̂ ! �u = (u02jt=0; �u1; �u1) inC0([�T; T ℄ � [0; Æ� ℄) for all T > 0, where �u1 is determined uniquely by (u02jt=0; �u1; �u1) 2L01 � L12. Indeed, v̂� jt=0 = (v�02; v�1 ; v�1 )jt=0 satis�es dC0(v̂� jt=0; u02 � �1) ! 0 as well asdC0(v̂� jt=0; L01�L12) � dC0(v̂� jt=0; v̂� jt=Æ� )! 0, so v1jt=0 must onverge to �u1 on ompatsets, and the onvergene for t0 2 [0; Æ� ℄ follows from dC0(v̂� jt=0; v̂� jt=t0) � C0Æ� ! 0.In summary we have v� ! u := (u02; �u) in the C0-topology on every set fjsj � Tgfor �xed T . In the following, we will strengthen this onvergene using uniform nonlinearestimates and exponential deay, to �nd setions �� 2 �1;Æ� (�0) suh that v� = eu(��) andDv� is surjetive in ontradition to the assumption. Let us �rst note that, by the samemonotoniity arguments as above, the limit must be a nonbroken trajetory u 2 fM10(x�; x+)of the same index and energy E(u) = E(v�). In the next step we strengthen the loalonvergene.For �xed T > 0 and suÆiently large � � �0 we an write v� jfjsj�Tg = eu(��) with asetion �� 2 �1;Æ� (extended smoothly to fjsj > Tg). The extension of �� an be hosen



34 KATRIN WEHRHEIM AND CHRIS T. WOODWARDsuh that k��k1 ! 0 and sup� kr��k1 < 1 follows from the C0-onvergene and C1-boundedness of v� jfjsj�Tg. For the latter note that r�� = deu(��)�1rv� � �1e(u; ��)ru,where rv� is uniformly bounded, and deu(��)! Id as j�� j ! 0. This puts us into the posi-tion where Lemma 3.2.1 applies with � = �� . We �x a uto� funtion h 2 C10 ([�T; T ℄; [0; 1℄)with hj[�T+1;T�1℄ � 1, thenkh��kH11;Æ � C1�k�rs + J(��)rt�h��kH01;Æ� + kh��kH01;Æ�+ kh�̂� jt=Æ�kH0(R) + kh��02jt=1kH0(R)�:Now we an use (29), �Jv� = 0, �J02u02 = 0, and �t�u = 0 to obtainh�rs + Ĵ(�̂�)rt��̂�L2(R�[0;Æ� ℄) = h � de�u(�̂�)�1��1e(�u; �̂�)�s�u�L2([�T;T ℄�[0;Æ� ℄)� Ck�s�ukL2([�T;T ℄�[0;Æ� ℄) � CpÆ�k�s�ukL2([�T;T ℄);and furthermore, using the fat that �1e(u02; 0) = Id ommutes with J(u02),h�rs + J02(��02)rt���02L2(R�[0;1℄)= h � deu02(��02)�1��1e(u02; ��02)J(u02)�tu02 � J02(u02)�1e(u02; ��02)�tu02�L2(R�[0;1℄)� Ck��02kL2([�T;T ℄�[0;1℄):Hene we havek��kH11;Æ� (fjsj�T�1g) � C�pÆ� + k��kH01;Æ� (fjsj�Tg) + kh�̂� jt=Æ�kH0(R) + kh��02jt=1kH0(R)�;whih onverges to zero, and thus v�02 ! u02 in the H1-norm on every ompat set. Now wean verify the assumptions of Lemma 3.2.3 (with the onstant ~ > 0) and ahieve uniformexponential deay: Pik T > 0 suh that R[�T;T ℄�[0;1℄ j�su02j2 � E(u)� 12~ and pik �0 suhthat for all � � �0 we have k�su02k2L2([�T;T ℄�[0;1℄) � k�sv�02k2L2([�T;T ℄�[0;1℄) � 12~ and thusZfjsj>Tg�Z[0;1℄ j�sv�02j2 + Z[0;Æ� ℄ j�sv̂j2� � E(v�) + 12~�E(u) + 12~ = ~:Now the exponential deay Lemma 3.2.3 ombined with the loal C0-onvergene impliesthat dC0(v�02; u02) + dC0(v̂� ; �u)! 0uniformly for all s; t. Thus for suÆiently large � we an write v� = eu(��) with �� 2 H21;Æ�and k��k1 ! 0. In fat, the uniform exponential deay implies global onvergene,k��k1 ! 0; k��kLp1;Æ ! 0 8p � 1; kr��k1 � 0 <1:This puts us into the position where Lemma 3.2.1 and 3.2.2 apply with � = �� ,k��kH21;Æ� + kr��kL41;Æ�� C1�krs�� + J(��)rt��kH11;Æ� + krs�� + J(��)rt��kL41;Æ�+ k��kH01;Æ� + k�̂� jt=Æ�kH1(R) + k��02jt=1kH1(R)�� C1(1 + C2)�krs�� + J(��)rt��kH11;Æ� + krs�� + J(��)rt��kL41;Æ�+ k��kH01;Æ� +pÆ�krt�̂�kH1(R�[0;Æ� ℄)�:



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 35The terms in the last line onverge to zero or an be absorbed into the left hand side forÆ� suÆiently small. We laim that the penultimate line also onverges to zero and wethus obtain the onvergene k��k�1;Æ ! 0. To hek this we reall from (29) that �Jv� = 0implies(40) rs�� + J(��)rt�� = �deu(��)�1��1e(u; ��)�su+ J(u)�1e(u; ��)�tu�:Reall that(41) �1e(u; 0) = IdTuM ; �2e(u; 0) = deu(0) = IdTuM :So in zeroth order we have, using the equations �t�u = 0 and �su02 = �J02(u02)�tu02,��rs�̂� + Ĵ(�̂�)rt�̂��� � ��de�u(�̂�)�1��1e(�u; �̂�)�s�u��� � Cj�s�uj;��rs��02 + J02(��02)rt��02�� � ��deu02(��02)�1��1e(u02; ��02)J02(u02)� J02(u02)�1e(u02; ��02)��tu02�� � Cj��02j;and thuskrs�� + J(��)rt��kL21;Æ� + krs�� + J(��)rt��kL41;Æ�� C�k��02kL2(R�[0;1℄) + k��02kL4(R�[0;1℄) + (Æ�)1=2k�s�ukL2(R) + (Æ�)1=4k�s�ukL4(R)�! 0:For the �rst derivative we alulate from (40), denoting all uniform onstants by C,��r�rs�̂� + Ĵ(�̂�)rt�̂���� � C(1 + jr�̂� j)���1e(�u; �̂�)�s�u��+ C��r��1e(�u; �̂�)�s�u���� C�1 + jr�̂� j��j�s�uj+ jrs�s�uj�;and (in between dropping the subsript from ��02)��r�rs��02 + J02(��02)rt��02��� � C(1 + jr�� j)���1e(u; ��)J(u)�tu� J(u)�1e(u; ��)�tu��+ C��r��1e(u; ��)J(u)� J(u)�1e(u; ��)��� � j�tuj+ C���1e(u; ��)J(u) � J(u)�1e(u; ��)�� � jr�tuj� Cj��02j�1 + jr��02j�:Here the estimate for the seond summand follows from (41) and the identityrs(�1e(u; �)X) = �1e(u; �)rsX + (r(�su;rs�)�1e)(u; �)X(and similarly for rt(�1e(u; �)X)), where we have �r(�su;rs�)�1e�(u; 0) = 0 sine�r(Y;0)�1e�(u; 0) = rY IdTuM = 0and, alulating in loal normal oordinates with an extension ~Y 2 �(TM) of Y 2 TuMthat is ovariantly onstant along � 7! expu(�X),�r(0;Y )�1e�(u; 0)X = ��j�=0�� j�=0e(expu(�X); �Y ) = �� j�=0 ~Y (expu(�X)) = 0:Now the uniform estimate kr��k1 � 0 and the exponential deay of �u = �u(s) implyr�rs�� + J(��)rt���L21;Æ� � C(1 + 0)�k��02kL2(R�[0;1℄) + (Æ�)1=2k�s�ukH1(R)�! 0:This proves k��k�1;Æ� ! 0:



36 KATRIN WEHRHEIM AND CHRIS T. WOODWARDIt remains to �nd a time-shift suh that ��v� = eu(��(�)) with some ��(�) 2 K0 but stillk��(�)k�1;Æ� � �0. In order to �nd this shift we write ��v� = eu(��(�)) with(42) ��(�) := �e�1u Æ �� Æ eu�(��) 2 �1;Æ� :This will satisfy k��(�)k�1;Æ� � C�k��k�1;Æ� + j�jkduk�1;Æ� �;so it is well de�ned whenever j�j � �0, where we �xed �0 = 12�0C�1kduk�1�1;Æ� suh thatk��(�)k�1;Æ� � �0 is ensured for suÆiently large � � �0. The L2-estimate on ��(�) an beseen from the pointwise estimate��e�1u ��eu(�)�� � ��e�1u ��eu(�)� e�1u ��eu(0)��+ ��e�1u ��u� e�1u u��� C�d���eu(�); ��eu(0)�+ d���u; u��� C��������+ �j�suj�:Here C is a ontinuity onstant for e�1u . The higher derivatives of �(�) = e�1u ��eu(�) areestimated similarly. Now onsider the funtion��(�) := h��02(�); �su02iL2 :It satis�es j��(0)j � k�sukL21;Æ� k��kL21;Æ� ! 0and (dropping the 02-subsript) we obtain from (42)��� �����(�)� k�suk2L2 ���= ���h�deu(��(�))�1����1e(u; ��)�su+ deu(��)�s���� ���su�; �suiL2+ h����su� �su�; �suiL2 ���� C�k��kH1k�sukL2 + k��k1k�suk2L2 + j�jkrs�sukL2k�sukL2�:The latter is an arbitrarily small error for large � and small �. Hene we will �nd solutions�� � ���(0)=k�su02k2L2 2 [��0; �0℄ of ��(��) = 0. With these we have ���v� = eu(��(�)),where �� 2 K0 = �� 2 �1;Æ��h�02; �su02iL2 = 0	 and k��(�)k�1;Æ� � �0. So with this smalltime-shift on v� we obtain a ontradition to the assumption that T �Æ is not surjetive.Finally, to prove the transversality we need to hek that Dv� = Deu(��) is surjetive.(The same then holds for the time shifts ���v� .) This follows from the quadrati estimatein Lemma 3.1.5 : Let Q : 
1;Æ� ! �1;Æ� be the right inverse of DÆ = dFu(0), thenk�u(��)�1Deu(��)Eu(��)Q� Idk � k�u(��)�1Deu(��)Eu(��)� dFu(0)k � kQk� 2C2kQkk��k�1;Æ� ;where kQk < 1 by (28) and k��k�1;Æ� ! 0. This shows that �u(��)�1Deu(��)Eu(��)Qand hene also the operator �u(��)�1Deu(��)Eu(��) has a right inverse for all suÆientlylarge � � �0. Here the parallel transport �u(��) is an isomorphism on the target andEu(��) identi�es �1;Æ with the domain of Deu(��). For the latter see the disussion beforeLemma 3.1.5 and reall that Eu(0) = Id. So we have established that Dv� is surjetive, andthis �nishes the proof. �



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 37Lemma 3.3.2. There exists a universal onstant ~ > 0 suh that the following holds forany sequene of Floer trajetories v� 2 MÆ� (x+; x�) with Æ� ! 0. If for some s 2 Rlim inf�!1 �kdv�02kL1(B�(s;0)) + kdv̂�kL1(B�(s;0))� =1 8� > 0;then there exists a sequene �� ! 0 suh thatlim inf�!1  ZB�� (s;0) jdv�02j2 + ZB�� (s;0) jdv̂� j2! � ~:Here B�(s; 0) is the �-ball in R � [0; 1℄ or R � [0; Æ� ℄ respetively.In the usual analysis of bubbling e�ets, one would prove this lemma by resaling aroundpoints where the di�erentials blow up, identifying the limits with holomorphi spheres ordisks, and hene obtaining an energy quantization onstant ~ that is geometrially deter-mined by the minimal nonzero energy of spheres or disks. In the present ase however,depending on the relative speed of blow-up and strip-shrinking Æ� ! 0, the resaling maylead to sphere bubbles in M0, M1, or M2, disk bubbles in (M0 �M1; L01), (M1 �M2; L12),or (M0�M2; L01 ÆL12), or the novel �gure eight bubble desribed in the introdution. Sinewe do not have a geometri bound on the minimal energy of �gure eight bubbles, we use amean value inequality to obtain ~ by purely analyti methods.Proof of Lemma 3.3.2. For notational onveniene we introdue the nonontinuous funtionjdvj : R � [0; 1℄ ! [0;1) given by jdv(s; t)j2 = jdv02(s; t)j2 + jdv̂(s; t)j2 for t 2 [0; Æ℄ andjdv(s; t)j = jdv02(s; t)j for t 2 (Æ; 1℄.Suppose the lemma is false, that is, for every k 2 N there exists a sequene vk;� 2MÆk;� (x+; x�) with Æk;� ! 0 suh that (after time shift to s = 0) R�k := jdvk;�(s�k; t�k)j ! 1for some (s�k; t�k)! (0; 0), but lim inf�!1 ZB�� (0) jdv�;kj2 � 1k :for every sequene �� ! 0. In partiular, this will hold for a �xed sequene ��k ! 0 thatsatis�es in addition ��k � Æ�k , (s�k; t�k) 2 B 14 ��k(0) and ��kR�k !1. We an then �nd diagonalsequenes vk 2 MÆk(x+; x�) with Æk ! 0, and �k ! 0, (sk; tk) 2 B 14 �k(0) suh that�kRk := �kjdvk(sk; tk)j ! 1 and(43) ZB�k (0) jdvkj2 ! 0:Next, we use Lemma 3.3.3 to re�ne the hoie of the blowup points (sk; tk). For that purposewe onsider the spaes X02 = R� [0; 1℄, X̂ = R� [0; Æk ℄, and X = R� [0; 1℄, with the obviousinlusion � : X02 [ X̂ ! X. Using the funtion f = jdvk02j on X02 and f = jdv̂kj on X̂ onean then vary the point �(x) = (sk; tk) 2 R � [0; 1℄ by 2� = 14�k to �nd (sk; tk) 2 B 12 �k(0)and �0k � 18�k, suh that �0kRk := �0kjdvk(sk; tk)j ! 1 and jdvkj � 4Rk on B�0k(sk; tk). Here(43) ontinues to hold on B�k(0) � B�0k(sk;tk).Now in a �rst step we will prove that �gure eight bubbles (arising from resaling in thease ÆkRk ! � 2 (0;1)) have a minimal energy (possibly depending on � > 0.) Morepreisely, we laim that (43) implies(44) tkRk ! 0; and ÆkRk ! 0:



38 KATRIN WEHRHEIM AND CHRIS T. WOODWARDIn a seond step we will then see that this gives rise to a disk bubble in (M0�M2; L01ÆL12).Step 1:We prove (44).First onsider the ase jdvk02(sk; tk)j � 12 jdvk(sk; tk)j and tk � 12Æk. Then for all suÆientlylarge k we an apply the mean value inequality [8, Lemma 4.3.1℄ to jdvk02j on the ballBrk(sk; tk) � R � (0; 1) \B�k(0) with rk := minftk; �0kg,14(rkRk)2 � r2kjdvk02(sk; tk)j2 � ZBrk (sk;tk) jdvk02j2 ! 0:Here we annot have rk = �0k sine �0kRk ! 1, so we have rk = tk and thus 12ÆkRk �tkRk ! 0 as laimed.In the ase jdv̂k(sk; tk)j � 12 jdvk(sk; tk)j and Æk � tk � 12Æk we an apply the meanvalue inequality [19, Theorem 1.3, Lemma A.1℄ to jdv̂kj with boundary ondition v̂kjt=Æk 2L01 � L12 on the partial ball Brk(sk;tk) � R � (0; Æk ℄ \B�k(0) for rk := minf12Æk; �0kg,14(rkRk)2 � r2kjdv̂k(sk; tk)j2 � ZBrk (sk;tk) jdv̂kj2 ! 0:As before we annot have rk = �0k sine �0kRk ! 1, so we have rk = 12Æk and thus tkRk �ÆkRk ! 0 as laimed.In the remaining ase tk � 12Æk we onsider the holomorphi urvewk := (vk02; v̂k) : R � [0; Æk℄!M0 �M2 �M0 �M2 �M1 �M1;whih satis�es the Lagrangian boundary ondition wkjt=0 2 �0 ��2 ��1. By the abovewe have jdwk(sk; tk)j � Rk ! 1 and RB�k (0) jdwkj2 ! 0. So for all suÆiently large kwe an apply the mean value inequality [19, Theorem 1.3, Lemma A.1℄ on the partial ballBrk(sk;tk) � R � [0; Æk) \B�k(0) for rk := minf12Æk; �0kg,(rkRk)2 � r2kjdwk(sk; tk)j2 � ZBrk (sk;tk) jdwkj2 ! 0:Again we annot have rk = �0k sine �0kRk ! 1, so we have rk = 12Æk and thus 2tkRk �ÆkRk ! 0 as laimed.Step 2: We prove the lemma.We onsider the resaled maps wk = (wk02; ŵk), where wk02 : B�kRk(0)\ H 2 !M0�M2 isde�ned on half balls of radius �kRk !1 in the half spae H 2 := R � [0;1) by wk02(s; t) :=vk02(sk + s=Rk; t=Rk), and ŵk : B�kRk(0)\ (R � [0; ÆkRk℄)!M0�M2�M1�M1 is de�nedby ŵk(s; t) := v̂k(sk+s=Rk; t=Rk) on balls of radius �kRk interseted with the strip of widthÆkRk ! 0.This resaling preserves the nontriviality jdwk(0; tkRk)j � 1, but on both domains jdwkjis uniformly bounded. Hene we an �nd a subsequene of the wk02 that onverges inthe C0-topology on the unit half ball D1 := B1(0) \ H 2 . The (saling invariant) energyRB�kRk (0) jdwk02j2 onverges to zero by (43), so the limit has to be onstant. In fat, wehave wk02 ! x02 2 L02 sine the boundary values wk02jt=0 onverge to L01 Æ L12 = L02 inC0([�1; 1℄). To see the latter use the transversality of the Lagrangians as in Lemma 3.1.3and integrate the bound on j�tŵkj to obtaind�ŵk(s; 0); ŵk(s; Æk)� � Z Æk0 j�tŵk(s; t)jdt � Æk2Rk ! 0:



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 39This also proves that ŵk ! x1 in C0([�1; 1℄ � [0; ÆkRk℄), where x1 2 M1 is uniquely deter-mined by �x := (x02; x1; x1) 2 L01 � L12. The maps wk02 are �J02-holomorphi, so by elliptiregularity the onvergene wk02 ! x02 is in the C1-topology on every ompat subset ofH 2 n �H 2 . However, in order to obtain a ontradition to the fat that jdwk(0; tkRk)j � 1with tkRk ! 0 we need to establish C1-onvergene on D1 up to the boundary.We begin by noting that due to the C0-onvergene we an express wk = ex(�k) in termsof setions �k = (�k02; �̂k) 2 H2(D1; x�02T (M0 �M2))�H2([0; 1℄� [0; ÆkRk℄; �x�T (M0 �M2�M1 �M1)) using the exponential map entered at x = (x02; �x). These setions satisfy thediagonal and Lagrangian boundary onditions �kjt=0 2 Tx(�0 ��2 ��1) and �̂kjt=ÆkRk 2T�x(L01 � L12), the C0-onvergene k�kk1 ! 0, and a uniform bound kr�kk1 � 0. Sine�Jwk = 0 and rx = 0 we obtain from (29)rs�k + J(�k)rt�k = 0:Now dwk = dex(�k)rs�kds+dex(�k)J(�k)rs�kdt, so it suÆes to prove the C0-onvergeneof rs�k near 0. For that purpose we multiply the setions by uto� funtions h = (h02; ĥ)with h02 : R � [0; 1℄ ! [0; 1℄ supported in D1, ĥ : R ! [0; 1℄ supported in [�1; 1℄, and bothequal to 1 near 0. Then we obtain setions on the multistrip h�k := (h02�k02; ĥ�̂k) 2 �1;ÆkRkthat also satisfy the boundary ondition h02�k02jt=1 = 0. These satisfy a uniform boundsupk �krs(h�k) + J(�k)rt(h�k)kH11;ÆkRk + kh�kkH01;ÆkRk� � supk Ck�kkH11;ÆkRk (supp(h)) <1due to the bounds on k�kk1 and kr�kk1 and the ompat support of h. From thisLemma 3.2.1 (b) provides a uniform boundsupk kh�kkH21;ÆkRk � C� <1:Indeed, the boundary terms vanish sine the onstant boundary onditions diretly transferto the derivatives, rs�k02jt=1;r2s�k02jt=1 2 Tx02(L0 � L2) and rs�̂kjt=ÆkRk ;r2s �̂kjt=ÆkRk 2Tx̂(L01 � L12).We now �x a pair of uto� funtions h0 with support in h�1(1) and still equal to 1 near0. Then we apply Lemma 3.2.1 (b) to h0rs�k, again with vanishing boundary terms, toobtainsupk kh0rs�kkH21;ÆkRk � supk C1��rs + J(�k)rt�h0rs�kH11;ÆkRk + kh0rs�kkH01;ÆkRk�� supk C(1 + 0)kh�kkH21;ÆkRk <1:We an pik the uto� funtions suh that h002jD1=2 � 1 on the half ball D1=2 � H 2 andĥj[� 12 ; 12 ℄ � 1. Then the ompat Sobolev embedding H2(D1=2) ,! C0(D1=2) provides C0-onvergene of a subsequene rs�k02. We already know that the limit is 0, so we obtainrs�k02 ! 0 and �swk02 ! 0 in C0(D1=2). It remains to establish krs�̂kkC0([� 12 ; 12 ℄�[0;ÆkRk℄) ! 0and thus k�sŵkkC0([� 12 ; 12 ℄�[0;ÆkRk℄) ! 0 in ontradition to jdwk(0; tkRk)j � 1 with tkRk ! 0.To see this we follow the argument in Lemma 3.1.4. Using the standard Sobolev embedding
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