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FLOER COHOMOLOGY AND GEOMETRIC COMPOSITION OF
LAGRANGIAN CORRESPONDENCES

KATRIN WEHRHEIM AND CHRIS T. WOODWARD

ABSTRACT. We prove an isomorphism of Floer cohomologies under geometric composition
of Lagrangian correspondences in exact and monotone settings.

1. INTRODUCTION

Lagrangian correspondences were described by Weinstein [27, 26] as generalizations of
symplectomorphisms, in an attempt to build a symplectic category with composable mor-
phisms between non-symplectomorphic manifolds. By definition a Lagrangian correspon-
dence from My, to M; is a Lagrangian submanifold in the product, Loy C M, x M,
with respect to the symplectic structure (—wpy,) X wpr,. The basic examples are graphs of
symplectomorphisms. Composition of symplectomorphisms generalizes to geometric com-
position of Lagrangian correspondences Loy C M, X My, Lip C M| x M, defined by

(1) LOl OL12 = {(Io,.’Eg) S MO X M2 ‘ El.’El : (.’E[],.’El) c L[]l, (.’El,.’Eg) c ng}.

In general this will be a singular subset of M x Ms with isotropic tangent spaces. However,
if we assume transversality of the intersection Loy X ps, L12 := (L01 ><L12) N (MU_ X A, X Mg),
then the restriction of the projection moo : My X My X M;” X My — My x M to Loi X pr, L2
is an immersion [4, 20}, and hence Lg; o L1z C M, x My is an immersed Lagrangian
correspondence. We will study the class of embedded geometric compositions, for which in
addition mp2 is injective, and hence Lg; o L2 is a smooth Lagrangian correspondence.

Lagrangian correspondences arise naturally in in various contexts. Perutz [10, [11] pro-
posed a construction of three and four-manifold invariants, defined by Floer cohomology of
Lagrangian correspondences in symmetric products. Seidel proposed a generalized version
of his exact triangle in Floer cohomology [15] for fibered versions of symplectic Dehn twists,
whose vanishing cycle is a spherically fibered Lagrangian correspondence. Seidel and Smith
[17] proposed a symplectic definition of Khovanov homology, using Lagrangians constructed
as geometric compositions of the fibered vanishing cycles. Finally, moduli spaces of flat bun-
dles on three-dimensional cobordisms define Lagrangian correspondences [24] between the
moduli spaces of bundles on the boundary surfaces, such that composition of cobordisms
corresponds to geometric composition. The corresponding Floer cohomology groups may
be viewed as symplectic versions of instanton Floer homology for three manifolds.

Naturally the question arises of how composition of correspondences affects Floer co-
homology. In this paper we prove that Floer cohomology is isomorphic under embedded
geometric composition. For a precise general statement, it is best to use the language of
quilted Floer cohomology developed in [20] which defines HF(Lo1, L12, ..., Lx—1);) for a
cyclic sequence of Lagrangian correspondences Ly_1)p C M, ; X M; between symplectic
manifolds Mo, My, ..., My = My. If the composition L_1),© Lyy1) is embedded, then we
obtain under suitable monotonicity assumptions a canonical isomorphism

(2) HE(..., L1y, Loeyrys---) EHF( .., Lyg_1ye © Lygeq1ys - - -)-
1


http://arxiv.org/abs/0905.1368v1

2 KATRIN WEHRHEIM AND CHRIS T. WOODWARD

Here the quilted Floer cohomology on the left hand side counts k-tuples of holomor-
phic strips (u; : R x [0,1] — M;),—0,. k-1, whose boundaries match up via the La-
grangian correspondences, (uj-1(s,1),u;(s,0)) € L(j_1);. On the right hand side of (2],
no strip in M, is taken into account, and the strips M, ; and My, match up directly via
(ue—1(s,1),ue11(5,0)) € Lg—1)¢ © Lye41)- Rather than going through the general definition
in detail, we will prove in detail the following representative example in the familiar notation
of Floer cohomology for pairs of Lagrangians in the same symplectic manifold.

Theorem 1.0.1. Let My, My, My be symplectic manifolds and let
Lo C My, Lo C MO_ X My, Lis C Ml_ X Mo, Lo C MZ_

be compact Lagrangian submanifolds such that the geometric composition Lgi o Lo is em-
bedded. Then the canonical bijection (Lo x Lyg) N (Lo X Lg) = (Lo x L) N (L1 o Li2)
induces an isomorphism

(3) HF (Lo x Ly, Loy X Ly) = HF(Ly X Lg, Loy o Ly2),
provided the following assumptions hold:

(a) Each of My, My, My is monotone with the same monotonicity constant T > 0, that
is lwag,] = 7 c1(T'M;) for i = 0,1,2. Note that 7 = 0 is the case of exact sym-
plectic manifolds, which are necessarily noncompact. We thus require that each of
My, My, My is compact or satisfies the “bounded geometry” assumptions as in [16].

(b) The pair (Lo x L2, Lo1 x L2) of Lagrangian submanifolds in My x M{ x My is
monotone for Floer theory, that is with the 7 > 0 from (@) we have

2fv*wN =T-" IMaslov(U*T(LU X L12), U*T(Lol X Lg))

for all maps from the annulus v : S* x [0,1] — My x M, x My with Lagrangian
boundary conditions v(S' x {0}) C Lo x L1z and v(S' x {1}) C Loy X Ly. The Maslov
indez is defined by choosing a trivialization v*T (Mo x M x Ms) = S1 x [0,1] x C*,
then Injasioy (VT (Lo X L12),v*T (Lo X L)) is the difference of Maslov indices of the
two loops in the Lagrangian Grassmannian of C*.

(c) The minimal positive Maslov indez in (D)) is 2, that is there exists no annulus v with
Ivasiov (VT (Lo x L12),v*T (Loy % L2)) = 1.

(d) Each of the Lg, Loy, L12, Ly has minimal Maslov index > 3. (Here the minimal
Maslov index of L C M is the positive generator of Injasiov(m2(M, L)) C Z.)

Assumptions (b) and (c) are met, for example, if all Lagrangians are orientable and exact,
or if they are orientable, monotone, and the image of either 71 (Lo X L12) or m(Lo1 X L9) in
71 (Mo x My x Ms) is torsion. In this paper, the isomorphism (3)) of Floer cohomology groups
is completely proven only with Zo-coefficients; to reduce the length, we banished the discus-
sion of coherent orientations — in the presence of orientations and relative spin structures
on the Lagrangians — to a separate paper [23]. There should also be versions of this result
for Floer cohomology with gradings, coefficients in flat vector bundles, and Novikov rings.
We give a detailed statement and proof for the gradings in [20]. Below we explain the ne-
cessity of the monotonicity and Maslov index assumptions. In [21I] we give some alternative
assumptions and generalizations, and in [25] generalize Theorem [[LO.I] to an isomorphism
in the derived category of matrix factorization, allowing to drop assumption (d)).

Throughout we will use the construction of Floer cohomology, mainly due to Floer [2],
Oh [9], and Floer-Hofer-Salamon [3]. The Floer differential for (Lo x L2, Lo1 X L2) counts
triples of holomorphic strips in My, M, , M3 (see Figure[llbelow). In the standard definition,
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FIGURE 1. Tuples of holomorphic strips that are counted for HF(Ly X
L12,L01 X Lg) and for HF(LO X Lg, LOI o L12)

one would take the width of all three strips to be equal, but in fact one can allow the
widths of the strips to differ. (These domains are not conformally equivalent due to the
identification between boundary components.) The main difficulty then is to prove that
under the stated assumptions and with the width of the middle strip sufficiently close to
zero, the triples of holomorphic strips in My, M, , M> are in one-to-one correspondence
with the pairs of holomorphic strips in My, M+ that are counted in the Floer differential for
(Lg% Lo, Ly;oLy2). As in similar situations in Floer theory, the proof is an application of the
implicit function theorem, on one hand, and compactuness results for certain J-holomorphic
strips, on the other. In the limit various kinds of bubbling can occur: sphere bubbles in
M[], Ml, or MQ; disk bubbles in (MO X Ml,L()l), (M1 X MQ,L]_Q), or (Mg X MQ,Lgl ¢} L12);
and a novel type of bubble which we call a figure eight bubble. The latter is a triple of
J-holomorphic maps vy : R x (—oo, —1] = My, v; : R x [-1,1] = Mj,vy: R X [1,00) = My
such that (vo(7, —1),v1(7, —1)) € Lo1, (v1(7,1),v2(7,1)) € Ly2.

Viewed from z = oo the lines Im(z) = £1 appear as a figure eight, as in Figure 2
We conjecture that the maps (vg,v1,v2) can be extended continuously to S? by a point
(’U()(OO),’Ul (OO),’U2 (OO)) that lies in both L01 X M2 and M[] X L12.

My L

1/z

FI1GURE 2. Figure Eight bubble

However, we cannot in general prove this removal of singularities at z = oo for figure
eight bubbles and thus are lacking the construction of a moduli space of figure eight bubbles.
Instead, as in [19] we exclude bubbling by energy quantization without giving a geomet-
ric description of the bubble. However, this method hinges on strict monotonicity with
nonnegative constant 7 > 0 as well as the 2-grading assumption (d).
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A few of the applications of the result of this paper are the following. First, there are
various applications to symplectic topology: Using the result we prove in [2I] the nondis-
placeability of a Lagrangian 3-sphere & C (CP?)~ x CP!, whose projection to CP? contains
the nondisplaceable Clifford torus. An application to non-triviality of symplectic mapping
class groups is given in [25]. Second, our isomorphism is key to proving the topological
invariance of various groups defined using Floer cohomology and decomposition in low-
dimensional topology; for example, the symplectic version of instanton knot homology con-
structed in [25], Seidel-Smith homology and Heegard-Floer homology, for which it provides
alternative constructions [12], [7].

From a more conceptual point of view, the results of this paper are used in [20] to give
a solution to the problem in Weinstein’s construction that composition of Lagrangian cor-
respondences is not always defined. Using the result here, one may construct a symplectic
2-category, in which all Lagrangian correspondences are composable morphisms and Floer
cohomology groups (as 2-morphism spaces) are well defined. Thus one removes the quotes
in Weinstein’s ” category” by promoting the construction to a 2-category, using Floer theory.

We thank Paul Seidel and Ivan Smith for encouragement and helpful discussions.

2. FLOER COHOMOLOGY FOR MONOTONE LAGRANGIAN CORRESPONDENCES

In this section we first explain why both Floer cohomologies in Theorem [[.O.I] are well
defined. Then we give a specific "quilted” setup and choice of perturbations for both that
reduce the isomorphism of Floer cohomologies to a bijection of moduli spaces that is proven
in Section [3

2.1. Monotonicity assumptions and index identities. The significance of the mono-
tonicity and Maslov index assumptions in Theorem [[.0.] is the following energy-index re-
lation and relative grading.

Proposition 2.1.1. Suppose that the pair (Lo, L1) of Lagrangians in M is monotone,
transverse, and has minimal annulus Maslov index N > 2. (That is, N is the positive
generator of {Izasioy (v*T'Lo,v*TLy)|v: St x [0,1] = M,v(S* x {j}) C L;} CZ.)

Then for any x+ € Lo N Ly there exist constants c(z—,zy) € R and p(x_,x4) € Z
such that for all strips u : R x [0,1] — M with boundary values in (Lo, L1) and limits
u(£o00,-) = 4+ we have

(4) 2E(u) = 7 -Ind(Dy) + c(z—,z4), Ind(Dy) = p(z—,x4+) mod N.
Here E(u) = [u*w is the energy and D, the linearized Cauchy-Riemann operator at u.

Proof. Given two strips uj,us : R x [0,1] — M glue them together (reversing the ori-
entation of ug) to an annulus v : S' x [0,1] — M, then [v*w = E(u1) — E(uy) and
I\asioy (0T Lo, v*TLy) = Ind(D,,) — Ind(D,,). So the energy-index relation follows from
monotonicity, and the index identity follows from Iyjasioy (v*T Lo, v*T L) C NZ. O

The energy-index relation ensures energy bounds for the moduli spaces of fixed index
and thus compactness up to bubbling and breaking of trajectories. Together with the
index identity it excludes bubbling in moduli spaces of index less than N as follows: Any
bubbling leads to a new (possibly broken) trajectory connecting the same points but with
less energy. By monotonicity, less energy means strictly less index. By the index identity
mod N that means negative index. By transversality (previously established for moduli



FLOER COHOMOLOGY AND COMPOSITION OF LAGRANGIAN CORRESPONDENCES 5

spaces of negative index) that means an empty set: The new trajectory doesn’t exist, so
the bubbling didn’t happen. We spelled out this argument because we will use it again to
exclude figure eight bubbling — by only proving energy loss, not actually giving a geometric
description of the bubble.

Working with N = 2 there is just one point in the construction of Floer cohomology where
this argument fails: The 1-dimensional moduli spaces of self-connecting Floer trajectories
have index 2, so bubbling could lead to an index 0 solution (which are always constant due to
the R-action). Assumption (d) serves to exclude this scenario by index additivity arguments:
Any holomorphic disk bubble with boundary on L will reduce the index by at least Np,
the minimal Maslov index on mo(M, L). So Np > 3 ensures that the remaining solution
would have negative index (and the same holds for sphere bubbles whose Chern number
would be at least %N ). Note that this argument, unlike the previous bubbling exclusion
by energy loss, requires an identification of the bubbles as spheres and disks. In our case
it also requires that we work with a split almost complex structure (preserving the factors
of My x M{ x M), otherwise holomorphic disks in the product manifold don’t necessarily
have the minimal index of a disk in one of the factors. We will show in Section that we
can achieve transversality with a split almost complex structure, and hence our assumptions
indeed ensure that the Floer cohomology HF(Ly X Ly2, Ly X Lo) is well defined.

The next Lemma shows that the Floer cohomology HF(Lg x La, Lo; o Ly2) for the com-
posed Lagrangian correspondence is also well defined.

Lemma 2.1.2. In the setting of Theorem [LO1, the assumptions (D) and @) imply the
analogous assumptions for the pair (Lo x L2, Lo o L12) of Lagrangians in My x My . As-
sumption (d) implies that 0° = 0 on CF(Lg X La, Ly10L12), and hence the Floer cohomology
s well defined.

Proof. Consider any annulus (up X u2) : S' x [0,1] — My x M, with Lagrangian boundary
conditions (ugxug)(S'x{0}) C Lox Lo and (up xuz)(S'x{1}) C LoioLys. By the embedded
composition there exists a unique lift u; : S* — M, such that (ug|i=1 x u1)(S') C Loy and
(u1 X ugli—1)(S') C Lis. Now we can reverse the parametrization in s (s, t) := ug(s,1 — t)
and extend u; constant along [0,1] to define an annulus (up X uy X W) : S* x [0,1] —
My x M x M as in (b). Here ujw; = 0, hence [(ug X u1 X T2)*(wp X (—wi) X wy) =
[ (uo x u2)*(wp X (—wz)). To identify the Maslov indices, pick the same trivializations
u;TM; = S! % [0,1] x V; for j = 0,2 in both cases, then equality follows from the identity

(5) I(vo1) + I(712) = I(vo1 X 712) = I(702)

for loops of Lagrangians o, : S' — Lag(V, x Vi), M2 : St — Lag(V] x V), and ~py :
St — Lag(V, x V&) given by v02(s) = (701(s) X 112(s)) N (Vo x Ay, x V). The first equality
is simply additivity of the Maslov index. To see the second equality we fix Lagrangians
A; C Vj for j = 0,2, then the Maslov indices can be expressed as the intersection number
with Ag x Ay, x Ag resp. Ag x Ag. With this choice the intersections are identified,

K(S) = (’)/01(3) X ’)’12(3)) N (AO X AV1 X A2) = 702(3) N (AO X Ag)

Now we need to compare the crossing forms T'g112(s), To2(s) : K(s) — R at regular crossings
s € S1. Fix a Lagrangian complement ~p2(s)¢ C Vo x V, , then yp2(s)¢ x Ay, after appro-
priate transposition of factors, is a Lagrangian complement for p;(s) X y12(s), due to the
assumption of transversality (Lg; X L12) th (Mo x Apr, X Mg). So for vgi12 = (vg,v1,v1,v2) €
K(s) one finds (wp,w2)(t) € 7v02(s)¢ and w; € Vi such that v + (wp,wy,wy,ws)(t) €
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(701 X v12)(s + t). For the corresponding vector vge = (vg,v2) € K(s) this automatically
gives v + (wo, w2)(t) € yo2(s + t). With this we identify the crossing forms

Toria(s)voriz = % |,_o(wo & —w1 @ w1 & —wa) (vor12, (wo, w1, wr, w2)(t))
= %\tzo(—wo(vo,wo) + wi (v1, w1) — wi(v1, wr) + wo(v2, w))
= %‘tzo(wo ® —wsa) (vo2, (wo, w2)(t)) = Loz (s)voe-

This proves equality of the Maslov indices in (Bl and this finishes the proof of (b) and (c).

In the absence of assumption (d) we have 9 = wld a multiple of the identity in both Floer
theories, see [9] and [25]. A derived version of Theorem [[.0.I] implies that the value of w is
the same for both theories, see Remark 2.2.3] Assuming (d) for the pair (Lo x L2, Lo1 X L2)
we obtain w = 0 and thus also 9> = 0 on CF(Lg X La, Lo © L12). O

The index calculation in () analogously holds for strips. This identifies the index on
the two complexes in Theorem [[.0.Il Recall here from [2] that the index of the linearized
Cauchy-Riemann operator D, at a map u : R x [0,1] — M with Lagrangian boundary
conditions u(R x {¢}) C L; for ¢ = 0,1 and limits u(s,-) R Ly th Ly at transverse

intersection points is given by the Maslov-Viterbo index,

Ind(Dy) = Inv(u) = I(v0,71), Yi(8) = Tu(s iy Li-
Here the Maslov index of the pair of paths is defined by choosing a trivialization «*T'M =

Rx[0,1]xV (independent of ¢ € [0, 1] for s — 400 ) so that y; becomes a path of Lagrangian
subspaces in the symplectic vector space V.

Lemma 2.1.3. Let Ly C My, Loy C M[; X My, Lis C Mf X My, and Lo C M{ be
Lagrangians such that the composition Loy o Lo =: Loy is embedded. Suppose that the
intersection Lo X Lyjg N Loy X Ly (and hence also Ly X Lo N Loy o Lyy) is transverse and
consider a map (ug,uz) : Rx[0,1] — My x My taking boundary values in (Lo X Lg, Lo o L13),
and limiting to intersection points as s — £oo. Let (ug,u1,us) : Rx[0,1] — My x My x M,
be the corresponding map which takes boundary values in (Lo X Ly, Loy X Lg) and satisfies
Oy = 0. (Here uy reverses the [0, 1]-parametrization of ug.) Then the indices of the
linearized operators and the energies are equal,

Ind(D(yguz)) = Id(D (4 u; 12)) E((ug,u2)) = E((uo, u1,us2)).

Proof. The identity of Maslov indices follows as in Lemma [2.1.2] Alternatively, it could be
deduced from a more general result of Viterbo [I8] Proposition 3]. For the energies just
note that [ubws = [U5(—w2) and [ujw; = 0. O

2.2. Quilted setup for Floer cohomology. As in Theorem [LOJl let My, My, My be
symplectic manifolds and let

Ly C My, Lot C My x My, Lo CM{ X My, Ly C My

be Lagrangian submanifolds such that the geometric composition Lo := Lg; o Lio is em-
bedded. The aim of this section is to introduce the ”quilted” setup and give compatible
choices of perturbation data for the two Floer cohomologies HF(Ly x L2, Loy X Lg) and
HF(LO X LQ,LOQ).

First, we need to fix Hamiltonians such that the perturbed intersection points are fi-
nite and nondegenerate. In fact, the following Proposition shows that we can pick a
Hamiltonian of split type which achieves simultaneous transversality for the intersection
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points in both Floer theories. Given a pair of time-dependent Hamiltonian functions
(Hy, H2) € C>([0,1] x My) x C>°([0,1] x Ms) consider the Hamiltonians Hoa(t, zo, z2) =
Hy(t,xg) — Ho(1 — t,z2) on My x My and Hyio(t, o, z1,22) = Ho(t,z9) + Ha(t,z2) on
My x My x My and denote their time 1 flows by ¢ and ¢z, Then the perturbed
intersection points ¢°2(Ly x Ly) N Loy can be identified with

Lox yro Lo2 X yrry Ly = {(mo,m2) € Mox My ‘mo € Lo, (¢""°(mo),m2) € Loa, "2 (m) € Ly}
and analogously
¢H012 (LO X L12) N (LOI X Lg) =Ly X¢H0 Lot X¢H1 Lis X¢H2 Lo,

where ¢ is the time 1 flow of the Hamiltonian H; and we use the trivial function H, = 0
on M;. Note that the Hamiltonians are constructed such that the perturbed intersection
points for the two Floer theories are still canonically identified. Indeed, by assumption
every point in Loy = Lg; o L2 has a unique lift to Lg; XTdy, Lys.

Proposition 2.2.1. There is a dense open subset Ham(Lg, Loz, L2) C C*([0,1] x Mp) X

C*(]0,1] x My) such that for every (Ho, Hy) € Ham(Ly, Loz, L2) and Hy = 0 the defining

equations for both sets Ly X pHo Lyo X s Loy and Ly X pHo Ly X Lo X¢H2 Ly are transversal.
1

Proof. By assumption Lg, Lga, Lo are embedded submanifolds and so locally they are the
zero sets of submersions 1y : My — R™, 4hgg : My x My — R0 4y : My — R"2. Then
the defining equations for Lg X gto Loz X 4y Ly are

(6) Po(mo) =0, to2(#°(mo), m2) =0, 1ha($™*(m2)) = 0.

Consider the universal moduli U space of data (Hy, Ha, mg, mg) satisfying (@), where now
each H; has class C* for some ¢ > 2. The linearized equations for I are

(7) Dpo(vg) =0, Dpoa(D¢™0(ho,vp),v2) =0, Dipo(D¢"?(ha,vs)) = 0.

for v; € Tip; Mj and h; € Cl([O, 1]x Mj). The product of the operators on the left-hand sides
of () are surjective since each of the maps C*([0, 1] x M;) — Ty, (m]_)Mj, hj — D¢ (h;,0)
is surjective. So by the implicit function theorem ¥ is a smooth Banach manifold, and we
consider its projection to C*([0, 1] x Mp) x C*([0,1] x M3). By the Sard-Smale theorem, the
set of regular values is dense. On the other hand, the set of regular values is clearly open.
Hence the set of smooth functions that are regular values is open and dense. This is exactly
the set of functions H = (Hy, Hs) such that the perturbed intersection Lg x $Ho Lgo % $H2 Lo
is transversal.

Moreover, the perturbed intersection Lo X ym Lor X 4, L1g X m, Lo is also transversal,

¢
since by assumption Ly; X Ljo is transverse to the diagonal My x Apy, X Mo. [l

In the following, instead of working with perturbed intersection points, we will apply the
Hamiltonian diffeomorphisms to the Lagrangians to achieve transversality. Replacing Lg
with L) = ¢H°(Ly) and Lp with L, = (¢2)7!(Ls) the generators of the two Floer chain
groups are the transverse intersections

(L6 X LIZ) N L01 = L6 XIdMo L02 XIdM2 LIZ,

(L6 X L12) N (L01 X LIQ) = L(] XIdMo L01 XIdMl L12 XIdM2 LIZ
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The forgetful map (mg, m1, ma) — (mg, m2) is a bijection from Z to (Lg x L) N Ly since by
assumption Ly XTdy, Lis — Loy is bijective. So, after a generic Hamiltonian perturbation,
we have a natural isomorphism of the Floer chain groups

(8) CF(LO X L12, L01 X Lg) :) CF(LO X LQ, LUQ)

and it remains to identify the Floer differentials. For that purpose we now drop the Hamil-
tonian from the notation: By abuse of notation we can assume to start out with unperturbed
transverse intersections and a natural bijection

I:= (LO X L2) h Ly = (LO X L12) M (L01 X Lg)

To investigate the Floer trajectories note that we consider (Ly X Lg, L) as a pair of
Lagrangians in My x My, and (Lg X Li2,Lo1 x L) as a pair of Lagrangians in My x
M; x M,. For any symplectic manifold M let J(M) be the space of almost complex
structures on M that are compatible with the symplectic structure wj;. We pick time-
dependent almost complex structures Jy € C*([0,1], J(My)) and Jo € C*>([0,1], T (M3)),
then Jo(t,mo) x (—J2(1—t,m2)) defines a compatible almost complex structure on My x M .
Now any pseudoholomorphic strip wgz : R x [0,1] = My x M, with boundary values on
(Lo % Lo, Lo2) corresponds by "unfolding” woy(s,t) = (ug(s,t),uz(s,1—t)) to a pair of strips
(ui s R x [0,1] = M;),_ , satisfying

(9) dsuo + Jo(t,u0)0gug = 0, Osug + J2(t,u2)0puz = 0,
up(s,0) € Lo, (uo(s,1),u2(s,0)) € Loz, uz(s, 1) € L.

Similarly, pick an almost complex structure J; € J (M), then Jy x (—J;1) x Jy defines a
compatible almost complex structure on My x M| x Mj and any pseudoholomorphic strip
with boundary values on (Lg x Ly2, Lo1 X L2) corresponds by ”unfolding” to a triple of strips
(vi: Rx [0,1] = M;),_y , , satisfying

(10)  Osvo + Jo(t,v0)0wo = 0, Osv1 + J1(v1)0w1 =0,  Osvg + Jo(t,v2) 0wz = 0,
00(870) € LUa (UO(Sa 1)77)1(370)) € LUla (Ul(sa 1)77)2(370)) € Ll?a U2(87 1) € L2'

In both cases, the trajectories have finite energy Y. [|0su;|? resp. Y., [ |0sv;|? iff they
converge uniformly to intersection points

. + 4 . + 4+ £
(11) sgftnoo(UO’UZ)(s’ ) = (% 7$2) €71 resp. ngtnoo(vﬂavlaUZ)(sa ) = (% » X7, Lo ) €T

For any z—,z" € Z let us denote by
M(l)(x_vx-i_) = {(u07u2) ‘ (@), (ED]), Ind(D(uo,uz)) = 1}

the one dimensional (i.e. index 1) component of the moduli space of Floer trajectories
for (Lo x Lo, Lp2). One can achieve transversality of these moduli spaces (of any index
< 1) by choosing t-dependent almost complex structures Jy and Jy that are constant near
t =0 and t = 111 Note that we cannot expect a bijection with the moduli spaces of Floer

1 Indeed, note that the unique continuation theorem [3l Thm.4.3] applies to the interior of each non-
constant strip u; : R x (0,1) — M;. It implies that the set of regular points, (so,t0) € R x (0,1) with
Osu;i(s0,t0) # 0 and u; ' (u; (R U {£o0}),te) = {(s0,t0)}, is open and dense. These points can be used to
prove surjectivity of the linearized operator for a universal moduli space of solutions with respect to split
almost complex structures (Jo, J2). (The constant solutions are automatically transverse due to the previ-
ously ensured transversality of the intersection points.) Note that it suffices to work with almost complex
structures that are t-independent outside of [%, é] The existence of a Baire second category set of regular
(Jo, J2) then follows from the usual Sard-Smale argument as in [§].
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trajectories for (Lo X L12, Lo1 X L2) as in (I0). However, by the independence theorem in [21],
the cohomology defined from the above Floer differential is isomorphic to the cohomology
defined by the ”quilted Floer differential” arising from the moduli spaces

M%(x_vx-'_) = {(1)077)177)2) ‘ (m)év (Djj)v Ind(D(vo,vl,ﬁz)) = 1}
for any choice of 6 > 0. Here we consider strips vg, v, of width 1 as before but middle
strips v; : R x [0,0] — M; of width 6 > 0, and ([I0); denotes the same boundary value
problem as above except for the seam condition (v (s,d),v2(s,0)) € L12. Moreover, we use
almost complex structures Jy s, Ja s that converge to Jy, Jo in the C*°-topology as § — 0.
The specific choice follows from the constructions in the proof M and will also ensure that
the moduli spaces ./K/lv};(a;*, xT) are cut out transversely for § > 0 sufficiently small.

Lo

FI1GURE 3. Shrinking the middle strip

In order to prove Theorem [[LOI]it now suffices to show that the isomorphism (8]) of chain
groups descends to cohomology for an appropriate choice of § > 0. We will prove this by
establishing a bijection between the Floer trajectories for (Lg, Loz, L2) on strips of width
(1,1) and those for (Lo, Lo1, L12, L2) on strips of width (1,4, 1) for sufficiently small width
0 > 0 of the middle strip. These Floer trajectories are holomorphic quilts associated to
the pictures in Figure [l More precisely, we will consider the (zero dimensional, compact)
moduli spaces of Floer trajectories modulo R-translation and prove the following.

Theorem 2.2.2. Under the assumptions @), (B), @) of Theorem [0 and for all suffi-
ciently small 6 > 0, the moduli spaces M%(ac*,:fr) are reqular and there is a bijection

Ts: Mz, 21) = Mz, 21) /R — M}z, 21)/R = M}(z—,z7).

Remark 2.2.3. In the situation of Theorem [0 T except for assumption (dl), the constructions
in this section provide naturally isomorphic chain groups CF(Ly x Li, Ly2) and CF(Lgy X
L9, Lo x Lo) and well defined differentials gy resp. 05 on them, defined from the moduli
spaces M{(z~,z") and M}(z~,zT). As discussed in Section 2T}, due to obstructions from
disks of minimal Maslov index 2, both differentials square to a multiple of the identity, see
[9] and [25]. So we have 93 = wyld and 0?7 = wsld for any § > 0 (as long as the moduli
spaces Mj(z~,z") are regular). Now Theorem [2.2.2]implies that for sufficiently small § > 0
and any z € Z (viewed as generator in both chain groups) we have wo(z) = 03(z) = 02(z) =
wg(z), and hence wy = ws. (If Z is empty then both theories are trivial.)

2 Due to more technical folding, Jos, Jo 5 are given by rescaling Jo to [0,1 —§/2] and J» to [§/2, 1], and
extending them constantly by Jo(1) and J2(0) respectively. The convergence holds since each J; is smooth
and constant near ¢ =0, 1.
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If ws = 0 (e.g. by assumption (d)) or wy = 0 for some other reason, then this proves that
both Floer cohomologies are well defined and (again by Theorem 2.2.2]) are isomorphic.
For any value of wy = wy this proves that there exists a canonical isomorphism

(CF(LO X L12,L01 X Lg),@o) l) (CF(LU X LQ,LOl o L12),85)

in the derived category of factorizations of wgld.

3. BIJECTION OF MODULI SPACES UNDER STRIP SHRINKING

In this section we prove Theorem We start by describing the strategy of proof and
introducing the relevant notations. First we > use the assumption that Lg; o L1 is embedded
by 7o Consider a solution u = (ug, uz) € M§(z~,z "), that is a pair ug : R x [0,1] — M,
uy : R x [0,1] = My of index 1, with limits lim, ;o0 (uo, u2)(s, ) = 2T, and satisfying

5]0’[10 == 0, 5J2U2 = 0,

uoli=0 € Lo, (uole=1,u2lt=0) € Lo2, uglt=1 € Lo.

We can identify (ug,u2) with the map ugs : R x [0,1] — My x My given by wupa(s,t) =
(ug(s,1 —t),uz(s,t)), which satisfies limg_,4 0 ug2(s,-) = ¥ and

079202 = 0, u02|t=0 € Lo2, wo2)i=1 € Lo x Lo.

Here we denoted Joa(s,t) := (=Jo(s,1 —1t), Ja(s,t)). We will also denote Jyg := Joz2|t—o and
Upp 1= u02|t:0 R — LUQ. Finally, we will denote by (L01 X L12)T C MU X M2 X M1 X M1 the
obvious transposition of factors. Since mp2 : Lo1 X, Lig — Lo2 C My x Mo is transversal
and embedded, there is a unique smooth map #¢; : Lyo — M7 such that

(12) (202, 1 (202), £1(02)) € (Lo1 x L12)” Vzg2 € Loa.

This provides the lift @, := ¢1 o g2 : R — M;. We also denote by @ := (@g2, @1, 1) the
extension Rx [0, 0] — Mo x My x M; x M; that is constant along [0, §]. Given ¢ these choices
are unique, so we can identify u with the pair (ug2,@). In the same spirit we find unique
points z° € M; such that (z*,2F) € (Lo x L12) N (Lo1 X Ly) C My x My x My. In this

notation we have the limit lim,_, 4 u1(s) = xiﬁ Given u € M}(z~,z") as above and § > 0

we wish to find a corresponding (v, v1,v9) € /f\/lvé(x_,:v‘*), that is a triple vy : R x [0,1] —
My, v : R x [0, (5] — My, vo : R X [0, ].] — M with limits lims_&oo(vo,vg)(s,-) = .’I)i,
limg 1001 (s, ) = xic, and satisfying

5‘]0,5,00 = 07 5Jl,U]- = 07 5]2,5,02 = 07
vo(s,0) € Lo, (vo(s,1),v1(s,0)) € Lo1, (vi(s,6),v2(s,0)) € L1z, wv2(s,1) € Lo.

Here Jy 5, J2 5 are given by linearly rescaling Jy to [0,1—-6/2] and J, to [§/2, 1], and extending
them constantly by Jy(1) and J2(0) respectively. This choice of almost complex structures
is more natural in the following reformulation of the é-moduli spaces.

Let § := /(2 — 0) (or equivalently § = 25/(1 + 0)). Instead of the triple strip we
consider a quadruple of maps v = (vg2, Vs, v1,v]) With vge € C®(R x [0,1], My x My),
vhy € CP(RX[0,d], My x Ms), v1,v} € C®(Rx][0,d], M7) that have limits lim,_, 4 v2(s, ) =
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limg 400 vy (s, +) = o, limg 400 v1(s,+) = limg 100 v1(s,-) = .’L‘it, and satisfy
0.70,v02 = 0, 5_j02v62 =0, 0 v =0, 0,01 =0,
(13) (V025 v02)|i=0 € Ao X Ay, (v1,01)|i=0 € Ay,
(U62av’1701)|t:3 € (LOI X L12)T7 1)02|t:1 € LO X L2-

For notational convenience we will also group these quadruples of maps as v = (vg2,0)
with & = (v}, v1,v}). Then we can abbreviate J = (Jy2,J) with J := (=Jo2, —J1, J1), and
reformulate (I3)) as

5]1) = (5]021)02 , gj@) = 0,

(vo2,0)|t=0 € Ag x Ay x Ay, by_5 € (Loy x Ly2)T, vozli=1 € Lo X Lo.

We denote the moduli space of such solutions v = (vg2,0) by ./T/l\%(x*, z1). Tt is in one-to-
one correspondence to M}(z~,z ") as follows: Given v = (vg2, vjy, v}, v1) € ./T/l\%(a;*, zt) we
obtain ¥ = (vy,v1,v2) € M}(z~,z") from
!
(o1 = )ma(s.) = { oL Q7 GO or 01
v1(s,t) = { v (1 + (E)S,S— (l'l‘ S)é) for ? <t< %57
v ((1+6)s, (L+0)t—6) for 50 <t <6

The two different formulations for double and triple strips each are indicated in Figure [l
The bijection 75 to the moduli space M} (2, 2T) can then be established via a bijection

+9)
+6)

Mg : M -
Uo U2 Vo U1 V2
Lo Loz Lo Lo Loi Li2 Lo
L M - L
T [y 0 v [} 0
A 0 A 0
+~ a—
Lo1: _ v} i Loy
sUp — \
Ayl up2 w2 AVERTY Vo2 o2
L2 ‘L2
o< [
Lo Lo

FIGURE 4. Double and triple strips

(14) Ts Mz, 2") — M%(:E*,aﬁ) = ./(/l\%(x*,aﬁ)/R.

This map will be constructed by the implicit function theorem B.I.I. We prove injectivity
in corollary B.I.6] and the surjectivity will follow from the compactness theorem [B3.3.11
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3.1. Implicit function theorem. The purpose of this section is to construct the map
Ts : Miy(z—,27) = Mj(z~,2) of Theorem 2221 We will do this by constructing the map
(I4)), with 0 replaced by ¢, from the following implicit function theorem.

Theorem 3.1.1. There exist constants Co, € > 0, and dp > 0 such that the following holds
for every & € (0,8). For every u € M{(z~,zT) there exists a unique v, € M}(z™,zT)
such that v, = e, (&) with £ € 'y 5(€) N Ko. The solution moreover satisfies

(15) €l , < CoVa.

Here e, (€) := (vo2,Vly, v}, v1) is given in terms of u = (uge,@) and & = (£gg,€) with
oz € D(uf,T(My x My)) and € = (€}, &1, &) € T(@*T(My x My x My x Mi)). The precise
definitions of the exponential map e,, the e-ball I'y 5(¢), the H 12, s-norm, and the local slice
Ky of the R-shift symmetry will be given in the process of the proof.

To prove the theorem we fix a solution u € ./{/lv[l](:v_, z1), and in the following will allow
all constants to depend on u up to translation in R. (Since M§(z~,z") is finite we can
then easily find uniform constants Cy and dy > 0.) We will then roughly solve de,(£) =0

~ ~

for sections & = (£p2,&), £ = (€2, &1, &1) satisfying the boundary conditions

(16) (€02 €02)1=0 € T(any,a00)AMoxrtss  (€1,€1)|i=0 € T(ay,ap) A1,
Elims = (E02, &1 €1) |15 € Tu(Lor x L12)T, €o02lt=1 € Ty (Lo x Lo).

The exponential map e, (§) will then be constructed such that the nonlinear Lagrangian
boundary conditions are satisfied automatically. The index of the new solution v, will
coincide with that of the given solution v due to Lemma 213l Here we identified v, with
a solution v, € M%(m‘,x*‘), 0 = 20/(1 + 6). Then the homotopy between v, = e,(¢) and
(uo2,w) induces a homotopy v, = (ug, U1, uz).

To set up the implicit function theorem we introduce the space of H*-sections over (ugs, )
for k € N,

o2 € HF (R x [0, 1], uf, T(My x My)),
HY 5 := < (nozs Mogs 01> m1) | 16g € HF(R x [0, 6], 65, T (Mo x My)),
ny,m € HYR x [0, 8], aiTM;)
We also write these sections as n = (no2,7) € H f, 5> Where the subscripts indicate the width

of the domains of 792 and /) = (9}, n},m1) € H¥(R x [0, 8], @* T (Mg x My x My x My)). The
corresponding H¥-norm on this space is

/ / 2 L 2 112
H (77027 Mo25 71> 7’1) HH{C,& = “7’02 HH’C(Rx[O,l]) + ||77 HF(Rx[0,8])
_ 2 ! 2 7112 2
= lImo2 | e xjo,17) + 1702 [k xpogy T 17 ik cio,syy + 172k o)
We denote the space of H2-sections satisfying the boundary conditions by

I'y:={¢€Hi;| (@)}

and equip this space with the norm

IEllr, , == Nl e, +I9E] e s
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. 2 o 1/4 .
with the L*-norm [V (§o2, &) 4 , := (“ngZHiiS(Rx[U,I}) + Hv&“i‘l‘,&(Rx[O,&])) ™ on the multi-
strip. We denote the e-ball in I'y 5 by

Pis(e) = {€ € Hi;|llEllr,, < e @)}
We equip the target space {1y 5 := H11(S with the norm

1llon s = lallay , + Inls -

The reason for adding the L*-norms in domain and target is that we do not have uniform
Sobolev embeddings on the strips of varying width. Instead, we build the necessary Sobolev
multiplication properties into the norms.

Next, we make some preparations for defining an exponential map that is compatible
with the boundary conditions (I6]).

Lemma 3.1.2. (Ezistence of compatible quadratic corrections) There exists eg > 0 and
smooth families of maps (defined on the ey-balls)

Qs : Tas) (Mo X My x My X My) D Bey — Ty(s) (Mo x My x My x My), Vs € R,
2.1 (s,t)(MU X MQ) D) B?OQ — T (s,t)(MU X MQ) V(S,t) € R x [0, 1],

s,t : up2 w02

that are a diffeomorphism onto their image and have the following properties:
(Quadratic): Q,(0) = 0, dQ,(0) = 0, @¥3(0) = 0, and dQ35(0) = 0 for all (s,t) €
Rx[0,1]. In particular, there is a constant Cgq such that for all € € B, and &p2 € B?OQ

(17) Qs(€) < Calél, QY% (6o2)| < Coléoal*.
(Linearizing L()]_ X le): expﬁ(s) o (1 + Qs) maps Tﬂ(s) (L01 X L12)T N Beo to (L01 X
L))",
(Linearizing Mo x Mz x A1)z expy (s © (1 + Q5) maps Ty (Mo x My x A1) N By,
to MO X M2 X Al.
(Linearizing Loz): exp,,(;,1)° (1 + Qg?l) maps Ty, (s,1)Lo2 N B to Lys.
ompatible): Restricting Qs to 13 (Mo X Mo X Aq) and composing 1t with the pro-
C tibl R icting Q Ta(My x Ma x A d ing it with th
jection Proz : Ty, a,,a,) (Mo X Ma x My x My) — Ty, (Mo X Ma) yields a map that

is independent of the Ty, g,)A1-component. The resulting family
QY : Ty (s)(Mo X Ma) D BY — Ty, (5 (Mo x My)

o2
. - - 02
coincides with Q5.

Proof. We fix s € R and restrict the exponential map eXPy(s) tO a geodesic ball around
0. The subsequent constructions will depend smoothly on s € R, which we drop from
now on. By assumption the submanifold Lgo11 = expgl(Lm X L12)T in the vector space
X :=Ty(My x My x My x M) is transverse to the subspace A := Ty (My x Ma x Ay). Their
intersection Ly 1= Lo211 N A is diffeomorphic to the submanifold Loy := exp5012(L02) C
Ty, (Mo x My) by a map (mg,mz) — (mg, mg, my,m1) with uniquely determined m; =
m1(mg, mz). So we have a direct sum decomposition

A = Tﬂoz (Mo X Mg) X T(ﬁl,ﬂl)A]_ = Tgﬁog D ((T[]EOZ)J_ X {0}) D ({0} X T(al,al)Al)-

As a submanifold we can now write £y C A as the graph of a map 1 over a sufficiently
small e-ball,

¥ = Yo x P ToLoz O B = (TOEOQ)L X Tayu) A1
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with 1(0) = 0 and d(0) = 0. We moreover pick a complement C' of ToLos C ToLo211,
ToLo211 = C @ ToLoa,

then the transversality X = Ty Lo211 + A implies the splitting

(18) X=Co Toﬁog S5} (TULUQ)J_ X {0} D {0} X T(al,al)Al-

We write X >z = z¢ + zo2 + (:vé-Z, 0) + (0,211) in this splitting and define a map ¥ : X D
B, — X by

U(z) :=z + (Yg3(202), 0) + (0,911 (z02))
= zc + 202 + (293 + ¥p2(702),0) + (0, 211 + P11 (202))-

This map linearizes the intersection, \I/(To[:oz) = ﬁ027 and we have ¥(0) = 0 and d¥(0) =
Id. In order to linearize the entire Lagrangian Ly211 we remark that Tp (\I/_I(L’,ggll)) =
d\If(O)_ngﬁggll = TpLp211. So we can write \I/_l(ﬁogll) as graph of a map

1
¢ = dip X 11 : ToLog11 D Be — (Taps Loz2) ™ X Tay a1
0.

with ¢(0) = 0, d¢(0) = 0, and by the previous construction ¢|T0ﬁ02

/ U LLo10
T Ly
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Finally we define the entire linearization ® : X D B, — X by
P(z) ==V (z + (do2(zc + T02),0) + (0, P11 (zc + 02)))

for = x¢ + 202 + (253,0) + (0,211) in the splitting (I8). Now Q; := ® — Id is quadratic
and linearized (Lg; x L12)? by construction. Explicitly, we have

(19) Qs(z) = (1/13'2(1302) + ¢éz($c + 202), P11 (202) + P11(zC + 11002))-

The construction moreover ensures that Qs linearizes My x My x Aj, that is ®(A) C A,
since z € A = {z¢ = 0} is mapped to ®(z) = = + (1p3(202), P11 (z02)) € A.

To construct Q% compatible with @ note that for z = (mg, mg, m1,m;) € Ta(My x
My x A1) C X we have a splitting

r = (mg,mg,0,0) + (0,0,ml,ml) =IC + o2 + (:vé‘g,O) + (0,:611 + (ml,ml)),

where xc,xog,xdé,xn only depend on (mg, mg). With this we can see in (I9) that in-

deed Q4(mg, mo, my, my) is independent of m;. We then simply define Qg?o(mg,mg) =

Pro2Qs(mo, me,0,0). Moreover, a graph construction as above provides a map 221 :

Tygy(s,1) (Mo X M) D BY — Tygs(s,1) (Mo x Mz) that is quadratic and linearizes Los.

Now the two families 2,20 and 2,21 can easily be interpolated by the smooth family
07 = (1 = 1)QY% + tQY% of quadratic maps. O

With these quadratic corrections we can now define the exponential map e, by e, () :=

(€ups (§02), €a(§)) for € = (£o02,€) € I'15(€), where
(20) Cups (§02) 1= XDy, © (L + Q%) (&02),  ea(é) :=expgo (1 +Q)(4).
Note that we have the usual properties of an exponential map,

ew(0) = (ug2, ), de, (0) = Id.

To define e, on I'; 5(€) the € > 0 should be chosen such that ||£p2|co and |€||co are sufficiently
small for the quadratic corrections in Lemma to be defined. Lemma B.1.4] below
ensures that we can pick a uniform € > 0 for all § > 0. Now solutions v, € ./(/l\%(a;*, z1) in
a neighborhood of u correspond to zeroes of the map Fy, : I'y 5(€) = ;5 given by

Fu (f) = ( (I)uoz (502)71(5%261%2 (502)) » Pg (é)il(gjeﬁ (é)) )
Here ®,({) denotes the parallel transport T,M — T, )M along the path 7 — e,(7¢).
For ®,,,, this parallel transport on T'(My x Ms) can simply use the Levi-Civita connection.
In the definition of ®; we however use a Hermitian connection V on the tangent bundle
T(My x Mo x My x M) that leaves J invariant. This can be done by the same construction
as in [8 Proposition 3.1.1], which brings the linearized operator into simple form.
Next, we introduce projections related to the various Lagrangians:

Toa11 € Aut(C®(R,a*T(My x My x My x My))),
02 , 71'3‘2 S Aut(COO(R, 1232T(M0 X Mg)))
are linear operators, given by pointwise orthogonal projection onto the subspaces (T'(Lg; X

L1o)")t € T(My x My x My x My) resp. TLgy, (TLoz)t C T(My x Msy). The following
lemma contains the estimates resulting from the transversality assumption.

Lemma 3.1.3. (Quantitative transversality) There ezists a constant C such that the fol-
lowing holds.
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(a) For every s € R and £ = (&),,€),€1) € Ty(s) (Mo x My x My x M)
€] < C (Imoabiol + |61 — &1] + ‘W(J)_leé‘)a
Im30a] < C(Imaauié] + 161 — &1l).
(b) For every & € C®°(R, &*T (Mo x My x My x My))
||§||H1 < C(llmoaoall ey + €1 — Exll i) + ||7Té_211£“H1(R))7

and the same holds with H' replaced by C* or LP for any p > 1. Moreover,

||7702§02||L2 < C(||770211§||L2 + 161 = &illi2mw)),

||7T02§02||H1 < C(||7f0211f||H1 + 1€ — Eillmw) + H|3sa| : |§|HL2(R))
Proof. The Lagrangian Lg; X L1 intersects My x A; x My transversally in .i/[]g, which injects
to Loz C My x Ms. So at every point of Lo, we have a decomposition T'(My x My x M X

M) = TLgy ® (T'Lgz)*, where we can change the first factor to T Loz x {0}. On the other
hand, the transverse intersection implies

(21) (TLo2)™ = ({0} x (TA)*Y) © T(Loy x Lia)™*,
so we obtain a splitting
(22)  T(My x My x My x My) = (TLoz x {0}) & ({0} x (TA)) & T (Lo x Li2)™.
This means that the product of the three orthogonal projections onto the fzgx:tors defines an
isomorphism. The norm of this isomorphism is bounded at each u(s) € Lyg, so for every
€= (&, €1, 61) € Tugsy (Mo x My x My x M) we have

€] < C(|mo2élal + & — &+ ‘7705115‘)
with a uniform constant C' as claimed in (a). (Here the projection onto (T'A1)* is given by
(€09, €1,61) = (& — &,& — &}).) Moreover, the splitting (22) commutes with

T(My x My) = TLoy ® (TLgy)*

via the canonical projection on the left hand side, and on the right hand side the identity on
T Ly, combined with a bounded map ({0} x (TA;)*) @ T(Loy X Li2)* — TLo2 & (TLo2)*.
This implies that

[maa0a| < C(Imozni€l + 161 = &)
with another uniform constant C. This proves (a). For & € C°(R, @*T'(Moy x My x My x My))

we can then apply the pointwise estimates to £(s) and integrate over s € R to obtain for
any p > 1 including p = o0

(23) €1l oy < C(lIm02€02 o) + 161 — E1ll Loy + Ima211€ll o))
||7T02502||Lp < C(||W02115||Lp +11€1 = &1ll o)) -
In order to prove the H'- and C!-estimates we also apply the pointwise estimates to V sé (s),
Vsl < C(Imoa(Vsboo)| + [Vt = Vsl | + [ma211 (Vsd)),
Im5(V€62)| < C (7311 (Vs€)| + [Vl = Vi)
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Here we will need the inequalities

|02 (V 502 | < C(|Vs(mo2 502 )|+ |§|)
Im11 (V)| < c(Iv s(m211 (£))| + 1051 - |f|)
Vs (g 502 )| < C( (Vs&oo)| + |05l - |§|)

The first inequality (and similarly the others) can be seen by writing £{, in a local orthonor-
mal frame given by ('Yi(s))i:l,...,k € a02(8)*TL02 and (771(8))1':17.“,[( € ﬁog(S)*(TLog)L. Writ-

ing £ = 3 Ay; + 32 pin; we have
[m02(Vs€0) — Vis(mo2(£02))| = ‘Z A (mo2(Vsyi) — Vvi) + Zuimzvs(m)
< C|0stip] - [€pol-

Note here that Vv, = Vi 40,7 and Vin; = Va,qa.,7 are uniformly bounded. Putting
things together we obtain the first estimate in (b) with an extra [|{]|;2(g) or [|{]|cow) on the
right hand side, for which we can use (23)). For the last estimate in (b) we obtain

Vs (7T02§02)“L2 < CO(|IVs (7702115)||L2 +IVs&i — Vilillpaw) + H|8sa| : |é|‘|L2(R))
This finishes the proof of (b). O

The following lemma contains a Sobolev estimate with a constant independent of the
width ¢ of the middle strip; here the transversality assumption is used in a crucial way.

Lemma 3.1.4. (Uniform Sobolev Estimate) There is a constant Cs such that for all § €
(0,1] and & = (£02,€) € HY

€02 llco (o, 17,1 Ry) + I€llcoo.61, 2 )

< Cs(I€llmz, + (€02 = €02)le=ollzrr (i) + 1(€x = €D le=0ll i ) + o211 Elesll a1 )

In particular, for all p > 2 including p = oo and for §& € 'y satisfying the boundary
conditions (10),

€021 Lo (2 [0,1]) + €]l Lo @x[0,5) < Csli€ll -

Proof. The C’- and LP-estimates will follow from the continuous embeddings H'(R) —
C°(R) and HY(R) — LP(R) for p > 2. So it suffices to suppose by contradiction that there

are sequences 0V > 0 and & € H? v With [|§5,[leoqjo,1), 1 (r)) T ||f”||co (j0,0], 1 (R)) = 1 but

1€ | 2 s T 1662 — §oa)le=oll 1) + 167 = €1 e=oll 2 () + ||7T02115 |t=6v |1 (r) = 0. By the
standard Sobolev embedding

H%([0,1] xR) ¢ H*([0,1], X) < C°([0,1],X)  with X = H'(R)
this implies [|£85 [|co(o,1),71(r)) — 0, and so

(24) 1€021e=0 l 2 () < [1€02 e=0ll 1.y + 1(€02 — €62)le=0ll 1y — -

We can moreover integrate for all ¢y € [0, "] to obtain

61/
(25)  1E%0imto — €l IPaqey < 6 /0 IV ey < 1€ Paqrnonse)y — O
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Using Lemma [3.1.3] we then obtain
1€¥ le=sv |l 122 )
< C(|lmo2étsle—sv ey + 1€ = € emo L @y + Im211€" lesv 11 ()
< O (lImoz(€gsli=sw — Edali=0) 1 @) + Im02(€62) =0l 2 (m)
& = ol vy + 201" [e=sv — & le=oll mrr () + I1m0211€" le—sv Lz () )
-0

with uniform constants C, C’ by (I6)), [24), (25), and a bound on the operator norm of mps.
Now combining [[§"|;=s» || g1 (r) — 0 with [25) proves [|£”[|co(j0,sv],7r1(r)) — 0 in contradiction
to the assumption and the previously established fact that |[£gslcojo,17,m1 (&) — 0- O

The solution w of the 0-equation corresponds to & = 0, which is an almost zero of F,.
This and a quadratic estimate for dF, near 0 is the content of the next lemma. For later
purposes we also compare dF,(§) with the linearized operator D, ) of 0y = (0yy,,0 j) at
ey (§). To state the comparison we will need the pointwise linear operator

Ey(&)n = d%eu(f + 1) |r=0-

It satisfies F,,(0) = Id, and since e, maps I'; ; to the space of maps satisfying the bound-
ary conditions in ([3), the linearization F,(§) maps I'; 5 to the space of sections ( €
[(vgoT Moz) x T'(0*T Mo211) over v = (vg2,0) = e,(&), that satisfy the linearized boundary
conditions

(Co2,O)le=0 € To(Ag x Ay x A1), Clims € T(Lor x L12),  Cozli=1 € Ty (Lo X Lo).
The linearized operator D, acts on this space of sections and is given by
Dy¢ = V;dse5(7¢)|r=o,
with the connection V introduced on page In this notation we have D, ) = dFy(0).

Lemma 3.1.5. (Uniform quadratic and error estimates) There are uniform constants € > 0
and C1,Cy, C3 such that for all 6 € (0,1] and § € Ty 5(€), n € 15

174 (0)l, 5 < C1VS,
[dFu(€)n — dF.0)nlla, s < C2llélir,, Inllr, s,
1dFu(€)n = 2u(€) ' Doy yEu(©)nllar, < Cslléllry, Inlley ;-

Proof. To estimate F,(0) we recall that ugs is holomorphic and @ is constant in ¢, so
a0, = 10,01 . = 3 (I10suoalizolls sy + 200671131 s) = O

Here Osug2 — 0 converges exponentially as s — 00, and so does dsu; = d¥;(0sup2), where
¢, from (I2)) has bounded differential. This shows that the above constant C is indeed finite.
For the third estimate we differentiate as in [8, p.68] the identity ®, (& + mn)F, (£ + 1) =
0y(eq (€ +77)) to obtain

(26) ‘I)u(f)d}—u(f)n - Deu(f)Eu(g)’r] = _qlu(§7 n7fu(€))7
where the estimate for the right hand side

\Ifu(€7 1, C) = 6T(¢u(§ + TT])C)|7—:0
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is part of the estimates below. The first component of F, is independent of §, so the
quadratic estimates for it simply follow from the continuous differentiability of F,,. For the
second component we follow the argument in [§, Prop.3.5.3.] to obtain a uniform constant
for all 6 € (0,1]. We need to consider

Fa(€) == a(§) ™ (D 5ea(9)),
where eﬁ(é ) = expa(éC + Q(éC )) is the exponential map with quadratic correction defined in
(20)). Note that our parallel transport @5 () is defined with respect to the path 7 — ez (7€)

and the Hermitian connection V on T'(My x My x My x M) that leaves J invariant. Since
es(0) = @ and dey (0) = Id, the same path can be used in the definition of V¢ instead of the

geodesic. Now let {,n € I'y 5 with ||§||H%5 < e. Then by Lemma B.1.4]

[€lleo < Csliglluz, < Cse=ico,  lilleo < Csllnlle,

with a uniform constant Cg thus a uniform constant ¢y that only depends on e. In the
following, all constants will be uniform in the sense that they only depend on ¢y and hence
€. Next, we consider

Ea(€)ii = LeaE +m0)lrmo,  Wal€,,¢) == Vo (@a(€ + 77)¢)|r—0-

Note that Ey(0) = Id and that ¥(0,7, () = 0 since the covariant derivative exactly uses the
parallel transport ®4(77). Moreover, these maps are linear in 7 and (, and they depend
smoothly on £. So given € and thus [£| < ¢y we have linear bounds

Bl < e, VB < er(VE +dallé]),  [Walé,, )l < ealéllillC]

with a uniform constant ¢;. With these preparations we calculate from (26]), using the
notation of [8 Prop.3.5.3.],

Dy (&) (dFu(€) — dFa(0)i)

= (€1, Fa(@) + (V(E(€)D)™ + ((Fal§) - 2a() Vi)™
— 3J(ea@) (Y, @r—a0 @) ) (€3(9)) @ (€)da) !
— 1J(eal) (Vo009 (ea(6)) — @a(é)(V5) (@)@a() ") @a(é)da) ™"
— 3 eal@) (V65D eal@)d(ea(d)) — @a(é)da)) ™

We then use the uniform bounds on ||V.J| s, |d@|, ||, and the estimates

NN < ea(IVE] + |dal),  |d(e ())—%()ﬂ|<02(|V€|+IdUI|€I)

<altl,  [(Ve,eqd)(€al@) — @al@) (Vi) (@®a(é) | < el
with a uniform constant ¢y to obtain with a further uniform constant cg

(I€Nal + 191IVE] + EVal).

So far these pointwise estimates were standard calculations. Now we have to check that
they actually lead to uniform bounds in the J-dependent norms. The zeroth order part of

|Fa(é)] < ld(eq
|Ea(€) - 2a(d)

‘d}"ﬁ( i — dFz(0)n)
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the ©; s-norm over R x [0, 0] can be estimated with the help of Lemma B.1.4] by

|dFa (@i - dFa0)i o < es (IE]Lalilla + o VE]L2 + I€]eolI V)
< c3(C3 +209)1¢l s Il
. < c3(||5||Ls||ﬁ||Ls T lleo I VEll s + IElleo V] 1)
5(C% +205) (Iellz, + NEllca ) (Inllaz, +11¥ls ).

For the first order part of the € s;-norm one differentiates the above identity and uses
further bounds on ||V2J ||« and |Vdi| to find a pointwise bound

|V (dFa (&) — dFa(0)7) | < ca(1€] + [VE]) (9] + V)
+es (|V2E|A] + |VEPIA] + |VE VAl + 1€]]V24]).

|dFa(€)i — dFa(0)i]|,

Then we again use Lemma [3.1.4 and || VE|| ;2 < € to obtain with a final uniform constant c;
IV (dFa(E)i — dFa(0)) |
< ca(Il€llpe + IVElLe) (1Allpe + 1V 2)
+ea(IIV2ElI 2 lllleo + IVEN L2 IVE Lo Il L2 + IV ENL NV AllLs + 1Elleo | VA1 2)

<es (€l +19€ 0z ,) (2, + 199l ,)- -

Theorem B.I.TInow follows from the implicit function theorem [8, A.3.4] if we can establish
surjectivity and a uniform bound on the right inverse for the linearized operator

(27) D’ :Ty5— Qs D€ :=dF,(0)¢ = (Dygor, Di);
u02502 = st2 + J(U02)Vt€02 + vfoz Jo2(uo2) Opuoz,

Here D,,, and Dj are the linearized operators of d,, at gy (whlch is holomorphic) and of
0; at @ (which satisfies 0,7 = 0) respectively. (See [8, Prop.3.1.1.] for an explicit calculation
of the linearized operators, and note that we identify Q%! (R x [0, 1],u*T M) with sections of
uw*T M by yds+Jydt — ~.) We can identify the cokernel of D° with (im D°)* C (Hll,(s)*. By
elliptic regularity any element in this cokernel can be represented by the L?-inner product
(n,im D) = 0 with a smooth section 7. Partial integration then shows that n € Iy 5
satisfies the boundary conditions (I6) and lies in the kernel of the formal adjoint operator,
(D%)*n = 0. Note that (D°)* is given by (—V s+ Jo2(uo2) Ve, —VS—I—j(ﬂ)Vt) plus lower order
terms. So (D‘s)* has the same analytic properties as D?, and we will prove the surjectivity
of D° by establishing injectivity for (D°)*.

By our assumptions on the index and regularity of (ug,us) € Mv(l)(:v_, z") we know that
the operator Dy, ® 73 on the space of sections in H?(u},T'(My x Ms)) with boundary
conditions at ¢ = 1 in T'(Ly x Lg) (where 7y, is the projection at ¢ = 0) is surjective and
has a one dimensional kernel ker(D,,, @ mg3). This is not a subspace of T'y 5, but we will fix
a complement for every § > 0 in the following sense,

Ko = {€ = (b02,€) (€02, ker(Dug, ® mg3)) 12 = 0}
Here we used the L2-inner product on H2(R x [0, 1], ue T (Mo x M3)).
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Combining the uniform linear estimates Lemma [3.2.1] and Lemma [3.2.2] we can choose
dg := 1160%03 > 0 such that for all 6 € (0,dp) and £ € 'y 5

L+ OID) ¢y, = %“(Dé)*an% +3l1(D%)* €lls, + 2 "1 Do, o2l (mxgo, )

> Serllélle,; — e 1\/_||Vt§“H1(R><[O,6]) > zclléllr, s

and similarly for all { € I'; 5 N Ko

(28) 1D° Ellar

C1C9
Z it D)

The first estimate shows that (D°)* is injective and hence D? is surjective. The second
estimate shows that its right inverse is uniformly bounded. It remains to check that D?
stays surjective when restricted to Ky. This follows from the fact that both D, with
boundary conditions in (Lgz, Ly X L) and D° = (Dy,,,Dz) with boundary conditions
(IIGI) are surJect1ve and have the same index 1 by Lemma 2.1.3] and the identification

M%(w‘,x"‘) = Mé(w ,21). So D° has a 1-dimensional kernel, which is transversal to

K, by the last estimate, and hence D°| K, must be surjective. This finishes the proof of
theorem B.I.Il Here € > 0 is fixed such that the exponential map e, is defined on I' 5(¢)
and such that Lemma [3.1.5] holds.

€]l -

Corollary 3.1.6. There exists 6y > 0 such that the map Ts : M{(z~,27) = M}(z™,zT)
given by Ts([u]) := [vy] is well defined and injective for all § € (0, dp].

Proof. We choose dyp < 620[;2 such that Theorem B.1.Tl applies. Then let v, = €, (&) be the
solution constructed from u € ./{/lv(l)(x*, z1) and consider a shifted O-solution @ = u(- + o) €
[u]. Then ¢ := £(- + o) satisfies ||| = ||€]| < Cov/d < €, Fu(€) = 0, and the orthogonality
condition to ker(Dgg, ®7g5). Hence vg = ey(.40)(E(-+0)) = vu(-40) € [vu], s0 T5([u]) = [v4]
is well defined.

The injectivity of T; follows from the fact that M§(z~,zT) consists of isolated points,
so the CO-distance dgo([u], [u']) > Ay is bounded below by some Ag > 0 for all [u] # [v/].
On the other hand, deo([a], T5([u]) < CoCs(1+ Cq)V6 by [@H), (IT), and Lemma BT4l So
if we had T5([u]) = T5([u']) then deo([u], [u']) < deo([],[@']) < 2CoCs(1 + Cg)V/s . This
implies [u] = [v'] whenever § < dy, where we choose dy < (2C,Cs(1 + Cg))2A3. O

3.2. Uniform estimates. In this section we establish the uniform linear and nonlinear

estimates that are used in Sections B.Iland 3.3l We will work in the setup of section B.1]

and fix a solution u € M}(z~,zT). For convenience we denote the target spaces by My, :=

My x Mo and Myo11 := My x My x My x M; and the symplectic structures by wos = (—wp) Bws

and wg211 = wo D (—w2) B (—w1) B wy respectively. The nonlinear equation for v = (vga, 0),
02 . R x [0,1] — MOQ, v:R X [0,5] — M0211 is

EJ'U = 85’0 + J(U)at’u = (85’002 + JOQ('UOQ)at’U[]Q ; 85@ + j(’f))atf))

We will need uniform estimates for the nonlinear operator & — 0,e,(£) on ¢ € I'y 5(¢) and
the linearized operator D?. For that purpose we use the Levi-Civita connection on M = My
and M = Myz11 respectively to identify T, M x T, M = T¢T,,M for every { € T,M. With
this we decompose Te(u,§) : T¢T,M — T e M as

Te(u,§)(X,n) = Ore(w, )X +dey(§)n V&, X,n € Ty M.
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We denote the pullback almost complex structure on H 12, s under de, (§) by

J() = (Joa(éo2), I ()
= ((dewgs (02)) " Jo2(€uns (€02)) ey (€02), (dea(€)) T (ea(€))dea(€))
for £ = ({02,5) € I'1 5(e). With this we can express
(29) dy(eq(€)) = deu(f)(vgf + J(S)th) + O1e(u, &)0su + J(u)0re(u, £)Oyu

in terms of the nonlinear operator on H 12 P
)

V& + J(€)Vi€ := (Vséoz + Joa(€02) Vikoz , Vsé + J(E)Vi€).

Note that J(0) = (Jog,J) is the usual almost complex structure, so we can express the
linearized operator (27)) as

D¢ = V& + J(0)Vi + (Veg oo (w02)dpuoz , 5V () (u)dsu).
The following lemma provides uniform elliptic estimates.

Lemma 3.2.1.
(a) There is a constant Cy such that for all 6 € (0,1] and £ € 'y 5

‘/ woz (€02, Vs€02)
{1} xR

‘/ woz(Vs&o2, V2£02)
{1} xR

+ ‘/ woz11 (&, Vséc)‘ < C1(ll€ozli=1ll o) + ||§C|t:6HH0(R))27
{0} xR

+

/ wo211 (V€ Vfé)‘ < C1(l€ozli=1ll g ) + ||£|t:6“H1(R))2-
{0} xR

(b) There is a constant € > 0 and for every co > 0 there is a constant Cy such that for
all 6 € (0,1] and &,¢ € H12,5 with ||¢|lco <€, [|V(]loo < o

el < € (1926 + IO Vetlng, + el
1/2>

1/2

e
+ ‘/ wo211(&, V&) + ‘/ wo2 (€02, Vs€02)
{0} xR {1} xR

€laz, < Ca(IVs + JQOViklly , + iellmp
1/2
+

/ woz11 (Vs€, V2E)
{0} xR

+ ‘/{ﬂXR w211 (&, V5€)

1/2>

1/2
+ ‘/ wo2(Vs&o2, V2E02)
{1} xR

+ ‘/ woz (€02, Vs€02)
{1} xR

1¢lss, < O (I€llaz, + 195+ TOVaellss, + [Eeslin)-
(c) There is a constant ¢y > 0 such that for all § € (0,1] and £ €'y 5
cLll€lluz, < ID°€Nny, + 1€l , + 1€le=sllm ) + I€ozle=t 1 ),
Vel < D%l + D%l + Wellng, + IEle—slirs ey + okt sy
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and the same holds with D° replaced by (D?)*.

Proof. We prove (a) in general for [, w(¢,V,¢) and [, w(V€, V2E) with a Lagrangian sec-
tion £ : R — w*TL over a path w : R — L. These expressions vanish if L is totally
geodesic. To estimate them in general we pick a smooth family of orthonormal frames
(7i())izt,...k € u(s)*TL, then

E=Y Ny Ve =3 (0N + AVim), V2 = 30 (02N + 20,0V + AV, )

with A : R — RF. By the orthonormality we have |\(s)| = |¢(s)|, and using (7, J7) as a
trivialization for the definition of Sobolev norms on uw*T'M we obtain [|Al|gs®) = €] 7+ (®)
We now use the identities w(;,7;) = 0 to obtain

/ W(€,V.6)| < / Cle(s)||A(5)ds
R R

\ / w(vss,vza)\ < \ [ ST + 9.8l101 + 1047 + )
R R

= CllEN7 g

< 4CIENZ 1 )

where the constant C' only depends on  (that is on u : R — L) up to third derivatives.
Here we used partial integration

/ ZAZ@ZAJ 5’7277] / Z (9 A (9 N w(vs'Yza'Y]) + A’ 8 o w(vs’Yza'Y]))

To prove (c) we can replace D° by VS§ + J(0) V€ since the difference of the operators is
bounded in the different components and norms by

Hv§02‘]02(u02)atu02HHO(RX[O,I]) + Hvéj(a)‘](ﬂ)asﬂHHO(Rx[O,(ﬂ) < CHé-HH?’(S’

HV502J02(“02)8W02HL4(Rx[0,1]) < CHV§02J02(U02)8'5“02HHI(Rx[o,l]) < CHSHH%,(;’
B0 IV @I @] g1 oo < Ol

Ve (@) (@850 0,5 < CINV oo BstlloollE s cioany < CllEN 2,

where C denotes any uniform constant. The extra terms on the right hand side will fit into
the proof and will be recalled for the relevant estimates. The proof for (D°)* is completely
analogous. We will use the notation V£ +J(0() V£ to make partial integration calculations
for the nonlinear (o = 1) and linear (o = 0) operator at the same time. In the nonlinear case
the almost complex structure J({) is not skew-adjoint. In order to restore this property
we work with the L%,é(ag“)—metric, which uses the pullback metric g,c = (-,")y¢ under
dey,y, (0€p2) on Mys and deg(o() on Myg11 respectively. In the linear case o = 0 nothing
has happened; in the nonlinear case we can pick € > 0 and hence ||(||» sufficiently small
such that de, (¢) is C’-close to the identity, and hence the induced Li 5(¢)-norm is uniformly

equivalent to the standard Li(s—norm. With this in mind we start by calculating for any

¢,n € H? s with ||(||c < € (unless otherwise specified integrals are over two infinite strips
of width ¢ and 1)

Vsn + J(UC)vth%i&(gg)

= /(Ivsnliﬁr IVenlZe + (Vsn, J(0C)Vin)oc — <Vt777J(UC)vsn>a§>
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- “V””%is(ac) - /(ngag (n, J(6C)Vin) — Vigoc (n,J(UC)Vsn)>
— [ (0 (9100 Vi) = F1(706) V) ac)

— lim (n, J(6Q)Vin)o¢ + lim (n, J(@Q)Vin)oc
S—o00 {s=—5} S—o00 {s=S}

s @OV [l oot Vel = [ (0,00 V.
{0} xR {1} xR {0} xR

> ||V77||i§6(g<) - /C((l + oco)[nl| V| + n?) — Qo2 (mo2]i=1) — Qo211 (Ale=s),

where we abbreviated

/ woz (102, Vs1o2)
{1} xR

These boundary terms occur on the right hand side of (c) and they will be estimated by (a)
to prove (b). The boundary term at ¢ = 0 vanishes by the diagonal boundary conditions,
and the boundary terms at S — Zoo vanish since 7|(s¢(s, 5413 — 0 in the Hi(s—norm. The
error term can be estimated by

Qo2(nozli=1) ==

; Qo211 (M]¢=5) := ‘/ wo211 (7, Vsn)|.
{0} xR

1 1
[ e+ oclaliTul +10?) < Cllliy o) + 51V o + 5C2(0 +0e0) il

where the highest order term ||V7|| can be absorbed on the right hand side. From now on
C will denote any uniform constant (which is allowed to depend on ¢ in the nonlinear case
o =1). In summary, the estimates for n = £ and n = V¢ are

%HV5||2L;5 < || Vst + J(Uf)vtin%é + ||5H%;5 + Qo2(&ozli=1) + Qo211 (]i=s),
SIVVEllys < [Vo(Vie + T ViE) 7. +IIVENT:

+ Qo2 (Vséozli=1) + Qo211 (Vs€]i=s)-

This already proves the first estimate in (b). We can moreover use the identity V£ =
J(0Q)Vs€ — J(0€) (V& + J(0¢) V) to obtain

IVViEllz, < IVVscliz, + V(€ + T@QOViE)llz, + ClIVEll2 , +0Ceol|VEll2 .
In the linear case (c) these estimates combined with (a) and (B0) to prove the first estimate:
Cl||§||Hi5 < HD%HHI% + 1802 e=1 11 () + €le=sl () + “f”l/ié

with a uniform constant ¢; > 0. In the nonlinear case (b) we obtain similarly

Cf1!|§||H'1{5 < || Vet + J(C)Vt€\|H116 +€llzz ; + Qo2(Eozle=1) + Qo211 (€le=s)

+ Qo2 (Vséozli=1) + Qo211 (V€] i=s)

with a constant C) that depends on ||V¢||«x < co.

The L*-estimate for the linear and nonlinear operators will arise by rescaling from the
following basic estimate. Here @ : R x [0,1] — Mg211 will be given by 4(s,t) = a(ds) for
any 0 € (0,1]. Then for every i3 € H'(R x [0, 1], 4*T My211)

1l s o)) < Colllli=1ll L2y + 1Vl L2 po,1)))-
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This simply follows from the Sobolev embedding H'(R x [0,1]) — L*(R x [0, 1]) and

1
il oy < [

When applying this to 7j(s, t) := V,£(8s, 5t) we encounter the following terms:

1
A1) - / Vi, 7)dr

dt < 2“77|t:1||%2(R) + 2“vtﬁ“%2(Rx[0,l})'

2
L2(R)

A 12 A

“ﬁ“%“(RX[O,l}) = (/ |vs§(6376t)|4d3dt> = 6_1||VS§||%4(R><[0,6])7
Rx[0,1]

lile-r ey = [ 1965 0)Pds = 57119, ElslFe

Vil|2. :/
IVAlZ2 ®x0,1)) Rx[0,1]

Putting this together we find that

IV s€lla@xos < Co(lIVséli=sllzzy + IVVséllmzxpos) < Co(l€li=sllm g + ||€||Hi{6),

0%|VV &8s, 6t)*dsdt = VYV €172 e 0.07)-

where the estimate for ||£|| uz , 1s already established. The L*-estimate for V&g follows from
the Sobolev embedding H' (R x [0,1]) < L*(R x [0,1]), and for the last component we have

IVe€llzarxos) < IVsE+ J (@) Vil Lanpoa + 1Vséllpa@x(o.0)-
This finishes the proof of the second estimate, where we allow ||V & + J(aC)thﬂL% , on the

right hand side, and the constant in the nonlinear case depends on ||[V(||loco < ¢p. In the
linear case the difference to || D%¢|| L1, in 30) is bounded by the previous estimate. O

The lemma below gives control of the lower-order terms appearing in Lemma [3.2.T] and
in particular will be used to prove surjectivity of the linearized operator.

Lemma 3.2.2. (a) There is a constant € > 0 and for every ¢y > 0 there is a constant
Cy such that for all 6 € (0,1] and &,( € H12,6 with |C]|lee <€, |V(|loo < co we have

1€ e=s | 1Ry + 02le=11 11 )
< Co(|IVs&oz + Jo2(Co2) Veboall g o)) + VOIVeEl i @xio)) + 1700118 le=sll i my
+ €021l 2 @xjo,17) + 161 = €0 le=oll ) + (€02 — €o2)le=oll 111 (1)) -
(b) There is a constant ¢y > 0 such that for all § € (0,1] and £ € I'y 5

c2 (1€]e=sll mr1 () + €02 e=1 1 pr1 () + ||§||Hg§) <D}, éo2llm®xpo,)) + VOIVEN 1o
and for all £ € 'y s N Ky
c2 (1€le=s 1l 1 ) + €02 =1 [l 71 ) + €029 ,) < 1 DugsGo2ll 2 gexjo,17) + VoIV ll i (rx(0,6))-

Proof. The constant ¢ > 0 in case (a) is chosen such that ey, (Cp2) and thus Jy2(p2)
is defined. To prove (a) (and similar for (b)) we assume by contradiction that we have
sequences ¢ > 0 and ¢¥,(” € Hid,, such that ||§”|t:5y||H1(R) + [1€82lt=1ll 1y = 1 (in case
(b) add ||€]| Y, here), but the right hand sides converges to zero. For technical reasons we
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assume in addition [|€5l 1 (rx(0,17) < 1, which we will also disprove (i.e. we actually prove a
stronger estimate with this term on the left hand side). First we integrate for all ¢ € [0, §”]

(31) 11 1=t — & 1=ov 1 () < /06 IV @y < VIV [l mxqo,pvp) — O-
Next, Lemma B.1.3] implies
Ima3802le=oll L2y < 1Mot le=sv Iz + €031 =0 — Eale—s |2y + 11(602 — Eb2)le=0ll 2wy
< C(||7702115V|t:6"||L2( + 1€ im0 — écy|t—(5"||L2
+ 1€ = €D)le=oll 2wy + [1(€02 — &6 le=ollz2®)) — O,
(32)
172862 e—oll iy < o€ lemsr llar ey + 16020 =0 — €6 lemov Ly + (€65 — €6)le—oll 1)
< O(lImpp1i " |t*5"||H1 )+ 11€¥ |t=o—§”|t:5v|IH1(R)+||( 1= &)le=oll
+ 11 (€65 — &6)le=oll 1y + [|10sl - |€”|i=s |
In the two cases of (b) we use the boundary conditions for £ € I'y 5 here. In all three

L2(R)
the assumption that |5 || g1 (gx0,1)) is bounded. This implies a bound on ||, |t=ollz2(w)

L?(R))'

cases the hardest step is now to prove that |||0,a| - 1€ i—sv | — 0. Here we exploit

Now we find a convergent subsequence &, — £55 € HY(R x [0,1],uf, T Mp2) in the weak
H!-topology, and at the same time &5,|i—0 — £55]i=o in the L*-norm on every compact set.
(The Sobolev embedding H'(2) — L?(992)) is compact for compact domains 2 C Rx [0, 1]
with smooth boundary 0%, see e.g. [I, Theorem 6.3].) In case (a) the limit has to be {55 =0
since [|655 | L2 (rx[0,17) < Hminfy o0 €52l 22 (Rx[0,17) = 0- This also holds in case (b) since the
limit satisfies with D = Dy, or D = D;, ,

1 DEG N 2 (mx[0,1]) < lim inf||D§52||L2 ®x[0,1]) = 0s

175665 l=oll L2y < lim 1nf||7702§02|t ollzzw) = 0.

Since wpy is assumed regular, D, = & Ty, is injective, and in the second part of case (b) we

have in addition £55 € ker(Dy,, ® mg3)". So in all three cases we obtain

||§02|t UHLZ < C and ’|§612|t:0||L2([7T,T]) —0 for all T > 0.

The same holds for £|,_s» since we can apply Lemma [3.1.3 on the interval (—1',T) for any
T € (0,00] to obtain

1€ s+ Il < C (I moo€isle=sr |2 + Imo11€” li=ov [l + (X = €1 le=o[l.2)
< O (I€6ale=oll 2 + 16685 = E6)le=olle + 16" im0 — & [i=sv I
+ a1 € li=ov |2 + 1€ = €D)li=ollL2)-
This together with the fact that supjy>y |0st(s)] — 0 as T — oo implies that |05l -

|€¥],— s, ® 0 and hence ||7g5E5, 1= ollg1®) — 0 by (B2). From this we will move on to
prove that
(33) 160211 k7372 (rex[0,17) — 0

For that purpose we denote by D any of the three operators V, + Jy2({o2)V: in case (a)

and Dy, or Dy, in case (b). Then we use the fact that in all three cases the operator
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Do 7rol2 is Fredholm on the space of sections 7 that satisfy the boundary conditions n|=1 €
Ty (Lo x Lg), see e.g. [5, Theorem 20.1.2] for compact domains. The corresponding
estimates add up to

(34) €8l gorz@xpo.ng) < CUIDEG i wxqo + Imoa€beli=oll =) + 1€02ll o o,1))) -

In the nonlinear case (a) the constant in this estimate depends continuously on Jy2((p2) in
the C!-topology, see e.g. [8, Appendix B]. In this case the above estimate already implies
the claim (B3] since we assumed ||£f,]|;2 — 0. In the linear cases we need to use the
injectivity of the operators to remove the last term from the right hand side of (34]). Since
H3?(R) — H°((~T,T)) is compact only for T' < oo, we first have to achieve a lower order
term on a compact domain:

Consider the operator Dy+ = 95 — A, where A := —J(z%)9; (or A := J(z%)0, in the
case D = Dj ) is self-adjoint and invertible on its constant domain H*([0, 1], T+ Mo2) with
boundary conditions 7|i=¢ € T+ Loz, n]t=1 € Ty= (Lo X L2). Then abstract theory (e.g. [13]
Lemma 3.9, Proposition 3.14]) implies the Fredholm property and bijectivity,

||77||H1(Rx[0,1}) < C||Dxiﬂ||H0(Rx[o,1})-

In order to apply this estimate to ¢4, we first find an extension ¢ € H(R x [0,1]) of
Climo = Tg3€5|i=0 such that ||¢|| g1 < Cllmi58s =0l jy1/2- We moreover fix a cutoff function
h € C3°(R, [0, 1]) with hlgs<7—13 = 0 and hlg4>7y = 1, where we fix T > 1 sufficiently large
such that uoz|supp(n) = €y (Po2) for some smooth map oz : {£s > (T' — 1)} — T+ M.
Then we can apply the estimate to 7 := @, (J92) " (h(&, — ¢)), where @, (Jp2) denotes
parallel transport along the path [0,1] 5 7 — e +(7992). We obtain, denoting all uniform
constants by C,

1h&02 1 (m x[0,17)

< Clinllar ®xjo,ay) + 1AC a1 ®x[0,1])

< C(I(Dyz = D o @+ (902)) 0l o [o,1)) + 1D (h&o2) | o mxo,1]) + 1B 1 ®x[0,17))
S C(I(Dyx — D o @y (Vg2)) ‘{\s|>T,1}|| (o2 — Ol @xo,1) + 1P&02 7o @ [0,17)

+1€82 | o (=1 11x[0,17) T IT52E02lt=0ll gr1/2 i) )-

Here the difference of the operators goes to zero for T' — oo since ugz|{js|>7-1} — T with
all derivatives. Thus for sufficiently large T' > 0 we can absorb the first term into the left
hand side and ||h¢||yr < Cllmgslsli=olly1/2- After all this we can finally replace the last
term in B4) by (€5, | mo((—1,77x0,1))-

Now in the first case of (b) we can deduce (33) from the fact that D,,,, ®mg5 is surjective by
assumption and hence D}, , &g is injective. So the compact embedding H 32(Rx0,1]) <
HY([=T,T] x [0,1]) allows the removal of the lower order term. Similarly, in the second case
of (b) we can employ the injectivity of the operator on ker(D,,, ® ;)" 2 &4, to deduce

B3).
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Next, (33) and the Sobolev trace theorem provide [|{8s]i=oll y1(r) + [1€82]e=1l 1 (m) — 0,
and again using Lemma [B.1.3] we can deduce that

€Y e=ov Il 111wy
< C(|Imo2&tsle—sv 1 ry + 1ma311€" le=ov iy + 1EY = €N lesv 1101 (m))
< C(l1€8le=oll ) + 11665 — &82)le=oll ) + Imo211€" le=ov | i1 ()
+11€¥1=0 — & |t:5"||H1(R) + 1€ = €D le=oll 1)) — 0.
Finally, combining this with (BI]) in case (b) implies
1€ Wl 2 (mx[0,5+]) — O
in contradiction to the assumption. [l

Finally, we establish uniform exponential decay for the solutions of Floer’s equation (3]
on the triple strip. For that purpose we introduce the following notation for integration
over finite strips,

1 )
/ 10,0 (s, 1)| dt ::/ |851)02(3,t)|2dt+/ 10,6 (s, £)[2 dt,
[0,1]\_|[0,(ﬂ 0 0

and similarly for the C’-norm

1950llco ((s0,017) 7= 195021l Lo (s0,01x10,11) F 195Bl] 2o (50,811 0.0)
deo (1505 v, zt) = sup dan, (vo2(s, 1), zT),
C7 5[50, 1])( ) (5:0)€[50,50] X [0,1] Oz( 02( ) )
+ sup Aptysn, (B(s, 1), (a7, 27, 27)).

(s,t)€[s0,51]x[0,d]

Lemma 3.2.3. There are constants h, A > 0 and C such that the following holds for every
§€(0,1. Ifve Ms(z—,2T) is a smooth solution of (I3) satisfying

(35) / / Oy0(s, 1) dtds < B,
01 05

then for every S > 3

2
deo (15,00 (0:27) % + ||85,U||(2Z?,6([S,oo)) < CeAS/ /01 . |050(s,t)|? dtds,

and the analogous statement holds on (—o0,0] for the convergence to =~ .

Proof. Step 1: For every k > 0 there is an €x > 0 such that the following holds for all
§ €(0,1]. If v e Ms(z~,27") satisfies (38) with h = €, then
(36) 195vlleo (2 ,000) < -

Assume by contradiction that this is wrong. Then there exist £ > 0 and sequences ¢ € (0, 1]
and v” € Mgy (z~,z) such that

(37) lim / / (s,1)|* dtds = 0,
y—roo 0,1]u[0,6¥]

but the assertion fails. So after a time-shift we can assume that

“81) ||C0 1 ]) > H
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The equation d;v” = 0 together with (B7) implies that dv”|520 — 0 in the L?-norm. If
0¥ is bounded away from zero, then the standard compactness for holomorphic curves with
Lagrangian boundary conditions implies that dv”|s~9 — 0 in C*° on every compact set
(for a subsequence), in contradiction to the assumption. In the case 0¥ — 0 the standard
compactness theory still implies d7)52|(0,1]><(0,oo) — 0 in C* on every compact set. For ¢
and wgp near the boundary ¢ = 0 we obtain a C'-bound from Lemma So we obtain
C%-convergence of a subsequence v%, — g2, 9 — (Tog,T1,71) to constants zogp € Lo X Lo,
x1 € Mj such that (zg2,z1,21) € Loi X Ljs. Now we can use the same compactness
arguments as in the proof of Lemma (step 2, using a cutoff function only in s) to
deduce that dv” |s€[ 1y 0 in the C’-norm. This again is a contradiction.

Step 2: There are constants €1 > 0 and Cy such that the following holds for all § € (0,1].
If v e Mg(z,zm) satisfies [38) with h = €1, then
1950(1, )20 fo,11000,61) < Cl/ |Vidso(1, )] dt.
[0,1]u1[0,4]

By contradiction we find sequences ¢” € (0,1] and v” € e (z=,2") that satisfy (37),
but there is no uniform constant C; with which the estimate holds. Then as in Step 1 we
obtain (for a subsequence) C'-convergence v” — z = (zp2, &) on [1,2] x ([0,1] LU[0,46"]) to
constants xgo € Lo X Lo, 1 € My with & = (Iog,xl,.’ﬂl) € Lg; X Li2. By assumption Lgs
and (Lo x Lg) intersect transversely in zg2, and hence we have for all £y : [0, 1] — T4, Mo2
with 502(1) S Twog (L[] X L2)

€02llcoo,17) < C(IVeo2ll 20,17 + |T2602(0) ).
Now consider in addition f : [0,6] — T3 Mop11 such that 5(5) € T3 (Lo1 x Li2) and £|i=p =
(€02,8)|t=0 € Tu(Anrryxnr, X A1). We integrate for all ¢ € [0, J]
R R ) R J R 1/2
(39) 0 -é0) < [ 1viéola < Va( [ 1viopar)

Combining this with Lemma B.T.3] and using the boundary conditions we obtain

R R R 5 R 1/2
\m%zfm(ons\w@ls(é)\+\w&m(f(O)—5(6))\+\£i(0>—51(0)\scﬁ(/o |vt£(t)|2dt) :
and thus

oo ooy <C* [ Vgl
[0,1]11[0,0]

We moreover obtain from Lemma [3.1.3] with uniform constants C,C’, C"

‘5(5)‘ < C(|mo2ée(6)| + [(£1(6) — £1(6))])
A ) ) 1/2
< ()] +E0 -0 < ([ vilemdlr)
[0,1]u[0,4]
Together with (B8] this implies

€ ooy SO [ [Vigl e
[0,1]u1[0,9]

with some uniform constant C; for all § € (0,1] and all sections & over z satisfying the
boundary conditions. Due to the C!'-convergence v — x this estimate continues to hold
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with a uniform constant for sufficiently large v for sections &po € C1([0, 1], 08y |s=1"T Mo2),
£ € CH([0,6"],9|f_, T My211) that satisfy the analogous boundary conditions. (We can write

VY ]g=1 = ex(¢¥) with [|¢¥[lcr — 0 and use dey(¢¥) ! to map (£o2,€) to a section over z.
This preserves the boundary conditions by construction of e.) In particular, we can apply
this new estimate to & = 95v”|s=1, which provides a uniform estimate and thus finishes the
proof by contradiction.

Step 3: There are um’fol“in constants ea, A > 0 and Co such that the following holds for all
for all § € (0,1]. If v € Mg(z™,2") satisfies (38) with h = €3, then for all sy > 2

2
/ 10,0 (s0, 8)|2dt < CQeAso/ / 10,0 (s, 1) 2dtds.
[0,1]u[0,4] 1 [0,1]u[0,4]

Consider the function f : [1,00) — [0,00) defined by
Fs) = %/ 1050(s, £) |dt.
[0,1]u[0,4]

We can use the equation 9;v = (851)02 + Jo2(vg2)Ovo2 , 05t + j(@)Bt@) = 0 and the bound
|0sv||oo < K from Step 1 to calculate for s > 1

P = (19008 + @, V20w
[0.1]1[0,0]
_ / (1790050 + (Vo,u ol — (50, TViV050))
[0.1]1[0,0]
_ / ((851) , JR(950, 0y0) 050 + 2(V,0 )V s0yv + vs(vasvj)atm)
0,1]0[0,0]
> / (2|Jvtasv|2 + 0y (w(B5v, V,05v)) — C|950[2 (|00]> + |Vt851)|))
[0.1]1[0,0]
> (2 Cr) / IV Ds0(s,t) dt — €' (1 + 52) 105005, ) 20 011000
10,1]L[0,0]
The last step uses 2|95v|?|V;05v| < k|0sv|? + K|V 05v|? and the claim

‘/ Oy (w(asvavsasv))
[0,1]u[0,4]

To prove the claim we first use the diagonal boundary conditions to obtain

< C(|0sv02(1)* + 055()[*).

‘/ 815 (w(@sv, Vsasv)) ‘ = ‘WOZ(as'UOZ; v585002)|t:1 + w02(8s'f)7 vsas@”t:&‘-
[0,1]U[0,0]

Then we use a smooth family of orthonormal frames (v;)i=1,.r € I'(T'(Lo x L9)) near
w(s) = vg2(s,1) (and similarly for 9),

dgw(s) = 30X (s)%(w(s),  Vedsw(s) = > (9X ()% (w(s)) + N (5) Voo )

with A : R — R¥. By the orthonormality we have |A(s)| = |0sw(s)|, and using the identities
w(74,7j) = 0 one obtains ‘w(@sw,vsasw)‘ < C|9sw|?, where the constant C only depends
on Vv;. Since L is compact this holds with a uniform constant.
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We can now choose x > 0 sufficiently small and then fix i < min{e;, ¢, } such that Step 1
and Step 2 (applied to time-shifts of v) together with the above calculation yield for all
s>1

f"(s) > / |JV0gv(s,t))%dt > (1 + 6)01)1/ |05v(s,t)|2dt > A%f(s)
[0,1]11[0,6] [0,1]u1[0,4]

with A > 0. Any such nonnegative convex function satisfies for all s > 2 and T > s
rosoes ([ swas [ g)
(1,2] [2

with a constant C' that only depends on A. A detailed proof can be found in e.g. [14
Lemma 3.7] (use the estimate for f(s — 7T — 1), where the function f is shifted by T+1).
If we let T — oo then f[ZT,2T+1} f(t)dt — 0 by the finite energy condition [;° f(s)ds < A,

and this proves the claim.

Step 4: There are constants €3 > 0 and C3 such that the following holds for all § € (0,1].
If v e Ms(z™,z™") satisfies (38) with h = €3, then

105 U“co 2 S Cs |05 UHL? (3.2

27 +1]

By contradiction we find sequences ¢” € (0,1] and v” € e (z7,2") that satisfy (37),
but the assertion fails, i.e. we cannot find a constant C3 for which the estimate is satisfied.
Then as in Step 1 we obtain (for a subsequence) C!-convergence v — x = (wp, &) on
[2, 2] x ([0, 1]U[0,6¥]) to constants zg2 € Lo X Lo, x1 € M) with & = (zo2, z1,21) € Lo1 X L12.
So we can find sections {” € I'y 5» over u = x such that ”V|se[%,§} = ez(¢"). The equation

90" then becomes

Vs + J(§")Vil" =0
and we have the boundary conditions ~VS£62|t:1 € Ty, (Lo X Lo) and vséylt:(i" € Tz (Lgy X
Lis). We fix two cutoff functions h,h € C®(R, [0,1]) with Al 9 = 1, hlsuyppr = 1 and

supp(h), supp(h) C (3,2) and consider the sections heY heEr € I'1s». Note that Oyv” =

de,(£7)V&¥ with dey(€”) =~ Id. So for sufficiently large v we have
1950 lleo o, 12 < 2110V slleo ,, < 2Cs 1AV Iz,
V€ “Lf,é,,([

where we used Lemma B.T.4 Now we apply Lemma B.2.T] (b) to the sections & = hV£”
and & = hV,&” (for which the boundary terms vanish since V&%, V2£¥, V3¢¥ satisfy the
boundary conditions) and ¢ = & (which satisfy ||€¥]|cc — 0 and [|[V&Y|| — 0) to obtain
with uniform constants C, C’

1€ Iz, < CL(I(Vs + JEIVRTE gy, + IV )
= CL (WYl ,, + 10V g ,,)
< CIV Il uppny < CIRVE s,
< CCL([(Vs + TE)V)AVE s, + 1hVE" 1o ,)
<ONVEllmo,, 13,50

sV

%’g}) - 2“85'[) ||Li§u([%’g})7

sV
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Now the contradiction follows,

19507 ey .y < 20095 g, < 2C 1958 o, 2.3 < 40" iz .21y

Step 5: We prove the claim, that is for every s > 3
deo(o,11up0,6) (V(55 ), )2 + 1050 (s, ) |20 o 10,0y < Ce 2B (v)

2
:// 1950(s, t)[2dtds.
0 J[0,1]u[0,0]

We choose i = min{eg, €3}, then Step 3 and Step 4 (applied to appropriately shifted solu-
tions) combine as follows for all s > 3

9 s+1
1950120 (omsaray) < 03/ /01 CRCR IR
’ s

< 0302/ e B (v)ds < CEC,A TeRe BE! (v).
s—1

with

This proves the second part of the claim. The estimate on deoo 10,07 (v(S, ), 27) now
simply follows by integration: For all S > 3 and ¢ € [0, 1]

dM02(UU2(Sa t)7$+) S / |85U02(S,t)|d8
S

o
< C/ e~ 29/2, [E (v)ds
S
= 20A e 292\ /E(v),
and similarly for ¢. O

3.3. Compactness. The surjectivity of the map 75 : M{(z7,27) = M}(z7,2"), as in-
troduced in the previous section, will be a direct consequence of the following compactness
result. Here we choose ¢ € (0, €] with € > 0 from in Theorem [B.I.Tl Then v = ¢,(£) with
¢ € I'1 5(e0) N Ko implies that [v,] = T5([u]) by the definition of 75 via theorem B.I.Il We
will denote the time-shift by 77v(s,t) := v(o + s,t).

Theorem 3.3.1. Given ¢y > 0 there exists g > 0 such that for every 6 € (0,60] and v €
M (z=, %) there exist u € M{(z~,2%) and o € R such that 770 = e, (§) with £ € 'y sN Ky
and ||€|lr, ; < €0. Moreover, the moduli space M(z~,a™) is regular for all § € (0,8] in

the sense that the linearized operator D, is surjective for every v € /T/l\}(x_,:v"‘).

Proof. We assume by contradiction that there is an ¢g > 0, a sequence §* — 0, and solutions
v” = (vfy,0") € ./T/l\él, (z~, 1) for which the assertion of the theorem fails. Their energy is
fixed, E(v”) = 37 + 1c(z_, z4), by the analogue of Proposition 2T for strips of different
Wldths For any pair of maps (1102, 0) that are not necessarily holomorphic but satisfy the

limits and seam conditions of M 5( —,z") we have

E(v2, 9) = /082((—wo) ®uwn) + /@*(wo & (—w2) & (—w1) ® w1)
(39) = %TIDd(D(UOZ,ﬁ)) + %c(;(x,,au).
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Here ¢s(z_,zy) is independent of § since the equations for different § apply to the same
map, rescaled to different widths, which has the same energy and index. Next, we can
exclude bubbling by the following argument based on Lemma below:

If |dvg,| is unbounded near a point z € R x (0,1], then the standard rescaling method
gives rise to a nontrivial holomorphic sphere or disk in (Mg, Lg), or in (Ms, Lo), or in both.
Thus some fixed amount of energy i > 0 would have to concentrate near z. The same energy
quantization holds for blowup of do or dvgs|i=p by Lemma So the energy densities
|dv”| can only blow up at finitely many points. On the complement the same compactness

proof as in the next paragraph provides a Cl%c convergent subsequence vy, — g2, where the

limit corresponds to a solution u € /,\/lvo(y_, yT) with finitely many singularities and energy
E(u) < E(v"). The singularities can be removed by the standard proofs for pseudoholo-
morphic curves with Lagrangian boundary condition 8, Theorem 4.1.2], so we would obtain
a solution @ € Mo(y~,y") of energy E(@) < E(v”). Its limits y+ may not be the same as
those of v”, in which case we find a sequence of trajectories @ = (4y,...,ay) C ./{/lvo(-, *) con-
necting z_ to x, with total energy F (i) = > F(d;) < E(v”). We claim that monotonicity
forces @ to have total index ) Ind(Djg;) < Ind(Dy») = 1, and hence by regularity of the

moduli spaces M(-,-) consists of a single constant trajectory. This however would mean
that v” were self-connecting trajectories of x_ # z, i.e. we have annuli with Ind(D,») =1
— in contradiction to assumption (d)).

To control the index of 4 we glue the trajectories to a single map @ : Rx[0,1] — M, x M,
satisfying all limit and boundary conditions of Mg(x~,z™) except for holomorphicity. Its
index and energy coincide with the total energy and index of 4. With that we obtain

7Ind(Dy) + c¢(z—,z4) =2E(w) < 2E(W") =7+ c(z_,z+)

from the monotonicity formula ([B9) together with the index and energy identities in Lemma 2. 1.3
applied to (@,w), where @ is the t-independent map given by the lift of w|,—g C Loz to
(Lo Xa, L12)T. This proves > Ind(Daj) < 0 as claimed and hence excludes bubbling.

So from now on we assume that |dv”| < Cp is uniformly bounded. Then we have
deo (Ug2|t:5u,L02) — 0 since as in Lemma [B.1.3] it is bounded by d¢o (v’l”|t:5y,vf|t:5u) <
deo (@”|t:5u,@”|t:0) < (Cpd”. So we can fix p > 2 and find a subsequence and map

ugz € CON Wli)’p(R x [0,1], My x My) such that v¥, — wugy in the C°-topology and the

C
weak W1P-topology on every compact subset of R x [0,1]. The limit ugs corresponds to

a solution (ug,uz) € M{(z~,z%). We also conclude that & — u = (upa|i—o,u1,u1) in
CY([-T,T)] x [0,6"]) for all T > 0, where u; is determined uniquely by (ugz|i—o, @1, 1) €
Loy x Lig. Indeed, 9”|;—9 = (vfy, v],vY)|t=0 satisfies deo (0" |¢=0,uo2 X A1) — 0 as well as
deo (0" |i=0, Lo1 X L12) < deo (0¥ |i=p, 0" |t=sv) — 0, S0 v1|¢—p must converge to u; on compact
sets, and the convergence for ¢y € [0, "] follows from dco (9" |i=0, 0" |t=t,) < Cpd” — 0.

In summary we have v — u := (ug2,%) in the C%-topology on every set {|s| < T}
for fixed T'. In the following, we will strengthen this convergence using uniform nonlinear
estimates and exponential decay, to find sections £ € I'y sv(€p) such that v = e,(£") and
D,v is surjective in contradiction to the assumption. Let us first note that, by the same
monotonicity arguments as above, the limit must be a nonbroken trajectory u € M§(z~,z ™)
of the same index and energy F(u) = E(v”). In the next step we strengthen the local
convergence.

For fixed T > 0 and sufficiently large v > vy we can write v”|f5<7y = eu(£”) with a
section £” € I'y s (extended smoothly to {|s| > T'}). The extension of £” can be chosen
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such that [|¢“||e — 0 and sup, |[V&”|| < oo follows from the C°-convergence and C!-
boundedness of v”|(|<7}. For the latter note that V& = dey (V) 1Vv” — Ore(u, £¥)Vu
where Vv” is uniformly bounded, and de, (£”) — Id as [¢”| — 0. This puts us into the posi-
tion where Lemma[3.2. Tl applies with ( = £”. We fix a cutoff function h € C§°([-T,T1], [0, 1])
with h|_qpy -1 = 1, then

18Ny, < CL(I1(Vs + TE)V)RE Iy, + IR N,

o B ems ey + I&llima oy ).
Now we can use (29), 90" = 0, 9;,,up2 = 0, and 9% = 0 to obtain
Hh (Vs + J(€)V: éLVHLZ (Rx[0,67]) — Hh - dea(€”) H(Ore(a, £)0u HLZ [~T,T]x[0,6"])
< Cl0stllp2(—r1x 0,507 < CVE 105l 217,

and furthermore, using the fact that 0)e(ug2,0) = Id commutes with J(ug2),

1B (Vs + Jo2(662) Vi) €62 | 2 e o, 1

= ||h - dewg, (€62) ™" (Ore(woz, £65) T (u02) Doz — Joz(uo2) 01 e(uoz, £8y) Oruos) HL2(R><[0,1])

< Cll&oell 2=, x[0,1))-
Hence we have

1€y L, q1s1<r-1p) < C(\/5_”+ 1€ o ., q1s1<y) + 1hE" |i=o Il zro(ry + ||h§52|t:1“H0(R))7

which converges to zero, and thus vf, — ug2 in the H'-norm on every compact set. Now we
can verify the assumptions of Lemma [3.2.3] (with the constant & > 0) and achieve uniform
exponential decay: Pick 7' > 0 such that f X[0,1] |0sug2|? > E(u) — 1k and pick 1 such

that for all v > 1y we have ||0s u02]|L2 T }x[o,l Ha 1)02||L2 (=T 1)x[0,1]) < +h and thus

/ (/ |85v('§2|2+/ |as@|2> < B(")+ Lh— B(u) + 1k = h.
fst>11 \Jo,1 0,71

Now the exponential decay Lemma [3.2.3] combined with the local C’-convergence implies
that

deco (’USZ, U[]Q) ~+ dco (@V ﬂ) —0
uniformly for all s,¢. Thus for sufficiently large v we can write v” = e,(¢¥) with ¢ € H? v
and ||€Y]|cc — 0. In fact, the uniform exponential decay implies global convergence,

1€ |0 =0, 1€, =0 Vp =1, IVE oo < co < o0
This puts us into the position where Lemma B.2.T] and apply with ¢ = ¢,
1€z, + V€ s,
<G (Hvsf" +JE)WV gy, + V" +IE)VE s,
1 g, + €7 s ey + b limt s )

<1+ Co) IV + Vit gy, + IV + TV g,

1 lp,, + VUV s o) )-
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The terms in the last line converge to zero or can be absorbed into the left hand side for
0" sufficiently small. We claim that the penultimate line also converges to zero and we
thus obtain the convergence [|£”||r, ; — 0. To check this we recall from (29) that 00" =0
implies

(40) Ve&” + J(E")Vi¥ = —dey (€)1 (01e(u, &) Osu + J(u)Ore(u, £)0u).
Recall that

(41) o1e(u,0) = Idp, ar, Ore(u,0) = de, (0) = Idg, pr-

So in zeroth order we have, using the equations 0,z = 0 and Osug2 = —Jp2(uo2)Opuo2,

[VoE¥ + J(€)Vi€¥| < |deq(€)~ (Dre(a, €)05a)| < C|0sal,
|V s€bs + J02(€62) Vi€ta| < |dewq, (665) " (Dre(uoz; £62) Joz (uo2)
- J02(U02)316(U02756/2))@“02‘ < Clépals
and thus
V" + J(éw)vtéLV“Li&,, +[[Vs€” + J(E7)Vi€”|| 1

Lav
< C (bl 2oy + €62l s exgo,ayy + (8) 721105 L2y + (6°) /41058 L3 y) — 0.
For the first derivative we calculate from (40), denoting all uniform constants by C,
IV (V€ + J(E)Vi)| < C(L+ |VE))|Ore(@, £)0ya| + C|V (dre(a, ") 0sa) |
< C(1+|VE)) (10sul + |V.dsal),
and (in between dropping the subscript from §,)
‘V(VS%Q + JOQ(ESQ)VtESQ)‘ <C(1+ |V§”|)‘816(u,§”)J(u)8tu — J(u)@le(u,fl’)@tu‘
+ C‘V(@le(u,f”),}(u) - J(u)@w(u,{”))‘ - |Opu]
+ C‘@le(u,ﬁ")J(u) - J(u)@le(u,fl’)‘ - | VOuul|
< Cletal (1 +IVEG).-
Here the estimate for the second summand follows from (@I and the identity
V.(0re(u, 6)X) = D1e(u, )V, X + (V(o,u3.001¢) (u, )X
(and similarly for V;(01e(u,£)X)), where we have (v(asu,vs@ale) (u,0) = 0 since
(Viv,0y01€) (u,0) = Vyldp,p =0

and, calculating in local normal coordinates with an extension Y € I'(T'M) of Y € T, M
that is covariantly constant along 7 — exp, (7X),

(V(gyy)ale) (u,0) X = O0y|5=007|r=0e(exp,(7X),0Y) = 8T|T:0}7(expu(7'X)) =0.
Now the uniform estimate [|[VE” |l < cp and the exponential decay of @ = u(s) imply

|V (Vs + J(€)Vie) HL%,&V < C(1 + co) (162l L2 o,17) + (5V)1/2||asﬁ“Hl(R)) — 0.

This proves
1€ I, 50 — 0.
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It remains to find a time-shift such that 770" = e, (" (o)) with some £(0) € Ky but still
1€ (o) |lr, 5» < €0- In order to find this shift we write 770" = e, (" (o)) with
(42) ¢ (o) := (6;1 o7%0 eu)(g") €y pv.
This will satisfy
1€ ()ry 50 < CIE Iy 50 + lollldullry 50 ),
so it is well defined whenever |o| < oy, where we fixed oy = %600*1||du||1?11,6,, such that

1€”(0) I, 5» < €0 is ensured for sufficiently large v > 19. The L*-estimate on £”(0) can be
seen from the pointwise estimate

a7 eu(©)] < Jew 7 eu(€) — e r0en(0)] + [ey 1 7u — e ul
< C(A(r"eu(€). 7" eu(0)) +d(7°u,u))
< C(|77¢] + o|0sul).
1

Here C is a continuity constant for e, '. The higher derivatives of £(0) = e 7%, (&) are
estimated similarly. Now consider the function

0”(0) = (€6a(0), Dstioa) 2
It satisfies
©7(0)] < 10sullzz , €Iz, =0

and (dropping the 02-subscript) we obtain from (42)

559" (0) — 19ull72

= [((deu(€(0)) 77 (Ore(u, ) Dsu + de(€),") = 77 0yu), Dyu)2
+ ((7705u — O5u), Osu) 2
< C(I€” Il 10sull 2 + N1€” loollOsull > + o]V sOsul 21|05l 2)

The latter is an arbitrarily small error for large v and small 0. Hence we will find solutions
0¥ ~ —0"(0)/||0sup2||2, € [—00,00] of ©”(c”) = 0. With these we have 77 v” = e,(£"(0)),
where ¢¥ € Ky = {¢ € Flyg‘(fm,asum)p =0} and 1€” (@), 5» < €0. So with this small
time-shift on v” we obtain a contradiction to the assumption that 73 is not surjective.

Finally, to prove the transversality we need to check that D, = D (v is surjective.
(The same then holds for the time shifts 7" v”.) This follows from the quadratic estimate
in Lemma : Let Q: Q5 — I'1 s» be the right inverse of D? = dF,(0), then

12u(€) " Doy (o) Bu(€)Q — 1|l < [|@u(€") ! Dey ey Bul(€”) — dF0)]] - Q]
2C[1QNNIE I, g

where [|Q|| < oo by @28) and [[£”[[r, ;» — 0. This shows that Py (6) 1D, (er) Eu(€”)Q
and hence also the operator @, (£ )leeu(gy)Eu(f” ) has a right inverse for all sufficiently
large v > 1. Here the parallel transport ®,(£”) is an isomorphism on the target and
E,(¢”) identifies I'; 5 with the domain of D, (¢v)- For the latter see the discussion before
Lemma [3.T.5 and recall that £, (0) = Id. So we have established that D, is surjective, and
this finishes the proof. O

IN
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Lemma 3.3.2. There exists a universal constant h > 0 such that the following holds for
any sequence of Floer trajectories v¥ € Mgv(xt,27) with Y — 0. If for some s € R

lim inf (|| dvgs || oo (8. (5,0)) + (40" |1 (B.(s,0)) =00 Ve >0,

then there exists a sequence €V — 0 such that

lim inf / |d1)52|2+/ |do”|* | > h.
=00 B.v (s,0) B.v(s,0)

Here B(s,0) is the e-ball in R x [0,1] or R x [0, 6"] respectively.

In the usual analysis of bubbling effects, one would prove this lemma by rescaling around
points where the differentials blow up, identifying the limits with holomorphic spheres or
disks, and hence obtaining an energy quantization constant A that is geometrically deter-
mined by the minimal nonzero energy of spheres or disks. In the present case however,
depending on the relative speed of blow-up and strip-shrinking ¢ — 0, the rescaling may
lead to sphere bubbles in My, My, or My, disk bubbles in (Mg x My, Lo1), (M1 X My, L13),
or (My x My, Ly o L13), or the novel figure eight bubble described in the introduction. Since
we do not have a geometric bound on the minimal energy of figure eight bubbles, we use a
mean value inequality to obtain A by purely analytic methods.

Proof of Lemma [3.3.2. For notational convenience we introduce the noncontinuous function
|dv] : R x [0,1] — [0,00) given by |dv(s,t)|? = |dvoa(s,t)|? + |di(s,t)[? for t € [0,0] and
|dv(s,t)] = |dvga(s,t)| for t € (,1].

ASuppose the lemma is false, that is, for every k& € N there exists a sequence v** €
Mk (x7,27) with 0% — 0 such that (after time shift to s = 0) RY := |dv®¥ (s¥,t7)| — oo
for some (sy,t}) — (0,0), but

ol

lim inf / |dv*|? <
V—00 Beu (0)
for every sequence € — 0. In particular, this will hold for a fixed sequence €] — 0 that
satisfies in addition €] > o, (s{.t}) € B%GZ (0) and €/ R} — oo. We can then find diagonal
sequences v* € ./(/l\(sk(xﬂx*) with 0 — 0, and €, — 0, (sg,tx) € B%Ek(O) such that
xRy := eg|dvF (sp, )| — oo and

(43) / ok = 0.
B¢, (0)

Next, we use Lemma [3.3.3] to refine the choice of the blowup points (s, tx). For that purpose
we consider the spaces Xp2 = Rx [0, 1], X = Rx [0, 0k ], and X = Rx [0, 1], with the obvious
inclusion 7 : Xo2 U X — X. Using the function f = |dvf,| on Xgo and f = |di*| on X one
can then vary the point 7(z) = (sg,tx) € R x [0,1] by 2p = 1e; to find (sy, 1) € B%Gk (0)
and €}, < ey, such that e} Ry, := € |dvF(sy, tx)| — 0o and |dvF| < 4Ry, on Be (sk, tr). Here
(@3] continues to hold on B, (9) O Be (s, 1,)-

Now in a first step we will prove that figure eight bubbles (arising from rescaling in the
case 0pRr — A € (0,00)) have a minimal energy (possibly depending on A > (0.) More
precisely, we claim that (43) implies

(44) thk — 0, and 6kRk — 0.
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In a second step we will then see that this gives rise to a disk bubble in (Mg x Ma, Loi 0 L12).
Step 1: We prove (44).
First consider the case |dvf, (s, tg)| > 5|dv¥(sk, )| and tj, > $6;. Then for all sufficiently

large k we can apply the mean value inequality [8, Lemma 4.3.1] to |duf,| on the ball
By, (sk,tk) C R x (0,1) N B, (0) with 7 := min{ty, €} },

HreRR)? < rildugy(sk, t)]? < C/ |dvg,|* — 0.
Brk(skatk)
Here we cannot have r, = €} since €, R, — 0o, so we have 1, = ¢}, and thus %6kRk <
tp Ry — 0 as claimed.

In the case |do*(sg,tp)| > |dvF(sy,ty)| and & > tp > 16, we can apply the mean
value inequality [19, Theorem 1.3, Lemma A.1] to |d#*| with boundary condition &*|,_s, €
Loy x Lyz on the partial ball B, (5, 1) C R x (0,d,] N Be, (0) for 7y := min{ 16y, €, },

i(?”kRk)Z < 7”,%|df)k(5k,tk)|2 < C/ |d@k|2 — 0.
B’V‘k(sk)tk)
As before we cannot have rj, = €} since €} R, — 00, so we have 1, = %519 and thus R, <
0 Rr — 0 as claimed.
In the remaining case t; < %5k we consider the holomorphic curve

wk = (Ugg,@k) R x [0,(5k] —)MU X M2 X MO X M2 X M1 X Ml,

which satisfies the Lagrangian boundary condition w¥|;—g € Ag x Ay x A;. By the above
we have |dw"(sg,tr)] > Rp — oo and [, ) |dw¥|? — 0. So for all sufficiently large k
‘k

we can apply the mean value inequality [19] Theorem 1.3, Lemma A.1] on the partial ball

BTk(Sk,tk) C R x [0, 5k) N Bek (0) for rp := min{%dk, 6;9}’
(reRi)? < r2|dw (sp, 1) 2 < c/ dwk 2 = 0.
Brk(skatk)

Again we cannot have 1, = € since €, R, — oo, so we have r, = %6k and thus 2ty Ry, <
0rRr — 0 as claimed.

Step 2: We prove the lemma.

We consider the rescaled maps w* = (wf,, wF), where wf, : B, g, (0) NHZ — My x My is
defined on half balls of radius €, Ry — oo in the half space H? := R x [0,00) by wf,(s,t) :=
vl (sk +s/RE,t/RF), and @ : B, g, (0) N (R x [0, 8, Ry]) — Mo x My x My x M is defined
by wF(s,t) := ¥ (s}, +s/R¥,t/RF) on balls of radius e, R}, intersected with the strip of width
5kRk — 0.

This rescaling preserves the nontriviality |dw”(0,t,R;)| > 1, but on both domains |dw
is uniformly bounded. Hence we can find a subsequence of the wk, that converges in
the C’-topology on the unit half ball D; := B1(0) N H2. The (scaling invariant) energy
I} Bey 1, (0) |dwk,|? converges to zero by (@3), so the limit has to be constant. In fact, we

‘]

have w’52 — Zo2 € Lg2 since the boundary values w’52|t:0 converge to Lg; o L1s = Lgg in
C%([~1,1]). To see the latter use the transversality of the Lagrangians as in Lemma B.1.3]
and integrate the bound on |9;@*| to obtain

Ok
d(i* (s, 0), ¥ (s, 6)) < / 0 (s, )] dt < 5x2B — 0.
0
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This also proves that w* — 21 in C°([—1,1] x [0, 0y Ry]), where 1 € M is uniquely deter-
mined by T := (202,21, 21) € Lo1 X Lia. The maps w§, are Joz-holomorphic, so by elliptic
regularity the convergence wh, — z¢2 is in the C*®-topology on every compact subset of
H? \ OH?. However, in order to obtain a contradiction to the fact that |dw®(0,txRy)| > 1
with ¢, R, — 0 we need to establish C'-convergence on Dy up to the boundary.

We begin by noting that due to the C’-convergence we can express w* = e, (¢¥) in terms
of sections £F = (¢k,,€%) € H2(Dy,zt, T (Mo x My)) x H2([0,1] x [0, 6 Ry], Z°T'(My x My x
My x Mj)) using the exponential map centered at & = (xg2,%). These sections satisfy the
diagonal and Lagrangian boundary conditions £k|t:0 € T (Ap x Ag x Ay) and §k|t:5k R, €
Ty(Lo1 x Li2), the C%-convergence ||¢¥||oc — 0, and a uniform bound ||V&¥||s < cp. Since
0w =0 and Vz = 0 we obtain from (29)

Ve + IRk =o.

Now dw® = de, (€¥)V o ds + dey (€F) J(€F)V s€Fdt, so it suffices to prove the C%-convergence
of Vs&¥ near 0. For that purpose we multiply the sections by cutoff functions h = (hgs, ﬁ)
with hg2 : R x [0,1] — [0, 1] supported in Dy, h:R— [0, 1] supported in [—1, 1], and both
equal to 1 near 0. Then we obtain sections on the multistrip h&* := (hgg{&, ilék) € ' 5. R,
that also satisfy the boundary condition hga&f,|i=1 = 0. These satisfy a uniform bound

k k k k k
sup (V. (h€) + €V, + 10y, ) < S CIEH iy, o) < o0

1,6

due to the bounds on [|¢¥||o and ||VE¥||s and the compact support of h. From this
Lemma B.2.T] (b) provides a uniform bound

k
sup ez, < Cr < oo

Indeed, the boundary terms vanish since the constant boundary conditions directly transfer
to the derivatives, Vy&ky|i=1, V2EEli=1 € Thoy(Lo X La) and V€¥|i—s, ry, V2EF| sk, €
T3 (Lot x Ly3).

We now fix a pair of cutoff functions h’ with support in h~1(1) and still equal to 1 near
0. Then we apply Lemma B.2.1] (b) to h'V£¥, again with vanishing boundary terms, to
obtain

sup |0V gz, < sw C(([[(Vs + TENVIRVE gy 4Ny, )

< sup C(1 + co)||h€F || 2 < 0.
k

1,6, Ry,

We can pick the cutoff functions such that hfy|p, 5, =1on the half ball Dy, C H? and
fz|[7%,%} = 1. Then the compact Sobolev embedding HQ(D1/2) — CO(DI/Q) provides C°-
convergence of a subsequence VS§§2. We already know that the limit is 0, so we obtain
V&, — 0 and 05wk, — 0 in C%(Dy3). It remains to establish HvsékHCO([—é,é}x[O,&kRk}) —0
and thus ||851I)k||co([_ 11x[060Re]) 0 in contradiction to |[dw” (0, tRi)| > 1 with ¢, Ry — 0.

e argument in Lemma[3.1.4]l Using the standard Sobolev embedding

1
29
To see this we follow t
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H'([-3,3]) = C°([—3, %)) we obtain for all ¢ € [0, Ry]

%“vséﬂt:to - Vsék|t:6kRk||20([,%7%]) S ||vsék|t:to - vsék|t:5kRk“?{1([,%’%])
Otk ok |2
(45) <ok [ IV )
< 5kRk”vsék“?.p({,%%}x[o’gk}gk]) — 0.
From the above we moreover have ||V556]€2|t:0||00([_%7%]) = ||vs§§2|t:0||00([_%7%}) — 0. Now

using Lemma [B.1.3] and the boundary conditions, in particular (¢§ — ¢¥)|,—o = 0, we obtain
||Vsék|t:5kRk||c0([_%,%})
< C(HWOQ(Vsék”t:&kRk“CO([f%%]) + | Vs(€F — ;-k)|t:6kRk“C0([7%7%]))
< C(IVsétbli=ollco 1 17y + IV s€¥li=s, 1, — Vséﬂtz[)”@(}%,%})) — 0.

Combining ||Vs§k|t:5kRk||Co([_%,%}) — 0 with ([@5)) then proves ||Vs£’k||co([_

11
272

Alx00]) 70
and thus |dw® (0, R;)| — 0 in contradiction to the assumption. O

1
2

Lemma 3.3.3. Let (X,d) be a metric space, Xq,...,X, topological spaces, m: X3 U...U
X, — X a continuous map, and f: X1 U... X, = R a non-negative continuous function.
Fiz x € X; for somei=1,...,n and p > 0. Suppose that 7= (Bg,(m(z))) N X; is complete
for each i =1,...,n. Then there exists an ' € X, U...X,, and a positive number p' < p
such that

d(r(a"), m(2)) < 2p, L ,))f <2f(), Pf@a’) > pf(z).

Proof. Otherwise, the same argument as in the proof of Hofer’s lemma [8, p.93] shows that
there exists a sequence z, € X7 U...U X,, such that

2o =z, d(n(za),7(Cat1)) < p/2% [(Tat1) > 2f(2a).

After passing to a subsequence, we obtain a Cauchy sequence z, in some X; with f(z,) —
00, which contradicts completeness and continuity of f. [l
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