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Abstract

We prove the formulae conjectured by the first author for the index of K-theory
classes over the moduli stack of algebraic G-bundles on a smooth projective curve.
The formulae generalise E. Verlinde’s for line bundles and have Witten’s integrals
over the moduli space of stable bundles as their large level limits. As an applica-
tion, we prove the Newstead-Ramanan conjecture on the vanishing of high Chern
classes of certain moduli spaces of semi-stable G-bundles.

Introduction

Let G be a reductive, connected complex Lie group and M the moduli stack of algebraic G-
bundles over a smooth projective curve Σ of genus g. In this paper, we determine the analytic
index on a dense subring of the topological K-theory of M. For line bundles, we recover the
famous formula due to E. Verlinde [V], which we extend to include the Atiyah-Bott classes,
described in §1. From this angle, our index is analogous to Witten’s cohomological integration
formula [W] over the moduli space of semi-stable bundles, which appears for us in the large level
limit of the index. Like the Verlinde formula, but unlike Witten’s, our index is expressed as a
finite sum; this removes the convergence problems and consequent regularisation in [W]. While
other regularisations have been considered in the literature [JK], ours is intrinsically meaningful
in topological K-theory, and expresses the fact that indexes of vector bundles over M, and not
just those of line bundles, are controlled by finite-dimensional Frobenius algebras [T3].

For a smooth projective variety X, the analytic index of a holomorphic vector bundle V
can be defined as the alternating sum χ(X;V ) of its sheaf cohomologies. This agrees with
the topological index of V , defined by the Gysin map to a point in topological K-theory. The
construction extends to certain well-behaved Artin stacks. Thus, when G acts on X, a vector
bundle over the quotient stack X/G corresponds to an equivariant bundle V over X, and the
holomorphic Euler characteristic χ(X/G;V ) (defined, say, using the simplicial bar construction
of X/G) agrees with the invariant part of the virtual G-representation χ(X;V ). Now, χ(X;V )
agrees with the equivariant topological index, the image of V under the Gysin map from K0

Gk
(X)

to RG, the representation ring of the maximal compact subgroup Gk ⊂ G. Regarding the map
RG → Z which extracts the invariant part of a representation as the Gysin projection from the
classifying stack BGk to a point gives us an “analytic = topological” index theorem for X/G.

∗Partially supported by EPSRC grant GR/S06165/01
†Partially supported by NSF grant DMS/0093647
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Our stack M fails a basic test for good behaviour: it has infinite type. Thus, when G is a
torus, M has infinitely many connected components, labelled by H2(Σ, π1G). Nonetheless, M

has a distinguished Shatz stratification. For a torus, the strata are the connected components.
Finite, open unions of strata can be presented as quotients of smooth quasi-projective varieties
by reductive groups; this allows us to use familiar techniques of sheaf cohomology. In addition,
special geometric features of the stratification — reflected in the properties of canonical parabolic
reductions of G-bundles — ensure the finiteness of sheaf cohomology, and allows us to define
the index, for a sub-ring of admissible K-theory classes. When G is simply connected, these
classes are dense in the rational K-theory of M, in the topology induced by the stratification.
The index is not continuous in this topology and does not extend to all of K0; nevertheless,
interesting limits do exist, such as in our application to the Newstead conjecture in §7.

This extension of Verlinde’s formula, capturing the index of vector bundles, emerged from
the discovery that a certain twisted K-theory was the topological home for the index of line
bundles over M [FHT, §8]. Thus motivated, formulae for the index of admissible classes were
proposed in [T3], equating the analytic index over M, defined from coherent sheaf cohomology,
with a topological index defined in twisted K-theory. (See also the informal notes [T4].) The
topological index can be calculated by the Atiyah-Bott fixed-point method, and when π1G is
free, one obtains a formula in terms of the maximal torus T and the Weyl denominator. In
this situation, [T3] offers two conjectural formulae for the analytic index over M which do
not involve twisted K-theory: a localisation formula, which reduces the index to the stack of
principal T -bundles, and a Verlinde-like formula involving a finite sum over conjugacy classes.

We prove these formulae here. It is clear that our method leads to the equality of analytic and
topological indexes for all compact groups, but for simplicity we confine ourselves to connected
groups with free π1; explicit formulae for more general groups require additional calculations
(Remark 4.14).

In principle, we also solve the index problem over the more traditional moduli space M of
semi-stable bundles. For large levels (twists by large line bundles), the contribution of unstable
strata of M vanishes, and the index over M is equal to that over the open sub-stack Mss of semi-
stable bundles (1.6). The cohomology of a coherent sheaf over Mss agrees with that of its direct
image to M . The index over M , which is a projective variety, depends (quasi-)polynomially on
the level, so we can give a formula (unpleasant, but explicit) for the index of (the direct image
to M of) admissible classes, at any level. When all semi-stable G-bundles are stable,1 Mss is an
orbifold with coarse quotient M , and the rational cohomology calculation of [AB] shows that
we generate all of K0(M ; Q) in this way.

Our proof relies on a remarkable symmetry of the index over M which is absent on M , or
on any finite-type approximation. The symmetry arises from a loop group version of Bott’s
reflection argument [B], a Hecke correspondence. (This device was already used in [BS] in
relation to the Verlinde formula.) The reader should refer to §1.1 below for the definitions in
what follows. Choose an admissible line bundle L and an index bundle E∗

ΣV . For a weight
λ of the maximal torus T , denote by Vλ the holomorphically induced virtual G-representation.
Regard the index of L⊗exp[tE∗

ΣV ]⊗E∗
xVλ, a formal series in t, as the eλ-coefficient for a Fourier

series on T , with values in Q[[t]]. This series turns out to be anti-invariant for a certain action of
the affine Weyl group, and is thereby constrained to represent a sum of δ-functions at prescribed,
regular points of T . Regularity of its support, combined with Atiyah’s localisation theorem for
the index of transversally elliptic operators, implies that the index distribution only sees the
contribution of principal bundles whose structure group reduces to T . That can be calculated
by Riemann-Roch, leading to our explicit index formula.

1When G 6= GL(n), this condition can only hold if we include parabolic structures.
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The paper is organised as follows. In §1 we describe the admissible K-classes and define their
analytic index. We include a brief review of the stratification of M and the local cohomology
vanishing results of [T2]. Section 2 contains the precise statements of our formulae. The proof
is split into §3, where we check the anti-symmetry of the index distribution, and §4 where we
eliminate the contributions of non-toric principal bundles.

The last sections contain two applications. In §5, we show how Witten’s integration formulae
over M arise from our index formula in the large level limit; we only give full details for SL(2).
(The formulae were proven for SL(r) by Jeffrey-Kirwan [JK] and, independently of our work
but simultaneously, by Meinrenken [Me] for compact, 1-connected G.) Section 6 enhances our
index formulae by incorporating Kähler differentials, needed in our next application in §7 to a
conjecture of Newstead and Ramanan. The original version, proved by Gieseker [G], asserted the
vanishing of the top 2g−1 Chern classes of the moduli space of stable, odd degree vector bundles
of rank 2 on Σ. An analogue in rank 3 was settled by Kiem and Li [KL]. We generalise this to
the vanishing of the top (g−1)ℓ rational Chern classes of the moduli space M of stable principal
bundles with semi-simple structure group of rank ℓ, whenever M (or a variant decorated with
parabolic structures) is a compact orbifold.

The appendix reviews some background on the topological K-theory of M and on its variants
decorated with parabolic structures; the exotic parabolic structure associated to the simple affine
root of g plays a special rôle in the proof. We do not review general properties of stacks and their
cohomology, these matters having had increasing coverage in the literature since the detailed
treatments [BL, LS]; a review suited to our needs is found in [T1, T2].

We thank the referee for a careful reading of the manuscript and for many helpful suggestions.

Notation. G is a reductive group, T a maximal torus and B ⊃ T a Borel subgroup. Gk, Tk will
be the compact forms and gk, tk their Lie algebras. The co-weight lattice of T , log(1)/2πi, lies
in itk; its Z-dual is the weight lattice in it∨k . W is the Weyl group and ∆ :=

∏
α>0 2 sin(iα/2)

the Weyl denominator. The Weyl vector ρ is the half-sum of the positive roots. The simple
roots are α1, . . . , αℓ; when g is simple, the simple affine root α0 sends ξ ∈ t to 1−ϑ(ξ), with the
highest root ϑ. (The affine root vector of α0 is z−1eϑ.) The representation ring of Gk is denoted
by RG, and CRG := C ⊗RG.

1. Atiyah-Bott classes

In this section, we introduce the Atiyah-Bott classes and admissible classes. We then define
their analytic index and derive its finiteness from the local cohomology vanishing results of [T2].
This requires a brief review of the Shatz stratification.

1.1 Admissible classes. Given a representation V of G, call E∗V the vector bundle over Σ×M

associated to the universal G-bundle. Call π the projection along Σ,
√
K a square root of

the relative canonical bundle, and [C] the topological K1-homology class of a 1-cycle C on Σ.
Consider the following classes in the topological K-theory of M:

(i) The restriction E∗
xV ∈ K0(M) of E∗V to a point x ∈ Σ;

(ii) The slant product E∗
CV := E∗V/[C] ∈ K−1(M) of E∗V with [C];

(iii) The Dirac index bundle E∗
ΣV := Rπ∗(E

∗V ⊗
√
K) ∈ K0(M) of E∗V along Σ;

(iv) The inverse determinant of cohomology, DΣV := det−1E∗
ΣV .
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We call the classes (i)–(iii) the Atiyah-Bott generators; they are introduced in [AB, §2], along
with their counterparts in cohomology, and can also be described from the Künneth decompo-
sition of E∗V in

K0(Σ × M) ∼= K0(Σ) ⊗K0(M) ⊕K1(Σ) ⊗K1(M),

by contraction with the various classes in Σ. Classes (i) and (iv) are represented by algebraic
vector bundles, while (iii) can be realised as a perfect complex of O-modules. The class E∗

CV
in (ii) is not algebraic. Note that detE∗

ΣV = detRπ∗(E
∗V ) when detV is trivial; an important

example is the canonical bundle K = detE∗
Σg of M, defined from the adjoint representation g.

For simply connected groups, we could stay with determinant line bundles, but those are too
restrictive in general. Call a line bundle L positive if L⊗n is topologically isomorphic to DΣV
for some n > 0 and an infinitesimally faithful representation V . Call L admissible if L > K1/2.
(K has a distinguished Pfaffian square root [LS].) Products of an admissible line bundle and
any number of Atiyah-Bott generators span the ring of admissible classes.

1.2 Remark. (i) Positivity of L depends only on its rational Chern class in H2(M; Q): namely,
c1(L) must lie in the Q+-span of the c1(DΣV )’s with g-faithful V .

(ii) Taking V = g for semi-simple G shows that K is negative, and so O is admissible. This fails
for a torus, but positive line bundles are admissible (that is, K ≤ 0) for any G; cf. §1.3 below.

(iii) For g > 1 and simply connected G, our positivity agrees with ampleness on the moduli
space. (Suffices to check this for simple G: recall then that Pic(M) = Z and that K−1 is ample.)
When π1G 6= 0, positivity as defined is much more restrictive, since it relates the Chern classes
over the different components of M; cf. Remark 1.4 below.

1.3 Level of a line bundle. We associate to an admissible line bundle on M a quadratic form on
the Lie algebra, which we call its level. For any V , Riemann-Roch along Σ expresses c1(E

∗
ΣV )

as the image of ch2(V ) = 1
2c

2
1(V ) − c2(V ) under the transgression τ : H4(BG; Q) → H2(M; Q)

(the construction (1.1.iii) in cohomology). It is important that τ is injective (Remark 4.11).
We now identify H4(BG; R) with the space of invariant symmetric bilinear forms on gk so that
the trace ξ, η 7→ TrV (ξη) corresponds2 to ch2(V ). The traces span the negative definite cone in
H4(BG; R), and we conclude that the Chern class of a positive line bundle is transgressed from
a unique positive definite quadratic form on gk, which we call the level. Thus, for SLn, the level
of the positive generator of Pic is −TrCn , in the standard representation. For another example,
c := −1

2Trg is the level of K−1/2. Similarly, L is admissible iff c1(L) is transgressed from a form
h > −c.
1.4 Remark. When G is simply connected, τ : H4(BG; Z) → H2(M; Z) is an isomorphism, but
this fails (even rationally) as soon as π1G 6= 0. Admissible line bundles are then very special.

1.5 The index of an admissible class. We first recall the finiteness result which enables us to
define the index of admissible classes by means of sheaf cohomology. It is a consequence of [T2],
combining the relative case of the main theorem in loc. cit., §5 with the discussion of M in §8
and §9. For the reader’s convenience we will also outline the proof in §1.12, after we review the
stratification of M.

Let E be the twist of an external tensor product ⊠E∗Vk of universal bundles over Σn × M

by an admissible line bundle L. Call E the direct image to Σn ×M , the moduli space, of the
restriction of E to the semi-stable part Mss. Consider the projections φ and φ from Σn × M,
resp. Σn ×M , to Σn.

2It is more standard to identify Tr with 2 ch2; our choice here avoids factors of 2 elsewhere.
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1.6 Lemma. The total direct image
⊕

iR
iφ∗E is coherent on Σn. For large enough L, depending

on the Vk, it agrees with
⊕

iR
iφ

∗
E.

A lower bound for the level of L can be given, linear in the highest weights of the Vk, see §1.12.

Choose now cycles Ck on Σ of various dimensions, but with even total degree. We wish
to define the index of L ⊗ ⊗

k E
∗
Ck
Vk over M as the Euler characteristic of its coherent sheaf

cohomology, but the non-algebraic classes (1.1.ii) impose the indirect

1.7 Definition. The index over M of L ⊗ ⊗
k E

∗
Ck
Vk is the pairing of ×k[Ck] ∈ K0(Σ

n) with

the topological K-theory class of
∑

i(−1)iRiφ∗E.

When all the Ck are even, we can switch and push down along Σn first, recovering thus the
Euler characteristic. When G is abelian, the index theorem applied to the components of M

shows that our index only depends on the underlying topological K-class of the bundle. That
is less obvious in general, but will follow for instance from our abelianisation formula (2.20).

1.8 Shatz stratification. Recall that any G-bundle over Σ admits a canonical reduction of struc-
ture group to a standard parabolic subgroup P of G, for which the associated bundle with
Levi structure group is semi-stable. Topologically, this reduction is classified by a co-weight
of P/[P,P ]; we identify this with a (possibly fractional) dominant co-weight ξ of g, called the
instability type of the original bundle. Then, P is the standard parabolic subgroup defined by
ξ; we will denote it by Pξ and its Levi subgroup by Gξ. If Mξ denotes the stack of G-bundles of
type ξ, we have an algebraic stratification [Sh, AB]

M =
⋃

ξ
Mξ.

Sending a Pξ-bundle to its associated Levi bundle gives a morphism from Mξ to the stack Mss
Gξ,ξ

of semi-stable principal Gξ-bundles of type ξ; the fibres are quotient stacks of affine spaces by
nilpotent groups. The virtual normal bundle for the morphism Mss

Gξ,ξ
→ M is the complex

νξ = Rπ∗E
∗(g/gξ)[1].

Its K-theory Euler class should be the alternating sum of exterior powers3

λ−1(ν
∨
ξ ) :=

∑
(−1)pλp(ν∨ξ ),

but for now this infinite sum is only a formal expression, whose meaning is to be spelt out.

1.9 Local cohomology. Finite, open unions of Shatz strata

M≤ξ =
⋃

µ≤ξ
Mµ

can be presented as quotient stacks of smooth quasi-projective varieties by reductive groups.
The cohomology with supports over Mξ of a vector bundle E is

H•
Mξ

(M≤ξ ,E≤ξ) = H•+dξ(Mξ ,RξE) (1.10)

where dξ is the co-dimension of Mξ and RξE → Mξ the sheaf of “E-valued residues along Mξ”,
the cohomology sheaves relative to the complement of Mξ. Pushing down to Mss

Gξ ,ξ
and passing

to the associated graded sheaf for the filtration by order of the pole leads to

·H•(Mss
ξ,Gξ

,Eξ ⊗ Eul(νξ)
−1
+ ) (1.11)

3Recall that the pth exterior power λp of a complex V 0 δ
−→ V 1 is the complex with qth space Λp−qV 0⊗SymqV 1

and obvious differential induced by δ. A similar definition applies to symmetric powers.
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where Eξ is the restriction to Mss
Gξ,ξ

, while the complex of sheaves

Eul(νξ)
−1
+ := SymRπ∗

(
E∗(pξ/gξ)[1]

∨ ⊕Rπ∗E
∗(g/pξ)[1]

)
⊗ det(Rπ∗E

∗(g/pξ)[1])[dξ ]

is formally an inverse to the Euler class λ−1(ν
∨
ξ ) which “prefers” the ξ-negative eigenvalues in

the geometric expansion.

1.12 Finiteness and vanishing. All eigenvalues of ξ appearing in Eul(νξ)
−1
+ are negative, with

finite multiplicity. The determinant factor has weight c(ξ, ξ) (negative, as ξ ∈ itk). An admissible
line bundle factor L in E changes this behaviour to (h+ c)(ξ, ξ). Atiyah-Bott bundles E∗

?V alter
this behaviour linearly in ξ. Overall, for any admissible E, the ξ-invariant part of E⊗Eul(νξ)

−1
+

is finite-dimensional, and vanishes for all but finitely many ξ.

It follows that almost all cohomologies (1.10) vanish, and the index of E over M is the sum
of finitely many local contributions over the Mξ. Passage to the Gr does not change the index
and we obtain

Ind(M,E) =
∑

ξ
Ind(Mss

Gξ ,ξ
,Eξ ⊗ Eul(νξ)

−1
+ ). (1.13)

Lemma 1.6 is the relative version of this story for the projection φ to Σn, with Riφ∗ replacing
cohomology and

∑
(−1)iRiφ∗ ∈ K0(Σn) replacing the index.

1.14 Remark. Formula (1.13) is related to the non-abelian localisation principle of Witten [W].
When presenting M≤ξ as a quotient of a manifold by a reductive group, the ∂̄ operator can be
deformed so that the invariant part of its kernel localises at the critical points of the norm-square
of the moment map, leading to the individual contributions in (1.13), see Paradan [P].

1.15 Remark. Inadmissible L’s can have infinitely many contributions to (1.13). However, when
G is semi-simple, the theorems of Kumar [Ku] and Mathieu [Ma] imply the vanishing of all the
direct images for negative L: M is then isomorphic to a quotient of the generalised flag variety
X := G((z))/G[[z]] for the loop group by the group G[Σ\{x}] of algebraic maps on the punctured
curve, and the cohomology of L vanishes over X.

2. The index formulae

The index formulae involve a sum over deformations of certain Verlinde conjugacy classes in G,
which appear in the formula for line bundles. We start by recalling that story.

2.1 Isogenies from admissible levels. Contraction ξ 7→ ι(ξ)h with the level h of an admissible
line bundle L maps the co-weight lattice to its dual, the weight lattice. This map descends to
a homomorphism χ : T → T∨, the dual torus. The homomorphism χ′ defined from h′ := h+ c
is an isogeny, with kernel F ⊂ T . Let Fρ be the translate of F lying over e2πiρ ∈ T∨. This last
point does not depend on the Weyl chamber used to define ρ, and gives the Spin covering of T
in the adjoint representation g.

2.2 Example. If G = SL(n), Pic(M) ∼= Z, with positive generator O(1) = DΣCn and K =
O(−2n). T∨ is the maximal torus of PSL(n) and χ, for O(1), is the natural projection. Hence,
for L = O(l), F = Fρ comprises the (l + n)th roots of the centre of SL(n). The analogue holds
for simply connected, simply laced groups, if n is replaced by the dual Coxeter number.

A formula of E. Verlinde (first given in the context of conformal field theory) describes the
index of a determinant line bundle over M. Let Θ be the sum of delta-functions on the regular
Gk-conjugacy classes through Fρ, divided by the order |F | of F . Define a linear map RG → Z
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on representations by

U 7→ Θ(U) =

∫

Gk

TrU (g) · Θ(g)dg =
∑

f∈F reg
ρ /W

TrU (f) · ∆(f)2

|F | . (2.3)

(Recall that we normalised the Weyl denominator so that ∆(f)2 is the volume of the conjugacy
class.) Let θ(f) = ∆(f)2/|F |; Verlinde’s formula4 gives the index of L as

Ind(M;L) =
∑

f∈F reg
ρ /W

θ(f)1−g. (2.4)

2.5 Remark. There is a version of formula (2.4) with Fρ replaced by F . The components M(γ)

of M are labeled by γ ∈ π1G, and the Spin covering of the adjoint representation of G defines a
character σ : π1G→ {±1}. The calculations of §4 give a graded index formula

∑

γ∈π1G

σ(γ) · Ind(M(γ);L) =
∑

f∈F reg/W

θ(f)1−g. (2.6)

The same applies to our generalised index formulae below.

2.7 Remark. The kernel of the pairing (U,U ′) 7→ Θ(U ⊗ U ′) is the ideal Ih ⊂ RG of virtual
characters which vanish on F reg

ρ . We obtain a non-degenerate pairing on the quotient RG/Ih,
which becomes an integral Frobenius algebra, the Verlinde ring at level h. Its complex spec-
trum is F reg

ρ /W . A folk result asserts that a Frobenius algebra is the same as a 2-dimensional
topological field theory, and formula (2.4) is the “partition function” for a genus g surface in
the Verlinde ring.

2.8 Deformations. Given a representation V of G, consider the following formal one-parameter
family of transformations on G:

g 7→ mt(g) := g · exp [t∇TrV (g)] , (2.9)

with the gradient in the bilinear form h′. This descends to the space G/AdG of conjugacy
classes; note from the Ad-invariance of TrV that singular classes remain singular. Restricting
to conjugacy classes in Gk and composing with Θ gives a formal t-family Θt := Θ ◦ mt of
distributions, even though the points ft of its support, the solutions to mt(ft) = f , can move in
complex directions (when TrV is not real):

Θt(U) :=

∫

Gk

TrU (g) · Θ(mt(g)) dg =
∑

f∈F reg
ρ /W

TrU (ft) · θt(ft) ∈ C[[t].

The θt are described as follows. Call HV the Hessian of TrV : HV (u)(ξ, η) = TrV (uξη), for u ∈ T
and ξ, η ∈ t, and denote by HV (u)† its conversion via h′ to an endomorphism of t. In view of
the volume scaling under (2.9), we have

θt(ft) = det−1
[
1 + tHV (ft)

†
]
· ∆(ft)

2

|F | . (2.10)

Here is an alternate description of θt. Strictly speaking, it applies only when TrV is real; see the
closely related Fourier expansion of Θt in §4.12, which is free of this flaw. The push-down of Θ
to the space Gk/AdGk = Tk/W of unitary conjugacy classes is

∑
Fρ/W

θ(f) · δf = ∆2 · δρ ◦ χ′, (2.11)

4See, e.g. [AMW] for semi-simple G; we shall reprove it below when π1G is free.
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with the delta-function δρ at e2πiρ ∈ T∨ and the isogeny χ′ : T → T∨ of §2.1. Viewing dTrV
as a map T → t∨, χ′ has a formal deformation to χ′

t := χ′ · exp(tdTrV ), under which (2.11)
deforms to ∑

θt(ft) · δft = ∆2 · δρ ◦ χ′
t. (2.12)

2.13 Remark. Pulling back Fourier modes on T∨ by χ′
t defines a group homomorphism from

π1T to the units in CRT [[t]]. This defines a (higher) twisting for the equivariant K-theory
KT (T ; C[[t]]). This extends to a twisting for the conjugation action of G on itself, and the
twisted K-group KG(G) turns out to be the quotient of CRG[[t]] by the kernel of the pairing
Θt(U ⊗ U ′). It is a Frobenius algebra over C[[t]], deforming the complex Verlinde ring at t = 0.
See [T3] for more details.

2.14 Even Atiyah-Bott generators. We incorporate the index bundles (1.1.iii) into Verlinde’s
formula by means of a generating function

L ⊗ exp[t1E
∗
ΣV1 + . . .+ tnE

∗
ΣVn] ⊗E∗

xU ∈ K•(M)[[t1, . . . , tn]].

Let θt(f) denote the multi-parameter version of θt(f), for t = (t1, . . . , tn).

2.15 Theorem (Index formula for even classes).

Ind (M;L ⊗ exp[t1E
∗
ΣV1 + . . .+ tnE

∗
ΣVn] ⊗ E∗

xU) =
∑

f∈F reg
ρ /W

θt(f)1−g · TrU (ft).

With t = 0 and the trivial representation U , this recovers (2.4).

2.16 Example. When G = SL(2), L = O(l) and TrV =
∑
ϕnu

n on matrices with eigenvalues
{u, u−1}, we have, as conjectured in [T3],

Ind (M;L ⊗ exp[tE∗
ΣV ]) =

∑

ζt

[
2l + 4 + tϕ̈(ζt)∣∣ζt − ζ−1

t

∣∣2

]g−1

where the ζt range over the solutions of ζ2l+4
t · exp (tϕ̇(ζt)) = 1 with positive imaginary part,

ϕ̇(u) =
∑
nϕnu

n and ϕ̈(u) =
∑
n2ϕnu

n.

2.17 Odd generators. The bilinear form h′ + tHV (u) on t is non-degenerate; denote by 〈 | 〉(u)
the inverse form on t∨. To an even product ψ of odd Atiyah-Bott generators (1.1.ii), we assign a
function [ψ](u) on T as follows: split ψ into quadratic factors E∗

CU ∧E∗
C′U ′, replace each factor

by the number
−#(C ∩ C ′) · 〈dTrU (u)|dTrU ′(u)〉(u),

where #(C ∩C ′) is the intersection pairing, and sum over all possible quadratic splittings, with
signs as required by re-ordering. Set [ψ](u) = 0 if ψ is odd. We shall see in §4 that [ψ](u)
is expressible in terms of the integral of the Chern character Ch(ψ) against a Gaussian form
exp{[h′ + tHV (u)]⊗ η} on the Jacobian of T -bundles on Σ; in particular, it only depends on the
K-theory class of ψ. The following gives the index for odd and even classes; for simplicity we
use a single V .

2.18 Theorem (Index formula for general classes).

Ind (M;L ⊗ exp[tE∗
ΣV ] ⊗E∗

xU ⊗ ψ) =
∑

f∈F reg
ρ /W

TrU (ft)θt(ft)
1−g · [ψ](ft).
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2.19 Abelianisation. We will derive our index formulae from a more conceptual “virtual local-
isation” to the stack MT of T -bundles. Let ν := Rπ∗E

∗(g/t)[1] be the virtual normal bundle
for the morphism j : MT → M. In §4.2, we will see that the K-theoretic Euler class λ−1(ν

∨) is
well-defined after inverting the Weyl denominator and equals

λ−1(ν
∨) = (−1)2ρ(γ)∆2g−2

K
1/2

on the component of MT of topological type γ.

2.20 Theorem. For admissible E, Ind (M;E) = |W |−1“Ind”
(
MT ; j∗E ⊗ λ−1(ν

∨)−1
)
.

The right-hand side needs clarification. Each component of MT is the product of the classifying
stack BT with a Jacobian of T -bundles, and the index over MT should be the sum of the T -
invariant parts of indexes over these Jacobians. Because of the Weyl denominator, λ−1(ν

∨) is
not invertible in K•(MT ); the index of j∗E ⊗ λ−1(ν

∨)−1 over each Jacobian lands in RT [∆−1],
and its T -invariant part is not a priori well-defined. However, we will see in §4.12 that summing
over all Jacobians leads to a well-defined distribution on the regular part of Tk, supported on
F reg
ρ . We declare the index over MT to be the invariant part (= integral over Tk) of this index

distribution, after extension by zero to the singular locus.

A formula which does not require inverting |W | will be given in Proposition 4.1. In a family
of curves, the index is replaced with a K-theory class on the base, and the alternate formula
loses slightly less torsion. We hope to return to this in future work.

3. Affine Weyl symmetry

In this section, we establish the anti-symmetry of the index under an action of the affine Weyl
group (Proposition 3.3). This constrains the general form of the answer (Corollary 3.8).

3.1 Affine Weyl action. Define a group homomorphism from the co-root lattice Π to the units
in CRT [[t]] by

Π ∋ γ 7→ exp

[
ι(γ)h′ + t

∂TrV
∂γ

]
.

(This is the homomorphism mentioned in Remark 2.13.) Multiplication by these units combines
with the Weyl transformations into an action of the affine Weyl group Waff := W⋉Π on CRT [[t]].
This action extends to the space of formal (unrestricted) Fourier series on T with coefficients in
C[[t]].

For a weight µ of B, call Vµ the holomorphically induced virtual representation of G, that
is, the G-equivariant index of the weight line bundle O(µ) over the flag variety G/B. Define the
following index series on T , a formal Fourier series with coefficients in C[[t]]:

I :=
∑

µ
Ind(M;L ⊗ exp[tE∗

ΣV ] ⊗ E∗
xVµ+ρ)e

−µ. (3.2)

We use a single t and only even classes to keep the notation manageable, but this restriction is
not necessary (cf. §3.9 below).

3.3 Proposition. The index series I is anti-invariant under the affine Weyl action.

Proof. Weyl anti-invariance being clear from the holomorphic induction step, it suffices to con-
firm, for each simple factor of g, the sign change under the following affine reflection S: the

9



highest Weyl reflection s0, followed by subtraction of the co-root H of the highest root ϑ. This
is the affine analogue of the famous Bott reflection [B].

The stack M(x,B) of G-bundles over Σ with B-reduction at x is a G/B-fibre bundle over
M (Example A.4.i) and carries natural extensions of the weight line bundles O(µ) on the fibre.
From the Borel-Weil-Bott and Leray theorems, the eµ Fourier coefficient is

I(eµ) = Ind (M(x,B);L(µ + ρ) ⊗ exp[tE∗
ΣV ]) ,

where () is the twist by O(µ) and, abusively, L stands for its own lift to M(x,B).

Let M′ be the stack of G-bundles with parabolic structure at x defined by the simple affine
root α0 (Example A.4.iii). We have M(x,B) ∼= P ×PSL(2) P1, for the principal PSL(2)-bundle
P → M′ determined by α0. Call p the projection to M′. For a vector bundle E over M(x,B)
which tensors into SL(2)-equivariant bundles over the two factors,5 define a new bundle DE by
dualising the P1-factor and then twisting by the relative canonical bundle O(−ϑ). Relative Serre
duality along P1 gives Rip∗DE = R1−ip∗E (as can be seen from SL(2)-equivariant Serre duality
on P1 and self-duality of SL(2)-representations). Integrating over M′ shows that the indexes of
E and DE over M(x,B) differ by a sign, and we will prove our proposition by relating S to D.

We claim that L factors for the fibre product presentation of M(x,B) as

L ∼= L(−1
2 ι(H)h) ⊠ O(1

2 ι(H)h). (3.4)

Then, DL = L(−ι(H)h− ϑ). Further,6 ι(H)c = ρ− s0ρ+ ϑ, and we get

D [L(µ+ ρ)] = L(s0µ− ι(H)h′ + ρ) = L(Sµ+ ρ), (3.5)

confirming the proposition for t = 0.

To verify (3.4), note that some such formula must hold, with h replaced by a fixed multiple of
itself; namely, the one which renders the first factor trivial along the fibres P1. From its definition,
it follows that D preserves any square root K1/2(ρ) of the canonical bundle of M(x,B). Setting
h = −c, µ = 0 gives a fixed-point for (3.5) and shows the Ansatz (3.4) to be correct.

For more general admissible classes, S and D are only related after splitting some filtrations.
Denote by ∂E∗

xV /∂H the sum of weight line bundles on M(x,B) defined by the virtual character
∂TrV /∂H of T . We claim that

D gr {L(µ+ ρ) ⊗ exp[tE∗
ΣV ]} =

= L(Sµ+ ρ) ⊗ gr {exp[−t · ∂E∗
xV /∂H)] ⊗ exp[tE∗

ΣV ]} , (3.6)

for certain finite filtrations (term by term in t) on the two sides. To see this, let ν be the highest
weight of V and let E′ be the sheaf of sections of E∗V whose λ-weight component vanishes at x
to order 1

2(ν − λ)(H) or higher. This condition is stable under the α0-root sl(2), so E′ descends
to Σ × M′. The quotient Q = E∗V/E′ is supported on {x} × M(x,B). It has a finite filtration
whose associated graded sheaf is a sum of weight line bundles O(λ) on M(x,B), for the weights
λ of V and various multiplicities. By construction,

s0(grQ) − grQ = ∂E∗
xV /∂H.

Dualising grE∗
ΣV along the fibres of p then results in grE∗

ΣV − ∂E∗
xV /∂H, proving (3.6).

The sign change of I under the action (3.1) of S follows now by factoring the index map via
M′, since splitting the filtrations does not change the index.

5But such that the diagonal action factors through PSL(2).
6Both sides are parallel to ϑ, so the equality only needs testing against H/2, when the two sides become

c(H,H)/2 and ρ(H) + 1, which are equal to the dual Coxeter number.
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3.7 Example. When G = SL(2), M(x,B) is the moduli stack of pairs (E, L), where E is a rank 2
bundle with trivial determinant and L a line in the fibre at x. M′ is naturally equivalent to the
stack of rank 2 bundles with determinant identified with the line bundle OΣ(−x). The morphism
p takes (E, L) to its sub-sheaf E′ of sections whose value at x lies in L. The lines L assemble
to the weight line bundle O(−1) over M(x,B). The vector bundles associated to irreducible
representations of SL(2) are the symmetric powers of E, and the maximal sub-sheaves in the
proof of (3.3) are the symmetric powers of E′. The quotient SnE/SnE′ is supported at x, its
associated graded sheaf over M(x,B) is

⊕
0≤k≤n O(n − 2k)⊕k and the anti-symmetrisation is⊕

O(k)⊕k (k = n mod 2, |k| ≤ n).

3.8 Corollary. The series I represents a Weyl anti-symmetric linear combination of δ-functions
on Tk. In particular, it is supported at regular points only.

Proof. Weyl anti-symmetry is clear. Assume first that G is simply connected, so that Π = π1T .
At t = 0, invariant functionals under the lattice Π are spanned by δ-functions supported on F .
However, the t-deformed action is obtained from the one at t = 0 by the change of coordinates
(2.9); so the Π-invariant Fourier series are spanned by the δ-functions at the regular ft.

In general, the Waff -symmetry of §3.1 can be enhanced by the action of the co-weights of the
centre Z(G) ⊂ G: geometrically, these central co-weights define elementary transformations on
bundles which translate the components of M, and the multiplicative factor in the Waff -action
corrects for the change in L⊗ exp[tE∗

ΣV ]. The extended lattice is co-compact in tk, so our index
functional is a span of δ-functions, as before.

3.9 Odd classes. The arguments of this section also apply to more general bundles
⊗

k E
∗
Ck
Vk⊗

L ⊗ exp[tE∗
ΣV ] which include odd factors E∗

Ck
Vk from (1.1.ii): each Ck can be moved to avoid

the Hecke point x, and E∗
Ck
Vk remains unchanged in the Serre duality step. Let us rephrase this

observation to match our indirect definition 1.7 of the index.

The index is obtained by first pushing down ⊠kE
∗Vk ⊗ L ⊗ exp[tE∗ΣV ]⊗E∗

xVµ to Σn, and
then taking the index over ×Ck. Now, ×Ck lies within (Σ◦)n, with Σ◦ := Σ \ {x}, so we can
restrict our bundle to M(x,B) × (Σ◦)n. In repeating the arguments, we note that each bundle
E∗Vk is in fact pulled back from M′× (Σ◦)n: this is because the corresponding E′ used the proof
of (3.3) is part of an exhaustive filtration, once we allow arbitrary poles at x. Therefore, each
factor survives Serre duality unchanged, leading to the same symmetry.

4. Abelianisation

We now prove Theorems 2.18 and 2.20. For technical reasons, we must use the stack M(x,B)
of bundles decorated with a Borel structure at x ∈ Σ. Fix an admissible class E and let

IE :=
∑

µ
Ind (M(x,B);E(µ + ρ)) · e−µ.

Taylor expansion in Corollary 3.8 (and §3.9, if E contains odd classes) shows that IE is a distri-

bution supported on a finite set of regular points in Tk. Let M̃T denote the moduli of T -bundles
trivialised at x (a disjoint union of Jacobians), and IndT the T -equivariant index of a vector
bundle lifted from MT . Call νB the virtual normal bundle of the morphism MT → M(x,B).

4.1 Proposition. Over the regular part of Tk, IE = IndT

(
M̃T ;E(ρ)/λ−1(ν

∨
B)

)
as distributions.

For the proof, we will show that the decomposition (1.13) for IE converges as a distribution,
that the terms with Gξ 6= T do not contribute over the regular part of Tk, and finally that the
terms with Gξ = T contribute the IndT of (4.1). We need some preliminary calculations.
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4.2 The Euler complex. For any ξ labelling a Shatz stratum, recall the complex

Eul(νξ)
−1
+ = Sym

(
Rπ∗E

∗(pξ/gξ)[1]
∨ ⊕Rπ∗E

∗(g/pξ)[1]
)
⊗ det(Rπ∗E

∗(g/pξ)[1])[dξ ].

It splits by ξ-eigenvalue into bounded complexes with coherent cohomologies, and for index
purposes we may perform K-theoretic cancellations. One such arises from Serre duality

Rπ∗E
∗pξ/gξ[1]

∨ = Rπ∗(E
∗g/pξ ⊗K), (4.3)

using the Gξ-isomorphism (g/pξ)
∨ = pξ/gξ. Replacing the second complex, in K-theory, by

Rπ∗E
∗g/pξ ⊕ (2g − 2)E∗

xg/pξ simplifies the symmetric factor to

(SymE∗
xg/pξ)

⊗(2g−2) .

Similarly, the determinant can be rewritten as detg−1E∗
xg/pξ⊗DΣ(g/pξ). Using Serre duality as

in (4.3) again, we get DΣ(g/pξ) ∼= DΣ(pξ/gξ). With ∆ξ, ρξ and Kξ denoting the Gξ-counterparts
of ∆, ρ,K, and using the codimension formula dξ = (g − 1) dim(g/pξ) + 2(ρ− ρξ)(ξ), we obtain
the following K-theoretic replacement of the inverse Euler complex:

E(νξ)
−1
+ := (−1)2(ρ−ρξ)(ξ)E∗

x (∆ξ/∆)2g−2
+ ⊗ (Kξ/K)1/2, (4.4)

remarkably, a line bundle twist of a geometric series of weight line bundles. The subscript denotes
that ξ-negative modes are to be chosen for the Fourier expansion of the Weyl denominator.

For simplicity, we have avoided parabolic structures; in the special case of Borel structure at a
single point x, to be used in the proof below, (4.4) carries an additional factor of eρξ−ρ(∆ξ/∆)+,
from the flag varieties of G and Gξ.

Proof of Proposition 4.1. Stratify M(x,B) using a generic polarisation (§A.5) and express the
index distribution IE as a sum of contributions from Shatz strata Mξ as in (1.13). Each IE,ξ is
a formal Fourier series whose coefficients are the indices of Eξ ⊗ E(νξ)

−1
+ over the moduli stack

Mss
Gξ,ξ

of semi-stable Gξ-bundles of topological type ξ, with Borel reduction at x. We claim that

(i) Each IE,ξ is a distribution on Tk.

(ii) Unless Gξ = T , IE,ξ is supported in the g-singular locus of Tk.

(iii) As distributions,
∑

IE,ξ = IE.

When gξ = t, E(νB)−1
+ = λ−1(ν

∨
B)−1 over the regular locus of Tk, proving our proposition subject

to the three claims.

We now prove the claims. Since the polarisation is generic, the stack Mss
Gξ ,ξ

is the quotient

by T of a smooth, quasi-projective variety on which the centre zξ of gξ acts trivially and t/zξ
acts freely. If we ignore the automorphisms coming from the trivial action of Zξ, then Mss

Gξ,ξ

is a smooth, proper Deligne-Mumford stack. The Narasimhan-Mehta-Seshadri construction
[MS] presents the underlying orbifold as a (locally free) quotient of a compact manifold by a
compact group: namely the quotient by (T/Zξ)k-conjugation of the manifold M∗

ξ of flat unitary
Gξ-connections on Σ \ {x} with a prescribed, regular value in Tk of the monodromy at x.

The index of a vector bundle over Mss
Gξ,ξ

is the Zξ-invariant part of the index of its direct
image to the orbifold. GAGA, applied to the coarse moduli space, allows us to use the holo-
morphic Euler characteristic instead. As in the manifold case, that can be identified with the
index of a twisted Dolbeault operator (see e.g. Duistermaat [D]). By Kawasaki [K, Example
II], the latter is the invariant part of the distributional index of a twisted Dolbeault operator on
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M∗
ξ , which is transversally elliptic for the Tk-action.7 By (4.4), expansion into Fourier modes

equates the index series IE,ξ with the distributional Dolbeault index of Eξ ⊗ (Kξ/K)1/2 on M∗
ξ ,

multiplied by (∆ξ/∆)2g−2
+ . Since Zξ acts trivially, the distributional index is in fact a Fourier

polynomial along Zξ, and the ξ-negative choice of the Fourier expansion ensures convergence of
the sum to a distribution. This proves claim (i).

We derive claim (ii) from Atiyah’s localisation theorem [A, Thm. 4.6], which asserts that
the distributional index of a transversally elliptic operator is supported over the union of all
stabiliser subgroups. Now, the freedom of π1G implies that all stabilisers of the Tk-action on
M∗
Gξ,ξ

lie in the g-singular locus. Indeed, a result of Borel’s ensures that the Gk-centraliser of
any g-regular torus element is Tk itself; but if all monodromies were in Tk, then the monodromy
around x would be trivial.

Finally, for (iii), it suffices to fix ξ and Gξ and show convergence of the sum of IE,ξ+γ over the
co-weights γ of Zξ. We’ll also need to divide into co-sets of W/Wξ, for the different expansions
of the inverse Euler class. Compared with IE,ξ, the Atiyah-Bott factors (i) and (ii) in IE,ξ+γ are
unchanged, while each index bundle E∗

ΣV acquires a summand E∗
x(∂TrV /∂γ). This is a sum of

weight spaces of V , with multiplicities linear in γ, and factors out of the index. Finally, a line
bundle L of E gets shifted by the weight ι(γ)h of T (see for instance (4.8) below), while E(νξ)

−1
+

acquires a factor of eι(γ)c from the canonical bundles. This gives a sum of the form

∑

ξ

IE,γ =
∑

γ;j;µ

pj,µ(γ)I
′
E,j,µ · eµ · eι(γ)h

′
∏

α(ξ+γ)<0

(1 − eα)2−2g,

over finitely many values of j, µ, with distributional Dolbeault indices I′
E,j,µ of vector bundles over

the M∗
ξ and polynomials pj,µ in γ. The distributions I′

E,j,µ are in fact Fourier polynomials along
Zξ, so the negativity constraint on the roots α and negative-definiteness of h′ on the co-weight
lattice assures distributional convergence after expanding out into a Fourier series.

4.5 The Jacobian contributions. In preparation for the proof of Theorem 2.18, we now spell
out the Riemann-Roch formula for the T -Jacobians. The components of MT are labelled by the

first Chern classes of T -bundles, valued in the co-weight lattice. Each component M
(γ)
T factors

as Jγ × BT , so that the projection to BT lifts the T -representation Cµ with weight µ to the
line bundle E∗

xCµ, and each Jγ is identified with the T -Jacobian J := J0 by an elementary
transformation at x. Call ω the positive integral generator of H2(Σ) and Ψ the duality tensor
in H1(Σ) ⊗H1(Σ). After the natural identifications

H1(J) ∼= T∨J ∼= H1(Σ; t)∨ ∼= t∨ ⊗H1(Σ),

we have on M
(γ)
T × Σ

c1(E
∗Cµ) = π∗c1(E

∗
xCµ) + µ(γ) · ω + iµ⊗ Ψ. (4.6)

With the cup-product form η ∈ Λ2H1(Σ), we note the relation

(µ⊗ Ψ)2 = −2µ2 ⊗ η ∧ ω ∈ H4(J × Σ),

where µ2 is the square in Sym2t∨. We now convert K-classes over MT = J×BT into cohomology
classes on J×Σ with coefficients in RT : thus, the Chern character Ch(E∗

xCµ) becomes the group

7The reader may refer to [Ve, P] for further discussion of these methods.
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character eµ. Formula (4.6) gives

Ch(E∗Cµ) = eµ (1 + µ(γ) · ω) (1 + iµ⊗ Ψ + µ2 ⊗ η ∧ ω),

Ch (E∗
ΣCµ) = eµ

(
µ(γ) + µ2 ⊗ η

)

Ch (E∗
CCµ) = eµ · C ⊗ iµ ∈ H1(J), (4.7)

Ch(DΣCµ) = e−µ·µ(γ) exp(−µ2 ⊗ η),

Ch (exp [tE∗
ΣCµ)]) = exp

{
teµ

[
µ(γ) + µ2 ⊗ η

]}
,

whence we get on BT × Jγ , for any T -representations U, V , the two formulae

Ch(DΣU) = eι(γ)h · exp(h⊗ η), (4.8)

Ch (exp[tE∗
ΣV ]) (u) = exp {t [∂TrV (u)/∂γ +HV (u) ⊗ η]} , (4.9)

with the metric h = −TrU on t and the Hessian 2-form HV (u) of TrV at u ∈ T .

Finally, to find the Riemann-Roch expression for λ−1(ν
∨), we apply the argument of §4.2

over a γ-component of MT , restricting to the regular points of Tk (where the choice of expansion
of the series is immaterial). We get from (4.8)

Ch(λ−1ν
∨)−1 = (−1)2ρ(γ)∆2−2gec(γ) exp[c⊗ η]. (4.10)

4.11 Remark. Note from (4.8) that h can be recovered from c1(DΣU) when G is a torus, and
then for any G by passing to the maximal torus.

Proof of Theorem 2.18. Summing over γ the products of contributions in (4.8), (4.9) and (4.10)
gives the following answer on T × J :

∑

γ∈π1T

Ch (L ⊗ exp[tE∗
ΣV ]) ∧ Ch(λ−1ν

∨)−1 =

=
∑

γ

(−1)2ρ(γ)

∆(u)2g−2

[
uh

′

exp [tdTrV (u)]
]γ

· exp
{
[h′ + tHV (u)] ⊗ η

}
=

= δρ ◦ χ′
t(u) · exp

{
[h′ + tHV (u)] ⊗ η

}/
∆(u)2g−2. (4.12)

Observe now that ∫

J
exp

{
[h′ + tHV (u)] ⊗ η

}
= |F |g detg

[
1 + tHV (u)†

]
. (4.13)

At t = 0, this follows because |F | is the determinant of h′ : t → t∨ (with volume form normalised
by the respective lattices), and the polarisation η on the GL(1) Jacobian is principal; while from
t = 0 the formula is clear in general. Theorem (2.15) now follows from (2.10) and (2.12).

To prove Theorem 2.18, recall from (4.7) the Chern characters i dTrV (u) ⊗ [C] ∈ H1(J) of
odd classes E∗

CV . Including a monomial ψ in these classes in the integral (4.13) multiplies it
precisely by the [ψ](u) defined by the contraction procedure in §2.17.

4.14 Remark. Summing over the relevant part of MT gives the correct answer for each com-
ponent of MG separately. Similarly, we can produce a formula for the index over the moduli
of vector bundles with fixed but non-trivial determinant from the sum over appropriate Jaco-
bians. However, torsion in π1 brings in additional contributions from principal bundles under
the normaliser of T in G; see the closely related calculation in [AMW] for line bundles.

Proof of Theorem 2.20. In K0(MT ), νB = ν + E∗
x(g/b), cf. §2.19, so λ−1(νB) = λ−1(ν) ⊗

λ−1(E
∗
x(g/b)). Anti-symmetry (3.3) allows us to sign-average over W : Weyl’s character formula

converts eµ/λ−1(E
∗
x(g/b)∨) into E∗

xVµ/|W | while leaving the factor E/λ−1(ν
∨) unchanged.
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5. Witten’s formulae from the large level limit

Assume now that the genus g is 2 or more. If M were a compact manifold of complex dimension
d = (g − 1) dimG, Riemann-Roch would enforce the behaviour

Ind (M;ψnE) = nd
∫

M

Ch(E) +O(nd−1) (5.1)

for any K-class E and its nth Adams power ψnE. (Recall that ψnL = Ln for a line bundle L,
and ψn extends to K-theory additively using the splitting principle.)

In general, even the meaning of the integral on the right is unclear. Suppose, however, that
E is a product of a polynomial in the Atiyah-Bott classes with a sufficiently large admissible
line bundle. Then, for all n, Ind (M;ψnE) has vanishing contribution from the unstable strata
(Lemma 1.6 and §1.12), so the leading n asymptotic term in the index comes from the semi-
stable stratum in (1.13). This contribution is slightly complicated by the singularities of the
moduli space M . More precisely, the index of ψnE over the semi-stable stratum is that of its
direct image from Mss to M . Consider instead the direct image of the pull-back bundle Ẽ to
the orbifold desingularisation M̃ of M , obtained by Kirwan’s method [Ki]. Because M has
rational singularities, the two indices agree, and when ψnE descends to M̃ , the leading term in
the M -index is nd

∫
M̃ Ch(Ẽ). Descent holds when all stabilisers on M̃ act trivially on the fibres,

in particular ψnE descends when all stabiliser orders in M̃ divide n.

It is more convenient to find the leading term in the twisted limit K1/2 ⊗ ψn(K−1/2E). Let
E = L ⊗ exp[tE∗

ΣV ], specialising to even generators for simplicity. Riemann-Roch implies

ψnE∗
ΣV =

1

n
E∗

Σ(ψnV ),

and the properties of ψ give

ψn exp [tE∗
ΣV ] = exp [tE∗

Σ(ψnV )/n] . (5.2)

Since h′ scales by n and dTrψnV (u) = n · dTrV (un), the transformation (2.9) is unchanged, and
the effect of the twisted ψn operation is to pre-compose the map χ′

t : T → T∨ in (2.12) with
the nth power map on T . The key observation now is that the nd contribution to the sum in
Theorem 2.15, as n → ∞, come from those points ft located near the centre of G. Now, the
descent condition on E requires the centre of G to act trivially on the fibres, with the result
that the contributions near the various central elements agree, and summation over the centre
can be concealed in the answer. Rescaling the log ft’s in the Lie algebra by n recovers Witten’s
sum over integral weights in [W, §5], with potential Q = h′(φ, φ) + t · TrV (eφ) (φ ∈ g). For
example, the rescaled Weyl denominator in the θt converges to the dimension formula for the
representations. We only spell out the complete details for G = SL(2), but the method works
in general (Remark 5.8).

Let E be as above, with c1(L) = l ∈ H2(M,Z) and V of even spin 2j. In the notation of
§2.16, a solution ζt of

ζ
(2l+4)n
t · exp [tϕ̇(ζnt )] = 1

can be written

ζt = exp
πikt

(l + 2)n
, (5.3)

where for each k ∈ Z+, kt = k + k1t+ k2t
2 + · · · formally solves the equation

kt + tϕ̇

(
exp

πikt
l + 2

)
= k. (5.4)
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5.5 Proposition. With Ẽ as above, we have

∫

M̃
Ch(K−1/2 ⊗ Ẽ) = 2(l + 2)d ·

∞∑

k=1

[
1 +

t ϕ̈(exp πikt

l+2 )

2l + 4

]g−1

· (
√

2πkt)
2−2g (mod t(l+2)/j).

5.6 Remark. (i) Note that l + 2 = c1(K
−1/2E).

(ii) To finite order in t, our formula involves integrals of polynomials in exp(c1) and Atiyah-
Bott cohomology classes; so our ingredients are equivalent to Witten’s, the exponential
term Tr(eφ) notwithstanding. But our truncation is needed precisely because the presence
of exponentials; for no l does the formula hold to all orders in t.

(iii) Our answer seems at first to differ from [W]: the dimensions k of the irreducible represen-
tations of SU(2) have been deformed to kt. To reconcile the formulae, note that our first
factor in the sum (5.5) is the Jacobian determinant of the map ξ 7→ ξ + t∇TrV (eξ) on t,
whereas its counterpart in [W] is the corresponding Jacobian on g. The ratio of the two is
the volume ratio k2

t /k
2 of the two co-adjoint orbits.

Proof. We have t-truncated the formula to the place where unstable strata begin contributing
to the index. We must then only check that (5.5) gives the limiting nd-coefficient in the index
over M. To do so, we subdivide the summation range 1 ≤ k < n(l + 2) into an interior region
and two ends. We then check that the interior sum is bounded by o(nd), while the ends gives
the wanted nd-contribution.

The periodicity kt 7→ kt + 2l + 4 shows that (5.4) involves only finitely many equations. All
have analytic solutions for small t, so we can find a bound, independent of n and k, for the
variation of kt with t. This will allow us to replace kt by k in some estimates.

We now cut off at k− =
√
n and k+ = (l+2)n−√

n. In-between, |ζ− ζ−1| > π/
√
n(l+2), so

|θ1−g| = O(n2g−2) and the sum over k is bounded by O(n2g−1), less than o(n3g−3) when g > 2.

On the other hand, for k < k−, Taylor expansion of the Weyl denominator gives

ζt − ζ−1
t =

2πikt
n(l + 2)

(
1 +O(n−1)

)
,

with k-independent error bound, so the kth term in the index sum is

(l + 2)2(g−1)n3(g−1) ·
[

2l + 4 + t ϕ̈(exp πikt

l+2 )

(2πkt)2

]g−1 (
1 +O(n−1)

)

and convergence of the series allows us to ignore the error. This and (5.1) give half of (5.5), the
other half coming from the neighbourhood of ζ = −1, by the central symmetry.

5.7 Remark. The central symmetry relies on our choice of V with even spin. Its absence for
odd spin reflects the fact that the central automorphism of SL(2)-bundles obstructs the descent
of E∗

ΣV to M̃ . Similarly, there is an integration formula for the moduli of bundles with fixed
determinant of degree 1, which introduces a sign (−1)k in the sum (cf. Remark 4.14). The level
l must now be even; else, the contributions near ζ = 1 and ζ = −1 cancel instead of agreeing,
even for line bundles. This reflects the fact that odd-level line bundles do not descend to the
moduli space (again, the central automorphism acts by a sign).

5.8 Remark. This argument works for any simple G. Subdivide the simplex Tk/W of conjugacy
classes into thickenings of width 1/

√
n of the faces. (First thicken the vertices, then the remainder

of the edges, etc.) For each face Φ, the factors in the Weyl denominator are bounded as above:
| sinα| > 1/n if the root α vanishes on Φ, otherwise | sinα| > 1/

√
n. With ZΦ denoting the
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centraliser of Φ, there are 1
2(dimZΦ − dimT ) of the former and 1

2(dimG − dimZΦ) of the
latter. As |F | = O(ndimT ), the contribution of each point near Φ to the index formula can be
overestimated by O(n(g−1)p), with

p = dimT + (dimZΦ − dimT ) +
dimG− dimZΦ

2
=

dimZΦ + dimG

2
.

Even after adding dimΦ to account for the number of terms, (g− 1)p is less than the dimension
(g − 1) dimG of M , unless Φ is a central vertex of Tk/W , so that ZΦ = G. Thus, only the ft
near the centre contribute. The error estimate in their contribution proceeds as before.

6. Kähler differentials

In this section, we include the Kähler differentials Ω• over M in our index. Recall that Ωp =
λp (Rπ∗(E

∗g ⊗K)), where Rπ∗(. . . ) is the (perfect) cotangent complex of M. Thus, Ωp does not
quite land in the admissible K-theory ring, but rather in its enlargement by the λ-operations.
While the Abelian reduction formula (2.20) and its proof carry over to this more general setting,
our explicit index formula (2.18) does not immediately provide an answer. In this section, we
show how to extend the formula to these more general K-classes.

As we will transfer the result to the moduli space M , we note the following improvement
of Lemma 1.6: the indexes of Ω• ⊗ L ⊗ E over the stack M and over its semi-stable part Mss

agree for large enough L, depending on the Atiyah-Bott monomial E but not on the degree of the
differentials. The proof requires the finer calculation in [T2, §7]. Note also that, for semi-simple
G, the differentials on the stack of stable bundles are the orbifold differentials over the moduli
space of the same; in the reductive case, infinitesimal automorphisms cause a discrepancy which
we leave in the care of the reader.

Recall the notations of §2, in particular fix a representation V of G. As 1 + teα is a function
on T , (1 + teα)α is a T∨-valued map. Set

χ′
s,t = χ′ · es·dTrV (.) ·

∏

α>0

[
1 + teα

1 + te−α

]α
: T → T∨. (6.1)

Denote by Fs,t the set of solutions of the equation

χ′
s,t(f) = (−1)2ρ ∈ T∨ (6.2)

and by F reg
s,t the subset of those which are regular as G-conjugacy classes at s = t = 0. Call

H(f) the differential of χ′
s,t at f ∈ T ; the notation H stems from its agreement with the Hessian

of the function on t

ξ 7→ h+ c

2
(ξ, ξ) + sTrV (eξ) − Trg

(
Li2(te

ξ)
)
,

with Euler’s dilogarithm Li2. Using the metric (h + c), we convert H to an endomorphism H†

of t and define

θs,t(f)−1 = |F | ·
∏

α

1 + teα

1 − eα
· detH†(f), (6.3)

the product ranging over all roots. Note that detH† = 1 at s = t = 0.

6.4 Theorem. With Ωt :=
⊕

p t
p · Ωp, we have the index formula

Ind (M; Ωt ⊗ L ⊗ exp[sE∗
ΣV ] ⊗E∗

xU) = (1 + t)(g−1)ℓ
∑

f
θs,t(f)1−g · TrU (f),

with f ∈ F reg
s,t ranging over a complete set of Weyl orbit representatives.
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Proof. In topological K-theory, Rπ∗(E
∗g⊗K) = E∗

Σg⊕E∗
xg, so Ωt = λt (E

∗
Σg)⊗λt (E∗

xg)⊗(g−1).
In terms of the Adams operations ψp,

λt =
∑

p t
pλp = exp

[
−∑

p>0(−t)pψp/p
]
.

Using (5.2), we see that Theorem 6.4 refers to the index over M of

L ⊗ exp

[
sE∗

ΣV −
∑

p>0

(−t)p
p2

E∗
Σ ψ

p(g)

]
⊗ E∗

xλt(g)⊗(g−1) ⊗ E∗
xU,

which now has the form covered in Theorem 2.15. The associated equation

exp

[
(h+ c) + s · dTrV −

∑
p>0;α

(−t)p
p

epα · α
]

= (−1)2ρ

is precisely (6.2). To reduce formula (6.4) to Theorem 2.15, observe that the pre-factor (1 + t)ℓ

and the factors 1 + teα in (6.3) come from the character of λt(g), which factors as (1 + t)ℓ ·∏
α(1 + teα).

6.5 Remark. Odd generators are included as in Theorem 2.18, using the contraction procedure
with the inverse of the bilinear forms H(f).

6.6 Full-flag parabolic structures. A formula for the stack M(x,B) follows by considering the
projection M(x,B) → M, with fibres G/B: replace TrU in (6.4) by

TrU ·
∏

α>0

(1 + teα)

(1 − eα)
,

and sum over all points of F reg instead of Weyl orbits. The numerator accounts for the differen-
tials on the fibres G/B, while the denominator and summation over W together constitute the
Weyl character formula.

7. The Newstead-Ramanan conjecture

In important special cases, all semi-stable bundles over Σ are stable and then M is a compact
orbifold. This happens when G = GL(n), for the components of degree prime to n, or else if we
enrich the bundle with a sufficiently generic parabolic structure.8 Henceforth, we place ourselves
in one of these favourable situations. Let ℓss and ℓc be the semi-simple and central ranks of G.
The following result generalises an old conjecture of Newstead and Ramanan [N, R].

7.1 Theorem. The top (g − 1)ℓss + gℓc rational Chern classes of M vanish.

In other words, they vanish above degree dim(G/T )(g − 1). For rational cohomology, we can
pass to finite covers with impunity [AB, §7] and split G as a product of a torus and simple
groups; so the only content of the theorem concerns ℓss. We will prove an equivalent result in
topological K-theory. Let G be semi-simple of rank ℓ.

7.2 Theorem. The top (g − 1)ℓ rational Grothendieck γ-classes of M vanish.

8Note that the moduli of stable vector bundles of degree d is also that of stable vector bundles of degree 0 but
with parabolic structure defined by the vertex diag[2πid/n] of the Weyl alcove of gl(n); cf. Example A.4.
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The γ-classes are recalled below, along with the equivalence of the two theorems above. In some
cases, such as G = GL(n), SL(n) or Sp(n), M is known to be free of homology torsion [AB],
and we get an integral result. It seems to be unknown whether K(M) is torsion-free for other
(e.g. simply connected) groups.

To prove Theorem 7.2, we pair the total γ-class
∑
tkγk of TM against any test class E in

K0(M) and show that we obtain a polynomial in t of degree no more than dimM − (g − 1)ℓ.
Since the index over the orbifoldM varies quasi-polynomially in the Chern classes of E, it suffices
to check this behaviour when E contains a large line bundle factor, which we will do using using
the index formula (6.4).

This strategy is not new, cf. Zagier [Z] for SL(2), but the integration formulae over M
turned out to be unwieldy. Our index formula seems to be a better fit; the reason is the abelian
localisation (2.20). Indeed, over MT , the tangent complex to M has a trivial summand of rank
predicted by the vanishing. The proof then consists in checking that nothing in the index formula
spoils the vanishing that is already apparent. Still, the method has limits: thus, we were unable
to decide whether the γ-classes vanish in algebraic K-theory.

7.3 The γ-classes. For a complex vector bundle V of rank r over a compact space X, define
the classes γp(V ) ∈ K0(X) as the coefficients of the following polynomial of degree r:

γt(V ) =
∑

p
tpγp(V ) := (1 − t)rλt/(1−t)(V ),

with the total λ-class λs(V ) =
∑
spλp(V ), as before. Note that

γt(V ⊕W ) = γt(V ) · γt(W )

for vector bundles V and W , while

γt(L) = (1 − t) + tL

for a line bundle L; these conditions determine γt from the splitting principle. Also,

γ1(L) = L− 1,

the K-theory Euler class of the line bundle, and in this sense γt is the total K-theory Chern
class. The next exercise is included for the reader’s convenience.

7.4 Proposition. The following assertions are equivalent.

(i) The top d rational Chern classes of V vanish.

(ii) The top d rational γ-classes of V vanish.

(iii) The polynomial λt(V ) ∈ K0(X; Q)[t] is divisible by (1 + t)d.

When K0(X; Q) satisfies Poincaré duality with respect to a map Ind : K0(X) → Q, these
conditions are equivalent to

(iv) For every W ∈ K0(X), Ind(λt(V ) ·W ) ∈ Q[t] vanishes to order d or more at t = −1.

Proof. Equivalence of (ii) and (iii) is clear from the inversion formula λt = (1 + t)rγt/(1+t).
Observe next that in the ring R of symmetric power series in variables x1, . . . , xr the ideal
(er−d+1, . . . , er) generated by the top d elementary symmetric functions is the intersection of R
with the ideal (xr−d+1, . . . , xr) ∈ Q[[x1, . . . , xr]]. The transformation

xi 7→ yi := exi − 1
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defines an automorphism of Q[[x1, . . . , xr]] which preserves (xr−d+1, . . . , xr). It follows that
(er−d+1, . . . , er) agrees with the ideal of the top d elementary symmetric functions in the yk. Let
xk be the Chern roots of V ; then,

Ch γt(E) =
∏

(1 + tyi),

so the γ-classes are the elementary symmetric functions in y, and we conclude that (i) ⇔ (ii).

7.5 Reduction to Borel structures. We now show that if Theorem 7.2 holds for moduli of bundles
with Borel structures, then it holds for all parabolic structures. Let M(x,P) denote the stack of
bundles with a P-parabolic structure at x and call π : M(x,B) → M(x,P) the projection (A.3).
Over M(x,B), we have a distinguished triangle of tangent complexes

TπM(x,B) → TM(x,B) → π∗TM(x,P) → TπM(x,B)[1],

leading to an equality in K-theory,

λt
(
T∨M(x,B)

)
= λt

(
T∨
π M(x,B)

)
⊗ π∗λt(T

∨M(x,P)).

The fibres P/B of π are flag varieties; they are smooth and proper, with cohomology of type
(p, p). Hodge decomposition gives

Rπ∗
[
λt

(
T∨M(x,B)

)
⊗ π∗E

]
= λt(T

∨M(x,P)) ⊗ E ·
∑

(−t)pb2p(P/B)

where the b2p are the Betti numbers. For t = −1, the last factor is positive and so it does not
affect the vanishing order of the index.

7.6 Limit of the index as t → −1. In Theorem 6.4, the desired factor (1 + t)(g−1)ℓ appears
explicitly in the index formula, so to prove Theorem 7.2 we must check that no singularities in
θs,t(f)1−g or in H(ft) (cf. Remark 6.5) reduce the order of vanishing at t = −1. To do so, we
study the roots of (6.2). When h > 0 and t = s = 0, χ′ is an isogeny and all roots are simple.
The following lemma will ensure that they remain simple for all t ∈ (−1, 0] and small s.

7.7 Lemma. If h > c, s is small and t ∈ (−1, 0], the differential H = dχ′
s,t is non-degenerate

on Tk.

Proof. With HV (f) denoting the Hessian of TrV at f , we have

H = (h+ c) + sHV (f) + t
∑

α

eα

1 + teα
(f) · α⊗2. (7.8)

Note that α⊗2 is negative semi-definite, t ≤ 0 and ℜ eα

1+teα ≥ −1 for |eα| = 1. As
∑

α α
⊗2 = −2c,

H is bounded below by (h− c) + sHV .

Skew-adjointness of χ′ for s = 0 then keeps the solutions in the compact torus Tk for small
variations in the real time t, and thus for all times t ∈ [−1, 0]. Non-degeneracy of H also shows
that the s-dependence in (6.2) can be solved order-by order, when t ∈ (−1, 0], and keeps Fs,t
in a formal neighbourhood of Tk. We will now show that H remains regular at t = −1, so the
solution can be perturbed analytically in s even there. As certain regular solutions do wander
into the singular locus of T as t→ −1, we need to control this behaviour. Let ft = f0,t.

7.9 Lemma. Let ft ∈ F be regular at t = 0 but singular at t = −1. For small x =
√
t+ 1, ft

has a convergent expansion
ft = f−1 · exp

[∑
k>0 x

kξk
]
.

Moreover, β(ξ1) 6= 0 for any root β such that eβ(f−1) = 1.
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Thus, the tangent line to ft at f−1 is regular in the Lie algebra centraliser z of f−1. We obtain

lim
t→−1

1 + teα

1 − eα
(ft) = 1 for all roots α of g,

lim
t→−1

(
eβ

1 + teβ
(ft) +

e−β

1 + te−β
(ft)

)
= −1 − 2

β(ξ1)2
for roots β of z.

(7.10)

The limiting value H(f−1) in (7.8) is then the positive definite form h + sHV +
∑

β
β⊗2

β(ξ1)2 ,

summing over roots of z. This excludes unexpected singularities in the index formula.

Proof of (7.9). At t = −1, equation 6.2 simplifies to

exp[h+ s · dTrV (.)] = 1; (7.11)

however, the cancellation involved conceals multiple solutions on the singular locus in T . The
latter partitions Tk into alcoves that are simply permuted by the Weyl group. We claim that
each singular solution of (7.11) is a limit of at least one solution behaving as in Lemma 7.9.
If so, then by Weyl symmetry there must be such a solution from each adjacent alcove. Now,
every regular solution of (7.11) is also the limit of a regular solution of (6.2): this is because it
is the limit of some solution, and Weyl symmetry plus Lemma 7.7 ensures that the points of F
that are singular at t = 0 stay so until t = −1. Finally, recall that the solutions of (7.11) in a
closed Weyl alcove are in bijection with the regular solutions of (6.2) in that alcove. Our claim
then accounts for the t = −1 limits of all regular points of F and proves Lemma 7.9.

To prove the claim, it suffices to find a formal solution ft as in the Lemma. As t converges
faster than ft becomes singular, the function χ′

s,t converges to (7.11), so equation (6.2) is verified
to zeroth order precisely when f−1 solves (7.11). To obtain the constraint on ξ1, we differentiate
in x:

d

dx
χ′
s,t(ft) = ι(ξ′) [(h+ c) + sHV (ft)] +

∑

α

[2x+ tα(ξ′)]eα

1 + teα
(ft) · α,

with ξ =
∑

k ξkx
k. The limit at x = 0 is found from (7.10) and leads to

ι(ξ1) [h+ sHV (f−1)] =
∑

β

β

β(ξ1)
, (7.12)

summed over the roots β of z. Its solutions are the critical points of the function

t ∋ ζ 7→ 1

2
[h(ζ, ζ) + sHV (ζ, ζ)] −

∑
β log |β(ζ)|.

This function is real-valued for s = 0, blows up on each walls of the Weyl chamber of z and
is dominated by the quadratic term at large ζ, so a minimum must exist inside the chamber.
Further, the Hessian

h+
∑

β

β⊗2

β(ζ)2

is positive-definite, so the minimum is non-degenerate and the s-perturbed equation can also be
solved for small s. Continuing to higher order in x, we get a recursive family of equations for
k > 1

ι(ξk)

(
h+ sHV +

∑
β

β⊗2

β(ξ1)2

)
= (expression in ξj, j < k), (7.13)

solvable because of the same non-degeneracy. This proves our claim and thus the lemma.
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A. Background on M

For the more analytically minded, the stack M admits the Atiyah-Bott presentation as a quo-
tient of the space of (0, 1)-connections by the group of complex gauge transformations; but
its underlying algebraic structure is essential for us. The algebraic geometry of the stack was
discussed in [BL, LS] and further properties were developed in [T1, T2]. In particular, M is
covered by quotients of smooth varieties by reductive groups; many general properties of sheaf
cohomology follow, without the need of simplicial topos theory as in [T1]. In this appendix, we
quickly review the variants of M with parabolic structures and discuss the topological K-theory
of M.

A.1 Parabolic structures. Call B the Iwahori subgroup of the loop group G((z)), consisting of
those formal Taylor loops whose value at z = 0 lies in a fixed Borel subgroup B. For any subset
Φ of simple affine roots, let PΦ denote the standard parabolic subgroup of G((z)) generated by
B and by the root SL2 subgroups from Φ. If Ψ ⊂ Φ, then the quotient PΦ/PΨ is isomorphic
(possibly non-canonically) to a homogeneous space for a subgroup of G.

A.2 Example. (i) P∅ = B. More generally, if Φ consists of (linear) roots of g, then PΦ is the
subgroup of formal Taylor loops whose value at z = 0 lies in the parabolic subgroup PΦ∩G
of G.

(ii) If Φ = {α0} the non-linear simple root, PΦ has Lie algebra Lie(B) ⊕ z−1gϑ. We have
PΦ/B ∼= P1. This parabolic subgroup appears in the proof of Proposition 3.3.

For distinct x1, . . . , xn ∈ Σ and P1, . . . ,Pn standard parabolics, let M(x;P) denote the
moduli stack of G-bundles with quasi-parabolic structures at x1, . . . , xn. These are G-bundles
over Σ with singularites at the xi, but with a reduction of the gauge group to Pi near xi. When
G is semi-simple, the uniformisation theorem [LS, Theorem 9.5] shows that this is the quotient
of the product of generalised flag varieties G((z))/Pi by the gauge group G[Σ \ {x1, . . . , xn}]
of the punctured curve (cf. also [T2, §9]). Let P′

1, . . . ,P
′
n be standard parabolics contained in

P1, . . . ,Pn respectively. The projections G((z))/Pi → G((z))/P′
i induce a fibration

M(x;P′) → M(x;P) (A.3)

with fibres P1/P
′
1 × · · · × Pn/P

′
n.

A.4 Example. (i) When each of the parabolics is defined by a subset of the linear roots of
g, M(x;P) is the stack of G bundles on Σ with reductions to the parabolic subgroups
P1, . . . , Pn over x1, . . . , xn. In this case, the G-bundles have no singularities and M(x;P)
admits a forgetful morphism to the moduli stack M with fibre G/P1 × · · · ×G/Pn.

(ii) For G = GL(n,C), every parabolic subgroup of G((z)) is conjugate to one defined by linear
roots of g, so all parabolic bundles can be described as vector bundles with a choice of flags
at the marked points.

(iii) If Φ = {α0}, then M(x,PΦ) fibres over M(x,B) with fibre P1.

A.5 Shatz stratification. Each stack M(x;P) is equivalent to a stack MΓ of equivariant bun-
dles on a suitable Galois cover Σ̃ → Σ [TW, §2.2]. The Shatz stratification of MΓ induces a
stratification on M(x;P). This depends on the choice of the cover, but the dependence can be
reduced to a choice of of polarisation on M(x;P). For a Borel structure at a single point x,
this is equivalent to a choice of finite-order, regular conjugacy class Gk; to label the strata, we
choose a lifting u ∈ Tk.

The co-weights ξ labelling the Shatz strata of M in §1.8 have a geometric meaning: every
stable bundle in Mss

Gξ ,ξ
has a unique Hermitian connection with constant, Gξ-central curvature
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2πiξ. The construction above shows that every stable bundle in MGξ,ξ(x,B)ss has a Hermitian
connection over Σ \ {x} with constant central curvature 2πiξ and holonomy u at x. The cen-
tral part of u stems from the curvature, while the projection to AdGξ comes from the global
monodromy.

The index of an admissible class E over M(x,P) breaks up as before into a sum over strata.
There is also an extra factor in the Euler complex, relating the flag varieties of G and Gξ. The
key finiteness result (1.6) applies to this more general setting, but the vanishing of unstable local
cohomologies requires the line bundle L to match the choice of stratification; see [T2, §9].

A.6 K-theory of M. The homotopy type of the stack M (which, by definition, is that of the
geometric realisation of an underlying simplicial scheme) is that of the space of continuous maps
from Σ to BG. (This is GAGA plus the Atiyah-Bott construction of holomorphic bundles.) But
it is more natural to assign to M the equivariant homotopy type given by the conjugation action
of Gk ⊂ G on the space C∗(Σ, BG) of continuous maps based at x ∈ Σ to BG. This space is
a principal fibration over a product of copies of G, with fibre the group ΩG of based loops in
G [AB]. Then, K•(M) is defined to be the Gk-equivariant K-theory of C∗(Σ, BG). It is an
inverse limit of finite modules over the representation ring RG, taken over the finite parts of a
Gk-cellular model of C∗(Σ, BG). Similarly, K• (M(x,B)) = K•

Tk
(C∗(Σ, BG)); it is a module

over K•(M) via the natural projection, and K•(M) is a split summand.

Another description of K•(M) arises by exhausting M with open sub-stacks of finite type.
Such sub-stacks are presentable as quotients of quasi-projective manifolds by linear algebraic
groups, and their topological K-theory can be defined from continuous vector bundles that are
equivariant under the maximal compact part of the acting group. (This can be shown to be
independent of the quotient presentation.) If we use the finite, open unions M≤ξ of Shatz strata
to exhaust M, the argument of Atiyah and Bott (see [HL] for the K-theory version) shows the
surjectivity of the restriction maps between the K•(M≤ξ) and leads to the description

K•(M) = limξK
•(M≤ξ), grK•(M) =

⊕
ξ
K•(Mξ). (A.7)

The two constructions of K(M) just described can be related by presenting M as a quotient
M∗/G of the stack of G-bundles with a framing over x modulo the action of G on the fibre:
M∗ can be presented as a quotient of a pro-variety with the homotopy type of C∗(Σ, BG) by a
pro-unipotent group.

Comparison with the stack MT of T -bundles gives more information. Consider for simplicity
M(x,B). When π1G is free, the stabilisers of the Tk-action on the complement of C∗(Σ, BT ) in
C∗(Σ, BG) are contained in the singular locus. Consequently, after inverting the Weyl denomi-
nator ∆ in the coefficients of K-theory, the restriction j∗ : K (M(x,B)) → K(MT ) becomes an
isomorphism, compatible with the inverse limit (A.7). Poincare duality on MT and our index
formula show that

(j∗)−1 = (−1)2ρ · K1/2∆2g−2 · j∗,
with j∗ defined using the finite-dimensional stack structure. However, our index formula carries
the additional information that inverting ∆ does not damage the index.

A.8 Remark. Rationally, C∗(Σ, BG) is a product ΩG × G2g. The rational cohomology factors
[AB] as

H•(M) ∼= H•
Gk

(ΩG) ⊗R H
•
Gk

(G)⊗R2g, (A.9)

with R = H•(BG; Q). A similar factorisation follows for rational K-theory, with R = Q ⊗RG,
by using Chern characters and fixed-point formulae. It is tempting to suggest that the analogue
of (A.9) holds for integral K-theory when π1G is free, but we only know how to prove this for
the groups GL,SL and Sp.
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