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Abstract. We compute the Fukaya category of the symplectic blowup of a
compact rational symplectic manifold at a point in the following sense: Suppose
a collection of Lagrangian branes satisfy Abouzaid’s criterion [Abo10] for split-
generation of a bulk-deformed Fukaya category of cleanly-intersecting Lagrangian
branes. We show (Theorem 1.1) that for a small blowup parameter, their inverse
images in the blowup together with a collection of branes near the exceptional
locus split-generate the Fukaya category of the blowup. This categorifies a result
on quantum cohomology by Bayer [Bay04] and is an example of a more general
conjectural description of the behavior of the Fukaya category under transitions
occurring in the minimal model program, namely that minimal model program
transitions generate additional summands.
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1. Introduction

In this paper we study the Fukaya category of a symplectic manifold obtained
by a small symplectic blowup at a point. In particular, we show that given a
collection of branes in a given symplectic manifold satisfying Abouzaid’s criterion
for split-generation [Abo10], the Fukaya category of the blowup is split-generated
by the image of an embedding of the Fukaya category of the original manifold
(with bulk deformation) together with a collection of branes near the exceptional
locus. This result is a symplectic analog of Orlov’s blowup formula [Orl93] that
gives a semi-orthogonal decomposition of the derived category of a blowup. We also
show (conditional on a generalization of a result of Ganatra [Gan12] to the compact
case described in Remark 1.3) that in this non-degenerate situation the quantum
cohomology is isomorphic to the Hochschild cohomology of the Fukaya category, c.f.
Kontsevich [Kon94, p.18].

We first give a non-technical description of our main result. Let (X,ω) be a
compact symplectic manifold and QH•(X, b) its quantum cohomology ring at a
bulk deformation b. One expects a bulk deformed Fukaya category Fuk(X, b) whose
objects are (weakly unobstructed) Lagrangian submanifolds and whose morphisms
count pseudoholomorphic disks/polygons. We construct a curved A∞ category
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Fuk∼L(X, b) of branes supported on some cleanly-intersecting collection L, and an

associated flat A∞ category Fuk♭L(X, b) whose objects are branes in L equipped with
weakly bounding cochains. There are natural open-closed and closed-open maps

HH•(Fuk
♭
L(X, b))

OC // QH•(X, b)
CO // HH•(Fuk♭L(X, b))

between the Hochschild (co)homology of the Fukaya category and the bulk deformed
quantum cohomology. Given such, we say that a collection of Lagrangian branes G
generates the bulk deformed quantum cohomology if

(1.1) OC(HH•(Fuk
♭
G(X, b))) = QH•(X, b),

where Fuk♭G(X, b) is the full sub A∞ category with objectsG. Recall that by Abouzaid
[Abo10] and Ganatra [Gan12], in the exact setting with trivial bulk deformation, this
generation condition (with quantum cohomology replaced by symplectic cohomology)
implies that the collection G split-generates the (wrapped) Fukaya category and the
open-closed and closed-open maps are isomorphisms.

Our main result regards the change of the Fukaya category under a point blowup
in view of the above generation criterion. The study of the behavior of the Fukaya
category under blowups was initiated by Charest-Woodward [CW] for more general

Minimal Model Program transitions. The blowup π : X̃ → X of X at a point p is
parametrized by ϵ > 0, which is the area of a complex line in the exceptional divisor
Z̃ ⊂ X̃. Since the rank of cohomology increases by n − 1 where n is the complex
dimension of X, one expects new branes created by the blowup in order to generate
the extra cohomology classes under the open-closed map. Indeed, a collection E of
n− 1 branes supported near the exceptional divisor, whose Floer cohomology are
nontrivial, were identified in [CW]. In this paper, we prove that these new branes
are indeed new split-generators (as in Definition 4.2) of the Fukaya category of the
blowup.

Theorem 1.1. (proved in Section 6.5) Let p ∈ X be a point and ϵ > 0 be sufficiently
small. Let b be a bulk deformation. Suppose G is a finite collection of Lagrangian
branes in X disjoint from p, that generates the bulk deformed quantum cohomology
QH•(X, b+ q−ϵp). Then the collection π−1(G) ∪ E generates QH•(X̃, π−1(b)) and

split-generates the Fukaya category Fuk♭L̃(X̃, π
−1(b)) of X̃ with bulk deformation

π−1(b) for any cleanly-self-intersecting collection L̃ containing the split-generators.
Moreover, (conditional on the extension of Ganatra [Gan12] to the compact case)
there are isomorphisms
(1.2)

HH•(Fuk
♭
L̃(X̃, π

−1(b)))
OC // QH•(X̃, π−1(b))

CO // HH•(Fuk♭L̃(X̃, π
−1(b))) .

Remark 1.2. The theorem is a special case of Kontsevich’s expectation that Hochschild
cohomology of the Fukaya category is isomorphic to the quantum cohomology [Kon94,
p.18]. K. Ono communicated to us that he also proved results in this direction, and
some special cases are proved in Sanda [San]. Pedroza [Ped] studied the effect of
blowups on the Floer cohomology of Lagrangians disjoint from the blowup point,
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in the monotone case. Fukaya categories of certain blowups of toric varieties are
studied from the viewpoint of the Strominger-Yau-Zaslow conjecture in Abouzaid-
Auroux-Katzarkov [AAK16]. Our theorem also slightly generalizes a result for small
quantum cohomology of Bayer [Bay04], who proved that semi-simplicity of quantum
cohomology is preserved under point blowups. Other works on the Fukaya categories
of blowups can be found in P. Seidel [Sei14] and I. Smith [Smi12].

Remark 1.3. Ganatra has shown in the exact setting [Gan12] b-deformed Hochschild
homology and cohomology of FukL(X, b) are isomorphic as vector spaces (after a
degree shift):

HH•(Fuk
♭
L(X, b))

∼= HHdim(X)−•(Fuk♭L(X, b))

and (in the compact setting here) are both isomorphic to the quantum cohomology

QHdim(X)−•(X, b). Ganatra’s results [Gan12] are written for the exact, undeformed,
and flat case where the main construction is that of a category of Lagrangians in
X−×X including both Lagrangians of split form L×K as well as the diagonal. Note
that if (L, bL), (K, bK) are Lagrangians equipped with weakly bounding cochains
then a result of Amorim [Amo17] implies that L×K may be equipped with a weak
Maurer-Cartan solution and so defines an object (L ×K, bL×K) of X

− ×X. One
expects the potential W (bL×K) to vanish so that CF (∆, L×K) is a projectively flat
A∞ algebra. Furthermore, this construction should interact as expected with the
open-closed maps in [Gan12]. The results on isomorphisms stated in (1.2) for the
compact case are conditional on this extension.

Remark 1.4. Theorem 1.1 can only be possible under suitable technical assumptions.
First, to keep the technicality at a minimum, we assume that the cohomology class of
the symplectic form ω is rational (and ϵ is rational). We also only consider Lagrangian
branes satisfying certain rationality condition (see Definition 2.7 and Hypothesis 2.8).
These assumptions allow us to apply the perturbation scheme of Cieliebak-Mohnke
[CM07] to define the Fukaya category and the open-closed/closed-open maps. In
addition, the Fukaya category is only defined for an arbitrary finite collection of
rational Lagrangian branes with clean pairwise intersections, but not all such branes.

Theorem 1.1 is a categorical version of a result of A. Bayer [Bay04], who proves
that blowup creates algebra summands in the quantum cohomology. In particular,
if QH•(X, b) is semisimple for generic b (with positive q-valuation), then the same
holds for slightly negative q-valuation (as allowed in Theorem 1.1) and hence so is

the quantum cohomology QH•(X̃, π−1(b)) of the blowup.

Corollary 1.5. (proved in Section 6.5) There is an orthogonal decomposition of the
idempotent-completed derived category

(1.3) Dπ Fuk♭L̃(X̃, π
−1(b)) ∼= Dπ Fuk♭L(X, b+ q−ϵp)⊕Dπ Fuk♭E(X̃, π

−1(b))

into the bulk-deformed Fukaya category Dπ Fuk♭(X, b+ q−ϵp) of X and a category of

“exceptional branes” Dπ Fuk♭E(X̃, π
−1(b)). The (n−1) objects in E have endomorphism

algebras isomorphic to non-degenerate Clifford algebras. Moreover, the quantum
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cohomology of X̃ admits a ring isomorphism

QH•(X̃, π−1(b)) ∼= QH•(X, b+ q−ϵp)⊕QH•(pt)⊕n−1.

See also González-Woodward [GW19] and Iritani [Iri20, Theorem 1.3].

Remark 1.6. (a) We expect a similar result to hold for flips, and in particular,

blowups X̃ along non-trivial center Z ⊂ X. In this case, if LZ ⊂ Z is a
Lagrangian in Z then we expect that LZ admits a “thickening” L̃Z ⊂ X̃ that
admits a collection of codim(Z) − 1 local systems and bounding cochains

defining objects in the Fukaya category of X̃, so that the Fukaya category
of X̃ is generated by the proper transforms of Lagrangians in X and the
thickening of objects in Z. At least in the case that the normal bundle of Z
admits a reduction in structure group to a torus, there is a strategy of proof.
See for example Schultz [Sch21] for results in this direction.

(b) Although the decomposition of categories for a fixed bulk deformation is
orthogonal, the decomposition of quantum cohomologies in Corollary 1.5 is
also expected to semi-orthogonal with respect to some categorical analog of
the quantum connection, c.f. Lee-Lin-Wang [LLW21].

1.1. Outline of proof. In this section, we outline the main technical works in
this paper and the strategy of proving Theorem 1.1 and Corollary 1.5. In Section
2—Section 4 we work under the general setting, giving an independent construction
of the bulk deformed Fukaya category, the open-closed/closed-open map, and a proof
of Abouzaid’s generation criterion, as well as other results. In Section 5—Section 6
we restrict to the case of the blowup; by modifying the previous constructions, we
establish the correspondence between Fukaya categories before and after the blowup.

Before we start the outline, we recall the notion of Novikov field. Let q be a formal
variable and let

Λ =

{ ∞∑
i=1

ciq
di , ci ∈ C, di ∈ R, lim

i→∞
di = +∞

}
be the universal Novikov field. The valuation by powers of q is denoted

valq : Λ− {0} → R,
∞∑
i=1

ciq
di 7→ min

ci ̸=0
(di).

Denote the subsets with non-negative resp. positive valuation

(1.4) Λ≥0 = {f ∈ Λ | valq(f) ≥ 0}, resp. Λ>0 = {f ∈ Λ | valq(f) > 0}.
In the Novikov ring Λ≥0, the group of units is the subgroup Λ× with zero q-valuation.

1.1.1. Definition of the Fukaya category. The first technical construction in this
paper is the definition of the Fukaya category using moduli spaces of treed (pearly)
disks regularized via the Cieliebak-Mohnke method [CM07]. (A similar construction
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was also carried out by Perutz-Sheridan [PS22].) We allow as objects of the Fukaya
category rational compact embedded Lagrangian branes. Let X be a compact
symplectic manifold with symplectic form ω with rational symplectic class [ω] ∈
H2(X,Q). A Lagrangian brane is a compact embedded Lagrangian L ⊂ X equipped

with a local system, by which we mean a flat Λ×-bundle L̂→ L, a spin structure, and
a grading. Given a finite rational collection (see Definition 2.7) of cleanly-intersecting
submanifolds L and a Λ≥0-valued cycle b 1 denote by Fuk∼L(X, b) the Fukaya A∞
category of X supported on L with bulk deformation b. The set of objects is

Ob(Fuk∼L(X, b)) =
{
L̂| L ∈ L, L̂→ L flat bundle

}
and morphisms are Floer cochains

Hom(L̂, L̂′) = CF •(L̂, L̂′), L̂, L̂′ ∈ Ob(Fuk∼L(X, b)).

In the Morse model used here, Floer cochains are formal combinations of fibers of
local systems over critical points of a Morse function

FL,L′ : L′ ∩ L′ → R.

The composition maps

md : Hom(L̂d−1, L̂d)⊗ . . .⊗Hom(L̂0, L̂1) → Hom(L0, Ld)[2− d], d ≥ 0

count treed holomorphic disks u : C → X with interior markings mapping to the
bulk deformation b. These are maps from combinations C = S ∪ T of disks Sv ⊂ S
and segments Te ⊂ T that satisfy Gromov’s pseudoholomorphicity conditions on
the disks Sv and the gradient flow equation on the segments Te (see Figure 1) for
each vertex v ∈ Vert(Γ) and edge e ∈ Edge(Γ) of the combinatorial type Γ of C.

Figure 1. A treed
disk with two inputs
and one output.

The Cieliebak-Mohnke perturbation scheme
[CM07] depends on choosing a Donaldson hy-
persurface: a codimension two submanifold
D ⊂ X whose homology class is Poincaré dual
to a high multiple of [ω] such that the union
of Lagrangian submanifolds L ∈ L is exact in
the complement of D. For a suitably chosen
almost complex structure, any holomorphic
sphere in X intersects D at least three times
[CM07, 8.17] and any non-constant holomor-
phic disk intersects D at least once. For any
holomorphic treed polygon u : C → X with
boundary pieces labelled by L0, . . . , Ld, the in-
tersections with the divisor D then stabilize
the domain C. These intersections “stabilize” all domains of treed holomorphic maps
and allow us to use domain-dependent perturbations of the almost complex structure
to overcome the difficulty of regularizing multiply-covered maps. In this paper, we

1The same set-up works for pseudocycles, but it notational much more involved. As explained in
Zinger [Zin08] any integral homology class may be represented by a pseudocycle.
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extend the construction of [CW17][CW][XW18] to regularize moduli space of treed
holomorphic polygons

Md,1(L0, . . . , Ld)

(see Section 2). Counts of rigid treed holomorphic disks with boundary in the given
Lagrangians define the composition maps md and the Fukaya category Fuk∼L(X, b)
as a (curved) strictly unital A∞ category.

1.1.2. Spectral decomposition. Starting from a curved strictly unital A∞ category,
we define flat A∞ categories by restricting to particular values of the curvature. For

any element b ∈ Hom(L̂, L̂) with positive q-valuation define

µ(b) :=
∑
d≥0

md(b, . . . , b︸ ︷︷ ︸
d

).

Following Fukaya-Oh-Ohta-Ono [FOOO09] denote by MC(L̂) the space of weakly
bounding cochains, i.e., solutions to the weak Maurer-Cartan equation

MC(L̂) := {b ∈ Homodd(L̂, L̂) | µ(b) ∈ Λ1
L̂
}

and

MC(L) := {L = (L̂, b) | L̂ ∈ Ob(Fuk∼L(X, b)), b ∈MC(L̂)}.
For each w ∈ Λ, one denotes by FukL(X, b)w the flat A∞ category whose objects are

(1.5) Ob(FukL(X, b)w) =
{
L = (L̂, b) ∈MC(L) | µ(b) = w1

L̂

}
and whose sets of morphisms are the Floer cochain groups

Hom(L,L′) := Hom(L̂, L̂′) = CF •(L,L′).

Define the composition maps as follows: For d ≥ 1 define

(1.6) md : Hom(Ld−1,Ld)⊗ . . .⊗Hom(L0,L1) → Hom(L0,Ld)[2− d],

xd ⊗ · · · ⊗ x1 7→
∑

k0,...,kd

md+k0+...+kd(bd, . . . , bd︸ ︷︷ ︸
kd

, xd, . . . b1, . . . , b1︸ ︷︷ ︸
k1

, x1, b0, . . . , b0︸ ︷︷ ︸
k0

);

when d = 0 define for each L ∈ Ob(Fuk♭L(X, b)w) that m0(1) = 0 ∈ Hom(L,L). One
checks using b ∈MC(L) that the A∞ axiom holds:

(1.7) 0 =
∑
i,j≥0
i+j≤d

(−1)✠
j
1md−i+1(xd, . . . , xi+j+1,mi(xj+i, . . . , xj+1), xj , . . . , x1)

for all homogeneous xd ∈ Hom(Ld−1,Ld), . . . , x1 ∈ Hom(L0,L1) where

(1.8) ✠k
l :=

∑
l≤i≤k

∥xi∥, ∥xi∥ := |xi|+ 1.

In this way, one obtains a family of flat A∞ categories FukL(X, b)w indexed by values
of the potential w ∈ Λ and bulk deformation b. More generally, for any subset G of
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weakly unobstructed branes define the flat A∞ category FukG(X, b)w in a similar way.
Denote the flat A∞ category obtained by disjoint union over all possible curvatures

Fuk♭G(X, b) :=
⊔
w∈Λ

FukG(X, b)w.

1.1.3. The open-closed and closed-open maps. The open-closed and closed-open maps
relate the Hochschild (co)homology with quantum cohomology. In the current
framework, we use the Piunikhin–Salamon–Schwarz [PSS96] construction and the
Cieliebak-Mohnke method to provide an independent construction of the bulk de-
formed quantum cohomology ring QH•(X, b) (see Subsection 3.3). For any collection
L of branes equipped with weakly bounding cochains, we define the open-closed map
(Subsection 3.4)

OC(b) : HH•(Fuk
♭
L(X, b)) → QH•(X, b)

and the closed-open map (Subsection 3.6)

CO(b) : QH•(X, b) → HH•(Fuk♭L(X, b))

via counts of treed holomorphic disks with one interior edge.

The specral decomposition of quantum cohomology and the spectral decomposition
of the Fukaya category are related by the open-closed map. It has been known that
(due to Auroux, Kontsevich, Seidel, see [Aur97, Section 6] and Sheridan [She16,
Lemma 2.7]) in the monotone case, the values of the potential function correspond
to eigenvalues of the quantum multiplication by the first Chern class; moreover, the
open-closed map shall send the Hochschild homology of the eigen-subcategory to
the corresponding generalized eigenspace. In the current situation, we prove a more
general statement. Let

Dq := q
d

dq

denote the logarithmic derivative with respect to q and define the bulk-deformed
symplectic class

(1.9) [ω]b := [ω] +Dqb.

Similarly write

b =
∑
i

bi

for homogeneous bi of degree |bi| and define the bulk-deformed first Chern class

(1.10) cb1(M) := c1(M) +
∑
i

|bi| − 2

2
bi.

Theorem 1.7. (proved in Section 3.5) For any w ∈ Λ, the image

OC(b)(HH•(Fuk
♭
L(X, b)w)) ⊂ QH•(X, b)

lies in the generalized eigenspace of the quantum multiplication by c1(M)b resp. the
symplectic class [ω]b corresponding to eigenvalue w resp. Dqw.
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1.1.4. The generation criterion. A criterion for the split generation of the Fukaya
category by a subset of branes is provided by results of Abouzaid [Abo10] and
Ganatra [Gan12].

Definition 1.8. Given a collection of objects G let Fuk♭G(X, b) denote the sub
Fukaya category with objects G. Write

QHG(X, b) = (OC(b))(HH•(Fuk
♭
G(X, b)))

for the image of HH•(FukG(X, b)) under the open-closed map. Say

QH•(X; b) is generated by G iff QHG(X, b) = QH•(X, b).

In our setting where the Fukaya category is the disjoint union of flat A∞ categories
Fuk♭G(X, b)w, the quantum cohomology ring QH•(X; b) being generated by G is
equivalent to the existence of a generalized eigen-space decomposition

QH•(X; b) = ⊕w∈w(G)QH
•(X; b)w

and the condition

QH(X, b)w = (OC(b))(HH•(Fuk
♭
G(X, b)w))

for all curvature values w ∈ w(G).

Theorem 1.9. (Abouzaid [Abo10] in the exact case, extended to the compact case
in Section 4 below) If QH•(X, b) is generated by G ⊂MC(L) then for each w ∈ Λ≥0

there is a subset of G that split-generates FukL(X, b)w.

The proof is based on an adaption of Abouzaid’s original argument [Abo10] to
the compact setting to incorporate bulk deformations, weakly bounding cochains,
and the Cieliebak-Mohnke method. The key is to prove the commutativity of the
Cardy diagram by analyzing two different types of degenerations of treed holomorphic
annuli.

By slightly modifying the moduli spaces of treed holomorphic annuli, one can
prove an orthogonality result for images of open-closed maps. The following result
will be used in the blowup setting to show that the “old” branes and “new” branes
are orthogonal in the Fukaya category of the blowup.

Theorem 1.10. (proved in Section 4.4) Suppose L−,L+ be two disjoint collections
of weakly unobstructed branes. Then the images

OC(b)(HH•(Fuk
♭
L−(X, b))), OC(b)(HH•(Fuk

♭
L+

(X, b)))

are orthogonal with respect to the intersection pairing.

1.1.5. Old branes in the blowup. Our main result applies the Abouzaid criterion
Theorem 1.9 to blowups. Recall that the blowup of affine space X = Cn at p = 0 is

(1.11) Bl(Cn, 0) = {(z, ℓ) ∈ Cn × Pn−1|z ∈ ℓ}
and is equipped with a natural holomorphic projection

π : Bl(Cn, 0) → Cn, (z, ℓ) 7→ z.
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The inverse image of the blowup point

Z̃ = π−1(p), Z̃ ∼= Pn−1

is the exceptional locus of the blowup. A symplectic blowup π : X̃ → X of X at
a point p is defined similarly using a Darboux chart U ∋ p and gluing in the local
model of the previous paragraph:

X̃ = ((X − {p}) ∪ π−1(U))/ ∼ .

A natural family of symplectic forms ω̃ϵ on X̃ arises from the family of symplectic
forms on Bl(Cn, 0) considered as a toric variety with moment polytope{

(x1, . . . , xn) ∈ Rn≥0 | x1 + . . .+ xn ≥ ϵ
}
.

The resulting symplectic manifold X̃ is the ϵ-blowup of X at p, depending on the
choice of ϵ and Darboux chart U .

An embedding of the original Fukaya category into the Fukaya category of its
blowup will be realized after a shift in bulk deformation given by homology classes.

Theorem 1.11. (proved in Section 6.1) Suppose L consists of Lagrangian submani-
folds that are disjoint from p. For ϵ > 0 sufficiently small and suitable perturbation
data P = (PΓ), the structure maps of FukL(X, b+ q−ϵp) are convergent and define
an A∞ category with the following property: There exists a homotopy equivalence of
curved A∞ categories

Fuk∼L(X, b+ q−ϵp) → Fuk∼π−1(L)(X̃, π
−1(b)).

Moreover, for any collection of weakly unobstructed branes L, there is a commutative
diagram

HH•(Fuk
♭
L(X, b+ q−ϵp))

OC(b+q−ϵp)
//

��

QH•(X)

π∗

��

HH•(Fuk
♭
π−1(L)(X,π

−1(b)))
OC(π−1(b))

// QH•(X̃)

.

Remark 1.12. The bulk deformation b+ q−ϵp has a negative q-valuation, so is not
of the type usually allowed. The structure maps of the Fukaya category with bulk
deformations with negative q-valuations may not converge a priori. However, there
is a geometric reason for the convergence: holomorphic maps have to “spend” a
nontrivial amount of energy to pass through a given point p each time.

The proof of Theorem 1.11 relies on a correspondence between pseudoholomorphic
curves induced by the projection. Namely, given any holomorphic curve ũ : C → X̃
one obtains a holomorphic curve in the original manifold by projection u = π ◦ ũ.
This correspondence induces a map between moduli spaces

(1.12) Md,1(π
−1(L0), . . . , π

−1(Ld)) → Md,1(L0, . . . , Ld)

(and the compactifications) given by composing and collapsing unstable components.
The projection (1.12) does not preserve the expected dimension of the moduli spaces
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but does preserve expected dimension if the map u = π ◦ ũ is considered as a map
with point constraints at u−1(p). Moreover, (1.12) is a bijection for rigid curves. To
prove Theorem 1.11 it therefore suffices to show that perturbation data pulled back
under the projection π : X̃ → X make all relevant moduli spaces in X̃ regular; one
may then simply compose with the projection to obtain the correspondence.

1.1.6. Open-closed map from the new branes. To compare the Fukaya categories,
we wish to complete the collection of “old branes” before the blowup by adding a
collection of new generators after the blowup. In a previous paper [CW] Charest
and the second author identified a finite collection of Floer-non-trivial Lagrangian
branes near the exceptional locus. Indeed, a neighborhood of the exceptional locus
has a toric model O(−1) → CPn−1 that contains a toric Lagrangian Lϵ

∼= (S1)n

that is monotone in O(−1). The new branes are given by the Lagrangian Lϵ and
(n− 1) distinct local systems. Each local system induces a representation denoted
y : H1(Lϵ) → Λ× as y = (y1, . . . , yn). The calculation in [CW, p145] shows that the
potential function is the Givental potential

W0 = qϵ(y1 + · · ·+ yn + y1 · · · yn)

plus higher order terms coming from holomorphic curves not contained in the toric
region. The local systems of the (n− 1) weakly unobstructed branes L1, . . . ,Ln−1

are higher order perturbations of the (n− 1) non-degenerate critical points of W0.
The toric model also allows us to compute the Floer cohomology rings HF •(Li,Li),
which are isomorphic to Clifford algebras, as well as the leading order terms in the
open-closed map on these branes.

Theorem 1.13. (proved in Sections 6.3, 6.4) Let E = {L1, . . . ,Ln−1} be the collec-
tion of exceptional branes described in the the preceeding paragraph.

(a) The potential functions of Li have distinct values,
(b) and the composition

HH•(Fuk
♭
E(X̃, π

−1(b))
OC(π−1(b))

// H•(X̃) // H̃•(Z̃) ∼= Λn−1

is surjective.

Theorem 1.1 follows from Theorem 1.10, Theorem 1.11, and the generation result.
Indeed, Theorem 1.10 implies that old and new branes are orthogonal under the
open-closed map. As the intersection pairing is non-degenerate on the image of the
new branes, these two images have trivial intersection. For dimensional reasons,
Theorem 1.11 and Theorem 1.13 imply the surjectivity of the open-closed map. The
generation criterion (Theorem 1.9) then applies. One uses the spectral property of
the open-closed and closed-open maps (Theorem 3.23 and 3.33) to conclude that the
new branes contribute to (n− 1) orthogonal one-dimensional pieces of the quantum
cohomology, proving Corollary 1.5.
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2. Moduli spaces of treed disks

In this section, we define the moduli spaces used in the definition of bulk-deformed
Fukaya categories and regularize them using Cieliebak-Mohnke perturbations.

2.1. Trees. First we introduce terminology for trees. Given a tree Γ, the set of edges
Edge(Γ) is equipped with head and tail maps

h, t : Edge(Γ) → Vert(Γ) ∪ {∞}.
The valence of any vertex v ∈ Vert(Γ) is the number

|v| = #{e ∈ h−1(v) ∪ t−1(v)}
of edges meeting the vertex v. An edge e ∈ Edge(Γ) is

• combinatorially finite if ∞ /∈ {h−1(e), t−1(e)},
• semi-infinite or a leaf if {h−1(e), t−1(e)} = {v,∞} for some v ∈ Vert(Γ), and
• infinite if h(e) = t(e) = ∞.

Denote
Edgefin(Γ) resp. Edge→(Γ) ⊂ Edge(Γ)

the set of finite resp. semi-infinite edges, that is, leaves.

For now, we assume that trees are rooted, which means that when Vert(Γ) ̸= ∅
there is a distinguished vertex vroot ∈ Vert(Γ) called the root and a distinguished
semi-infinite edge eout ∈ Edge→(Γ) with t(eout) = vroot called the output. All edges
are then oriented towards the output. This will suffice for defining the Fukaya
category. Later on, we will consider not-necessarily-rooted trees.

There is a special tree which does not have vertices: a vertex-free tree is a tree Γ
with Vert(Γ) = ∅ with one infinite edge. However we set Edge→ = {ein, eout}, the
incoming and the outgoing ends of the vertex-free tree. In any case, for a tree Γ,
denote by Edgein(Γ) resp. Edgeout(Γ) the incoming and outgoing leaves.

Our trees will be composed of two parts corresponding to the sphere and disk
vertices. We color these vertices black and white respectively, and call the resulting
structure a two-colored tree.

Definition 2.1. (Two-colored trees)

(a) A ribbon structure on a tree Γ consists of a cyclic ordering ov : {e ∈
Edge(Γ), e ∋ v} → {1, . . . , |v|} of the edges incident to each vertex v ∈ Vert(Γ);
a cyclic ordering is an equivalence class [ov] of orderings where two orderings
ov, o

′
v are equivalent if they are related by a cyclic permutation.

(b) A rooted subtree of a tree Γ is a connected subgraph Γ◦ whose vertices
Vert(Γ◦) contain the root vroot of Γ,

2 and whose edges contain all finite edges

2When defining the open-closed map we will consider two-colored trees whose root vertex is not
in the disk part Γ◦.
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e ∈ Edge(Γ) connecting vertices in Vert(Γ◦) and a subset of semi-infinite
edges e ∈ Edge(Γ) connected to vertices in Vert(Γ◦).

(c) A two-colored tree is a tree Γ together with a rooted subtree Γ◦ with a ribbon
structure on Γ◦.

(d) A two-colored tree Γ is stable if each sphere vertex

v ∈ Vert•(Γ) := Vert(Γ) \Vert(Γ◦)

has valence at least three and for each disk vertex v ∈ Vert(Γ◦) the number of
edges e ∈ Edge(Γ◦) connected to v plus twice of the number of interior edges

e ∈ Edge•(Γ) := Edge(Γ) \ Edge(Γ◦)

connected to v is at least three.

We distinguish between boundary and interior leaves and disk and sphere com-
ponents. Objects related to the rooted subtree (which are usually related to disks
and boundary insertions) are labelled with ◦ while the corresponding notions related
to the complement of the rooted subtree (which are related to spheres and interior
insertions) are labelled with •. For example, we denote by

Edge◦(Γ) := Edge(Γ◦) ⊂ Edge(Γ)

the set of boundary edges and we used above

Edge•(Γ) := Edge(Γ) \ Edge◦(Γ)
the set of interior edges. Semi-infinite edges are also called leaves and we denote

Leaf◦(Γ) := Edge→(Γ) ∩ Edge◦(Γ), Leaf•(Γ) := Edge→(Γ) ∩ Edge•(Γ).

A moduli space of metric trees is obtained by allowing the finite edges on the disk
part to acquire lengths.

Definition 2.2. Let Γ be a two-colored tree. A metric on Γ is a non-negative
function on the space of finite boundary edges

ℓ : Edgefin(Γ◦) → [0,+∞).

A metric type on Γ, denoted by ℓ, is the associated decomposition

Edgefin(Γ◦) = Edge0(Γ◦) ⊔ Edge+(Γ◦)

corresponding to edges with zero or positive lengths. 3

To compactify the set of gradient segments we allow the lengths of the edges to
go to infinity and break. A broken metric tree is obtained from a finite collection of
metric trees by gluing outputs with inputs as follows: Given two metric trees (Γ1, ℓ1)
and (Γ2, ℓ2) with specified leaves e1 ∈ Leaf(Γ1) and e2 ∈ Leaf(Γ2), let Γ1 resp. Γ2

3To define the Fukaya category we only need to consider metric on boundary edges. When we
define the open-closed and closed-open maps we need more general metric types.



FUKAYA CATEGORIES OF BLOWUPS 14

denote the space obtained by adding a point ∞1 resp. ∞2 at the open end of e1 resp.
e2. The space

(2.1) Γ := Γ1 ∪∞1∼∞2 Γ2

is a broken metric tree, the point ∞1 ∼ ∞2 being called a breaking. To obtain a
well-defined root for the glued tree we require that exactly one of e1 and e2 is the
output. See Figure 2. In general, a broken metric tree Γ is obtained from broken

Figure 2. Creating a broken tree

metric trees Γ1,Γ2 as in (2.1) in such a way that the resulting space Γ is connected
and has no non-contractible loops, that is, π0(Γ) is a point and π1(Γ) is the trivial
group4. We think of the gluing points as breakings rather than vertices, so that there
are no new vertices in the glued tree Γ.

In order to obtain Fukaya algebras with strict units, we wish for our moduli spaces
to admit forgetful maps. For this we introduce weightings on certain edges, as in for
example Ganatra [Gan12, Section 10.5].

Definition 2.3. Consider an unbroken tree Γ.

(a) A weighting on Γ is a map

wt : Edge→(Γ) → [0, 1]

satisfying

wt |Leaf(Γ) ≡ 0,

and

(2.2)
∏

e∈Edgein(Γ)

wt(e) = wt(eout)

The underlying decomposition

Edge→(Γ) = Edge (Γ) ⊔ Edge (Γ) ⊔ Edge (Γ)

:= wt−1(0) ⊔ wt−1((0, 1)) ⊔ wt−1(1).

is called a weighting type, denoted by wt; elements of Edge (Γ) resp. Edge (Γ)
resp. Edge (Γ) are called unforgettable resp. weighted resp. forgettable. A
tree Γ with a weighting is called a weighted tree.

4Later when we consider treed annuli we will allow loops.
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(b) If the output eout of Γ is unweighted then an isomorphism of weighted trees is
an isomorphism of trees ψ : (Γ,wt) → (Γ′,wt′) that preserves the weightings.
If the output eout of Γ is weighted (which implies Γ has no interior incoming
edge and all boundary incoming edges are weighted or forgettable), then an
isomorphism ψ : (Γ,wt) → (Γ′,wt′) is an isomorphism of trees such that there
is a positive number α such that

wt(e) = wt′(ψ(e))α, ∀e ∈ Edge→(Γ).

(c) If Γ is broken, then a weighting on Γ consists of weightings on all unbroken
components that agree over breakings.

2.2. Treed disks. The domains of treed holomorphic disks are unions of disks,
spheres, and lines, rays, and line segments. A disk is a bordered Riemann surface
biholomorphic to the complex unit disk D = { z ∈ C | ∥z∥ ≤ 1 }. The automorphism
group of D is Aut(D) ∼= PSL(2,R). A nodal disk with a single boundary node is a
topological space S obtained from a disjoint union of disks S1, S2 by identifying pairs
of boundary points w12 ∈ S1, w21 ∈ S2 on the boundary of each component so that

(2.3) S = S1 ∪w12∼w21 S2.

See Figure 3. The image of w12, w21 in the space S is the nodal point.

Figure 3. Creating
a nodal disk

A nodal disk S with multiple nodes wij , i, j ∈
{1, . . . , k}, i ̸= j is obtained by repeating this
construction (2.3) with S1, S2 nodal disks with
fewer nodes, and w12, w21 distinct from the
other nodes. More generally we allow boundary
and interior markings. For an integer d ≥ 0
a nodal disk with d+ 1 boundary markings is
a nodal disk S equipped with a finite ordered
collection of points x = (x0, . . . , xd) on the
boundary ∂S, disjoint from the nodes, in counterclockwise cyclic order around the
boundary ∂S. A (d+ 1)-marked nodal disk (S, x) is stable if each component Sv has
at least three special (nodal or marked) points, or equivalently the group Aut(S, x)
of automorphisms of S leaving x pointwise fixed is trivial. The moduli space of
(d+ 1)-marked stable disks [(S, x)] forms a compact cell complex, isomorphic as a
cell complex to the associahedron from Stasheff [Sta63, Sta70].

More complicated configurations involve spherical components. A marked sphere
is a complex surface biholomorphic to the projective line S2 ∼= P1 together with a
distinct ordered list of markings z1, . . . , zk ∈ S2. A nodal disk S with a single interior
node w ∈ S is defined similarly to that of a boundary node by using the construction
(2.3), except in this case S is obtained by gluing together a nodal disk S1 with a
marked sphere S2 with w12, w21 points in the interior int(S).

General treed disks are defined as in Oh [Oh93], Cornea-Lalonde [CL06], Biran-
Cornea [BC07, BC09], and Seidel [Sei11].
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Definition 2.4 (Treed disks, domain types). (a) A combinatorial type for treed
disks (or a domain type) is a two-colored tree Γ together with a metric type
ℓ (see Definition 2.2) and a weighting type wt (see Definition 2.3). To save
notations, we often abbreviate a domain type (Γ, ℓ,wt) by Γ.

(b) A treed disk C of domain type (Γ, ℓ, w) consists of the surface part

S = (Sv, xv, zv)v∈Vert(Γ)

(where xv resp. zv denotes the ordered set of boundary resp. interior mark-
ings), a tree part

T = (Te)e∈Edge(Γ),

(where Te is a finite interval of a certain length ℓ(e) if e is combinatorially
finite, a semi-infinite interval [0,+∞) or (−∞, 0] if e is semi-infinite, so that
(Γ, ℓ) becomes a metric tree whose metric type agrees with ℓ5), a weighting

wt : Edge→(Γ) → [0, 1]

whose underlying weighting type agrees with wt, and nodal points

ze,+ ∈ Sh(e), ze,− ∈ St(e), ∀e ∈ Edge(Γ).

These data must satisfy the following conditions: for each vertex v ∈ Vert(Γ),
the set of special points, i.e., the collection of boundary and interior markings
and nodal points are distinct. See Figure 4 for a typical configuration of a
treed disk. To a treed disk C we associate a compact topological space S ∪ T
obtained by gluing different components in the obvious way. Each such space
S ∪ T includes a finite subset of points corresponding to the breakings and
infinities of semi-infinite edges.

(c) An isomorphism of treed disks ϕ from C = S ∪ T to C ′ = S′ ∪ T ′ consists
of an isomorphism ψ : (Γ, ℓ,wt) → (Γ′, ℓ′,wt′) of underlying weighted metric
trees, a collection of conformal isomorphisms

ϕv : Sv → S′
ψ(v), v ∈ Vert(Γ)

of disks or spheres preserving the markings and special points, and a collection
of length-preserving isomorphisms

ϕe : Te → T ′
ψ(e), e ∈ Edge(Γ)

of intervals.
(d) A treed disk is stable if its underlying combinatorial type is stable (see

Definition 2.1).6

Remark 2.5. There is a natural partial order among all stable domain types, denoted
by Γ′ ⪯ Γ. Instead of giving the full definition, we only recall the typical situations.
These typical situations include the case of bubbling off holomorphic spheres, bubbling
off holomorphic disks, and breaking of gradient lines, in which Γ′ is obtained from
Γ by a change of the underlying tree. Moreover, when the length of an edge of Γ

5If e is an infinite edge, then regard Te as the real line (−∞,+∞) which is also the union of two
rays labelled by the input and the output.

6As in the case of spheres, treed disk is stable if and only if its automorphism group is trivial.
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Figure 4. A treed disk with three disk components and one sphere
component, and its combinatorial type

changes from positive to zero, one obtains a different type Γ′ ≺ Γ by changing the
metric type; when the weighting of one or more semi-infinite edges of Γ changes to
zero or one, one also obtains a different type Γ′ ≺ Γ by changing the weighting type
accordingly. In general, Γ′ ⪯ Γ if Γ′ can be obtained from Γ by finitely many such
changes. We emphasize that each partial order relation Γ′ ⪯ Γ induces a unique tree
map from Γ′ to Γ, that is, a surjective map ρV : Vert(Γ′) → Vert(Γ) that preserves
the partial order among vertices and sends Vert(Γ′

◦) onto Vert(Γ◦), as well as a
bijection Leaf◦(Γ

′) ∼= Leaf◦(Γ) and a bijection Leaf•(Γ
′) ∼= Leaf•(Γ).

The moduli spaces of stable weighted treed disks are naturally cell complexes.
Suppose Γ is a stable domain type with d(◦) boundary inputs and d(•) interior leaves.
Let MΓ denote the set of all isomorphism classes of treed disks of type Γ, with its
natural topology induced by embedding in the product of the moduli space of stable
trees and stable disks. The space MΓ is a manifold of dimension

dim(MΓ) = d(◦) + 2d(•) + #Edge (Γ)−#Edge0(Γ)− 2#Edgeinterior(Γ)

+

{
−2 if eout /∈ Edge (Γ),

−4 if eout ∈ Edge (Γ).

Denote

MΓ =
⊔

Γ′⪯Γ
Γ′ stable

MΓ′

.

As in the definition of Gromov convergence of pseudoholomorphic curves, there is a
natural way to endow MΓ a compact Hausdorff topology that agrees on the manifold
topology on each stratum MΓ′ , so that MΓ is a cell complex with MΓ equal to the
top cell.

Remark 2.6. The moduli spaces of weighted treed disks are related to unweighted
moduli spaces by taking products with intervals: If Γ has at least one vertex and Γ′

denotes the domain type obtained from Γ by setting the weights w(e) to zero and
the output eout of Γ is unweighted then

MΓ
∼= MΓ′ × (0, 1)|Edge (Γ)|.
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If the outgoing edge eout is weighted then

MΓ
∼= MΓ′ × (0, 1)|Edge (Γ)|−2

because of the way we define isomorphism of weighted types (see Definition 2.3).
Figure 5 illustrates a one-dimensional moduli space with weighted output and its
boundary strata.

w1 w2

w3
logw1

logw2
→ 0 logw2

logw1
→ 0

Figure 5. A one-dimensional moduli space of weighted treed disks
with all three semi-infinite edges weighted.

In general, moduli spaces of stable curves only admit universal curves in an orbifold
sense. In the setting here, orbifold singularities are absent and the moduli spaces
of stable treed disks admit honest universal curves. For any stable domain type Γ
let UΓ denote the universal treed disk (or called the universal curve) consisting of
isomorphism classes of pairs (C, z) where C is a treed disk of type Γ and z is a point
in C, possibly on a disk component Sv ∼= {|z| ≤ 1}, a sphere component Sv ∼= P1, or
one of the edges e of the tree part T ⊂ C (the infinities of semi-infinite edges are
allowed). The map

πΓ : UΓ → MΓ, [C, z] → [C]

is the universal projection. Moreover, for each [C] ∈ MΓ represented by C, the fibre
π−1
Γ ([C]) is homeomorphic to C. In case Γ has no vertices we define UΓ to be the

real line, considered as a fiber bundle over the point MΓ.

Figure 6. Treed disks with interior leaves

We introduce notation for particular subsets of the universal curves. First, for
each vertex v ∈ Vert(Γ), let

UΓ,v ⊂ UΓ
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denote the closed subset corresponding to points on the surface component Sv and
on the semi-infinite edges attached to v. For each boundary edge e ∈ Edge(Γ◦), let

UΓ,e ⊂ UΓ

the closed subset corresponding to points on the tree component Te. Denote

(2.4) SΓ :=
⋃

v∈Vert(Γ)

UΓ,v

and

(2.5) T Γ :=
⋃

e∈Edge(Γ◦)

UΓ,e.

Moreover, for each subtree Π ⊂ Γ (not necessarily containing the root), denote by

UΓ,Π ⊂ UΓ

the set of points z on components Sv, Te corresponding to vertices v and edges e of
Π. There is a contraction map UΓ,Π → UΠ contracting edges not in Γ. In particular,

for the disk part Γ◦, one has UΓ,Γ◦ ⊂ UΓ. Lastly, for Π ⪯ Γ, one has a boundary

stratum UΠ ⊂ UΓ.

The boundary of each treed disk is divided up into parts between the boundary
inputs. Denote by (∂C)i the component of ∂C between the i-th and i+1-st leaves, in
cyclic order. Similarly, denote i-th boundary part of the universal curve ∂iUΓ ⊂ UΓ.

2.3. Rational branes. In this subsection, we specify assumptions and additional
data on the Lagrangian submanifolds in our construction. Let (X,ω) be a compact
symplectic manifold. Let L = {L1, . . . , Lm} be a collection of embedded Lagrangian
submanifolds in (X,ω). Denote the support of L to be

|L| :=
⋃
L∈L

L ⊂ X.

By a brane we will mean a flat Λ× bundle L̂ over L where L is an (oriented, spin,
embedded) Lagrangian submanifold. By a weakly unobstructed brane we will mean a

pair L = (L̂, b) where L̂ is a brane and b is a Maurer-Cartan element of the curved

A∞ algebra of L̂.

Definition 2.7 (Rational Lagrangian). The collection of Lagrangians L is called

rational if there exists a line bundle with connection X̂ → X with curvature (2πk/i)ω

for some k ∈ Z+ and there exists a smooth section s ∈ Γ(X̂) that is nowhere vanishing
along |L|, whose restriction to each L ∈ L is flat with respect to the connection on

X̂. The collection L is called exact in an open subset U ⊂ X if

(a) |L| ⊂ U ;
(b) there is a 1-form θ ∈ Ω1(U) such that ω|U = dθ;



FUKAYA CATEGORIES OF BLOWUPS 20

(c) there exists a continuous function f : |L| → R whose restriction to each L ∈ L
is smooth and

θ|L = d(f |L).

From now on, we assume that [ω] is integral, for simplicity, and L is rational:

Hypothesis 2.8. The collection L satisfies the following conditions.

(a) Each L ∈ L is connected, oriented, and equipped with a spin structure.
(b) For each pair L,L′ in L, their intersection is clean, oriented, and equipped

with a spin structure.7

(c) L is rational as in Definition 2.7.

2.3.1. Bulk deformation. Bulk deformations used in this paper are linear combinations
of disjoint embedded closed submanifolds b1, . . . , bN ⊂ X denoted by

b =
N∑
i=1

cibi, ci ∈ Λ \ {0}.

We assume that all bi are oriented and have even and positive codimensions. The
support of b is the union

|b| :=
N⋃
i=1

bi.

Remark 2.9. There will be no essential difference but only notational complexities if
we allow bulk deformation to be pseudocycles rather than closed submanifolds.

2.3.2. Donaldson hypersurface. The Cieliebak-Mohnke scheme relies on the existence
of Donaldson hypersurfaces, defined as follows. Given a rational symplectic manifold
(X,ω) a Donaldson hypersurface is a compact codimension two symplectic submanifold
D ⊂ X whose Poincaré dual is a multiple k[ω] of [ω]. The positive integer k is called
the degree of the Donaldson hypersurface.

Lemma 2.10. (c.f. Charest-Woodward [CW17, Section 3.1], [CM07, Lemma 8.7])
Let J be an ω-compatible almost complex structure on X such that all Lagrangians
in L are totally real. For l ∈ N sufficiently large there exist a sequence of degree l
Donaldson hypersurfaces D = Dl ⊂ X disjoint from |L| with the following properties.

(a) L is exact in the complement X −Dl.
(b) For each l, there is a tamed almost complex structure J0 ∈ Jtame(X,ω)

making Dl almost complex such that all nonconstant J0-holomorphic spheres
in X intersect Dl at finite but at least three points and all nonconstant
J0-holomorphic disks with boundary in |L| intersect Dl in the interior.

(c) Dl is transverse to each component of b.

7In general, the clean intersection of two orientable submanifolds may not be orientable.
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Proof. The construction is an extension of the original constructions [Don96] [Aur97]

[AGM01] [PT20, Theorem 3.3]. Let X̂ → X be a line bundle whose curvature is
the symplectic form (up to a factor of 2π/i). The argument of [PT20, Theorem 3.3]
(which is purely local and so applies to the cleanly-intersecting Lagrangian considered
here) gives the existence of an approximately J-holomorphic section

s : X → X̂ l

of some tensor power X̂ l and so that the restriction of s to each L ∈ L is close to
the given flat section on L. One obtains a symplectic hypersurface as the zero-set:

D = s−1(0).

The connection one-form α in the trivialization provided by s provides a primitive
for the symplectic form ω, and the fact that s is approximately flat on L implies
that the integral of α over any loop in |L| vanishes, so that L is exact; see [CM07,
Theorem 8.1] and the modification in [CW17, Theorem 3.6]. By Cieliebak-Mohnke
[CM07, Corollary 8.16], for sufficiently generic tamed almost complex structures
J , each non-constant J-holomorphic sphere u : P1 → D is not contained in D and
intersects D in at least three points:

#u−1(D) ≥ 3.

On the other hand, since L is exact in the complement of D, each nonconstant
pseudoholomorphic disk u : D → X with boundary in L intersects D in at least one
interior point. Transversality of D to the bulk deformation b follows as in [CM07,
Corollary 5.8]. □

Remark 2.11. The notion of approximately holomorphic can be made more precise
as follows: A sequence of sections sl of X̂

l (for large l) is said to be asymptotically
holomorphic with respect to the given connections and almost-complex structure if
the following bounds hold: There exists a constant C > 0 such that, for all l and at
every point of X,

|sl|+ |∇sl|+ |∇2sl| ≤ C, |∂sl|+ |∇(∂sl)| ≤ Cl−
1
2

where the norms of the derivatives are evaluated with respect to the metrics defined
by the rescaled two-form lω. Such a sequence is said to be uniformly transverse to
0 with constant η if the derivative of sl is non-zero whenever |sl(x)| < η and has a
right inverse bounded by η−1, as in [AGM01, Definition 1]. Donaldson’s construction
shows the existence of asymptotically holomorphic sections uniformly transverse to
the zero section, using sequences of asymptotically holomorphic sections concentrated
near a point.

2.4. Perturbations. We consider domain-dependent perturbation data defined on
the universal curves. We first define a condition called locality, which our perturbation
data will be required to satisfy. A similar condition plays an important role in
Cieliebak–Mohnke’s approach [CM07].
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Notation 2.12. Let Γ = (Γ, ℓ,wt) be a stable domain type. Recall that Γ◦ is the
subtree corresponding to disk components and boundary edges. For each spherical
vertex v ∈ Vert(Γ) \Vert(Γ◦) =: Vert•(Γ), let Γ(v) denote the subtree of Γ consisting
of the vertex v and all edges e of Γ meeting v. Let

(2.6) π : π1 × π2 : UΓ → MΓ◦ × UΓ(v)

be the product of maps where π1 is given by projection followed by the forgetful
morphism and π2 is the contraction C → Sv.

Definition 2.13 (Locality). Let Z be a set. A map f : UΓ → Z is called local if the
following two conditions are satisfied.

(a) For each spherical vertex v ∈ Vert•(Γ), the restriction of f to UΓ,v factors
through a map fv as in the commutative diagram

UΓ,v

π1×π2
��

f
// Z

MΓ◦ × UΓ(v)

fv

99

(b) Let UΓ,Γ◦ be the union of the tree part TΓ and UΓ,v for all disk vertices
v ∈ Vert◦(Γ). Then there is a contraction map

UΓ,Γ◦ → UΓ◦ .

We require that the restriction of f to UΓ,Γ◦ ⊂ UΓ is equal to the pullback of
a map f◦ : UΓ◦ → Z.

A map f : UΓ → Z is local if the restriction of f to any stratum UΠ ⊂ UΓ for Π ≺ Γ
is a local map.

Remark 2.14. Locality implies the following gluing construction: for any sphere
vertex v ∈ Vert•(Γ) let Γ

′ denote the type of graph obtained by removing all but one
interior leaf e ∈ Leaf(Γ) meeting v and collapsing any unstable component. Then on
the complement of Sv and possibly other collapsed components, f is equal to the
pull-back of a map from UΓ′ to Z.

2.4.1. Supports of perturbations. In this section, we construct open sets where the
perturbations are required to vanish. Let SΓ and T Γ be the universal surface and
tree from (2.4) and (2.5).

Lemma 2.15. For all stable combinatorial types Γ, there exist collections of open
subsets (where the complex structure J , the Hamiltonian perturbations H, or the
Morse functions F will be fixed)

SΓ,J ⊂ SΓ, SΓ,H ⊂ SΓ, T Γ,F ⊂ T Γ

satisfying the following properties.
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(a) The open set SΓ,J intersects with any fiber C = S ∪T ⊂ UΓ at a neighborhood
of all special points on the surface part so that for all v ∈ Vert(Γ), the
complement of SΓ,J has non-empty intersection with Sv;

(b) The intersection of SΓ,H with each fibre C = S∪T ⊂ UΓ contains all spherical
components and a neighborhood of all nodal points. Moreover, the complement
of SΓ,H ∩ C has a nonempty intersection with each disk component Sv ⊂ S.

(c) The open set T Γ,F is a neighborhood of the locus corresponding to infinities
of semi-infinite edges in all degenerations Π ≺ Γ.

(d) If Γ is separated by a breaking into two subtrees Γ1 and Γ2, then SΓ,∗ resp.

T Γ,∗ is the product

SΓ1,∗ ⊠ SΓ2,∗ resp. T Γ1,∗ ⊠ T Γ2,∗

where
SΓ1,∗ ⊠ SΓ2,∗ = π−1

1 (SΓ1,∗)× π−1
2 (SΓ2,∗)

etc.
(e) The characteristic functions of SΓ,∗ and T Γ,∗, viewed as maps from UΓ to

{0, 1}, are local maps.

The proof is left to the reader. We need to specify certain Banach space norms on
perturbation data. After taking away the open sets SΓ,J and T Γ,F , the surface part

and the tree part of the universal curve UΓ, the complements

SΓ \ SΓ,J resp. SΓ \ SΓ,H resp. T Γ \ T Γ,F

are smooth manifolds. To measure the norms of smooth functions we choose Rie-
mannian metrics on these complements in a way that the metrics are local functions
on the universal curve and respect degeneration of curves. We omit the details.

2.4.2. Spaces of almost complex structures. In this section, we introduce domain-
dependent perturbations and their spaces. The Cieliebak-Mohnke method in [CM07]
provides for each energy bound E > 0 an open neighborhood J E

tame(X,ω) of the base
almost complex structure J0 consisting of almost complex structures J for which all
nonconstant J-holomorphic spheres u : S2 → X of energy at most E intersect the
Donaldson hypersurface D at finite but at least three points, that is, #u−1(D) ≥ 3.
On the other hand, the domain types, especially the numbers of interior markings
z provide a priori bounds for energy, which allow us to define suitable spaces of
perturbations.

Notation 2.16. Let Γ be a stable domain type. Let

(2.7) E(Γ) :=
#Leaf•(Γ) + 1

k
∈ Q

where k is the degree of the Donaldson hypersurface D.

We define suitable spaces of almost complex structures that do not allow holomor-
phic spheres in the Donaldson hypersurface. Assume that J0 ∈ Jtame(X,ω) is a base
almost complex structure satisfying the conditions in Proposition 2.10.
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Lemma 2.17. [CM07, Corollary 8.16] For any E > 0, there exists an open neigh-
borhood J E

tame(X,ω) ⊂ Jtame(X,ω) of J0 in the C∞-topology satisfying the following
property: For every J ∈ J E

tame(X,ω), all nonconstant J-holomorphic spheres with
energy at most E intersect D in finitely many but at least three points.

2.4.3. The space of domain-dependent perturbations.

Definition 2.18. A perturbation datum for a stable domain type Γ is a collection
PΓ = (JΓ, HΓ, FΓ,MΓ) consisting of

(a) A domain-dependent almost complex structure

JΓ : SΓ → Jtame(X,ω)

satisfying the following conditions.
(i) For any vertex v ∈ Vert(Γ), let Γ(v) be the maximal subtree containing

v which has no boundary edges with positive length. Then

JΓ(UΓ,v) ⊂ J E(Γ(v))
tame (X,ω).

Here E(Γ) is the energy bound defined by (2.7).
(ii) JΓ is equal to the base almost complex structure J0 over the open subset

SΓ,J and in a fixed neighborhood of D ∪ {p}.
The last condition implies that JΓ extends canonically to a map on UΓ.

(b) A domain-dependent Hamiltonian perturbation

HΓ : SΓ → Γ(T (SΓ)
∗/TMΓ)

∗)⊗ C∞(X).

that is zero over the open set SΓ,H . Here T (SΓ/MΓ) is the vertical tangent
bundle, which is a smooth vector bundle away from nodal points. The last
condition implies that HΓ extends canonically to a map defined over UΓ.

(c) A domain-dependent smooth function

FΓ : T Γ ×

 ⊔
(L,L′)∈L2

(L ∩ L′)

→ R

that is zero over the open set T Γ,F .
(d) A domain-dependent perturbation of the evaluation map given by a collection

of continuous maps for the interior inputs

MΓ,e : MΓ → Diff(X) ∀e ∈ Leaf(Γ)

that are smooth in the interior MΓ (with respect to the manifold structure
of MΓ). Each MΓ,e can be viewed as a map from the universal curve by

pullback via UΓ → MΓ.

Moreover, the tuple PΓ = (JΓ, HΓ, FΓ,MΓ) can be viewed as a map from UΓ to a
certain set. We require that this map is a local map (see Definition 2.13).
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We take perturbations in a small-in-the-Floer-norm neighborhood of the base
perturbation. Given a sequence of positive numbers ϵ = (ϵi)

∞
i=1 Floer’s (complete)

Cϵ-norm on functions on a Riemannian manifold is defined by

∥f∥Cϵ :=
∞∑
i=0

ϵi∥∇if∥C0 .

For a suitably chosen sequence ϵ, in all dimensions the space of smooth functions with
finite Cϵ-norms contains bump functions of arbitrary small supports (see [Flo88]).
For each stable Γ, there is a base perturbation datum in which JΓ is the base almost
complex structure J0 specified by Lemma 2.10, HΓ = 0, FΓ is the given Morse
function, and MΓ = IdX . The tangent space of Jtame(X,ω) at J0 is

TJ0Jtame(X,ω) = {ζ ∈ End(TX) | J0ξ + ξJ0 = 0}.

For δ > 0 sufficiently small we identify the δ-neighborhood of J0 in Jtame(X,ω)
with respect to the C0-norm with the δ-ball of the tangent space TJ0Jtame(X,ω).
Then a domain-dependent almost complex structure JΓ : SΓ → Jtame(X,ω) that
is C0-close to the base J0 can be viewed as a vector in the linear space C∞(SΓ \
SΓ,J , TJ0Jtame(X,ω)) so one can measure its norms. Similarly, a domain-dependent
diffeomorphism MΓ,e : X → X that is C0-close to the identity can be identified with
a C0-small vector field on X, denoted by MΓ,e − IdX . On the other hand, HΓ and
FΓ are elements of certain vector spaces. For each stable Γ, define
(2.8)

PΓ :=
{
PΓ = (JΓ, HΓ, FΓ,MΓ) | ∥JΓ−J0∥Cϵ+∥HΓ∥Cϵ+∥FΓ∥Cϵ+∥MΓ−IdX∥Cϵ <∞

}
.

This set with the Cϵ-norm is a separable Banach manifold (in fact an open set of a
separable Banach space).

Once a perturbation datum for a stable domain type is fixed we obtain pertur-
bations for not-necessarily-stable types as follows. Let C be a treed disk of domain
type Γ not necessarily stable. Let Cst denote its stabilization, obtained by collapsing
unstable components of S and gluing the associated edges. The stabilization Cst is
naturally identified with a fiber of the universal curve UΓst for the type Γst. Via the
stabilization map C → Cst the perturbation data PΓst pulls back to perturbation
data PΓ for Γ.

2.5. Holomorphic treed disks. Holomorphic treed disks are combinations of
holomorphic disks and gradient flow segments. We first state the assumptions on the
boundary conditions. Let (X,ω) be a compact symplectic manifold. For each pair of
Lagrangians (L,L′) ∈ L2 (including the case L = L′) let

FL,L′ : L ∩ L′ → R.

be a Morse function on the clean intersection. Its critical points will be asymptotic
constraints for gradient rays. In order to obtain strict units, we expand the set of
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critical points as follows. Define

(2.9) I(L,L′) =

{
crit(FL,L′), L ̸= L′,
crit(FL,L′) ∪ IhuL , L = L′.

where

(2.10) IhuL = {1L,c, 1L,c}.

Interior labelling data provide constraints of maps at interior markings. The
stabilizing divisor D ⊂ X which intersects each ιi transversely. Denote

(2.11) IX := IX,Stab ⊔ IX,Bulk ⊔ IX,Mix

where

IX,Stab := {(D, 1), (D, 2)},
IX,Bulk := {bi | i = 1, . . . , N},
IX,Mix := {D ∩ bi | i = 1, . . . , N} ∪ {bi ∩ bj | i ̸= j}.

which will be used to label all possibly interior constraints (eventually corresponding
to whether each interior leaf Te corresponds to a Morse trajectory, intersection with
stabilizing divisor D, or intersection with the bulk deformation b.) The elements
(D, 1), (D, 2) will indicate tangency order to the stabilizing divisor, so a map u :
C → X with constraint ze ∈ C of type (D, 1) has u(ze) ∈ D resp. of type (D, 2) has
u(ze) and the normal derivatives of u at ze vanish.

Definition 2.19 (Map types). Given a domain type Γ of treed disks with d inputs,
a map type consists of

(a) A boundary constraint datum given by a sequence of Lagrangian branes

L := (L0, L1, . . . , Ld)

labelling the boundary components of treed disks. For each boundary edge
e ∈ Edge(Γ◦) there is then an ordered pair (Le,−, Le,+) of branes induced
from the datum L. Abbreviate

Le := (Le,− ∩ Le,+)
(b) A corner constraint datum given by a sequence of elements

x := (x0, x1, . . . , xd) ∈ I(L0, Ld)× I(L0, L1)× · · · × I(Ld−1, Ld)

satisfying the following requirement regarding the weighting types. The i-th
leaf ei is forgettable resp. weighted if and only if for some L ∈ L

xi = 1L resp. xi = 1L.

(c) A homology datum which is a map

β : Vert(Γ) → H2(X, |L|).
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(d) An interior constraint datum which is a collection of labels

(2.12) λ : Leaf•(Γ) → IX
such that on each maximal subtree of Γ which has no boundary edges with
positive length, there is at most one interior marking ze labelled by (D, 2).

A map type is denoted by Γ = (Γ, x, β, λ) (notice that x determines L). We write
Γ 7→ Γ if the underlying domain type of Γ is Γ.

Perturbed treed holomorphic disks are defined by allowing the almost complex
structure, and Morse function to vary in the domain. Let Γ be a domain type (not
necessarily stable). Let Γst be the stabilization of Γ (which is not empty). Let C
be a treed disk of type Γ and Cst its stabilization which is of type Γst. Suppose
we are given a perturbation datum PΓst for type Γst. On each surface part Sv of
C, PΓst induces a domain-dependent almost complex structure Jv, and a domain-
dependent Hamiltonian function Hv. On each tree part Te of C, PΓst induces a
domain-dependent function

Fe : Te ×
⊔

(L−,L+)∈L2

(L− ∩ L+) → R.

These data allow one to define the equations on each component. For each surface
component Sv and a smooth map uv : Sv → X, define

∂Jv ,Hvuv := (dHvuv)
0,1 := (duv +XHv(uv))

0,1

:=
1

2
(duv + Jv ◦ duv ◦ jv) + (XHv(uv))

0,1 ∈ Ω0,1(Sv, u
∗
vTX).

We say that uv is (Jv, Hv)-holomorphic if ∂Jv ,Hvuv = 0. For each tree component Te
and a smooth map

ue : Te →
⊔

(L−,L+)

L− ∩ L+

we say that ue is a perturbed negative gradient segment if

u′e(s) +∇Fe(s, (ue(s))) = 0.

Definition 2.20. Let Γ = (Γ, x, β, λ) be a map type with underlying combinatorial
type Γ of treed disks. Let C = S ∪ T be a treed disk of type Γ. Let Γst be the
stabilization of Γ and PΓst be a perturbation datum on UΓst . A PΓst-perturbed adapted
treed holomorphic map from C to X of map type Γ is a continuous map u : C → X
satisfying the following conditions (using notations specified before this definition).

(a) The restriction of u to the surface component Sv, denoted by uv : Sv →
X, is (Jv, Hv)-holomorphic; moreover, if v ∈ Vert◦(Γ), then uv maps each
component of the boundary of Sv to the Lagrangian in L labelled by Γ.

(b) The restriction of u to the tree component Te is contained in Le, denoted by
ue : Te → Le, is a perturbed negative gradient segment, namely

u′e(s) +∇Fe(s, (ue(s))) = 0.
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(c) For each semi-infinite edge e, the map ue converges to the limit specified by
the datum x in the sense that

eve(u) := lim
s→∞

u(s) = xe, ∀e ∈ Edge→(Γ) ∩ Edge◦(Γ)

where s ∈ ±[0,∞) is a coordinate on the (incoming or outgoing) edge Te.
(d) For each interior leaf e attached to a vertex ve, we require (see notations in

(2.11))

uve(ze) ∈


D, λ(e) = (D, 1) or (D, 2),
M−1

Γ,e(bi), λ(e) = bi,

M−1
Γ,e(D ∩ bi), λ(e) = D ∩ bi

Here MΓ,e : X → X is the diffeomorphism contained in the perturbation
datum. Moreover, if λ(e) = (D, 2) and if uve is not a constant map, then the
tangency order of uve with D is 2.

The triple (C, u) is called an (adapted) treed holomorphic disk of map type Γ.

Isomorphisms of perturbed treed holomorphic disks are defined in a way similar
to that for stable pseudoholomorphic maps. A perturbed treed holomorphic disk is
called stable if its automorphism group is finite, or equivalently

(a) every sphere component uv : Sv → X with duv = dHvuv ≡ 0 has at least
three special points, and

(b) every disk component uv : Sv → X with dHvuv ≡ 0 either has at least three
boundary special points, or one boundary special point and one interior
special point, or at least two interior special points.

(c) over each infinite edge Te ⊂ C the map ue : Te → Le is nonconstant.

Given a map type Γ = (Γ, x, β, λ), denote by MΓ(PΓst) the set of isomorphism
classes of stable PΓst-perturbed adapted treed holomorphic disks of map type Γ. One
can also define a Gromov topology and compactify the moduli spaces (we omit the
details). We only consider the compactification for the case Γ is stable. In this case,
the Gromov compactification is

(2.13) MΓ(PΓ) :=
⊔

Π⪯Γ

MΠ

(
PΓ|UΠst

)
.

Here the partial order Π ⪯ Γ naturally extends the partial order Π ⪯ Γ among
domain types (see Remark 2.5 and below).

Definition 2.21 (Partial order among map types). Let Γ = (Γ, x, β, λ) and Γ′ =
(Γ′, x′, β′, λ′) be two map types. We write Γ′ ⪯ Γ if Γ′ ⪯ Γ (which induces a morphism
ψ : Γ′ → Γ and a natural identification Leaf•(Γ) ∼= Leaf•(Γ

′) with respect to which
x = x′) and

β(v) =
∑

v′∈ψ−1(v)

β′(v′);
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moreover, for each interior leaf e ∈ Leaf•(Γ) with corresponding e′ ∈ Leaf•(Γ
′), one

has Xe′ ⊂ Xe.

The composition laws of Fukaya algebras rely on the following relation among
perturbation data.

Definition 2.22 (Coherent perturbations). A collection of perturbation data

P := (PΓ)Γ

for all stable domain types Γ are called a coherent system of perturbation data if the
following conditions are satisfied.

(a) (Cutting-edges axiom) If a (boundary) breaking separates Γ into Γ1 and Γ2

then PΓ is the product of the perturbations PΓ1 , PΓ2 under the isomorphism

UΓ ≃ π∗1UΓ1 ∪ π∗2UΓ2 .

(b) (Degeneration axiom) If Γ′ ≺ Γ, then the restriction of PΓ to UΓ′ is equal to
PΓ′ . Notice that these degenerations include the case that the weight wt(e)
on one weighted edge e limits to 0 or 1 (see Remark 2.5).

(c) (Forgetful axiom) For a forgettable boundary input e ∈ Edge◦(Γ), let Γe be
the domain type obtained from Γ by forgetting e and stabilizing. Then PΓ is
equal to the pullback of PΓe via the contraction UΓ → UΓe .

2.6. Transversality. In this subsection we regularize the moduli spaces used in
our construction. We first review very briefly the Fredholm theory associated to
treed holomorphic maps. Let Γ be a map type. We specify Sobolev constants k ∈ N
and p > 0 and a decay constant δ > 0 with kp > 2 and δ sufficiently small. The set
Bk,p,δ(C,Γ) of maps of type Γ has the structure of a Banach manifold. In the case
without branch changes in the boundary condition, an element u ∈ Bk,p,δ(C,Γ) is
defined as in Definition 2.20 without requiring the holomorphic curve and gradient

flow equations and instead requiring u to be of class W k,p
loc over each surface or tree

component. In the case with branch changes, that is, for each disk component
Sv ∼= D ⊂ C with a boundary node or marking z ∈ ∂Sv with two sides of z are
labelled by two different Lagrangian submanifolds, then we require the map u is of
class W k,p,δ with respect to a cylindrical type metric, which means that it differs
from a map constant near infinity by exponentiation of a section of class W k,p,δ. If
the two sides of z are labelled by the same Lagrangian submanifold (with possibly
different branes structures), then we alternatively require that the map is of class
W k,p with respect to the smooth metric. Tangency conditions for a maximal order
m as in (2.11) are defined for k sufficiently large. Choose a perturbation datum
PΓ = (JΓ, HΓ, FΓ,MΓ). Over the Banach manifold Bk,p,δ(C,Γ) there is a Banach
vector bundle Ek−1,p,δ(C,Γ) of 0, 1-forms of class k−1, p so that the defining equations
of Definition 2.20 provides a section

F : Bk,p,δ(C,Γ) → Ek−1,p,δ(C,Γ)
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combining the perturbed Cauchy-Riemann operators on the surface parts and gradient
flow operators on the edges. To include the variations of the domains, one takes
an open neighborhood Mi

Γ ⊂ MΓ of [C] over which the universal curve UΓ has a
trivialization

UΓ|Mi
Γ

∼= Mi
Γ × C.

The linearization of the map F at a perturbed treed holomorphic disk (C, u) is a
Fredholm operator

D̃u : T(u,∂u)Bk,p,δ(C,Γ)× T[C]MΓ → Ek−1,p,δ(C,Γ)|u.
Since the Lagrangians are always totally real with respect to the domain-dependent
almost complex structures, the linearized operator is Fredholm. Its index can be
calculated using Riemann-Roch for surfaces with boundary and gives the expected
dimension of the moduli space

ind(Γ) := dimMΓ(PΓ) = Ind(D̃u) = dimMΓ + µ(β) + i(x)− i(λ)

where µ(β) is the total Maslov index of the disk class, i(x) is the sum of Morse
indices of asymptotic constraints, and i(λ) is the effect of interior constraints. For
example, if Γ has k interior leaves, all of which are labelled by (D, 1), then i(λ) = 2k.

Following Cieliebak-Mohnke [CM07], we introduce a collection of map types for
which transversality can be achieved by domain-dependent perturbations.

Definition 2.23. A map type Γ = (Γ, x, L, λ) is called uncrowded if each ghost
sphere bubble tree contains at most one interior leaf e whose interior constraint is
(D, 1) or (D, 2). Otherwise Γ is called crowded.

Remark 2.24. Cieliebak-Mohnke perturbations can never make crowded configurations
u : C → X transversely cut out, since one can replace an interior leaf Te with a
given label D and replace it with a sphere bubble Sv with two interior leaves Te1 , Te2
attached with the same label D, which reduces the expected dimension of a stratum
by two. Repeating this process eventually produces a non-empty moduli space of
negative expected dimension, which is a contradiction if the perturbations are regular.

We will need certain forgetful maps to treat crowded configurations. Let Γ be a
stable domain type. Choose a subset

W ⊂ Vert•(Γ) = Vert(Γ) \Vert(Γ◦)

of spherical vertices. Define ΓW to be the domain type obtained by the following
operation: For each connected component Wi ⊂W , remove all interior leaves except
the one with the largest labelling on Wi, and stabilize the remaining configuration.
The set W descends to a (possibly empty) subset W ′ ∈ Vert◦(ΓW ). A consequence
of the locality condition on the perturbation data is that each PΓ ∈ PΓ descends to
a perturbation datum PΓW

∈ PΓW
whose restriction to surface components Sv for

v ∈ W ′ equals to the base almost complex structure J0 and the zero Hamiltonian
perturbation.8 Let PΓW ,W ′ ⊂ PΓW

be the subset of perturbations that agree with the

8The descent PΓW may not agree with a member of any prechosen coherent collection of pertur-
bation data.
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base almost complex structure J0 and the zero Hamiltonian over surface components
corresponding to vertices in W ′. This forgetful construction gives a smooth map of
Banach manifolds

(2.14) PΓ → PΓW ,W ′ .

Indeed, this is a surjective map and essentially a projection, hence admits a smooth
right inverse.

Definition 2.25. Let Γ be a stable domain type. A perturbation PΓ ∈ PΓ is called
regular if all uncrowded maps of type Γ with underlying domain type Γ are regular.
The perturbation PΓ is called strongly regular if for any subset W ⊂ Vert•(Γ) and
for any uncrowded map type ΓW whose underlying domain type is ΓW and whose
homology classes on surface components corresponding to vertices in W ′ are zero,
every map of type ΓW is regular.

The main result of this section is the regularity of moduli spaces for uncrowded
map types and the selection of a coherent collection of perturbation data.

Theorem 2.26. There exist a coherent collection of perturbation data P = (PΓ)
whose elements PΓ are all strongly regular.

Proof. The proof is an induction on the possible domain types according to the
partial order (see Remark 2.5). First we introduce an equivalence relation among
stable domain types. We write Γ ∼ Π for the equivalence relation generated by

Π ⪯ Γ and ρ|Π◦ : Π◦ → Γ◦ is an isomorphism;

that is, if roughly they have isomorphic disk part. Here ρ is the tree map induced from
the partial order relation Π ⪯ Γ (see Remark 2.5). Let [Γ] denote the equivalence
class of Γ. The partial order relation among domain types descends to an equivalence
relation among their equivalence classes.

The inductive step is the following. Fix an equivalence class [Γ]. Suppose we have
chosen strongly regular perturbation data PΠ for all stable domain types Π with
[Π] ≺ [Γ] as well as domain types with strictly fewer boundary inputs or the same
number of boundary inputs but strictly fewer interior leaves, such that the chosen
collection is coherent in the sense of Definition 2.22.

Definition 2.27. For each Γ in this class [Γ], denote by P∗
Γ ⊂ PΓ the closed Banach

submanifold consisting of perturbation data whose values over all lower strata UΠ

with Π ≺ Γ and [Π] ≺ [Γ] agree with the prechosen one PΠ.

We prove the following sublemma.

Sublemma. There is a comeager subset P∗,reg
Γ ⊂ P∗

Γ whose elements are regular.

Proof of the sublemma. Let Mi
Γ be a subset of MΓ over which the universal curve

UΓ is trivial, and U iΓ the restriction of UΓ to Mi
Γ. For each uncrowded map type Γ
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with underlying domain type Γ, consider the universal moduli space

Mi,univ
Γ (P∗

Γ) = {([u : C → X], PΓ)|PΓ ∈ P∗
Γ, C ⊂ U iΓ, [u] ∈ MΓ(PΓ)}.

of maps with domain in U iΓ together with a perturbation datum PΓ. By the Sard-
Smale theorem, this sublemma can be proved once we show the regularity of the
local universal moduli space. Suppose this is not the case, so that for some (u, PΓ)
the linearization of the defining equation of the universal moduli is not surjective.
Then there exists a nonzero section η in the L2-orthogonal complement of the image
of the linearized operator, or equivalently, in the kernel of the formal adjoint of
the linearized operator. By elliptic regularity, η is actually smooth. We will derive
a contradiction by showing that each component of η vanishes identically on that
component.

Step One. The form η vanishes on any nonconstant sphere component uv : Sv → X.
By our assumption on the domain-dependent Hamiltonian perturbation HΓ (see
Lemma 2.15 and Definition 2.18), HΓ vanishes on spherical components. Since the
support of the perturbation JΓ,v has nonzero intersection with Sv, the restriction ηv
of η to Sv must vanish over a nonempty open set of Sv. The unique continuation
principle for first order elliptic equation implies that ηv vanishes identically.

Step Two. The form η vanishes on any disk component uv : Sv ∼= D → X correspond-
ing to the vertex v ∈ Vert(Γ◦). Suppose that dHvuv is not identically zero. Then
dHvuv is nonzero over an nonempty open subset U ⊂ Sv with uv(U) is disjoint from
the neighborhood of D where Jv ≡ J0. By orthogonality to images of deformation of
Jv over U , ηv is zero over U . Unique continuation principle shows that ηv vanishes
identically. Suppose uv is covariantly constant, i.e., dHvuv ≡ 0. Then uv(Sv) has
a nonempty intersection with the neighborhood of |L| where one can perturb the
Hamiltonian Hv. This again shows that ηv vanishes on a nonempty open subset of
Sv, and so vanishes identically on Sv by the unique continuation principle.

Step Three. The form η vanishes on each edge Te with positive length ℓ(e) > 0.
First, for an edge Te with positive or infinite length ℓ(e) ∈ {0,∞}, if the gradient
segment ue : Te → Le is mapped into a positive dimensional target Le, then since
the support of the perturbation Fe is nonempty, it also follows that the restriction
ηe to Te vanishes identically. If Le is zero-dimensional, then by definition ηe ≡ 0.

Step Four. The form η vanishes on each ghost sphere component Sv ∼= P1,duv = 0.
Let uv : Sv → X be a constant map with value xv ∈ X. For any domain-dependent
almost complex structure, the linear map

∂Jv : Ω0(Sv, TxvX) → Ω0,1(P1, TxvX)

is surjective with kernel equal to the finite dimensional subspace of constant vector
fields ξ on Sv. However, there might be constraints coming from special points on
this component. For this we use the uncrowdedness condition. Consider a maximal
ghost sphere tree W ⊂ Vert(Γ). By the above argument for ghost disk components,
we may assume that W contains only spherical vertices v ∈ Vert•(Γ). There is at
most one special point ze on the corresponding curve CW ⊂ C which is constrained
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by (D,m); this condition puts a two-dimensional constraint on a constant vector field
ξ restricted to CW . For any other interior marking ze, one can use the deformation of
the diffeomorphismMΓ,e to allow variations in ξ while preserving the constraints. For
any node connecting CW to a nonconstant component, the constraints are transversely
cut out using the fact that the linearized operator is surjective on deformations on
the adjacent nonconstant components even vanishing at the node. Thus the form η
vanishes on components in W . End of the proof of the sublemma.

Next we construct a comeager subset of strongly regular perturbations. For
any subset W ⊂ Vert•(Γ), consider the domain type ΓW with a descent subset
W ′ ⊂ Vert•(ΓW ). The trees ΓW and Γ have isomorphic disk parts. Hence the
prechosen perturbations provides a subset P∗

ΓW ,W ′ ⊂ PΓW ,W ′ consisting perturbations

whose values are fixed precisely over strata Π′ with [Π′] ≺ [ΓW ]. Moreover, the
forgetful map (2.14) restricts to a forgetful map

πW : P∗
Γ → P∗

ΓW ,W ′

which has a right inverse given by pullback. By the same argument as the proof of
the above sublemma, there is a comeager subset P∗,reg

ΓW ,W ′ consisting of perturbations

PΓW
that regularize moduli spaces MΓW

(PΓW
) for map types ΓW that are ghost on

surface components corresponding to vertices in W ′. Define

P∗,s.reg
Γ :=

⋂
W⊂Vert•(Γ)

π−1
W (P∗,reg

ΓW ,W ′).

This subset is still comeager and all its elements are strongly regular.

Lastly, we choose perturbations for each strata extending the prechosen per-
turbations on lower-dimensional strata. We define smaller comeager subsets P∗∗

Γ
inductively as follows. If Γ is a smallest element of the equivalence class [Γ], then
define P∗∗

Γ := P∗,s.reg
Γ . Suppose for a general Γ in [Γ] one has defined P∗∗

Γ′ for all
Γ′ ≺ Γ with [Γ′] = [Γ]. Define

P∗∗
Γ := P∗,s.reg

Γ ∩
⋂
Γ′≺Γ

[Γ′]=[Γ]

π−1
Γ,Γ′(P∗∗

Γ′ ).

Here πΓ,Γ′ : PΓ → PΓ′ is the map defined by restricting to boundary strata. Then
we have defined P∗∗

Γ for all Γ in this equivalence class. The equivalence class [Γ] has
a unique maximal element Γmax. Choose an arbitrary perturbation PΓmax ∈ P∗∗

Γmax
.

By boundary restriction this choice induces PΓ for all Γ in this equivalence class. By
construction, all these PΓ extend the existing perturbations on lower-dimensional
strata. By induction, one obtains the claimed collection P . □

Remark 2.28. We could use more restricted types of Hamiltonian perturbations.
Indeed, we only need to regularize the potential constant disks at intersections of
two or more different Lagrangian submanifolds. Therefore, we only need to turn on
the Hamiltonian perturbation in a small open neighborhood of such intersections. In
particular, if there is an embedded Lagrangian submanifold L supporting different
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branes in L and L does not intersect other branes in L, then without using Hamil-
tonian perturbations the constant disks at points in L are already regular for any
almost complex structure. This condition holds in particular in the blowup case
where the exceptional collection of Lagrangian branes are supported on the same
Lagrangian torus which does not intersect the “old” branes.

2.7. Boundary strata. In this section, we describe the boundary of the moduli
spaces we use, which are those of expected dimension at most one. Fix a coherent
collection of strongly regular perturbation data P = (PΓ) and abbreviate all moduli
spaces MΓ(PΓ) by MΓ.

Definition 2.29. (a) A map type Γ is called essential if it has no broken edges
Te = Te1 ∪ Te2 , no edges Te of length zero or infinity except for the leaves
and root, no spherical components Sv, v ∈ Vert•(Γ), if all interior constraints
are either (D, 1) or b and for each disk vertex v ∈ Vert(Γ◦), the number of
interior leaves labelled by (D, 1) is equal to kω(βv) where k is the degree of
the Donaldson hypersurface.

(b) Given asymptotic data x = (x0, x1, . . . , xd) (see Definition 2.19) and i = 0, 1,
let

Md,1(x)i = Md,1(x0, x1, . . . , xd)i
be the union of moduli spaces MΓ for essential map types of expected
dimension i whose asymptotic data is x.

Remark 2.30. As in [WW] the determinant lines of the linearized operators become
equipped with orientations induced by relative spin structures. In particular, if all
strata of M(x)0 are regular then there is a map

ϵ : Md,1(x)0 → {±1}.

The following lemma classifies types of topological boundaries of one-dimensional
moduli spaces.

Lemma 2.31. Suppose P = (PΓ) is a coherent and regular collection of perturbations.
For an essential map type Γ of expected dimension zero, the moduli space MΓ(PΓ)
is compact. For a map type Γ of expected dimension one, the boundary of the
compactified one-dimensional moduli MΓ(PΓ) is the disjoint union of moduli spaces
MΠ(PΠ) where Π is a map type related to Γ by exactly one of the following operations:

(a) collapsing an edge e ∈ Edge(Π) of length zero;
(b) shrinking a finite edge e ∈ Edge(Π) to length zero or breaking into two

semi-infinite edges;
(c) in the case when the output edge e0 ∈ Edge(Γ) is not weighted, setting the

weight ρ(e) of exactly one weighted input e ∈ Edge(Γ) to be zero or one; or
(d) in the case when the output e0 ∈ Edge(Γ) is weighted, changing the weight

ρ(e) of exactly one weighted input e ∈ Edge(Γ) so that it becomes one.

Sketch of proof. It suffices to check sequential compactness. Let (Cν , uν) be a se-
quence of treed holomorphic disks representing a sequence of points in MΓ(PΓ). By a
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combination of Gromov compactness for (pseudo)holomorphic disks and compactness
of the moduli space of gradient trajectories, there is a subsequence (still indexed by
ν) that converges to a limiting treed holomorphic disk (C∞, u∞) of certain map type
Π. We first claim that the domain type Π is stable. Suppose on the contrary it is not
the case. Then, there is either a domain-unstable disk or a domain-unstable sphere
component u∞,v : Sv → X, v ∈ Vert(Π). By the stability condition, uv must be a
nonconstant map. Moreover, uv is pseudoholomorphic with respect to a constant
tamed almost complex structure J = JΠst(z) on X, where z ∈ Cst

∞ is the image of
Sv in the stabilization. On the other hand, there exists a unique maximal subtree
Γ(v) ⊂ Γ which contains no boundary edge with positive edge, such that the bubble
uv comes from energy blow up on components belonging to Γ(v). Therefore, by the
conditions of the perturbation data (see (a) of Definition 2.18), one has

J ∈ J E(Γ(v))
tame (X,ω).

Since the convergence preserves the total energy, the disk or the sphere has energy at
most E(Γ(v)). By Lemma 2.17, the J-holomorphic map uv : Sv → X is not contained
in D and must intersect D in at least three points resp. one point in the sphere resp.
disk case. Topological invariance of intersection numbers, as in Cieliebak-Mohnke
[CM07], implies that for ν sufficiently large, uv intersects with D in at least three
resp. one nearby point. Since the type Γ is essential, all these intersection points
are marked points labelled by (D, 1). The convergence implies that the intersection
points of u∞ with D must all be marked points, contradicting the assumption that
the domain of the domain Sv is unstable. Therefore, the domain type Π is stable.
Since Π ⪯ Γ, the perturbation datum PΓ induces by restriction a perturbation datum
PΠ so that [(C∞, u∞)] ∈ MΠ(PΠ).

Next we show that type of the limiting map constructed in the previous paragraph
is uncrowded. Suppose this is not the case, then letW ⊂ Vert◦(Π) be the (nonempty)
set of ghost sphere components. By the locality property, the perturbation data
PΠ descends to a perturbation PΠW

which is equal to J0 over W ′. The limiting
configuration [(C∞, u∞)] then descends to an element

[(C ′, u′)] ∈ MΠW
(PΓW

).

Since ΠW is uncrowded, the above moduli space is regular and nonempty. However,
similar to the argument of [CM07], the reduction drops the expected dimension by
at least two. This contradiction shows that Π must be uncrowded.

Finally, we claim Π has no sphere components. Indeed, each sphere component
will drop the dimension of the domain moduli space by two and Γ has no sphere
components. It follows from the dimension formula for MΓ that when dimMΓ = 0,
Π must be identical to Γ and hence MΓ is compact. When dim MΓ = 1, the only
possibly types of Π are described in the above list. □

Moreover, we distinguish the boundary strata as either true or fake boundary
components. The true boundaries are those corresponding to edge breaking and
weight changing to zero or one while the fake boundaries are those corresponding
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to disk bubbling or edges shrinking to zero. For one-dimensional moduli strata
Md,1(x)1, define

Md,1(x)1 =
⋃
Γ

MΓ

to be the union of all compactified moduli space of expected dimension one while
identifying fake boundaries. Standard gluing constructions (gluing disks or gradient
lines) show that Md,1(x)1 a topological 1-manifold with boundary and its cutoff
at any energy level (indexed by the number of interior markings) is compact. The
boundaries are strata corresponding to edge breaking and weight changing to zero or
one.

3. Fukaya categories and quantum cohomology

In this section, we introduce bulk-deformed Fukaya categories associated to a
given rational finite collection of Lagrangian immersions. Given the regularization
of the moduli spaces in the Section 2.6 above, the material in this section is fairly
straightforward adaptation of that in Fukaya-Oh-Ohta-Ono [FOOO09].

3.1. Composition maps. In this section, we apply the transversality results above
to construct Lagrangian Floer theory. In the Morse model the generators of the
Lagrangian Floer cochains are critical points of a Morse function on the Lagrangian
intersection, assumed clean. Recall for each pair (L,L′) ∈ L2, the intersection L∩L′

is a smooth manifold. We have chosen a Morse function

FL,L′ : L ∩ L′ → R.

Consider the set of all Lagrangian branes supported on L, i.e.,

L̂ :=
{
L̂→ L | L ∈ L

}
For each pair of branes (L̂, L̂′), denote the set of critical points on the intersection

I(L̂, L̂′) =

{
crit(FL,L′), L̂ ̸= L̂′,

crit(FL,L′) ∪ Ihu
L̂
, L̂ = L̂′,

where Ihu
L̂

contains 1
L̂
and 1

L̂
for all connected component c of L (see (2.9) and

(2.10)). The “Morse indices” of the extra generators are defined by

indexMorse(1L̂) = dim(L ∩ L′) + 1, indexMorse(1L̂) = dim(L ∩ L′).

3.1.1. Gradings. In order to obtain graded Floer cohomology groups a grading on
the set of generators is defined as follows. Let N ∈ Z be an even integer and let

(3.1) πN : LagN (X) → Lag(X)
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be an N -fold Maslov cover of the bundle of Lagrangian subspaces as in Seidel [Sei00];
we always assume that the induced 2-fold cover Lag2(X) → Lag(X) is the bundle of
oriented Lagrangian subspaces. A ZN -grading of L ∈ L is a lift

(3.2) LagN (X)

��

L //

ϕNL
;;

Lag(X)

where the horizontal arrow is the map assigning to each x ∈ L its tangent space.
Given such a grading, there is a natural ZN -valued map

I(L̂0, L̂1) → ZN , x 7→ |x|
defined as follows. Recall that for each pair of paths λ0, λ1 : [a, b] → Lag(TxX), there
is a Maslov index

(3.3) µ(λ0, λ1) ∈
1

2
Z

which is an integer if and only if dim(λ0(a)∩λ1(a)) ≡ dim(λ0(b)∩λ1(b)) mod 2. For

any x ∈ I(L̂0, L̂1), choose two paths

λ̃0, λ̃1 : [a, b] → LagN (TxX)

such that λ̃0(a) = λ̃1(a) and

λ̃0(b) = ϕNL0
(TxL0), λ̃1(b) = ϕNL1

(TxL1)

with notation from (3.2). Define

|x| := n

2
− µ(πN (λ̃0), π

N (λ1)) +
1

2
dim(L0 ∩ L1)− indexMorse(x) ∈ Z/NZ.

with notation from (3.3) and (3.1). For example, when L0 = L1 and x is an ordinary
critical point, then |x| is the dimension of the stable manifold of x under the negative
gradient flow.

3.1.2. Weighted counting. The moduli space of holomorphic disks is non-compact,
and to remedy this the structure maps of the Fukaya algebra are defined over Novikov
rings in a formal variable. The Floer cochain space is a free module over generators
corresponding to Morse critical points and the two additional generators from (2.10)

necessary to achieve strict units. Given two branes L̂, L̂′ let

CF •(L̂, L̂′) =
⊕

x∈I(L̂,L̂′)

Hom(L̂x ⊗Λ× Λ, L̂′
x ⊗Λ× Λ)

the sum of space of linear maps between the fibers of the local systems. The space
of Floer cochains is naturally ZN -graded by

CF •(L̂, L̂′) =
⊕
k∈ZN

CF k(L̂, L̂′), CF k(L̂, L̂′) =
⊕

x∈Ik(L̂,L̂′)

Λx.
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The q-valuation on Λ extends naturally to CF •(L̂, L̂′):

valq : CF
•(L̂, L̂′)− {0} → R,

∑
x∈I(L̂,L̂′)

c(x)x 7→ min(valq(c(x))).

The local systems contribute to the coefficients of the composition maps in the
expected way. For any holomorphic treed disk u : C → X with boundary in some

collection L̂ = (L̂0, . . . , L̂d) and mapping the corners to x0, . . . , xd, generators

ai ∈ Hom(L̂i−1,xi ⊗Λ× Λ, L̂i,xi ⊗Λ× Λ)

denote by

(3.4) y(u) = Td−1ad−1 . . . a1T0a0T0 ∈ Hom(L̂0,x0 ⊗Λ× Λ, L̂d,x0 ⊗Λ× Λ)

the product of parallel transports Ti along the restrictions uv|(∂C)i. For more com-
plicated treed disks the holonomy is defined recursively starting with the components
furthest away from the root.

Definition 3.1. Fix a coherent collection of strongly regular perturbation P = (PΓ)Γ
(whose existence is provided by Theorem 2.26). For each d ≥ 0 define higher
composition maps

md : CF
•(L̂d−1, L̂d)⊗ . . .⊗ CF •(L̂0, L̂1) → CF •(L̂0, L̂d)[2− d]

on generators by the weighted count of treed disks by

(3.5) md(ad, . . . , a1) =
∑

x0∈I(L̂0,L̂d)

∑
u∈Md,1(x0,...,xd)0

(−1)♡wt(u)

where the weightings

(3.6) wt(u) := c(u, b)p(u)y(u)qA(u)o(u)d(u)−1

are defined as follows:

• if the domain type of u is Γ, then

(3.7) d(u) := (kA(u))! = (#Leaf•(Γ))!

which is the number of permutations of interior markings ze mapped into D;
• the coefficient c(u, b) is a product of coefficients ci of the bulk deformation,
with product taken over interior leaves mapping to b,

• the coefficient p(u) is the coefficient pi of the multivalued perturbation PΓ of
(5.3) evaluated at the branch containing u, and

• y(u) is the holonomy of the local system as defined in (3.4);
• the exponent A(u) is the symplectic area of the map u.
• the sign o(u) arises from the choice of coherent orientations and the overall
sign ♡ is given by

(3.8) ♡ =
d∑
i=1

i|xi|.
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We first define a curved A∞ category with infinitely many objects supported on
the given Lagrangian submanifolds. Later, we will consider a modified definition of
the objects so that the A∞ category is flat.

Theorem 3.2. For any strongly regular coherent perturbation system P = (PΓ) the
maps (md)d≥0 define a (possibly curved) A∞ category Fuk∼L(X, b) with

(a) the set of objects given by Ob (Fuk∼L(X, b)) := L̂,
(b) the set of morphisms from L̂ to L̂′ given by Hom(L̂, L̂′) := CF •(L̂, L̂′),
(c) the composition maps (md)d≥0 defined by Definition 3.1, and

(d) for each object L̂ the strict unit equal to 1
L̂
∈ CF 0(L̂, L̂).

Proof. We must show that the composition maps md satisfy the A∞-associativity
equations (1.7). Up to sign the relation (1.7) follows from the description of the
boundary in Lemma 2.31 of the one-dimensional components. The strict unit axiom
follows in the same way as in [CW], by noting that by definition for any edge
e ∈ Edge (Γ) the perturbation data is pulled back under the morphism of universal
moduli spaces forgetting e and stabilizing (whenever such a map exists). □

Remark 3.3. The A∞ homotopy type of Fuk∼L(X, b) (as a curved A∞ algebra with
curvature with positive q-valuation over the Novikov ring Λ≥0) is independent of
the choice of almost complex structures, perturbations,9 stabilizing divisors, and
depend only on the isotopy class of bulk deformation. The argument uses a moduli
space of quilted disks with seams labelled by the diagonal, as in [CW, Section 5.5].
Suppose first that the Donaldson hypersurface is fixed. Let JΓ,t be an isotopy of
almost complex structures, and bt be an isotopy of cycles b0 to b1. Requiring that
the markings map to bt, the treed disks u|Sv are JΓ,t-holomorphic on components at
distance d(v) = 1/(1− t)− 1/t as in Equation (A.1) produces a moduli space fibered
over the multiplihedron as in [CW, Section 5.5] producing a homotopy equivalence
given by a collection of maps

ϕd : CF
•(L̂d−1, L̂d)0 ⊗ . . .⊗ CF •(L̂0, L̂1)0 → CF •(L̂0, L̂d)1[1− d]

as in Seidel [Sei08b, Section 1d] where the groups CF •(L̂k, L̂k+1)t are the morphism
spaces for the categories defined using the data for the given value t in the family. The
independence from the choice of Donaldson hypersurface is shown in the appendix. We
do not address the question of invariance under Hamiltonian isotopy of Lagrangians
and the relation to the Fukaya categories defined by other methods, and dependence
only on the cobordism class of the cycle b, and so the homology class [b].

3.1.3. Maurer-Cartan equation, potential function, and Floer cohomology. Floer
cohomology is defined for projective solutions to the Maurer-Cartan equation. For

each L̂ ∈ Ob(Fuk∼L(X, b)), the element

m0(1) ∈ CF •(L̂, L̂)

9We do not use Hamiltonian perturbations of Lagrangians in this paper, so the Fukaya category
we use here is defined over the Novikov ring Λ≥0 as opposed to the Novikov field Λ.
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is the curvature of the Fukaya algebra CF •(L̂, L̂). Its q-valuation valq(m0(1)) is
positive because the bulk deformation b and the Lagrangian submanifolds do not

intersect. The Fukaya algebra CF •(L̂, L̂) is called flat if m0(1) vanishes and pro-
jectively flat if m0(1) is a multiple of the identity 1

L̂
. 10 Consider the sub-space of

CF •(L̂, L̂) consisting of elements with positive q-valuation with notation from (1.4):

CF •(L̂, L̂)+ =
⊕

x∈I(L̂,L̂)

Λ>0x.

Define the Maurer-Cartan map

µ : CF odd(L̂, L̂)+ → CF •(L̂, L̂), b 7→ m0(1) +m1(b) +m2(b, b) + . . . .

Let MC(L̂) denote the space of weak solutions to the Maurer-Cartan space

MC(L̂) := {b ∈ CF odd(L̂, L̂) | µ(b) =W (b)1
L̂
, W (b) ∈ Λ}.

The value W (b) for b ∈MC(L̂) defines the disk potential

W :MC(L̂) → Λ.

Definition 3.4 (Weakly unobstructed branes and Floer cohomology).

(a) A weakly unobstructed brane is a triple L = (L̂, b) where L̂ ∈ L̂ and b ∈
MC(L̂).

(b) The set of all weakly unobstructed branes supported on L is denoted by

MC(L) :=
{
L = (L̂, b) | L̂ ∈ L̂, b ∈MC(L̂)

}
.

(c) The Floer cohomology of a weakly unobstructed brane L is

HF •(L,L) := ker(mb
1)/im(mb

1)

where mb
1 is defined by

mb
1 : CF

•(L̂, L̂) → CF •(L̂, L̂), mb
1(a) =

∑
k1,k2≥0

m1(b, . . . , b︸ ︷︷ ︸
k1

, a, b, . . . , b︸ ︷︷ ︸
k2

).

3.1.4. Flat A∞ category and spectral decomposition. Given a curved A∞ category,
flat A∞ categories are obtained by restricting to particular values of the curvature.

Definition 3.5. (Flat A∞ category) Let F∼ be a strictly unital curved A∞ category
over Λ. The flat A∞ category F associated to F∼ is defined as the disjoint union

F ♭ :=
⊔
w∈Λ

Fw

where each component Fw has the set of objects

Ob(Fw) :=
{
L = (L̂, b) | L̂ ∈ Ob(F∼), b ∈MC(L̂), W

L̂
(b) = w

}
,

10With these definitions, the Fukaya algebra is rarely projectively flat, because any disk with
positive energy has an unforgettable output, while the strict unit 1L only labels a forgettable
semi-infinite edge. In such cases one needs a nontrivial weakly bounding cochain.
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the set of morphisms

Hom(L,L′) := Hom(L̂, L̂′),

and the higher compositions for d ≥ 1

md(ad, . . . , a1) =
∑

k0,...,kd≥0

md+k0+...+kd(bd, . . . , bd︸ ︷︷ ︸
kd

, ad, . . . , b1, . . . , b1︸ ︷︷ ︸
k1

, a1, b0, . . . , b0︸ ︷︷ ︸
k0

).

Define m0 = 0. If Ob(Fw) ̸= ∅, then we say Fw is an eigen-subcategory of F .

Proposition 3.6. For any w ∈ Λ, the category Fw is a flat strictly unital A∞
category as defined in (1.5).

Proof. The flatness condition m0(1) = 0 holds by definition. The A∞ relation

(3.9) 0 =
∑

md−i+1(bd, . . . , bd︸ ︷︷ ︸
id

, ad, . . . , , bj+i

mi(bj+i, . . . , bj+i︸ ︷︷ ︸
kj+i

, aj+i, . . . , aj+1, bj+1, . . . , bj+1︸ ︷︷ ︸
kj

),

. . . , bj+1, aj+1, . . . , b1, . . . , b1︸ ︷︷ ︸
i1

, a1, b0, . . . , b0︸ ︷︷ ︸
i0

)

follows from the A∞ relation for F∼, the strict identity relation, and the inclusion∑
i≥0

mi(bj , . . . , bj︸ ︷︷ ︸
i

) ∈ span(1
L̂
) ∀j = 0, . . . , d. □

In the case of the bulk deformed curved Fukaya category Fuk∼L (X, b), we have the
associated flat category.

Definition 3.7. Define a flat A∞ category

Fuk♭L(X, b) :=
⊔
w∈Λ

FukL(X, b)w

whose set of objects is the disjoint union of all objects in the eigen-subcategories,
and the space of morphisms between objects in different eigen-subcategories is the
zero vector space. More generally, given a subset L ⊂MC(L), denote by

Fuk♭L(X, b)

be the full A∞-subcategory with the set of objects equal to L.

3.2. Hochschild (co)homology. Hochschild homology of a category is the homol-
ogy of a contraction operator on the space of all composable sequences of morphisms.
In the case of curved A∞ categories, there seems to be no good definition at the
moment, although we understand from Abouzaid that he and Varolgunes and Gro-
man are developing such a theory. For our purposes it suffices to use the Hochschild
theory for flat categories in combination with a spectral decomposition. We first
recall the definition from, for example, [Sei08a, Section 2].
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Definition 3.8. Let F be a flat ZN -graded A∞-category.

(a) As in Seidel [Sei08a, Section 2] an A∞ bimodule M over (F ,F) consists of
(i) a map assigning to any pair of objects L,L′ a graded vector space

M(L,L′) and
(ii) multiplication maps for integers d, d′ ≥ 0 and objects L0, . . . ,Ld,

L′
0, . . . ,L

′
d′ of F

(3.10) md,d′ : Hom(Ld,Ld−1)⊗ · · · ⊗Hom(L1,L0)⊗M(L0,L
′
0)⊗

Hom(L′
0,L

′
1)⊗ · · · ⊗Hom(L′

d′−1,L
′
d′) → M(Ld,L

′
d′)

satisfying the A∞ bimodule axiom, see [Sei08a, Section 2].
(b) Given an A∞ bimodule M over (F ,F), the space of Hochschild chains with

values in M is the direct sum

(3.11) CC•(F ,M) =
⊕

L0,...,Ld∈Ob(F)

Hom(Ld−1,Ld)⊗

. . .⊗Hom(Li+1,Li+2)⊗M(Li,Li+1)⊗Hom(Li−1,Li)⊗ . . .

⊗Hom(L1,L2)⊗Hom(L0,L1)⊗Hom(Ld,L0).

In particular F is itself a bimodule over (F ,F), called the diagonal bimodule.
The Hochschild chain group in this case is denoted by CC•(F). A generator
of the summand

Hom(Ld−1,Ld)⊗ · · · ⊗Hom(L0,L1)⊗Hom(Ld,L0)

is typically denoted by ad ⊗ · · · ⊗ a0.
(c) The Hochschild differential on CC•(F) is defined by summing over all possible

contractions:

(3.12)

δCC : ad ⊗ . . .⊗ a0 7→
∑
i+j≤d

(−1)§md−j−1(ai−1 ⊗ . . .⊗ ai+j+1)⊗ ai+j ⊗ . . .⊗ ai

+
∑
i+j≤d

(−1)✠
i−1
0 ad ⊗ . . .⊗ ai+j+1 ⊗mj+1(ai+j ⊗ . . .⊗ ai)⊗ ai−1 ⊗ . . .⊗ a0

where ✠l
k is given by (1.8) and

§ := ✠i−1
0 (1 +✠d

i ) +✠i+j
i .

For F flat as above denote by

HH•(F) :=
ker(δCC)

im(δCC)

the homology of δCC .
(d) For a curved A∞ category F∼ let

F ♭ :=
⊔
w∈Λ

Fw
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the flat A∞ category obtained via the spectral decomposition. Denote by

(3.13) CC•(F∼) := CC•(F ♭) ∼=
⊕
w∈Λ

CC•(Fw)

the direct sum over possible values w of the potential of the Hochschild
homologies of the flat categories obtained by fixing the value of the curvature.

The Hochschild cohomology is defined for a flat A∞ category as follows. A
Hochschild cochain τ on a flat A∞ category F valued in F is a collection

(3.14) τ := (τL,d)L∈Ob(F♭),d≥0

where τL,d is a linear map

τL,d :
⊕

L1,...,Ld

Hom(Ld−1,Ld)⊗ . . .⊗Hom(L,L1) → Hom(L,Ld).

The space CC∗(F ,F) is an A∞ algebra whose composition maps are

(3.15) (m1
CC∗τ)d(ad, . . . , a1) =

∑
i,j

(−1)†md−j+1
F (ad, . . . , ai+j+1, τ

j(ai+j ,

. . . , ai+1), ai, . . . , a1, )−
∑
i,j

(−1)♣τd−j+1(ad, . . . , ai+j+1,

mj
F (ai+j , . . . , ai+1), ai, . . . , a1),

where

† = (|τ | − 1)(|a1|+ . . .+ |ai1+...+ik−1
| − i1 − . . .− ik−1), ♣ := i+

i∑
j=1

|aj |+ |τ | − 1,

and for e ≥ 2

(3.16)

(me
CC∗(τe, . . . , τ1))

d(ad, . . . , a1) :=
∑
i1,...,ie
j1,...,je

(−1)◦m
d−

∑
jk

F (ad, . . . , aie+je+1, τ
je
e (. . . ), aie ,

. . . , ai1+j1+1, τ
j1
1 (ai1+j1 , . . . , ai1+1), ai1 , . . . , a1, )

where

◦ :=
e∑
j=1

ij∑
k=1

(|τj | − 1)(|ak| − 1).

The boundary operator m1
CC∗ squares to zero, and we denote by HH•(F) :=

HH•(F ,F) the Hochschild cohomology of F valued in F .

Remark 3.9. The Hochschild cohomology is equipped with a natural identity. Suppose
the A∞ category is strictly unital. Consider the cochain 1F ∈ CC0(F ,F) defined by

1F ,d(ad ⊗ · · · ⊗ a1) =

{
0, d > 0,
1L, d = 0.
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Then m1
CC(1F) = 0 and the cohomology class of 1F is the unit of the Hochschild

cohomology ring.

Remark 3.10. Any A∞ functor Φ : F → F ′ (between flat A∞ categories) induces a
map of Hochschild homologies HH•(Φ) : HH•(F ,F) → HH•(F ′,F ′) as in [Gan12,
Section 2.9], depending only on the homotopy type of the functor, and the resulting
maps are functorial for A∞ functors with respect to composition. In particular, the
isomorphism class of the Hochschild homology of the Fukaya category HH•(F ,F)
is independent of the is independent of the choice of almost complex structures,
perturbations, stabilizing divisors, and depend only on the isotopy class of bulk
deformation. Similarly the Hochschild cohomology is the cohomology of the space of
endomorphisms of the identity functor, and so independent up to isomorphism of all
such choices.

Remark 3.11. Any A∞ homotopy equivalence Φ between curved A∞ categories
F∼,G∼ induces homotopy equivalences between eigencategories Φw : Fw → Gw for

each w. The A∞ morphism axiom implies that for any object L̂ ∈ Ob(F∼) the

induced map on Maurer-Cartan spaces Φ : MC(L̂) → MC(Φ(L̂)) preserves the

potential function. For any object L = (L̂, b) ∈ Ob(Fw) we obtain an object

Φw(L) := (Φ(L),Φ(b)) ∈ Ob(Gw).
The induced map of morphisms spaces Hom(L,L′) → Hom(Φw(L),Φw(L

′)) then
satisfy the A∞ homotopy axiom with vanishing curvature terms.

Remark 3.12. The length filtration induces a spectral sequence computing the
Hochschild (co)homology of any flat A∞ category F with first page the Hochschild
(co)homology of the (co)homology category H(F) whose morphism groups are
H(Hom(L1,L2)), see [GJ90, Lemma 5.3].

3.3. Quantum cohomology. Before discussing the open-closed and the closed-open
maps, we first give a construction of quantum cohomology using the Morse model
and Cieliebak-Mohnke’s method which can be incorporated into the constructions
of Fukaya category and the open-closed/close-open maps. We first extend the
terminology of trees and treed disks to include spheres.

Definition 3.13. (a) A domain type of treed spheres consists of a rooted tree Γ
with empty disk part Γ◦ and a decomposition

Leaf(Γ) = Leafgrad(Γ) ⊔ Leafconst(Γ)

of the set of leaves into subsets of gradient and constrained leaves (which
eventually will correspond to leaves that map to gradient trajectories in X,
or leaves that map to the stabilizing divisor or bulk deformation.) A domain
type of treed spheres Γ is stable if the valence of each vertex v ∈ Vert(Γ) is at
least three.11

11To define the quantum multiplication we do not need to allow finite edges to acquire length.
However it is necessary for the proof of the associativity.
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(b) A treed sphere C = S ∪ T of Γ is obtained from a nodal sphere S′ whose
combinatorial type is described by Γ by attaching a copy of (−∞, 0] for each
gradient leaf and an interval [0,+∞) for the output. The surface part S is
the union of spherical components Sv labelled by vertices v ∈ Vert(Γ) while
the tree part T is the union of these semi-infinite intervals Te, e ∈ Edge(Γ).

(c) Given a stable domain type of treed spheres Γ, the universal curve UΓ is
formally the disjoint union

UΓ =
⊔

[C]∈MΓ

C.

A natural partial order among domain types can be defined in a similar way as
Section 2.

Quantum cohomology will be defined via the choice of a Morse-Smale pair on
the manifold. Each Morse-Smale pair (fX , hX) on X induces a Morse-Smale-Witten
complex

(CM•(fX , hX), δMorse)

generated by critical points over Λ and graded by 2n minus the Morse index; the
Morse differential δMorse counts trajectories of the negative gradient flow of fX and
hence increases the grading. The cohomology HM•(fX , hX) of δMorse is isomorphic
to the (co)homology of X over Z. More precisely, if

∑
cixi, where ci ∈ Z and

xi ∈ crit(fX) is a Morse cocycle of degree k, then the linear combination∑
i

ciW
s(xi)

of stable manifolds is a 2n− k-dimensional pseudocycle (see Schwarz [Sch99]), hence
defines a k-dimensional cohomology class.

3.3.1. Perturbations and transversality. We introduce domain-dependent perturba-
tions on the universal curves similar to those before. Let D ⊂ X be a Donaldson
hypersurface and let J0 ∈ Jtame(X,ω) be a tamed almost complex structure satis-
fying (b) of Lemma 2.10. In the case of quantum cohomology, for treed spheres of
domain type Γ, the perturbation data PΓ include a domain-dependent almost complex
structure JΓ which are sufficiently close to J0, a domain-dependent perturbation of
the Morse function fX , and diffeomorphisms MΓ of X.

Quantum multiplication is defined by counting treed spheres with two gradient
leaves Te1 , Te2 and one output Teout . Let Γn bea domain type with only one vertex
v ∈ Vert(Γn) and n+ 3 leaves in total. When n = 0, Γ0 is a trivalent graph. In this
case we set JΓ0 ≡ J0 and perturb fX away from infinities of the semi-infinite edges.
Such a perturbation induces two perturbations W u

e1(x), W
u
e2(x) of each unstable

manifold W u(x) of fX and one perturbation W s
eout(x) of each stable manifold W s(x).

This perturbation of fX on the trivalent graph induces perturbations of fX on all
UΓn . Furthermore, when n ≥ 2, we require that JΓn and MΓn do not depend on the
positions of the gradient leaves. More precisely, let Γ′

n be the domain type obtained
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from Γn by forgetting the two gradient, leaves (which is still stable). Let UΓn → UΓ′
n

denote the naturally induced contraction. We require that JΓn and MΓn are equal
to pullbacks of perturbations on UΓ′

n
. We also require the locality property: for each

Π ≺ Γn, let PΠ be the restriction of PΓn to UΠ ⊂ ∂UΓn . For each v ∈ VertΠ, the
restriction of PΠ to UΠ,v is equal to the pullback from a function defined on UΠ(v)

(see the relevant notations in Definition 2.13).

One can achieve transversality in the same way as the case for treed disks (see
Theorem 2.26). An essential map type Γ with underlying domain type Γn contains
a labelling of critical points x1, x2, xout at the gradient leaves of Γn, n1 constrained
leaves labelled by D and n2 = n− n1 constrained leaves labelled by components of
the bulk deformation b, and a homology class β ∈ H2(X;Z) satisfying n1 = kω(β)
(where k is the degree of the Donaldson hypersurface). A generic perturbation of fX
on the trivalent graph Γ0 and perturbing JΓn ,MΓn for each n ≥ 1, makes each moduli

space MQH
Γ (PΓn) transverse; and, in addition, if index Γ = 0 resp. index Γ = 1,

then MQH
Γ (PΓn) is compact resp. compact up to at most one breaking of gradient

trajectories.

3.3.2. Bulk deformed quantum cohomology ring. Now we repeat the Piunikhin-
Salamon-Schwarz construction [PSS96] under the current setting. Fix critical points
x1, x2, x∞ ∈ crit(fX). Let Γ be an essential map type with incoming gradient leaves
labelled by x1, x2 and outgoing leaf labelled by x∞. If the (only) vertex of Γ is labelled
by β ∈ H2(X;Z), then the expected dimension of the moduli space MΓ(PΓ) is

index Γ = 2c1(β)− degx1 − degx2 + degx∞.

Let

MQH
2,1 (x1, x2, x∞)0

be the union of all moduli spaces MQH
Γ (PΓ) with labelled map types Γ having index

zero. Define a bilinear map

⋆b : CM
•(fX , hX)⊗ CM•(fX , hX) → CM•(fX , hX)

whose values on the generators x1 ⊗ x2 are

⋆b(x1, x2) =
∑

x∞∈crit(fX)

 ∑
[C,u]∈MQH

2,1 (x1,x2,x∞)0

c(u, b)qA(u)o(u)d(u)−1

 x∞

where A(u) is the symplectic area of u, o(u) ∈ {1,−1} is the sign determined by
the orientation, d(u) = (kA(u))!, and c(u, b) is the coefficient determined by the
interior leaves mapped to components of the bulk deformation. Strong transversality
implies that the above is a finite sum for each area bound. Arguments involving the
boundary of the one-dimensional moduli spaces show that ⋆b is a chain map and
hence induces a bilinear map

⋆b : HM
•(fX , hX)⊗HM•(fX , hX) → HM•(fX , hX).
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A cobordism argument shows that the operation ⋆b on cohomology is independent of
the choice of perturbation data and the choice of the Morse-Smale pair. Lastly, by
allowing treed sphere with three incoming gradient leaves and interior edges with
positive lengths, one can prove that the quantum multiplication ⋆b is associative.
We denote this graded unital ring

QH•(X, b) = (HM•(fX , hX), ⋆b)

and call it the b-deformed quantum cohomology ring of X.

The quantum cohomology has a natural identity element defined as follows. Since
X is connected, one can choose fX such that it has a unique critical point xmax of
maximal Morse index. It is clearly a cochain and the fact that its cohomology class
is the identity follows from the fact that the Morse–Smale pairs on gradient leaves
are fixed and the perturbation respects forgetting gradient leaves.

Remark 3.14. The quantum cohomology QH•(X, b) is also independent of the choice
the stabilizing divisor. The relevant constructions are carried out in the Appendix.

3.3.3. Quantum multiplication by submanifolds. We will use a particular chain-level
definition of the quantum multiplication by the class of a submanifold. Recall that
the class of a submanifold may be expressed in terms of the stable manifolds as
follows. If Y ⊂ X be an oriented submanifold then

[Y ] =

[∑
i

cixi

]
∈ H(X)

as in (3.3). Each coefficient ci may be written as a signed count of intersections

ci = #(Y ∩W u(xi))

may be taken to be the number of intersection points of Y with W u(xi). Equivalently,
ci is the number of rigid gradient trajectories connecting Y with xi, counted up to
sign.

We may express quantum multiplication by the class of a submanifold in terms of
treed holomorphic spheres with a constraint in the submanifold, as follows. Above
quantum multiplication is defined by counting treed holomorphic spheres with two
inputs and one outputs all of which are labelled by Morse critical points of fX : X → R.
Consider the space of configurations of treed spheres u : C → X where the first
incoming interior leaf has been replaced a marking z• that maps to u(z•) ∈ Y . Let Γ
be a combinatorial type of treed disks of this type, i.e., one interior incoming leaf Te•,1 ,
one interior outgoing leaf Te•,0 , a number of normal interior markings ze and one
auxiliary marking z•. We do not allow interior edges to acquire length. A map type
Γ refining Γ consists of homology classes β(v) ∈ H2(X) ∪H2(X,L) labelling vertices
v ∈ Vert(Γ) and labelling leaves e ∈ Edge(Γ) indicating the limit of the corresponding
Morse trajectory and the type of weighting, and for the auxiliary marking z• a label
of either Y , Y ∩ D, or Y ∩ b indicating the constraint at that marking. A map
type Γ is essential if there are no broken edges, no sphere components, all normal
interior markings ze are labelled by either (D, 1) or b, and the auxiliary marking z•
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labelled by Y , and the number of interior markings labelled by (D, 1) is the expected
number k

∑⟨β(v), [ω]⟩. Let PΓ be a perturbation datum defined on the universal
moduli space UΓ which does not depend on the position of the auxiliary marking.
Let MΓ(PΓ) be the moduli space of treed spheres of map type Γ. For generic PΓ

each zero-dimensional moduli space MΓ(PΓ) with essential map type Γ is compact
and regular, and each one-dimensional component of the moduli space with essential
map types is compact up to one breaking at either the incoming interior edge or the
outgoing interior edge. Given two critical points x, x′, let

MQH(Y, x, x′)i, i = 0, 1

be the union of i-dimensional moduli spaces with essential map types with the input
and output labelled by x and x

′ respectively. Define the chain map

(3.17) Y ⋆b : CM
•(fX , hX) → CM•(fX , hX)

by

Y ⋆b (x) =
∑
x
′

∑
[u]∈MQH(Y,x,x′)

1

(kE(u))!
Sign(u)x′.

Proposition 3.15. Y ⋆b is a chain map and induces the map on cohomology

[Y ]⋆b : QH
•(X; b) → QH•(X; b).

Proof. The fact that Y ⋆b is a chain map follows by considering boundaries of 1-
dimensional moduli spaces with z• constrained to map to Y : Boundary configurations
occur when a Morse trajectory bubbles off on the incoming edge or the outgoing
edge. The equality with [Y ]⋆b in cohomology is proved by considering the moduli
space of configurations where the marking z• is replaced by leaf T• of some length
ℓ(T•) ∈ [0,∞]. In the case ℓ(T•) = ∞ one obtains (

∑
ciW

s
i (xi))⋆b, while the case

ℓ(T•) = 0 gives Y ⋆b. The other boundary configurations involve breaking off a Morse
trajectory at one of the other two edges, and we obtain

[Y ⋆b c] = [Y ] ⋆b [c]

for any cocycle c ∈ CM•(fX , hX) as desired. □

3.4. Open-closed maps. The open-closed maps, roughly speaking, are defined via
counts of treed holomorphic disks where the inputs are on the boundary (generators
of morphisms spaces of the Fukaya category) and the outputs are critical points in
the ambient symplectic manifolds. The combinatorial structure underlying the maps
that will be used to define the open-closed map combine the features of treed disks
and spheres in the construction of Floer and quantum cohomology.

3.4.1. Open-closed domains and perturbations.

Definition 3.16. (Open-closed domain type) The open-closed domain type consists
of a variation of the rooted two-colored tree where all the semi-infinite edges on the
disk part e ∈ Edge◦(Γ) are inputs, and the output eout ∈ Edge•(Γ) is an interior
semi-infinite edge and the only gradient leaf, along with the metric type ℓ and
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a weighting type wt of the boundary edges defined as follows: Similar to rooted
two-colored trees, a metric on an open-closed domain is a map

ℓ : Edgefin(Γ◦) → [0,+∞),

and the weighting is a map

wt : Edge→(Γ) → [0, 1]

that is zero on all interior semi-infinite edges. We do not require here the relation
(2.2) on weightings. The discrete datum underlying ℓ resp. w is called a metric type
resp. weighting type and denoted by ℓ resp. wt.

Open-closed domain types describe treed disks with an interior output. The
stability condition is defined in the usual way, as the absence of non-trivial infinitesimal
automorphisms. A broken open-closed domain type may have unbroken components
which are domain types of treed disks or infinite edges supporting flow lines in X;
however, we remark that there is no unbroken component that is the domain type for
treed spheres. Perturbation data for open-closed domain types extend the existing
perturbation data chosen for defining the Fukaya category and a Morse-Smale pair
(fX , hX) on X. We also require the perturbation PΓ does not depend on the position
of the gradient leaf. More precisely, we require the following: if Γ′ is the domain
type obtained by forgetting the (only) gradient leaf e on Γ and stabilization, then
with respect to the contraction map UΓ → UΓ′ , the perturbation PΓ is naturally
induced from a perturbation defined on UΓ′ . In particular, if Γ′ becomes empty, then
in PΓ = (JΓ, FΓ, HΓ,MΓ), JΓ ≡ J0, FΓ = 0, and HΓ = 0. Transversality in this case
requires that the stable manifolds of the Morse function fX be transverse to the
unstable manifolds on the Lagrangian, which can be achieved by generic choice of
fX .

3.4.2. Open-closed moduli spaces. The moduli space of open-closed maps admits a
stratification by type. An open-closed map type Γ includes an extra labelling on the
interior gradient leaf e ∈ Leafgrad(Γ) by a critical point of a chosen Morse function
fX . For any perturbation datum PΓ, a treed holomorphic disk of map type Γ consists
of a treed disk C of type Γ and a continuous map u : C → X that is a perturbed
holomorphic map on each surface component Sv ⊂ C, a perturbed negative gradient
line/ray/segment on each boundary edge, and a negative gradient ray of fX on the
out-going gradient leaf Te ∼= [0,+∞). Let MOC

Γ (PΓ) denote the moduli space of treed
holomorphic disks of map type Γ. Transversality for uncrowded strata is proved in
the same way as Lemma 2.26. As in the case of treed disks with gradient trajectories
in the Lagrangians, a version of Gromov compactness implies that the union

MOC
Γ (PΓ) =

⊔
Π⪯Γ

MOC
Π

(
PΓ|UΠst

)
over all open-closed types is a compact Hausdorff space, and only finitely many types
appear for any given energy bound. Lower strata also include (arbitrarily many)
breakings in the distinguished interior semi-infinite edge.
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Definition 3.17. An open-closed map type Γ is called essential if it has no spherical
components Sv, v ∈ Vert•(Γ) nor edges Te of length ℓ(e) zero, all interior markings
are either (D, 1) or b and for each disk component v, the number of interior mark-
ings labelled by (D, 1) is equal to kω(βv) where k is the degree of the Donaldson
hypersurface.

The following lemma can be proved in the same way as Lemma 2.31.

Lemma 3.18. Let Γ be an essential open-closed map type. If the expected dimension

of Γ is zero, then MOC
Γ is compact. If the expected dimension is one, then MOC

Γ is a
compact topological 1-manifold with boundary where the boundary strata consist of
moduli spaces MOC

Π where Π is either obtained from Γ by one of the operations listed
in Lemma 2.31, or obtained from Γ by breaking the interior semi-infinite edge once.

The open-closed map is defined by counting treed holomorphic disks whose output
edge is an interior edge. See Figure 7 for an example.

Figure 7. A typical configuration that possibly contributes to the
definition of the open-closed map. Interior markings to be mapped to
the Donaldson hypersurfaces and the bulk deformation and boundary
edges with Maurer-Cartan insertions are omitted.

Lemma 3.19. Let Γ be an essential open-closed map type with index 0. Suppose the
outgoing gradient leaf is labelled by xmin, the only critical point with minimal Morse
index. Then either MOC

Γ (PΓ) = ∅, or Γ contains exactly one incoming semi-infinite
edge labelled by a critical point of fL : L→ R for some L ∈ L with minimal Morse
index.

Proof. Let Γ′ be the domain type obtained from Γ by forgetting the gradient leaf
and stabilization. If Γ′ ̸= ∅, then Γ induces a map type Γ′ with negative index. Since
the perturbation PΓ does not depend on the position of the gradient leaf, it induces
a perturbation PΓ′ on UΓ′ . As MOC

Γ′ (PΓ′) = ∅ by transversality, MOC
Γ (PΓ) = ∅.

Therefore, Γ′ = ∅. As a consequence, Γ has one or two incoming semi-infinite edges
and no interior constrained leaves. This implies that Γ has zero energy. Hence any
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configuration in MOC
Γ (PΓ) is a constant map (since no Hamiltonian perturbation in

this case) on the surface part. If Γ has two boundary inputs, then MOC
Γ (PΓ) cannot

be zero-dimensional. Hence Γ has only one input. By the zero index condition, the
input must be labelled by a critical point of fL : L→ R for some L ∈ L with minimal
Morse index. □

We introduce the following notation for the moduli spaces with fixed limits along
the semi-infinite edges. Suppose

xd ∈ I(L̂d−1, L̂d), . . . , x1 ∈ I(L̂d, L̂1), x ∈ crit(fX).

For i = 0, 1, denote

MOC
d,1 (x1, . . . , xd, x)i :=

⋃
Γ

MOC
Γ (PΓ)

where the union is taken over all open-closed map types Γ of expected dimension i
whose boundary inputs are labelled by x1, . . . , xd (in counterclockwise order) and
the outgoing interior leaf is labelled by x.

3.4.3. The open-closed map. Recall that we have fixed a collection of Lagrangian sub-
manifolds L from which we have constructed a curved A∞ category Fuk∼L (X, b) and

an associated flat A∞ category Fuk♭L(X, b). Given a subset of weakly unobstructed

branes L ⊂ MC(L) we have a full subcategory Fuk♭L(X, b) whose objects are the
branes L.

Definition 3.20 (Open-closed map). Write for simplicity

CC•(Fuk
♭
L(X, b)) := CC•(Fuk

♭
L(X, b),Fuk

♭
L(X, b)).

Define the bulk-deformed open-closed map

(3.18) OC∼
d (b) : CC•(Fuk

♭
L(X, b)) → CM•(fX , hX)

ad ⊗ · · · ⊗ a1 7→
∑

x∈crit(fX)

∑
[u]∈MOC

d,1 (x1,...,xd,x)0

(−1)♡+|xd(◦)|wt(u)x

with weightings as in (3.6), but with the product of parallel transports and generators
a1, . . . , ad now an element of Λ. The chain-level open-closed map OC(b) is the direct
sum OC∼

d deformed by the Maurer-Cartan data on each Lagrangian brane:

OC(b) : CC•(Fuk
♭
L(X, b)) → CM•(fX , hX),

ad ⊗ . . .⊗ a1 7→∑
j1,...,jd≥0

OC∼
d+j1+···+jd(bd, . . . , bd︸ ︷︷ ︸

jd

, ad, , . . . , , a3, b2, . . . , b2︸ ︷︷ ︸
j2

, a2, b1, . . . , b1︸ ︷︷ ︸
j1

, a1)

where ai ∈ Hom(L,Li) and Li = (L̂i, bi).
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Proposition 3.21. The open-closed map OC(b) : CC•(Fuk
♭
L(X, b)) → CM•(fX , hX)

is a chain map, that is,

OC(b) ◦ δCC•(b) = δMorse ◦OC(b)
where δCC•(b) is the Hochschild differential on CC•(Fuk

♭
L(X, b)). Therefore OC(b)

induces a map between (co)homology

[OC(b)] : HH•(Fuk
♭
L(X, b)) → HM•(fX , hX) ∼= QH•(X, b).

Sketch of proof. The identity follows from the description of the boundary strata
of open-closed moduli spaces MOC

d,1 (a1, . . . , ad, x)1 in Lemma 3.18 with verification

of signs. We remark that the terms involving the curvature m0(1) vanish, since by

assumption the output of m0(1) is a multiple w1
L̂i

is the identity of each brane L̂i.

The strict identity axiom implies that OC vanishes except in the case of two inputs,
in which case the two terms involving m0(1) cancel. □

Remark 3.22. Continuing Remark 3.3, the open-closed map is independent of the
choice of the stabilizing divisor, the perturbation, and only depends on the isotopy
class of the bulk deformation. The proof of independence uses a moduli space of
quilted holomorphic disks shown in Figure 8. Each domain C is a collection of

(a)

(b)

(c)

Figure 8. Curve types (a), (b), (c) that can occur on the boundary
of a one-dimensional moduli space of quilted disks with concentric
seam (center).

disks Sv, v ∈ Vert(Γ) possibly with an additional seam which is an embedded circle
Qv ⊂ Sv either tangent to a single point on the boundary ∂Sv, or a concentric
dilation of the boundary circle Qv towards the outgoing marking, as in Figure 8.
Given an isotopy of Donaldson hypersurfaces Dt ⊂ X, t ∈ [0, 1] the resulting moduli
spaces with d boundary inputs and one interior output are denoted Md,1(L,Dt). On
the components without seams ”before” the seam, with respect to the ordering of
components starting with the incoming edges, the complex structure, divisor, and
bulk deformation used are J0, D0, b0, while on components ”after” the seam those
used are J1, D1, b1.
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The one-dimensional components of the moduli spaces so defined are compact
one-manifolds with boundary corresponding to three types of configurations: (a)
Configurations u : C → X where the inner seam Q has ”bubbled off” onto the
boundary ∂S creating a number of quilted disks with seams tangent to the boundary
(b) configurations u : C → X where the inner seam Q has collapsed onto the output
inner marking and (c) configurations u : C → X where an unquilted disk Sv has
broken off.

The description of the boundary configurations gives a chain homotopy as follows.
Configurations of the first type (a) contribute to the map

OC(b)1 ◦ CC•(ϕ) : CC•(Fuk
♭
L(X, b)0) → CM(fX , hX)

while configurations of the second type are exactly those of OC0. Configurations of
the third type are of the form OC• ◦ δ where OC• is a variant of the open closed map
(shifted by degree) that counts rigid treed quilted disks where the radius of the seam
is allowed to vary between 0 and 1. Restricted to Hochschild cycles, contributions of
this type vanish giving an equality between OC0 and OC1 ◦HH•(ϕ). Since HH•(ϕ)
induces an isomorphism of Hochschild homologies by Remark 3.10, this gives an
identification of the images.

3.5. Spectral decomposition under open-closed map. In this subsection, we
prove Theorem 1.7 in the introduction which says that the open-closed map respects
the spectral decomposition of the Fukaya category and quantum cohomology. The
components in the spectral decomposition of the quantum cohomology may be viewed
as generalized eigen-spaces of quantum multiplication by either the symplectic class
[ω] or the first Chern class c1(X). To work with the the latter viewpoint, we need
the additional assumption that c1(X) is representable in the following sense: We say
that c1(X) is representable with respect to L if some multiple of the Poincaré dual
of c1(X) can be represented by a smooth submanifold Y in X disjoint from |L|, so
that for each component L ∈ L the submanifold Y represents the Maslov class in
H2(X,L). This condition is automatic if L consists of a single brane L, since we
may take Y to be the zero locus of a generic section of the anticanonical bundle,
trivialized over L using the orientation. The following result on the open-closed map
subsumes Theorem 1.7. Recall the definitions of [ω]b and c1(M)b from (1.9), (1.10).

Theorem 3.23. The image of HH•(FukL(X, b)w) in QH•(X, b) under the open-
closed map OC(b) lies in the generalized eigenspace for quantum multiplication [ω]b⋆b
by the symplectic class [ω]b with eigenvalue Dqw.

Furthermore, suppose that c1(X) is representable with respect to L. The image
of HH•(FukL(X, b)w) in QH•(X, b) under the open-closed map OC(b) lies in the
generalized eigenspace for quantum multiplication c1(X)b⋆b with eigenvalue w.

Remark 3.24. In the monotone, non-bulk-deformed case the image of each summand

OC(b)(HH•(FukL(X, b)w)) ⊂ QH•(X, b)

is contained in the w-eigenspace of the operator given by quantum multiplication by
the first Chern class, as in Sheridan [She16] (see also Yuan [Yua21] in a more general
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setting). The above statement is compatible with this fact since in the monotone

case w has only terms of power q1/λ where λ[ω] = c1(X). Hence Dqw = w/λ in this

case. To see why w is an eigenvalue of c1(X)b⋆b, one can also replace the Donaldson
hypersurface by an anticanonical divisor and make use of the fact that only Maslov
2 disks contribute to the potential function.

3.5.1. The case of a length-one Hochschild chain. We first give a simplified argument
for Theorem 3.23 assuming that the Hochschild chain has length one, all weakly
bounding cochains and bulk deformations are zero and the disks are transversely
cut out without using a domain-dependent perturbation. Thus, by assumption, the
curvature m0(1) is a multiple of the strict unit for all involved branes. The proof in
this simplified case is based on the study of moduli spaces of open-closed domains
with an auxiliary interior marking with a specified offset angle in comparison with
the first boundary marking. Given a treed disk C of an open-closed domain type
(we allow interior edges to acquire length), there is a unique disk component S0 ⊂ C
that is closest to the unique outgoing interior semi-infinite edge T0. We call S0 the
central disk and let z0 ∈ S0 be the interior special point that is connected to T0.
There is also a boundary special point w0 ∈ ∂S0 that is closest to the 0-th boundary
incoming semi-infinite edge. Identify S0 with D biholomorphically so that z0 resp.
w0 is identified with 0 ∈ IntD resp. 1 ∈ ∂D and such an identification S0 ∼= D is
unique. There is a contraction map

(3.19) σC : C → S0

which is the identity on the central disk S0 ⊂ C and which contracts points on other
surface components Sv or edges Te to the corresponding attaching points on the
central disk S0. A point z ∈ C is said to have offset angle θ ∈ S1 if

σC(z) ∈ (eiθR+ ∩ S0) ∪ {z0}.
Let Γ be a stable open-closed type consisting of disks with a single boundary leaf T1,
the interior leaf T0, and an interior marking z• ∈ S0. Fix an angle θ ∈ S1. Define
the subspace

Mθ
Γ ⊂ MΓ

consisting of isomorphism classes of open-closed domains C of type Γ such that the
auxiliary marking z̊ has offset angle θ, as in Figure 9. Suppose [ω] is integral and let

Y ⊂ X

be a representative of [ω] transverse to D. We construct a moduli space Mθ
1,1(L, Y )

of open-closed maps bounding L equipped with a map

Mθ
1,1(L, Y ) → Mθ

1,1

as follows. Configurations inMθ
1,1(L, Y ) consist of holomorphic treed disks u : C → X

with an open-closed domain type Γ with the boundary edge T1 labelled by components
of α, the interior gradient leaf T0 labelled by a critical point x ∈ crit(fX), and for
the interior auxiliary marking z̊ we require that

u(̊z) ∈ Y.
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Figure 9. A one-dimensional moduli space considered to show the
spectral property of the open-closed map. The auxiliary marking,
which is hollow in the picture, must have a fixed angle shown as the
dashed curve in the first three configurations.

We may assuming that the perturbations are independent of the position of the point
z̊, since the intersections with D stabilize the domain.

Using the moduli spaces above, we define a modified version of the open-closed
map. Given a Floer cochain

α ∈ CF •(L,L)

for some weakly unobstructed brane L with potential w, define a map

OCY (α) ∈ CM(fX , hX)

by weighting the contributions of the moduli space Mθ
1,1(L, Y ) by the coefficients of

α. Each (true) boundary stratum of Mθ
1,1(L, Y )1 consists of configurations (C, u :

C → X) with exactly one broken edge Te ⊂ C and belongs to the following types, as
in Figure 9:

(a) configurations u : C → X with a broken incoming edge T1 contributing to
OCY (m1(α));

(b) configurations u : C → X with a broken interior edge T1, contributing to
Y ⋆ OC(α) (such as the right-most configuration in Figure 9);

(c) configurations u : C → X with one disk component Sv containing z• and no
boundary labels, connected to other components by a broken boundary edge
Te (for example, the left-most configuration in Figure 9), to be explained
below; and

(d) configurations u : C → X with a broken interior leaf T1, contributing to
δMorseOC

Y (α).

To understand the contributions arising from the third type of boundary configuration,
write the potential function

w =
∑
i

ciq
Ai

as a sum over contributing holomorphic disks ui : C → X of area Ai with coefficients
ci ∈ Q. Holomorphic disks with energy Ai intersect Y at Ai points counted with
sign, since by construction the intersection is transversal and the perturbations
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are independent of the choice of auxiliary marking. Each configuration contributes
AiOC(α), as we have Ai choices of the auxiliary marking z•. Since the signed count
of boundary points of the one-dimensional moduli space vanishes, we obtain the
relation

Y ⋆ OC(α) =
∑
i

ciAiq
AiOC(α) = (Dqw)OC(α) mod Im δMorse.

The argument for quantum multiplication by the first Chern class c1(X)b is similar.
Suppose Y ⊂ X is a smooth submanifold representing half the Maslov class in
H2(X,L). Then

Y ⋆ OC(α) =
∑
i

ci
1

2
Iiq

AiOC(α) = wOC(α) mod Im δMorse

where Ii is the Maslov index of the i-th disk contributing to w, necessary equal to 2
since the bulk and boundary deformations vanish.

3.5.2. Treed disks with auxiliary markings and specified offsets. The proof of the
Spectral Theorem 3.23 in the general case involves moduli spaces with a collection
of interior markings at fixed offset angles. These moduli spaces define generalized
open closed maps which satisfy a recursive relation, equivalent to the image of the
open-closed map lying in a generalized eigenspace for quantum multiplication.

Definition 3.25. (a) An angle sequence is a collection θ1, θ2, . . . ∈ R/2πZ ∼= S1

of distinct, non-zero angles.
(b) An open-closed domain type with auxiliary markings is an open-closed do-

main type Γ together with decompositions Leaf•,const(Γ) = Leaf•,normal(Γ) ⊔
Leaf•,auxiliary(Γ), and Leaf◦ = Leaf◦,normal(Γ)⊔Leaf◦,auxiliary(Γ) such that the
0-th boundary leaf is normal and such that the path connecting each auxiliary
leaf to the central disk S0 contains at least one broken boundary edge Te.
Such a domain type Γ is said to be of type (l•, l◦) if there are l• interior
auxiliary leaves and l◦ boundary auxiliary leaves.

(c) An open-closed treed disk with m auxiliary markings of type Γ and angle
sequence θ is a treed disk C = S ∪ T of type Γ such that the offsets of the
auxiliary markings z̊aux,1, . . . , z̊aux,m are θ1, . . . , θm.

(d) By cutting along breakings, a treed disk C is separated to tree disks C1, . . . , Ck
with no breakings. The components C1, . . . , Ck will be called the unbroken
components. The branch of C at offset angle θ of a treed disk C with
one auxiliary marking z̊i is the union of unbroken components Cj that are
connected to the central treed disk C0 via the boundary special point on C0

with offset angle θ.

3.5.3. Generalized open-closed maps. Define a generalized open-closed map using
the above kind of domains as follows. Open-closed map types are map types with
the following labelling of edges and boundary arcs: Each interior auxiliary leaf T•,i
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θ1

θ2

Figure 10. A treed disk with one interior auxiliary marking and one
boundary auxiliary marking (the hollow markings). The semi-infinite
on the right is at the 0-th boundary marking.

is labelled either by Y or by the bulk deformation Dqb, and the two short arcs on
both sides of a boundary auxiliary leaf T◦,i are labelled by the same Lagrangian
brane. Consider a sequence of weakly unobstructed branes (L0, . . . ,Ld). Define a
(not necessarily chain) fixed-angles map

OCm(b) : CC•(FukL(X, b)w) → CM•(fX , hX)

by counting map types Γ with m auxiliary markings with the following conditions as
in Figure 11:

(a) each interior auxiliary marking z̊i maps either to Y or to the bulk deformation
Dqb;

(b) each auxiliary boundary marking z̊i, if it is on a boundary arc labelled by Li,
then the contributions to OCm(b) are weighted by the coefficients of DqbLi ;
and

(c) each branch Cj contains a normal (that is, non-auxiliary) boundary marking
weighted by the coefficients of the Hochschild chain α.

We remark that the bulk deformation at normal (non-auxiliary) interior markings is
b and the bulk deformation at auxiliary markings is Dqb. Analogously the boundary
insertion at an auxiliary marking is Dqb and a normal boundary marking is either
weighted by the coefficients of the Hochschild chain α or has an insertion b.

We will prove in Lemma 3.27 that the fixed-angles maps OCm have image lying
in generalized eigenspaces of quantum multiplication by [ω]b. To prove the Lemma,
we introduce some variants of the fixed-angle open-closed map. Define the maps

OCm,◦(b) resp. OCm,•(b) : CC•(FukL(X, b)w) → CM•(fX , hX)

as counts of the same treed holomorphic disks as those counted by OCm+1(b) with the
additional condition that the last auxiliary marking z̊m is a boundary resp. interior
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α0

θ1

α1

θ2

Dqb

α2

α0

θ1

α1

θ2

α2

α0

θ1

α1

Dqb

θ2

α2

Figure 11. Configurations possibly contributing to the map OC2

with three boundary insertions α0, α1 and α2. The insertion by weakly
bounding cochains are omitted. Each branch contains an auxiliary
marking (either interior or boundary) and at least one boundary
insertion labelled α.

marking. Thus,

OCm(b) = OCm,◦(b) +OCm,•(b).

We need another variation of the map OCm,◦. Consider treed disks with m + 1
auxiliary markings z̊i (either interior or boundary) with the last one z̊m+1 being a
boundary auxiliary marking; the first m branches C1, . . . , Cm satisfying conditions
(a), (b) (c) listed above; and the last branch Cm+1 satisfying (b) but not (c), that
is, none of the normal boundary markings in the branch Cm+1 are labelled by the
Hochschild chain α. The count of such configurations defines a (not necessarily chain)
map

OCm,+(b) : CC•(FukL(X, b)w) → CM•(fX , hX)

as in Figure 12.

α0

θ1

α2

Dqb

α1

θ2

Dqb

α0

θ1

α1

α2

θ2

Dqb

α0

α2

θ1

α1

θ2

Dqb

Figure 12. Configurations possibly contributing to the map OC1,+

with three boundary insertions α0, α1, and α2. The insertions by
weakly bounding cochains are omitted. The second (last) branch can
only contain a boundary auxiliary marking (hollow) labelled by Dqb
and does not contain insertions by αi.

Lemma 3.26. Let α ∈ CC•(FukL(X, b)w) be a Hochschild cycle. For any m ≥ 1,

OCm+1,◦(b)(α) +OCm,+(b)(α) ∈ Im(δMorse).
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Proof. The relation above follows from studying a moduli space where the number of
enforced breakings is one less than the number of auxiliary markings. Consider the
moduli spaces Mθ

Γ(L,D)1 for types Γ with m+ 1 auxiliary markings and exactly m
breakings, with one breaking between each of the firstm branches C1, . . . , Cm and the
treed central disk C0; and whose last auxiliary marking z̊m+1 is a boundary marking
not separated from C0 by any broken edges. Counts of rigid such configurations
define yet another map

OCm,++(b) : CC•(FukL(X, b)w) → CM•(fX , hX).

True boundary strata of the one-dimensional space of such configurations consist
of configurations u : C → X with an additional breaking at some edge Te. If
the additional breaking is at an interior edge Te, then the contribution of such
configurations gives an element in Im(δMorse). If the additional breaking is at a
boundary edge Te creating an unbroken component C ′ ⊂ C containing no auxiliary
markings z⋄,i or normal boundary edges labelled by α, then the contribution of
u : C → X is zero by forgetful property of the perturbation data and the definition
of weakly bounding cochain. The other possibilities where the additional breaking is
at a boundary edge are as follows; in each case we identify the contributions of the
corresponding strata.

(a) The additional breaking is at the offset angle θm+1 such that the (m+ 1)-st
auxiliary marking z̊m+1 is separated from the central treed disk C0 by one
breaking. The contribution of these configurations is the termOCm+1,◦(b)(α)+
OCm,+(b)(α).

(b) The additional breaking is at a generic offset angle θ different from the fixed
ones θ1, . . . , θm+1. The breaking separates the central treed disk C0 with
a treed disk C ′ labelled by some subset of the αi and weakly bounding
cochains bLi . These configurations contribute to (OCm,++)(b)k(δl(α)) where
(OCm,++)(b)k is the open-closed map acting on k Hochschild inputs and δl is
the component of the Hochschild differential δ of α involving contractions of
l elements.

(c) The additional breaking is at one of the fixed offset angles θi, i = 1, . . . ,m,
such that the auxiliary marking z̊i in the branch Ci is still separated from the
central disk S0 by the breaking of a single edge Te. These configurations also
contribute to (OCm,++)(b)k(δl(α)) where (OCm,++)(b)k is the open-closed
map acting on k Hochschild inputs and δl is the component of the Hochschild
differential δ of α involving contractions of l elements.

(d) The additional breaking is at one of the fixed offset angle θi such that the
auxiliary marking z̊i in the branch Ci is separated from the central disk by
two broken edges, say Te′ and Te′′ . Moreover, the unbroken component C ′

containing z̊i contains a normal boundary marking labelled by some α. Such
configurations can be viewed as the boundary of two strata of one dimension
higher. Indeed, either of the broken edges Te′ and Te′′ may be glued, as Figure
13. Therefore, we can regard this type of boundary strata as a fake boundary
component of the one-dimensional moduli space.
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α

b

α′

b

α

b

α′

b

α

b

α′

b

Figure 13. A fake boundary stratum.

(e) The additional breaking is at one of the fixed offset angle θi such that the
auxiliary marking z⋄,i in this branch Ci is separated from the central disk
C0 by breakings of two edges, say Te′ and Te′′ . Moreover, the unbroken
component C ′ containing this auxiliary marking contains no normal boundary
markings labelled by α.

α′

α′′

α

b

b

b

⇐⇒

α′

α′′

α

b

Dqb

b

Figure 14. The cancellation of two boundary contributions.

In the rest of the proof we study the contribution from configurations in the last
item. More precisely, those with an interior auxiliary marking at angle θi, together
with the corrections arising from the bulk deformation Dqb, cancel with those with a
boundary auxiliary marking, as in Figure 14. Abbreviate bL by b and write

mk(ak, . . . , a1) =
∑
l,d≥0

qlmk,l,d(ak, . . . , a1; b, . . . , b)
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where mk,l,d is the contribution from treed disks of area l with d bulk insertions.
Suppose Y represents [ω]. We have

(3.20)

(Dqw)1L = Dq

∑
k,d≥0

mk(b, . . . , b; b, . . . , b) = Dq

∑
k,d≥0

∑
l≥0

qlmk,l(b, . . . , b; b, . . . , b)

=
∑
k≥0

∑
l≥0

lqlmk,l(b, . . . , b; b, . . . , b) +
∑
k,d≥0

∑
1≤s≤k

mk(b, . . . , b︸ ︷︷ ︸
s−1

, Dqb, b, . . . , b; b, . . . , b)

+
∑
k,d≥0

∑
1≤s≤d

mk(b, . . . , b, b, . . . , b︸ ︷︷ ︸
s−1

, Dqb, b, . . . , b)

=
∑
k,d≥0

m+
k (b, . . . , b; b, . . . , b) +

∑
k,d≥0

∑
1≤s≤k

mk(b, . . . , b︸ ︷︷ ︸
s−1

, Dqb, b, . . . , b; b, . . . , b)

+
∑
k,d≥0

∑
1≤s≤d

mk(b, . . . , b, b, . . . , b︸ ︷︷ ︸
s−1

, Dqb, b, . . . , b)

where m+
k is the count of treed disks with an interior auxiliary marking constrained to

lie in Y with k inputs; recall that the perturbations are independent of the auxiliary
markings. The terms involving Dqb are produced by the quantum corrections to
the symplectic form in (1.9). Since the count of configurations with one boundary
edge labelled by the identity vanishes automatically by the forgetful axiom, the two
types of contributions in Figure 14 combine with the corrections Dqb to give zero.
A similar identity holds in the case that Y represents c1(X), with the modification
that Dqb for a weakly bounding cochain b is replaced by(

1− E

2

)
b =

∞∑
k=0

(
1− k

2

)
bk

where bk is the component of b of degree k and E is the grading (Euler) operator. □

Lemma 3.27. For each Hochschild cycle α ∈ CC•(FukL(X, b)w), one has

(Y +Dqb) ⋆b OCm(b)(α)− (Dqw) OCm(b)(α)−OCm+1(b)(α) ∈ Im(δMorse).

Similarly if c1(X) is representable then(
Y +

∑
i

|bi| − 2

2
bi

)
⋆b OCm(b)(α)− w OCm(b)(α)−OCm+1(b)(α) ∈ Im(δMorse).

Proof. The proof of the statement of the Lemma follows by considering families of
fixed-angle configurations with an additional interior marking at some additional fixed
angle that is not separated from the central disk by a broken edge. Let θ1, . . . , θm+1 be
an angle sequence as in Definition 3.25. Consider open-closed treed disks u : C → X
with m+ 1 auxiliary markings z̊1, . . . , z̊m+1 constrained to lie at angles θ1, . . . , θm+1

(as defined by (3.19)); the domain C has exactly m broken edges that split C into
a central disk C0 and branches C1, . . . , Cm such that for i = 1, . . . ,m, z̊i lies in the
branch Ci; and the last auxiliary marking z̊m+1 is an interior marking and lies in the



FUKAYA CATEGORIES OF BLOWUPS 62

central disk C0. Consider the moduli space M(L, Y ) of maps u : C → X for which
the images u(̊zi) lies either on Y or on the bulk deformation Dqb. The rigid count of
such maps defines a (not necessarily chain) map

OCm,1(b) : CC•(Fuk
♭
L(X, b)) → CM•(fX , hX).

The true boundary points of the one-dimensional component of M(L, Y ) are configu-
rations u : C → X with an additional breaking, say at an edge Te. If the new breaking
is along an interior edge Te, then such configurations contribute to Y ⋆b (OCm(b)(α)),
Dqb ⋆b (OCm(b)(α)), or to the Morse coboundary δMorse(OCm(b)(α)). On the other
hand, if the broken edge Te is a boundary edge and C ′ is the treed disk separated
from C0 one of the following possibilities occur:

(a) If the last auxiliary marking z⋄,m+1 is not separated from C0 by broken edges
then u : C → X contributes to the expression OCm,1(b)(δ(α)).

(b) If the new breaking Te′ is at the (m+ 1)-st fixed offset angle θ that separates
z̊m+1 from the central disk C0, then consider the (m + 1)-st branch Cm+1.
Two cases arise.

(i) If the branch Cm+1 has at least one normal boundary marking labelled
by α, then the configuration contributes to

OCm+1,•(b)(α).

(ii) If the branch Cm+1 does not have any normal boundary marking labelled
by α, then as in our sample case in Section 3.5.1, the configuration
contributes to the difference

(Dqw)OCm(b)(α)−OCm,+(b)(α)

as in Figure 15, where OCm,+(b) counts configurations with a branch
Cm+1 containing a boundary edge labelled Dqb but with no boundary
edge labelled α.

b

b

b

⇐⇒ k•Dqw1L

b

k•Dqb

b

Figure 15. The appearance of the eigenvalue. In the leftmost figure,
the auxiliary marking lies on Y or on the bulk deformation Dqb.

The signed count of the true boundary points of the one-dimensional components
of the moduli space M(L, Y ) is zero, and thus we obtain

0 = (Y +Dqb) ⋆b OCm(b)(α)

− (Dqw) OCm(b)(α) +OCm,+(b)(α)−OCm+1,•(b)(α) mod Im(δMorse).
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By Lemma 3.26 OCm,+(b)(α) + OCm+1,◦(b)(α) vanishes modulo boundary terms.
Together with the fact that OCm+1,•(b) +OCm+1,◦(b) = OCm+1(b), we obtain the
claimed identity

(Y +Dqb) ⋆b OCm(b)(α)− (Dqw) OCm(b)(α)−OCm+1(b)(α) ∈ Im(δMorse).

The proof in the case that Y represents c1(X) is similar. □

Proof of Theorem 3.23. Suppose Y represents the Poincaré dual of [ω] and is disjoint
from |L|. By definition, any Hochschild chain α has bounded length. Hence for m
sufficiently large, OCm(b)(α) = 0. By Lemma 3.27,

(((Y +Dqb)⋆)− (Dqw) Id)
m(OC(b)(α)) ∈ Im(δMorse).

Therefore, passing to cohomology we have

(([ω]b⋆)− (Dqw) Id)
m([OC(b)]([α])) = 0.

Hence [OC(b)]([α]) is in the generalized eigenspace of [ω]b⋆ with eigenvalue Dqw.
Similarly, if c1(X) is representable with respect to L by some Y then

((c1(X)b⋆)− w Id)m([OC(b)]([α])) = 0

and [OC(b)]([α]), if non-zero, has eigenvalue w. □

Corollary 3.28. For any w ̸= w′, the images of the Hochschild homology groups
HH•(FukL(X, b)w) and HH•(FukL(X, b)w′) in QH(X, b) under [OC(b)] are orthog-
onal with respect to the Poincaré pairing.

Proof. Since quantum multiplication by even classes is self-adjoint with respect to
the Poincaré pairing, the claim follows from Theorem 3.23. □

3.6. Closed-open maps. The closed-open map takes as input a quantum cohomol-
ogy class and its output is an element of Hochschild cohomology:

[CO(b)] : QH•(X, b) → HH•(Fuk♭L(X, b)).

In the monotone situation, the construction of this map is a special case of the
construction of the functor described in the work of Ma’u, Wehrheim, and the second
author [MWW18]. For monotone symplectic manifolds X0, X1, [MWW18] defines
an A∞ functor

Φ : Fuk(X−
0 ×X1) → Func(Fuk(X0),Fuk(X1)).

If X0 := X1 := X, Φ maps the diagonal to the identity functor:

Φ(∆ ⊂ X− ×X) = IdFuk(X)

and Φ restricts to an A∞ map from the Fukaya algebra of the diagonal to the space of
natural transformations on the identity functor, i.e., the space of Hochschild cochains.
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3.6.1. Definition of the chain-level closed-open maps. We first describe the combina-
torics of the domains responsible for the chain-level maps.

Definition 3.29. A closed-open domain type consists of a two-colored tree Γ with
the output e∞ ∈ Edge→(Γ◦) in the disk part Γ◦ and with exactly one gradient leaf
e• ∈ Leafgrad(Γ), a metric type ℓ and a weighting type wt for boundary semi-infinite
edges and interior constrained leaves, as in Definition 3.16. Moreover, we require
that the weighting type comes from a weighting on semi-infinite edges that satisfies
(2.2). A closed-open map type Γ consists of a closed-open domain type Γ (which has
d boundary inputs), a collection

x = (x0, x1, . . . , xd) ∈ I(L̂d, L̂0)× I(L̂0, L̂1)× · · · × I(L̂d−1, L̂d)

of critical points corresponding to a sequence of Lagrangians

L = (L0, . . . , Ld),

a collection

β = (βv)v∈Vert(Γ)

of homology classes, a critical point x of the Morse function fX : X → R, and
additional interior labelling data λ as in (2.12) indicating whether the interior leaf
represents a Morse trajectory in X or an intersection with the Donaldson hypersurface
D.

Moduli spaces for closed-open maps with Lagrangian boundary conditions are
defined similarly as the case of open-closed maps, but now the Morse trajectory on
the gradient leaf goes in the opposite direction. Given a closed-open map type Γ and
a perturbation PΓ, let MΓ(PΓ) denote the moduli space of stable holomorphic treed
disks of map type Γ. Regularization of these moduli spaces can be achieved using
Donaldson hypersurfaces constructed in the same way as in Theorem 2.26. Here, we
also require that the system of coherent perturbations extends the existing system
for defining the Fukaya category. In the case of no incoming boundary markings,
we fix perturbations that are independent of the position of the incoming interior
leaf; such perturbations may be chosen since the interior markings constrained to
map to the Donaldson hypersurface already stabilize the components on which the
map is non-constant. On the other hand, transversality on the constant components
(including transversality of the matching conditions) may be achieved by a generic
perturbation of the function on the incoming edge, independent of the domain.12 A
closed-open map type is essential if it has no spherical components, all boundary
edges e ∈ Edge◦(Γ) have positive lengths ℓ(e) > 0, and the number of edges labelled
by the Donaldson hypersurface D on each surface component Sv is equal to the
expected number kω(βv), where k is the degree of the Donaldson hypersurface. For

12This is no longer true in the case of several incoming edges, if one wants to obtain a strictly
unital A∞ morphism from CF (∆,∆). However we will not need that such a morphism is strictly
unital.
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a collection of boundary inputs x = (x0, x1, . . . , xd) and a critical point x of fX , let

M(x, x)0 :=
⊔
Γ

MΓ(PΓ)

denote the union of the moduli spaces of closed-open treed disks of essential map
types whose expected dimensions are zero, whose gradient leaf Te• is labelled x, and
whose boundary insertions are x0, x1, . . . , xd.

Definition 3.30. (Closed-open map, without bounding cochains) For an integer

d ≥ 0 and a sequence of branes L̂ := (L̂0, . . . , L̂d), define a map

(3.21) CO∼
d,L̂(b) : CM

•(fX , hX) →

Hom
(
CF •(L̂d−1, L̂d)⊗ · · · ⊗ CF •(L̂0, L̂d)), CF

•(L̂0, L̂d)
)

between the Morse complex of (fX , hX) and Hochschild cochain complex (see (3.14))

as follows. For any generator x of CM•(fX , hX) and generators a1 ∈ CF •(L̂0, L̂1),

· · · , ad ∈ CF •(L̂d−1, L̂d), define

CO∼
d,L̂(b)(x)(a1 ⊗ · · · ⊗ ad) :=

∑
x0∈I(L̂0,L̂d)

 ∑
[u]∈M(x,x)0

(−1)♡wt(u)


with weightings wt(u) from (3.6), extended linearly over Λ.

Definition 3.31. (Closed open map, with bounding cochains) Given a subset of
weakly unobstructed branes L, the chain level closed-open map from the b-deformed
quantum cohomology of X to the flat A∞ category Fuk♭L(X, b) is a map

CO(b) : CM•(fX , hX) → CC•(Fuk♭L(X, b))

defined as follows. Suppose

Li = (L̂i, bi), i = 0, . . . , d

are weakly unobstructed branes in L. For each x, CO(b)(x) is the cochain that maps

ad ⊗ · · · ⊗ a1 ∈ Hom(Ld−1,Ld)⊗ · · · ⊗Hom(L0,L1)

to the following element in Hom(L0,Ld):∑
j1,...,jd≥0

CO∼
d+j1+···+jd,L̂(b)(x)(bd, . . . , bd︸ ︷︷ ︸

jd

, ad, . . . , a2, b1, . . . , b1︸ ︷︷ ︸
j1

, a1, b0, . . . , b0︸ ︷︷ ︸
j0

).

See Figure 16 for an illustration of a typical configuration possibly contributing to
the closed-open map

First we show the closed-open map induces a map from the quantum cohomology
to the Hochschild cohomology.

Theorem 3.32. The map CO(b) : CM•(fX , hX) → CC•(Fuk♭L(X, b)) defined by
Definition 3.31 has the following properties.
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Figure 16. A configuration that possibly contributes to the closed-
open map (Maurer–Cartan insertions are omitted).

(a) CO(b) is a cochain map.
(b) If d ≥ 1 and ai = 1Li

for some i = 1, . . . , d, then

CO(b)(x)(ad ⊗ · · · ⊗ a1) = 0.

Proof. To prove the claim (a) that CO(b) is a chain map, consider the one-dimensional
moduli space M(x, x)1 for fixed labelling data x and x. A compactness theorem
similar to Lemma 2.31 shows that the boundary of such a moduli space consists of
once-broken configurations, that is, strata MΓ(PΓ) of expected dimension zero with
one infinite-length edge e ∈ Edge(Γ). The broken edge e could be on the boundary,
so that part of the configuration contributes to the differential δ of the Hochschild
cochain complex, or on the interior gradient leaf which corresponds to the Morse
differential on X. To prove property (b), notice that the perturbation data PΓ for
types involving forgettable boundary inputs e ∈ Edge→,◦(Γ) is pulled back under the
forgetful map that removes such inputs and collapses unstable components. Property
(b) holds in the same way as the unitality of the Fukaya category. □

3.6.2. A spectral property of the closed-open map. We prove a spectral property of
the closed-open map similar to the spectral property of the open-closed map. This
result allows us to obtain a refined generation result for the Fukaya category (see the
statement of Theorem 1.9).

Theorem 3.33. Suppose λ,w ∈ Λ with λ ̸= Dqw. Suppose K ∈MC(L) is a weakly
unobstructed brane with potential function w and γ ∈ QH•(X; b) is a generalized
eigenvector of the quantum multiplication by [ω]b corresponding to eigenvalue λ. Then

[CO(b)0,K ](γ) = 0 ∈ HF •(K,K).

The same identity holds if γ is a generalized eigenvector of the quantum multiplication
by c1(X)b corresponding to eigenvalue λ ̸= w.
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Sketch of Proof. Similar to the case of the open-closed map, we introduce a new kind
of closed-open domain with an interior marking at a a distinct angle θ ∈ (0, 2π) and
a chain-level map

CO+ : CM•(fX , hX) → CF •(K,K)

that counts configurations described by Figure 17. It follows in a way similar to

θ

Dqb

Figure 17. A configuration contributing to CO+. There is one
auxiliary boundary marking labelled by DqbK . Boundary insertions
by weakly bounding cochains are omitted.

Lemma 3.26 that if the input x is a Morse cocycle, then CO+(x) ∈ Im(m1,K) is
a Floer coboundary. Choose a submanifold Y ⊂ X that represents the Poincaré
dual of [ω] and that intersects transversely with the Donaldson hypersurface D. Via
the moduli space similar to that described by Figure 9 with the directions on all
semi-infinite edges reversed, one obtains that on the chain level

CO(b)0,K((Y +Dqb) ⋆b (x)) = (Dqw)CO(b)0,K(x) + CO+(x).

Hence, for γ a generalized eigenvector corresponding to λ, one has for some positive
integer m

(Dqw − λ)m[CO(b)0,K ](γ) = 0.

As λ ̸= Dqw, the first part of the theorem follows. The second part is similar, using
that since K is orientable, the first Chern class c1(X) is representable by a generic
section of the anticanonical bundle that is non-vanishing on K. □

3.6.3. The homomorphism property. Lastly, we show that the map on the cohomology
level intertwines with the ring structures.

Theorem 3.34. The cohomology-level closed-open map

[CO(b)] : QH•(X, b) → HH•
(
Fuk♭L(X, b)

)
is a unital ring homomorphism.

Before giving the proof, we note the following consequence for automorphism
algebras of objects in the Fukaya category. Given a weakly unobstructed brane

L = (L̂, b) ∈MC(L), we may consider the component

CO0,L(b) : CM
•(fX , hX) → Hom(L,L) ∼= CF •(L̂, L̂)
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of the closed-open map that outputs Hochschild cochains of length zero lying in

CF •(L̂, L̂). Theorem 3.34 implies that the resulting map is a ring homomorphism
from the quantum cohomology of X to the Floer cohomology of L, and in particular
non-vanishing of Floer cohomology gives eigenvalues for quantum multiplication; we
thank Marco Castronovo for discussions on this point.

Corollary 3.35. For any weakly unobstructed brane L ∈MC(L), the closed-open
map

[CO0,L(b)] : QH
•(X, b) → HF •(L,L)

is a unital ring homomorphism. In particular, if HF •(L,L) is non-zero and L lies
in FukL(X, b)w then w is an eigenvalue for quantum multiplication by c1(X)b.

Proof. The first part of the statement of the Corollary is immediate from Theorem
3.34 and Definition 3.9. The second part follows from the unitality property and the
fact that if HF (L,L) is non-zero, then the unit must be non-vanishing. By Theorem
3.33, the unit in QH(X, b) must have a non-vanishing eigen-component for quantum
multiplication by c1(X)b. □

The central ingredient of the proof of Theorem 3.34 is the notion of a balancing
condition on some interior markings on a disk which is similar to the notion of quilted
disks in [MWW18].

Definition 3.36. (Balanced marked disks) Consider a marked disk S ≃ D with
two interior markings z′, z′′ and boundary markings z = (z0, . . . , zd). The marked
disk (S, z′, z′′, z) is balanced if the interior markings z′, z′′ and the boundary output
marking z0 lie on a circle S ⊂ D tangent to ∂D at z0. In the combinatorial type of a
balanced treed disk, the interior markings z′, z′′ correspond to gradient leaves. This
ends the Definition.

The moduli space of balanced disks is defined as follows. The balanced condition
is invariant under the action of PSL(2;R) ∼= Aut(D), and we denote by Mb the set
of isomorphism classes of balanced disks. This moduli space can be equipped with a
Hausdorff topology in the same way as for marked disks.

Remark 3.37. (Balanced versus quilted disks) The balancing condition in the above
definition is similar to the condition in Ma’u-Wehrheim-Woodward [MWW18] that
the interior markings lie on the same seam. Therefore in Figure 18, balanced disks are
depicted in a similar manner to quilted disks; the circle containing z′, z′′, z0 resembles
a quilting circle and the part of the disk above resp. below the circle is colored dark
resp. light. However the balancing condition differs from the quilting condition in
that in the compactification of the moduli space, disk/sphere components that do
not contain either of the markings z′, z′′ are unquilted, and boundary inputs are
allowed to be incident on light components as well. Figure 18 shows the compactified
moduli space of balanced disks with one boundary input, which may be contrasted
with the quilted version in [MWW18, Figure 11].
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=+

Figure 18. The compactified moduli space of balanced disks with
two interior markings (long leaves), one boundary input marking, and
one boundary output marking.

We generalize the balanced condition to treed disks.

Definition 3.38. (Balanced treed disk) Consider a treed disk C = S ∪ T of domain
type Γ that has two gradient leaves e′, e′′ and one boundary output. We say that
C is balanced if the following conditions are satisfied. Let v′, v′′ ∈ Vert(Γ◦) be the
two vertices in the disk part that are closest to the two gradient leaves e′ and e′′

respectively.
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(a) If v′ ̸= v′′, then for the (unique) path e1, e2, . . . , ek in Γ◦ connecting v′ and
v′′, require

k∑
i=1

±ℓ(ei) = 0

where the signs depend on whether the direction of the path is towards the
root or away from the root.

(b) If v′ = v′′ = v, then let z′, z′′ ∈ Sv ≃ D be the node corresponding to them
and let z0 ∈ ∂Sv be the node towards the output. Then we require that the
marked disk (Sv, z

′, z′′, z0) is balanced (see Definition 3.36).

We make a few remarks on the differences between the moduli space of balanced
treed disks and the moduli spaces of treed disks used before. For any stable domain
type Γ of treed disks with two gradient leaves, inside the moduli space MΓ of
stable treed disks the locus of balanced treed disks, denoted by Mb

Γ ⊂ MΓ is a real
codimension one submanifold. See Figure 19 for an illustration of a compactified
moduli space of balanced treed disks with two gradient leaves. As opposed to stable
maps, the number of nodes is not equal to the codimension of the stratum; instead,
there are relations on the gluing parameters arising from the fact that the markings
must lie on the same interior circle. See [MWW18] for more details (for disks rather
than treed disks).

We introduce moduli spaces of balanced disks with Lagrangian boundary conditions
as follows. For any map type Γ let Mb

Γ(PΓ) denote the moduli space of maps from
balanced disks with perturbation data PΓ. The transversality argument of Section 2.6
can be extended to guarantee that Mb

Γ(PΓ) is cut out transversely as gradient as Γ
is uncrowded. We also require that the coherent system of perturbations extends the
existing one used for defining the Fukaya category and the quantum multiplication.

ρ = −∞ ρ = 0 ρ = 1 ρ = ∞

τ τ

Figure 19. The compactified moduli space of balanced treed disks
with two interior markings (long leaves) and one output. This moduli
space is one-dimensional and the points ρ = 0, 1 are fake boundary
strata.

Proof of Theorem 3.34. Denote by ∗ the Yoneda product µ2CC• of (3.16). Fix Morse
cocycles x1, x2 ∈ CM•(fX , hX). We will show that the difference

CO(b)(x1 ⋆b x2)− CO(b)(x1) ∗ CO(b)(x2)

is a coboundary in the Hochschild cochain complex. To reduce notational complexities,
we assume that both x1 and x2 are single critical points. We first construct the
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coboundary. For any w ∈ Λ, consider weakly unobstructed branes L0, · · · ,Ld with
potential function having value w; consider generators a = (ad, . . . , a0) where

a1 ∈ CF •(L̂0, L̂1), . . . , ad ∈ CF •(L̂d−1, L̂d), a0 ∈ CF •(L̂0, L̂d).

Fix j0, j1, . . . , jd ≥ 0 and consider balanced domain types Γ with two gradient leaves,
d+ j0 + · · ·+ jd boundary inputs and essential map types Γ of expected dimension
zero whose gradient leaves are labelled by x1, x2 and whose boundary inputs are
labelled by

b0, . . . , b0︸ ︷︷ ︸
j0

, a1, b1, . . . , b1︸ ︷︷ ︸
j1

, a2, · · · , ad, bd, . . . , bd︸ ︷︷ ︸
jd

, a0

(in counterclockwise orientation, the last one is the output). For each such moduli
space Mb

Γ the count of rigid elements defines an element

τ(x1, x2)(a) ∈ Λ.

and so one obtains a cochain

τ(x1, x2) ∈ CC•(FukL(X, b)w).

We claim that

(3.22) CO(b)(x1 ⋆b x2)− CO(b)(x1) ∗ CO(b)(x2) = mCC
1 (τ(x1, x2)).

To show this relation, consider a one-dimensional balanced moduli space with gradient
leaves labelled by x1, x2 and any number of boundary inputs. There are three types
of true boundary strata, see types (a), (b), (c) in Figure 20. In the first type (a)
of boundary strata, there is a broken treed segment at an interior node. In the
second type (b), there are two boundary breakings on a path connecting the two disk
components having the two gradient leaves. In the third type, there is one boundary
breaking that is not in the path connecting the disk components having the two
gradient leaves. These types correspond to the three terms in (3.22).

It remains to show that the closed-open map is unital. One possible argument
would be to construct CO on the chain level so that it maps strict units to strict
units. Rather than take this route, we note that because the perturbations were
chosen to be independent of the position of the leaf labelled by x, configurations
with input x equal to the geometric unit xmax and no other boundary inputs can be
rigid only if the underlying configuration is unstable, which means that the map is
constant and has a single output, necessarily the geometric unit in CF (L,L). Since
the geometric unit minus the strict unit 1L is the boundary of 1L up to terms with
higher q-valuation, this implies that with notation from Remark 3.9 the difference
[CO(b)](1QH(X))− 1HH(F♭) has positive q-valuation, or vanishes. Suppose that the

difference is non-vanishing. Then for some Υ0,Υ1 ∈ HH•
(
Fuk♭L(X, b)

)
we have

[CO(b)](1QH(X)) = 1HH(F♭) +Υ0 +Υ1

where Υ1 has length at least one in the length filtration on HH(Fuk♭L(X, b)). Write
Υ0 = Υ′

0 + Υ′′
0 where Υ′

0 is homogeneous in q and valq(Υ
′′
0) > valq(Υ

′
0), if non-

vanishing. We view Υ′
0 as the leading order term in Υ0 +Υ1. The homomorphism
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property and preservation of the length filtration implies that

[CO(b)](1QH(X))
2 = (1HH(F♭) +Υ′

0 + . . .)2

= (1HH(F♭) + 2Υ′
0 + . . .)

= [CO(b)](1QH(X)) = 1HH(F♭) +Υ′
0 + . . . .

Hence 2Υ′
0 = Υ′

0 which forces Υ0 to vanish. If Υ1 has length ℓ ≥ 1 (that is, can be
represented by a cochain which vanishes unless the number of inputs is at least ℓ)
then Υ2

1 has length at least 2ℓ, which is a contradcition unless Υ1 vanishes. □

(b)

(c)

(a)

x1
x2

x1x2

x1
x2

x1

x1

x2

x2

Figure 20. Curve types (a), (b), (c) that can occur on the boundary
of a one-dimensional moduli space of balanced treed disks with two
gradient leaves. These three types contribute to the relation (3.22).

4. Abouzaid’s split-generation criterion

In this section, we adapt Abouzaid’s criterion [Abo10] for the split-generation
of the Fukaya category to the non-exact case in which the A∞ composition maps
are defined by counts of treed disks. We follow the argument of [Abo10] to prove
Theorem 1.9. The main technical input is the use of moduli spaces of treed annuli
and a particular way of degenerating treed annuli. Using a different degeneration we
also prove that disjoint branes have orthogonal images under the open-closed maps,
i.e., Theorem 1.10.

4.1. The Cardy diagram. The idea of Abouzaid’s construction is to produce
the maps necessary for writing a Lagrangian as a mapping cone by degenerating
holomorphic annuli to pairs of disks. Given a collection G of objects of Fuk♭L(X, b),

we wish to show that any object K of Fuk♭L(X, b) is split-generated (see Definition
4.2) by the objects G. For example, we might hope to show that K is a sub-object
of some object L of G; to show this we want morphisms

α ∈ Hom(K,L), β ∈ Hom(L,K)
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such that

m2(α, β) = 1K ∈ Hom(K,K).

Naturally one hopes that the chains α, β can be produced geometrically as a count
of holomorphic disks with two outputs. If this is the case, one can glue to obtain
holomorphic annuli with an output labelled by the identity 1K . A degeneration of
the annulus to “infinite length” shows that a count of holomorphic disks with a single
output must be non-trivial, see Figure 23.

The result, Abouzaid’s criterion Theorem 1.9, gives a factorization of the open-
closed and closed-open maps through the tensor product of Yoneda modules.

Definition 4.1. (Yoneda modules, collapsing map) Let K be an object of the flat

Fukaya category Fuk♭L(X, b).

(a) For any w ∈ Λ and K ∈ Obj(FukL(X, b)w), denote by YL
K resp. YR

K the left

resp. right Yoneda module over Fuk♭L(X, b) defined on objects by

YR
K(L) = Hom(L,K), YL

K(L) = Hom(K,L)

for L ∈ Obj(FukL(X, b)w).

(b) The tensor product of Yoneda modules is an A∞ bimodule over Fuk♭L(X, b)
denoted YL

K ⊗ YR
K . It is hence an A∞ bimodule over any full subcategory

Fuk♭G(X, b) by restricting to a subset of weakly bounding cochains G ⊂
MC(L). The Hochschild homology

HH•(Fuk
♭
G(X, b),YL

K ⊗ YR
K) = H•(YR

K ⊗Fuk♭G(X,b) YL
K)

is computed by the bar complex

(4.1) B(YrK ⊗Fuk♭G(X,b) Y lK)

=

∞⊕
k=0

⊕
L1,...,Lk∈G
w(Li)=w(K)

Hom(Lk,K)⊗ · · · ⊗Hom(L1,L2)⊗Hom(K,L1)

with differential given by the possible ways of collapsing. Here the k = 0
summand is Hom(K,K).

(c) The collapsing map

µK : B(YR
K ⊗Fuk♭G(X,b) YL

K) → Hom(K,K)

is defined by composing all factors in (4.1):

µK : a+ ⊗ ak ⊗ . . .⊗ a1 ⊗ a− 7→ (−1)♢mk+2(a+, ak, . . . , a1, a−)

where ♢ is the Koszul sign

|a−|+
k∑
j=1

∥aj∥.
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The A∞ relation implies that µK is a chain map, hence induces a map

(4.2) µK : H•(YR
K ⊗Fuk♭G(X,b) YL

K) → HF •(K,K).

The following characterization of split-generation (see [Abo10, Lemma 1.4]) will
serve as the definition for our purposes.

Definition 4.2. (Split-generation) A flat A∞-category L is split-generated by a set
of objects G if for any object K in L, the image µK(H•(YR

K ⊗Fuk♭G(X,b)YL
K)) contains

the identity element 1K ∈ HF (K,K).

4.1.1. The coproduct. We define an A∞ coproduct functor

δK : Fuk♭G(X, b) → YL
K ⊗ YR

K

by counting treed disks with two outputs: Such a functor consists of a collection of
maps {δr|1|s}r,s≥0 where

(4.3) δr|1|s : Hom(Lr−1,Lr)⊗ · · · ⊗Hom(L0,L1)⊗Hom(L0,L
′
0)⊗L(L′

0,L
′
1)⊗

· · · ⊗Hom(L′
s−1,L

′
s) → Hom(K,Lr)⊗Hom(L′

s,K),

satisfying an A∞ axiom (see [Abo10, (4.13)]). We will define these maps δr|1|s by
counting holomorphic disks with two outputs. As the moduli spaces are different
from what we have been using, the construction deserves a separate discussion.

We briefly discuss the moduli spaces of treed disks with two outputs. The domain
types are two-colored trees with weighting types on semi-infinite edges and metric
types on finite edges. However, in comparison with the types used for the construction
of the Fukaya algebras, the trees are no longer rooted. The restriction on the weighting
types is different from Definition 2.3. We require that both outputs are unforgetful
(labelled by ) while inputs can still be forgetful ( ), unforgetful ( ), or weighted ( ).
The stability condition remains the same. For each stable domain type Γ, there
is a moduli space MΓ and its compactification MΓ as well as the universal curve
UΓ → MΓ. Notice that treed disks with two outputs can degenerate to broken treed
disks whose unbroken components can have only one output. In order to define
maps respecting the existing A∞ structure on the Fukaya category, we require the
perturbations used here to extend the existing ones used for defining the Fukaya
category. The notion of map types is similar to previous cases. For any stable
domain type Γ, a perturbation datum PΓ, and a map type Γ, one has a moduli space
MΓ(PΓ) of treed disks with two outputs of type Γ. There exists a coherent system
of strongly regular perturbations PΓ, so that for all uncrowded map type Γ, MΓ(PΓ)
is a smooth manifold of the expected dimension. Moreover, for essential map types
(see Definition 2.29) of expected dimension zero or one, a refined compactness result
similar to Theorem 2.31 holds.

The structure maps for the coproduct functor are defined as follows. For r, s ≥
0, Lagrangian branes L̂r, . . . , L̂0, L̂

′
0, . . . , L̂

′
s, and generators xi ∈ I(L̂i−1, L̂i) for
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i = r, . . . , 1, x0 ∈ I(L̂0, L̂
′
0), x

′
j ∈ I(L̂′

j−1, L̂
′
j) for j = 1, . . . , s, and yL ∈ I(K̂, L̂r),

yR ∈ I(L̂′
s, K̂), y1, . . . , yt ∈ Iodd(K̂, K̂), one considers the moduli space

Mr|1|s(x; y
R, y, yL)0 := Mr|1|s(xr, . . . , x1, x0, x

′
1, . . . , x

′
s; y

R, y1, . . . , yt, y
L)0

given by the union of moduli spaces MΓ(PΓ) of essential map types Γ whose boundary
edges are labelled by these generators (see Figure 21). Define

(4.4) (ar, . . . , a1, a0, a
′
1, . . . , a

′
s; a

′′
1, . . . , a

′′
t )

7→
∑

yR∈I(L̂′
s,K̂)

∑
yL∈I(K̂,L̂r)

∑
u∈Mr|1|s(x;yR,y,yL)0

(−1)‡wt(u)

where the sum is over rigid maps u with two output leaves and one distinguished
input (in this case x0) among a list of input leaves, the a′i resp. a

′′
i are the generators

corresponding to xi and yi respectively, and the product of holonomies over u is
interpreted as an element in the tensor product of identification of local systems in
yL and yR.

yR

yL

y1

y2

y3

x′2
x′1
x0

x1

x2

Figure 21. Moduli spaces defining the A∞ coproduct.

The sign ‡ is given as in Abouzaid [Abo10, 4.17] by

s∑
j=1

(s− j + 1)|x′j |+ s|x0|+
r∑
j=1

(j + s)|xj |.

The coproduct map is defined by summing over all possible ways of inserting weakly
bounding cochains; especially, we insert a′′1 = a′′2 = · · · = a′′t = bK in (4.4)). For any
r, s ≥ 0, we can define

δr|1|s :
r⊗
i=1

Hom(Li−1,Li)⊗Hom(L0,L
′
0)⊗

s⊗
j=1

Hom(L′
j−1,L

′
j)

→ Hom(K,Lr)⊗Hom(L′
s,K),
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where Li,L
′
i ∈ Obj(FukL(X, b)w(K)). We obtain a coproduct map on Hochschild

chains

(4.5) δK : CCd(Fuk
♭
L(X, b)) → YR

K ⊗Fuk♭L(X,b)
YL
K

ad ⊗ . . .⊗ a0 7→
∑
r,s

(−1)⋄T
(
ar+1 ⊗ . . . ad−s ⊗ δr|1|s(ar ⊗ · · · ⊗ a1 ⊗ a0

⊗ ad ⊗ · · · ⊗ ad−s+1)
)

where the map T reorders the factors

T (ar+1 ⊗ . . . ad−s ⊗ yL ⊗ yR) = (−1)◦yR ⊗ ar+1 ⊗ . . .⊗ ad−s−1 ⊗ yL

and the signs are given by the formulas

(4.6) ⋄ = ✠r
1(1 +✠d

r+1) + dim(X)✠d−s−1
r+1

and

(4.7) ◦ = deg(yR)(deg(yL) +✠d−s−1
r+1 ).

Proposition 4.3. For any subset G ⊂MC(L) of weakly unobstructed branes and

K ∈MC(L), the coproduct map δK : CC•(Fuk
♭
G(X, b)) → B(YR

K ⊗Fuk♭G(X,b) YL
K) is

a chain map.

Proof. The statement of the Proposition is a consequence of the classification of
boundary strata of moduli spaces of treed disks with two outputs and the verification
of signs. Indeed, for any one-dimensional moduli space of treed disks with two
outputs, there are two types of boundary strata: either the two outputs are in the
same unbroken components, or they are in different unbroken components (see Figure
22). These two boundary types correspond to (part of) the differentials on the

x0

x′1

x1

yR

yL

x′2

x2 x2

x1

x0

x′1

x′2

yR

yL

Figure 22. Two types of boundary strata of moduli spaces of treed
disks with two boundary outputs.

Hochschild complex and the bar complex. The other parts of these differentials are
carried over in the terms in the definition of δK which do not count holomorphic
disks. □
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We denote the induced map on homology still by the same notation:

δK : HH•(Fuk
♭
G(X, b)) → H•(YR

K ⊗Fuk♭G(X,b) YL
K).

Note that δK = 0 on HH•(Fuk
♭
G(X, b)w′) for w′ ̸= w(K).

4.1.2. The Cardy diagram. The coproduct map, collapse map µ, and open-closed and
closed-open maps CO(b), OC(b) fit into a commutative-up-to-sign Cardy diagram:

Theorem 4.4. (Abouzaid [Abo10] in the exact, embedded case; see also Ganatra
[Gan12]) For any collection G ⊂ MC(L) and any object K ∈ MC(L), there is a
Cardy diagram

(4.8)

HH•(Fuk
♭
G(X, b))

δK //

[OC(b)]

��

H•(YR
K ⊗Fuk♭G(X,b) YL

K)

µK

��

QH•
G(X, b) [COK(b)]

// HF •(K,K)

that commutes up to an overall sign of (−1)dim(X)(dim(X)+1)/2.

Abouzaid’s generation criterion (Theorem 1.9) follows as a consequence of the
commutativity of the Cardy diagram.

Proof of Theorem 1.9. The flat A∞ category Fuk♭L(X, b) is split generated by G if for
any weakly unobstructed brane K ∈MC(L), the image of µK contains the identity
1K . By the commutativity of the Cardy diagram (Theorem 4.4), this containment

holds if the identity 1QH•(X) lies in the image of OC(HH•(Fuk
♭
G(X, b))), or in other

words, QH•(X, b) is generated by G ⊂MC(L). □

4.2. Holomorphic treed annuli. To prove the commutativity of the Cardy diagram
Theorem 4.4 in the version of the Fukaya category considered here, we begin with
some preliminaries. Notice that the composition of maps on either direction of the
diagram (4.8) consist of maps which count certain degenerate treed holomorphic
annuli.

Definition 4.5. Given 0 < ρ1 < ρ2, an annulus is a complex curve with boundary
of the form

Aρ1,ρ2 = { z ∈ C | ρ1 ≤ |z| ≤ ρ2 } .
The boundary components are denoted by

∂−Aρ1,ρ2 := {z : |z| = ρ1}, ∂+Aρ1,ρ2 := {z : |z| = ρ2}.

Definition 4.6. (Stable treed annuli)
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(a) (Marked annulus) For d = (d−, d+) a pair of positive integers and d• ≥ 0 a
(d−, d+, d•)-marked annulus consists of the following data: an inner and outer
radii ρ1 < ρ2, a collection of interior markings

z•,i ∈ int(Aρ1,ρ2), 1 ≤ i ≤ d•

and a collection of boundary marked points

z±◦,j ∈ ∂±Aρ1,ρ2 , 1 ≤ j ≤ d±.

We always require that the boundary markings on the outer circle are coun-
terclockwise ordered, while the boundary markings on the inner circle are
clockwise ordered.

(b) (Treed annulus) There is a compactification of the moduli space of marked
annuli by allowing stable nodal annuli: nodal annuli S with no non-trivial
infinitesimal automorphisms. As in the case of stable marked disks, a com-
binatorial type underlying a stable annulus is a graph Γ. A treed annulus
C is obtained from a nodal annuli by replacing each boundary node we,
e ∈ Edge◦,−(Γ) by a segment Te equipped with a length ℓ(e) ∈ [0,∞), and
attaching a semi-infinite treed segment Te at each boundary marking ze,
e ∈ Edge◦,→(Γ). We then allow the finite lengths to increase to infinity and
the finite edges to break.

(c) (Additional features) We consider treed annuli with some additional features
to prove the Cardy relation and an orthogonality relation in Section 4.4.

(i) (Distinguished leaves and Balanced lengths) The leaves/markings z+0
and z−0 are distinguished leaves and are constrained to have an angle
offset of π:

(4.9) (Angle offset) ∃θ : z+0 = ρ2e
ιθ, z−0 = ρ1e

ι(θ+π).

The lengths of treed segments are subject to a balancing condition: let
Sv± ⊂ C be the surface component containing z±0 . When Sv− ̸= Sv+ ,
there are exactly two paths γ1, γ2 connecting them. We require that
the two paths have the same total length:

(4.10) (Balanced)
∑
e∈γ1

ℓ(e) =
∑
e∈γ2

ℓ(e);

See Figure 23 where the paths γ± are the vertical paths in the two left
diagrams.

(ii) (Treed segment at an interior node) An interior node that disconnects
z+0 from z−0 is called a path node. We allow path nodes to be replaced
by treed segments which can have a positive length.

We introduce a moduli space of stable treed annuli with fixed angle offset as
follows. Denote by Mann

d−,d+,d•
the moduli space of stable treed annuli for which the

0-th boundary markings on the inner circle and outer circle have an angle offset of
π (as in (4.9)) and that satisfy the balancing condition (4.10) for treed segments at
path edges. Standard arguments show that the moduli space Mann

d−,d+,d•
is compact



FUKAYA CATEGORIES OF BLOWUPS 79

and Hausdorff. The subspace of Mann
d−,d+,d•

that parametrizes curves with at most

one path node is a topological manifold of dimension

dimMann
d−,d+,d• = d− + d+ + 2d• − 1.

The moduli space is equipped with a universal curve Uann
d−,d+,d•

which decomposes

into a surface part Sann
d−,d+,d•

and tree part T ann
d−,d+,d•

. There is a forgetful map

(4.11) Mann
d−,d+,d• → Mann

1,1,0

that forgets all markings except the 0-th markings on the inner and outer circles.

Remark 4.7. In the moduli space of treed annuli, we fixed the angle offset between
distinguished boundary markings as Φ := π. This choice is arbitrary. In fact,
choosing any non-zero angle offset Φ ∈ (0, 2π) produces a homeomorphic moduli
space. The angle offset zero Φ = 0 produces a different moduli space, which we will
use in Section 4.4.

Example 4.8. We describe the moduli space of isomorphism classes of annuli with
one inner boundary leaf and one outer boundary leaf with an angle offset of π. There
is a homeomorphism

(4.12) ρ : Mann
1,1,0 → [−∞,+∞]

defined as follows (See Figure 23).

ρ = −∞ ρ = 0 ρ = 1 ρ = +∞

Figure 23. Moduli of treed annuli with fixed non-zero angle offset

For configurations containing an annulus component with inner radius ρ1 and outer
radius ρ2 we define

(4.13) ρ(C) =
ρ1ρ

−1
2

1 + ρ1ρ
−1
2

.

In the case that the 0-th markings on the inner and outer circles are contained in
different disk components, suppose these two disks are connected by a path consisting
of boundary edges Te1 , . . . , Tek of lengths ℓ(e1), . . . , ℓ(ek); then we define

ρ(C) = −ℓ(e1)− · · · − ℓ(ek);
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the balanced condition implies that this value is independent of the choice of the
path. On the other hand, if the disks containing two boundary circles are connected
by a path consisting of interior edges Te1 , . . . , Tek of lengths ℓ(e1), . . . , ℓ(ek), then
define

ρ(C) = 1 + ℓ(e1) + · · ·+ ℓ(ek).

The description of the one inner-and-outer marking moduli space in Example
4.8 leads to the following natural defined functions on moduli spaces with higher
numbers of inner and outer markings: Composing the homeomorphism ρ in (4.12)
with the forgetful map (4.11), we obtain a map

(4.14) f : Mann
d−,d+,d• → [−∞,∞].

For any ρ ∈ [−∞,∞] the fiber f−1(ρ) is the moduli space of annuli with a fixed ratio
of inner and outer radii, and is denoted by

(4.15) Mann,ρ
d−,d+,d•

⊂ Mann
d−,d+,d• .

Treed annuli can degenerate to broken configurations whose components can be
treed disks (with no interior gradient leaves), open-closed domains, and closed-open
domains.

Remark 4.9. The moduli space of treed annuli admits an orientation induced from
choices of orientations on nodal annuli induced from the positions of the interior and
boundary markings. We can identify each annuli of any width ρ ∈ (0, 1) with a fixed
annulus A; by recording the markings, one obtains a map

Mann,ρ
d−,d+,d•

↪→
(
Int(A)d• × (∂+A)d+ × (∂−A)d−

)
/S1.

The orientations on this stratum extends to a global orientation on the manifold with
boundary Mann

d−,d+,d• . The boundary of Mann
d−,d+,d• consists of configurations where

the ratio ρ is equal to ∞, configurations where the ratio ρ is equal to −∞ (in the
sense that the lengths of the paths γ± above are infinite) and configurations where
a collection of leaves Te have bubbled onto disks Sv, v ∈ Vert(Γ) attached to the
outer boundary, and configurations where leaves Te have bubbled onto disks Sv on
the inner boundary. The latter two types of boundary strata MΓ,Γ = Γ1#Γ2 have
opposite orientations compared to the product orientation on MΓ1 ×MΓ2 .

Regularizing families of holomorphic maps from treed annuli requires regularization
of holomorphic disks, strips, and spheres as before. We shall require that the
perturbations for defining the equation for holomorphic treed annuli extend the
existing ones, by induction on the type of the map. For each stable annuli type Γ, a
map type Γ consists of

(a) labelling of boundary markings by generators of the chain groups CF •(L̂i, L̂i+1),
(b) a labelling of interior markings by either components of the bulk deformation,

the Donaldson hypersurface D, or their (transverse) intersections,
(c) a labelling of interior gradient leaves by critical points of fX , and
(d) a labelling of surface vertices by homology classes β ∈ H2(X, |L|).
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For each map type Γ one has a moduli space of treed holomorphic annuli Mann
Γ (PΓ)

with respect to the perturbation PΓ (if Γ is stable; otherwise we pull back PΓst). A
map type is called essential if, as in previous cases, that there is no finite edges Te with
length ell(e) = 0, no broken edges Te, no sphere components Sv, v ∈ Vert•(Γ), that
all interior markings zv are labelled by the Donaldson hypersurface D or components
of the bulk deformation, and the width parameter ρ is not equal to −∞, 0, 1, or +∞.
Given two sequences x± = (x±0 , · · · , x±d±) of generators of the Floer chain groups

where x±i ∈ I(L̂±
i , L̂

±
i+1) (we define L±

d±+1 = L±
0 ) let

Mann(x−, x+)i :=
⊔
Γ

MΓ(PΓ)i i = 0, 1

where the union is taken over all essential map types Γ whose boundary labelling
data are x± and whose expected dimension is i.

Lemma 4.10. (a) There exist a coherent system of strongly regular (Definition
2.25) perturbations PΓ for all stable treed annuli that extend the existing
perturbation data for treed disks (with no interior gradient leaves), open-closed
domains, and closed-open domains. As a consequence, for each uncrowded
map type Γ, the moduli space MΓ(PΓ) is regular of expected dimension.

(b) For such a system of perturbations, for d± ≥ 1, the zero-dimensional moduli
space Mann(x−, x+)0 is discrete and finite under each energy level.

(c) Moreover, the one-dimensional moduli space Mann(x−, x+)1 has true boundary
corresponding to the following types of degenerations (all of which have no
sphere bubbling).

(i) The width parameter ρ goes to +∞ and one interior edge breaks.
(ii) The width parameter ρ goes to −∞ and two boundary edges breaks.
(iii) ρ is finite and different from 0, 1, while a boundary edge breaks.

4.3. Commutativity. We show that the Cardy diagram commutes at the level
of cohomology. Using the moduli spaces of holomorphic treed annuli, we define a
homotopy operator relating the composition of the maps around the two sides of
the diagram in Theorem (4.4). This shows that the diagram in Theorem 4.4 is com-
mutative. For weakly unobstructed branes L0, . . . ,Ld+ with underlying Lagrangian
submanifolds from L, w = w(Li) = w(K), and any nonnegative integer d−, we define
a linear map
(4.16)

S : CF •(L0,Ld+)⊗ · · · ⊗ CF •(L0,L1) → Hom
(
CF •(K,K)⊗d− , CF •(K,K)

)
by counting holomorphic treed annuli. More precisely, for a+ = a+d+ ⊗ · · · ⊗ a+0 and

a−d− , . . . , a
−
1 , one has

S(x+)(a−d− ⊗ · · · ⊗ a−1 ) =
∑
a−0

∑
u∈Mann(x−,x+)0

(−1)♡wt(u).

By summing over all possible ways of inserting weakly bounding cochains on
L0, . . . ,Ld+ and the weakly bounding cochain on K, we obtain a map (c.f. Abouzaid
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[Abo10, Equation 6.22])

S : CC•(FukL(X, b)w) → Hom(K,K).

x+0
x+1 x+d+

K

x−0

δK
µK

x+0

x+1 x+d+

x−0

K

x+0

K x−0

OC

CO

Figure 24. Cardy relation : End-points of a one-dimensional moduli
space of holomorphic treed annuli. There could be insertions of weakly
bounding cochains on both inner and outer circles.

Proof of Theorem 4.4. It follows from the description of the boundary (see Figure
24) in Lemma 4.10 that the operator S is a homotopy operator relating the two sides
of the Cardy diagram: We have

(4.17) m1,K ◦ S + S ◦ δCC = (−1)dim(X)(dim(X)+1)/2CO(b) ◦OC(b)− µK ◦ δK
on FukL(X, b)w(K). The sign computation is carried out in [Abo10], and will not be
repeated here. Therefore, on homology level, the Cardy diagram (4.8) commutes up
to the expected sign. On FukL(X, b)w with w ̸= w(K), µK ◦ δK is zero by definition,
and CO(b) ◦OC(b) vanishes as a consequence of the spectral decomposition results.
In particular, by Theorem 1.7, OC(b)(FukL(X, b)w) lies in the generalized eigenspace
QH•(X)Dqw ⊂ QH•(X) of the quantum multiplication by [ω]b, and the image
COK(QH•(X)Dqw) is zero by Theorem 3.33. □

4.4. Orthogonality for disjoint Lagrangians. We prove another result about
the orthogonality of images under the open-closed map, c.f. Corollary 3.28.

Theorem 4.11. (Restatement of Theorem 1.10) Suppose that L−,L+ ⊂ L are
disjoint collections of Lagrangian submanifolds in X, that is, |L−| ∩ |L+| = ∅.
Suppose

L± ⊂MC(L±).

Then the images of elements

[α−] ∈ HH•(Fuk
♭
L−(X, b)), [α+] ∈ HH•(Fuk

♭
L+

(X, b))

under the open-closed map are orthogonal with respect to the intersection pairing.

The proof of Theorem 4.11 of the moduli space of treed holomorphic annuli as the
width parameter goes to zero.
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4.4.1. Intersection pairings and two chain-level open-closed maps. We recall the
chain-level definition of the intersection pairing. Recall that (fX , gX) is a Morse-
Smale pair on X with the cochain complex CM•(fX). The pair (−fX , gX) is also a
Morse-Smale pair with complex CM•(−fX). Define

⟨·⟩ : CM•(fX)⊗ CM•(−fX) → Λ

by 〈∑
i

aixi,
∑
j

bjxj

〉
=
∑
i

aibi.

It is easy to see that the chain-level pairing descends to cohomology.

The two Morse-Smale pairs can define potentially different chain-level open-closed
maps. By using perturbations on open-closed treed disks where we use either (fX , gX)
or (−fX , gX), we can define two chain maps

OC(b)± : CC•(Fuk
♭
L(X, b)) → CM•(±fX).

On the homological level the two maps are identical. On the other hand, we can
define a chain-level pairing

⟨·⟩∞ : CC•(Fuk
♭
L−(X, b))⊗ CC•(Fuk

♭
L+

(X, b)) → Λ

by
⟨α−, α+⟩∞ := ⟨OC(b)−(α−), OC(b)+(α+)⟩.

We will prove that on the homology level the pairing is zero.

4.4.2. Treed annuli. Treed annuli used in the proof of the generation criterion are
defined as follows. First, we modify the conditions on the marked annuli specified
in Definition 4.6. We require that both inner (∂S)− and outer circles (∂S)+ of an
annulus S contain boundary markings, and that the boundary markings on the outer
circle (∂S)+ are counterclockwise ordered while those on the inner circle (∂S)− are
clockwise ordered. Given a marked annulus, we create a treed annulus by attaching
to each boundary marking a semi-infinite edge and require that all these semi-infinite
edges are incoming ones. We also require that, most importantly, the angle offset
between z+0 and z−0 is 0 instead of π. Hence, when we compactify the moduli space
of treed annuli, when the width parameter ρ approaches to zero, in the degenerate
configurations z+0 and z−0 can be contained in the same surface component. Figure
25 describes a compactified one-dimensional moduli space of such treed annuli. In
general, there is a width parameter

ρ : Mann
d−,d+,d• → [0,+∞]

on the moduli space of stable treed annuli with d− resp. d+ boundary markings on
the inner resp. outer circle and d• interior markings.

Perturbations are defined on the universal curves of treed annuli. Notice that in
the current situation, treed annuli can degenerate to broken configurations whose
unbroken components can be either a treed disk with exactly one output (the ρ = 0
slice of Figure 25), or a treed disk of open-closed type but not closed-open type (the
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ρ = +∞ slice of Figure 25). This is also different from the case of the Cardy diagram.
We require that when the annuli degenerate to two disks of open closed type, the
perturbation on the component containing the outer resp. inner circle coincides with
the perturbation chosen for the open-closed map for the Morse-Smale pair (fX , gX)
resp. (−fX , gX).

Moduli spaces of treed annuli are defined as follows. We require that the labelling
on the outer circle are from the branes in L+ and the labelling on the inner circle are
from the branes in L−. A map type is called essential if it has no spheres, broken
edges, or edges of length zero. Given boundary labelling data x− = (x−,0, . . . , x−,d−),
x+ = (x+,0, . . . , x+,d+), homology classes labelling surface components, and interior
labelling data, we can consider perturbed treed holomorphic annuli satisfying these
constraints. We require that, when the interior edge has positive length, the treed
map satisfies the negative gradient flow equation for (fX , gX) if we orient the edge
from the component containing the outer circle to the component containing the
inner circle. One can achieve transversality in the same way as before and we omit
the details. Then let Mann(x−, x+)i be the union of moduli spaces of essential map
types Γ of expected dimension i. When i = 1, by identifying fake boundary strata, we
can describe the true boundaries of the closure Mann

(x−, x+)1. The true boundary
strata include configurations u : C → X where

(a) the width parameter ρ is +∞ and two disk components, no sphere components,
and only one breaking on the interior edge.

(b) the width parameter ρ is 0 and there is one disk component and no sphere
components; since the node on the infinitely thin annulus must have evaluation
on |L−| ∩ |L+|, which is empty. Hence this boundary stratum is empty;

(c) the width parameter ρ is positive and finite and there is a breaking of a
boundary edge Te.

We define a chain-level map using treed annuli of varying width parameters.
For x± = x±,0, . . . , x±,d± , consider map types Γ with the outer resp. inner circles
labelled by x+ resp. x−. First consider only the essential map types, so that the
width parameter ρ is positive and finite, having no boundary edges of length zero or
boundary breakings. By counting rigid configurations, one obtains a map

T :
(
CF •(L̂−,d− , L̂−,0)⊗ · · · ⊗ CF •(L̂−,0, L̂−,1)

)
⊗
(
CF •(L̂+,d+ , L̂+,0)⊗ · · · ⊗ CF •(L̂+,0, L̂+,1)

)
→ Λ

by

T (a−, a+) =
∑

u∈Mann(x−,x+)0

(−1)♡wt(u).

The map T induces a (not necessarily chain) map

T : CC•(Fuk
♭
L−(X, b))⊗ CC•(Fuk

♭
L+

(X, b)) → Λ.
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ρ = 0 ρ = 1 ρ = +∞

Figure 25. Moduli space of treed annuli with zero angle offset
between distinguished leaves.

Proof of Theorem 4.11. Suppose α± ∈ CC•(Fuk
♭
L±(X, b)) are Hochschild cycles. Let

a± = a±,0 ⊗ · · · ⊗ a±,d± be a component of α± with underlying critical points

x±. Consider one-dimensional moduli spaces Mann
(x−, x+)1. The boundary strata

consist of the following types:

(a) The strata corresponding to ρ = ∞, denoted by Mann
∞ (x−, x+)0. These strata

contribute to the chain-level pairing

⟨OC(b)−(a−), OC(b)+(a+)⟩ ∈ Λ.

Indeed, on the broken edge, the treed map satisfies the negative gradient flow
equation of fX (from the disk with the positive boundary to the disk with
the negative boundary). We regard the map restricted to the semi-infinite
edge attached to the disk with the negative boundary as the (perturbed)
negative gradient flow equation of −fX . Therefore, by the definition of the
chain-level intersection pairing, the count of such configurations is exactly
⟨OC(b)−(a−), OC(b)+(a+)⟩.

(b) The union of strata corresponding to ρ = 0, denoted by Mann
0 (a−, a+)0. Since

|L−| ∩ |L+| = ∅, this moduli space is always empty.
(c) Configurations for ρ ∈ (0,∞) with one boundary breaking. These configura-

tions contribute to

T (δCC(α−), α+)± T (α−, δCC(α+))

which is zero.

Therefore, it follows that on the chain level

⟨OC(b)−(α−), OC(b)+(α+)⟩ = 0. □

5. Fukaya categories of blowups

In this section, we consider the special cases of previous constructions in the setting
of the main theorem. More precisely, we study a perturbation scheme for which one
has a correspondence between treed disks in the original symplectic manifold and its
blowup.
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5.1. The geometry of the blowup. We fix an explicit construction of a family
of blowups at the chosen point. From now on, (X,ω) denotes a rational symplectic
manifold, L denotes a collection of rational Lagrangian submanifolds (see Definition
2.7) satisfying Hypothesis 2.8, and b is a bulk deformation. In addition, fix a
point p disjoint from the Lagrangians and the bulk deformation. We also fix a
Donaldson hypersurface D as before with the additional requirement that p /∈ D,
and a tamed almost complex structure J0 satisfying (b) of Lemma 2.10. Let U
be a Darboux coordinate chart centered at p that is disjoint from |L| and b with
Darboux coordinates x1, y1, . . . , xn, yn. As D ∩ U = ∅, we may assume that J0|U is
the standard complex structure with complex coordinates zi = xi +

√
−1yi. The

symplectic blowup X̃ of X at p is defined by removing Darboux chart from X and
gluing in a neighborhood of Z̃ = CPn−1 in

Bl0(C
n) :=

{
(ℓ, z) ∈ CPn−1 × Cn

∣∣ z ∈ ℓ
}
.

It admits an almost complex structure J̃0 whose restriction to Ũ := π−1(U) is the

integrable complex structure JŨ : Ũ → Ũ coming from the blowup.

We equip the blowup with a family of symplectic structures by symplectic cut.
Following Lerman [Ler95], for each ϵ > 0 sufficiently small, we may view Ũ as

{(z1, . . . , zn) ∈ U | |z1|2 + · · ·+ |zn|2 ≥ ϵ}/ ∼
where ∼ is the relation collapsing the sphere

|z1|2 + · · ·+ |zn|2 = ϵ

to CPn−1. In this way we obtain a family of symplectic forms ω̃ϵ ∈ Ω2(X̃) that agree

with π∗ω outside Ũ . Moreover, for all ϵ, J̃0 is ω̃ϵ-tamed. In notation, we abbreviate
ω̃ϵ by ω̃. One can see that as cohomology classes,

(5.1) [ω̃] = [π∗ω]− ϵPD([Z̃]) ∈ H2(X̃;R)

where PD denotes the Poincaré dual.

5.1.1. The exceptional Lagrangians. In this section, we introduce the additional
Lagrangians needed to generate the Fukaya category of the blowup. First we realize
blowup as a symplectic quotient. Consider a diagonal S1-action on C × Cn with
moment map

Φ(z0, z1, . . . , zn) = −1

2

(
|z0|2 − |z1|2 − · · · − |zn|2

)
.

The symplectic quotient at the level Φ = ϵ
2 can be viewed as the ϵ-blowup of Cn at

the origin. A neighborhood of the exceptional divisor CPn−1 can be identified with
the neighborhood Ũ ⊂ X̃. Consider

L̂ϵ =
{
(z0, . . . , zn)

∣∣∣ |zi|2 = ϵi, i = 0, . . . , n
}
⊂ C × Cn

for ϵ = (ϵ0, . . . , ϵn) ∈ (R>0)
n+1. Suppose that

ϵ1 + · · ·+ ϵn − ϵ0 = ϵ.
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In this case we have L̂ϵ ⊂ Φ−1( ϵ2) and and so the Lagrangian descends to a Lagrangian

torus Lϵ ⊂ X̃.

Lemma 5.1. When ϵ0 = ϵ1 = · · · = ϵn = ϵ
n−1 , Lϵ is a monotone Lagrangian in Ũ .

Proof. Any disk bounding Lϵ lifts to a disk in Cn × C bounding L̂ with the same
area and index. Maps from disks to Cn × C are products of disks in the factors. The
homology classes of such are generated by the disks of Maslov index two in each
factor, all of which have the same area. See [CO06] for more details. □

5.1.2. Donaldson hypersurfaces in the blowup. Since the pullback of the original
Donaldson hypersurface is no longer a Donaldson hypersurface in the blowup, we need
to choose a new Donaldson hypersurface to fit into the general framework. In order
to use the explicit calculation in the previous section, we construct perturbations
that have standard almost complex structures near the exceptional locus.

Proposition 5.2. For each small rational ϵ, there exist a Donaldson hypersurface
D̃ ⊂ X̃ and a tamed almost complex structure J̃ satisfying the following condition.

(a) D̃ ⊂ X̃ \ (|L̃| ∪ L̃ϵ) and the symplectic form ω̃ is exact in the complement of

|L̃| ∪ L̃ϵ.

(b) J̃ coincides with JŨ inside Ũ .

(c) D̃ is almost complex with respect to J̃ and is holomorphic inside Ũ .

(d) D̃ intersects the exceptional locus Z̃ transversely.

(e) D̃ intersects the pullback hypersurface π−1(D) transversely.

(f) D̃ intersects the components of b̃0 transversely.

(g) D̃ intersects generic Maslov 2 disks in Ũ transversely.

Sketch of proof. The statement of the proposition is essentially a special case of
Auroux-Gayet-Mohsen [AGM01, Section 3.1], which describes how Donaldson’s
argument [Don96] can be extended to a relative setting. More precisely, we identify

Ũ with a neighborhood of the zero section of O(−1) → CPn−1. For small rational ϵ,
we can choose a generic holomorphic section s̃0 of a sufficiently positive line bundle
on O(−1) which intersect the zero locus and all the Maslov two disks transversely.

Choose a cut-off function ρ supported in Ũ which is identically 1 near Z̃. Then ρs̃0
is a smooth section of a positive line bundle over X̃ whose Chern form is a large
multiple of ω̃. Apply Donaldson’s argument by using a collection of local sections of
this line bundle (supported away from Z̃) and generic linear combination to achieve
transversality to the given section ρs̃0. □

5.2. A perturbation system for the new branes. In this section, we describe
perturbation data on a blowup that is standard near the exceptional divisor. We
make explicit computations involving holomorphic disks whose boundary maps to
exceptional branes. To achieve symmetry properties of the composition maps, the
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perturbation data we consider are multivalued. The symmetry property is used to
show that a weak version of the divisor equation holds.

We recall some geometric details about the neighborhood of the exceptional divisor
needed for the construction of our perturbation data. Let p ∈ X be the blowup
point. Recall that the bulk deformation, the collection of Lagrangian branes, and
the Donaldson hypersurface are all disjoint from p, hence disjoint from a Darboux
chart U ∋ p. Let Ũ ⊂ X̃ be the preimage of U under the projection X̃ → X. Fix
the Darboux coordinate in U . Let JŨ be the integrable almost complex structure

on Ũ that is the pullback from the standard complex structure with respect to the
Darboux coordinates in U . The exceptional branes in E are all supported on an
embedded Lagrangian Lϵ ⊂ Ũ .

5.2.1. Holomorphic disks bounding the exceptional Lagrangian. We wish to classify
the holomorphic disks of minimal area bounding the exceptional Lagrangian. Since
the picture is locally toric, the classification is a special case of the computations
in Cho-Oh [CO06]. In particular, from the description in Section 5.1.1, a disk

u : (D, ∂D) → (X̃, Lϵ) whose image is contained in a neighborhood of the exceptional

divisor may be viewed as a disk mapping to (Cn+1, L̂ϵ)//S
1, where S1 acts on Cn+1

with weights (−1, 1, . . . , 1) and L̂ϵ = {|zi| = ϵi, i = 0, . . . , n} ⊂ Cn+1. The disk u
lifts to a Blaschke product û whose definition we recall.

Definition 5.3. A Blaschke product of degree (d0, . . . , dn) with boundary in the

Lagrangian L̂ϵ is a map û : (D, ∂D) → (Cn+1, L̂ϵ) prescribed by coefficients

|ζi| = ϵi, ai,j ∈ C, |ai,j | < 1, i ≤ n+ 1, j ≤ di

and defined as

(5.2) û : (D, ∂D) → (Cn+1, L̂ϵ), z 7→

ζi di∏
j=1

z − ai,j
1− zai,j


i=0,...,n

.

We include the following proposition computing the areas and indices of Blaschke
products from Cho-Oh [CO06] for completeness:

Lemma 5.4. The descent u : (D, ∂D) → (X̃, Lϵ) of the Blaschke product û :

(D, ∂D) → (Cn+1, L̂ϵ) given by (5.2) has Maslov index

I(u) =

n+1∑
i=1

2di

and area

A(u) = π

n+1∑
i=1

diϵi.

Proof. As in Cho-Oh [CO06, Theorem 5.3], the products (5.2) are a complete

description of holomorphic disks with boundary in L̂ϵ. Any Blaschke product
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û : (D, ∂D) → (Cn+1, L̂ϵ) disjoint from the semistable locus descends to a disk

u : (D, ∂D) → (X̃, Lϵ). We compute its Maslov index using the splitting (with
notation ∂u := u|∂C)

(û∗TCn+1, (∂û)∗T L̂ϵ) ∼= (u∗TX̃, (∂u)∗TLϵ)⊕ (gC, g)

where gC, g denotes the trivial bundle and real boundary condition with fiber gC ≃ C×

resp. g ≃ S1 the Lie algebras of the complex resp. real torus acting on Cn+1. We
write

I(E,F ) ∈ Z

for the Maslov index of a pair (E,F ) consisting of a complex vector bundle E on
the disk D and a totally real sub-bundle F over the boundary ∂D. Since the Maslov
index of bundle pairs is additive,

I(û∗TCn+1, (∂û)∗T L̂ϵ) = I(u∗TX̃, (∂u)∗TLϵ) + I(u∗gC, (∂u)
∗g).

The second factor has Maslov index I(u∗gC, (∂u)
∗g) = 0, as a trivial bundle. It

follows that the Maslov index of the disk u is given by

I(u) = I(û∗TCn+1, (∂û)∗T L̂ϵ) =
n+1∑
i=1

2di = 2#u−1

(
k∑
i=1

[Di]

)
;

that is, I(u) is twice the sum of the intersection number with the anticanonical
divisor. That is,

[K−1] =
k∑
i=1

[Di] ∈ H2(X,Z)

is the disjoint union of the prime invariant divisors

Di = [zi = 0] ⊂ Cn+1//C, i = 1, . . . , k.

After an automorphism of the domain D, the disks of Maslov index two are those
maps ui : D → X with lifts of the form

ûi : D → X̂, z 7→ (b1, . . . , bi−1, biz, bi+1, . . . , bn+1).

We call these the basic disks and their homology classes basic classes. The area of
each such disk is

A(ui) = A(ûi) = ϵi

since ∫
û∗i ω̂ =

∫ r2/2=ϵi/2π

r2/2=0
rdrdθ = ϵi.

The homology class of higher index Maslov disks u : C → X, I(u) > 2 is a weighted
sum

[u] =
∑

di[ui]

of homology classes of basic disks ui, i = 1, . . . , n+ 1. It follows that the area
A(u) ∈ R of such a disk u is the weighted sum

A(u) =
∑

diA(ui)
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of the areas A(ui) of disks uj of Maslov index I(uj) = 2. The claim on the area
follows. □

Next we describe the relation between the areas of disks in the blow-up and their
projections. Suppose that the almost complex structures on X̃,X are such that the
projection

π : X̃ → X

is almost complex, so that any holomorphic curve ũ : C → X̃ defines a holomorphic
curve u : C → X by projection. Since the exceptional divisor Z̃ is almost complex,
the intersection number ũ.Z̃ is the sum of positive intersection multiplicities at each
of the intersection points ũ−1(Z̃), see for example [CM07, Proposition 7.1].

Lemma 5.5. The areas of ũ and u := π ◦ ũ are related by A(ũ) = A(u)− ϵ([ũ].[Z̃]).

Proof. By Mayer-Vietoris and the definition of the symplectic form on the local
model the symplectic class [ω̃] ∈ H2(X̃) is equal to

[ω̃] = π∗[ω] + ϵ[Z̃]∨

where [Z̃]∨ ∈ H2(X̃) is the dual class to the exceptional divisor Z̃. Pairing with

[ũ] ∈ H2(X̃) proves the claim. □

Proposition 5.6. (a) (Ũ , Lϵ, ω̃|Ũ ) is monotone with minimal Maslov index two.

(b) The moduli space of J̃0-holomorphic disks M0,1(Ũ , Lϵ, J̃0) in Ũ with boundary
in Lϵ, with one boundary marking no interior markings is regular and the
evaluation map ev : M0,1(Ũ , Lϵ, J̃0) → Lϵ is a submersion.

(c) All nonconstant J̃0-holomorphic spheres in Ũ have positive Chern numbers

and are contained in the exceptional divisor Z̃. Moreover, the moduli space of
these spheres with one marking is regular (as maps into Z̃) and the evaluation

map at the marking is a submersion onto Z̃.

Proof. The first item follows from Lemma 5.4. For the second item, note that the torus
action on Ũ induces an action on the moduli space of holomorphic disks bounding Lϵ.
It follows that D ev is surjective at any point. The splitting in Oh [Oh95] implies
that the boundary value problem defined by u splits into one-dimensional summands
with non-negative Maslov index. In particular, the cokernel of Du vanishes, hence the
regularity in the second item. For the third item, note that any holomorphic sphere
u : P1 → Ũ defines a holomorphic sphere in Z̃ by projection, necessarily of degree
d, together with a section of the pull-back of the normal bundle to Z̃, necessarily a
line bundle of degree −d. Since such bundles have no sections, u has image in the
exceptional divisor Z̃. The claim follows from homogeneity of Z̃, and the fact that
the Chern number of any degree d map to Z̃ is d(n− 1). □

One needs the following simple result to help calculate the potential function for
the exceptional torus.
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Proposition 5.7. There exists ϵ0 such that for any ϵ ∈ (0, ϵ0]∩Q, the following holds:

For any smooth domain-dependent almost complex structure J : D → Jtame(X̃, ω̃)

with J |Ũ = JŨ , all J-holomorphic disks u : D → X̃ bounding Lϵ with energy at most

ϵ are contained in Ũ , and hence are the standard Blaschke products of Maslov index
two.

Proof. The statement of the proposition is a consequence of the monotonicity property
of pseudoholomorphic curves. Suppose the statement is not the case, so that for all ϵ
there is a certain domain-dependent almost complex structure J and a holomorphic
map u : D → X̃ with area at most ϵ but not contained in the neighborhood Ũ .
Let Ũ ′′′ ⊂ Ũ ′′ ⊂ Ũ ′ ⊂ Ũ be a nested collection of open neighborhoods of the
exceptional divisor Z̃, so that in particular u(∂D) ⊂ Ũ ′′′. Let S ⊂ Ũ be the closure of

u(D) ∩ (Ũ ′ \ Ũ ′′), which is a compact minimal surface with boundary. The geometry

between Ũ ′′′ and Ũ is independent of ϵ. By the monotonicity property of minimal
surfaces (see [Law74, 3.15], [Sik94, 4.7.2] [CEL10, Lemma 3.4]) there is a constant
δ0 > 0 which is independent of ϵ such that for all non-constant compact minimal
surface Σ with nonempty boundary in the interior of Ũ \ Ũ ′′′ and δ < δ0 we have

x ∈ Σ, ∂Σ ∩B(x, δ) = ∅ =⇒ Area(Σ) ≥ cδ2.

Applying the monotonicity property to S one sees that the holomorphic map u has
an area lower bound that is independent of ϵ, a contradiction. □

5.2.2. Multivalued perturbations. Next we introduce multivalued perturbations that
are needed to establish a weak version of the divisor equation for the Fukaya algebras
of the exceptional tori.

Definition 5.8. Given a stable domain type Γ, a multivalued perturbation is a formal
linear combination of perturbations

(5.3) PΓ = p1PΓ,1 + . . .+ pkPΓ,k

for real numbers p1, . . . , pk > 0 summing to 1.

Coherent collections of multivalued perturbation data for all stable domain types
are defined as before. Given a multivalued perturbation PΓ we write

MΓ(PΓ) :=
k⋃
i=1

MΓ(PΓ,i).

If each subset in the above union is regular, we consider it as weighted manifold
with weights given by the coefficients p1, . . . , pk. We call each MΓ(PΓ,i) a branch of

MΓ(PΓ). A multivalued perturbation PΓ = p1PΓ,1+ · · ·+pkPΓ,k is (strongly) regular
if each PΓ,i is (strongly) regular. In fact, we only consider multivalued perturbations
PΓ = (JΓ, HΓ, FΓ,MΓ) such that JΓ, HΓ, and MΓ are all single valued, but there is
no advantage in disallowing these components to be multi-valued also. Example 5.13
explains why multivalued perturbations are needed to prove the divisor equation.
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5.2.3. Perturbations needed for the divisor equation. In this section, we identify the
Floer cohomology rings of the tori near the exceptional locus with Clifford algebras.
This requires a special version of the divisor equation (see Corollary 6.5). Recall that
if the moduli spaces admit forgetful maps for omitting a marking and stabilizing
if necessary, then the A∞ composition will satisfy the general divisor equation for
any number of boundary insertions. Unfortunately, it is difficult to achieve existence
of the forgetful maps using the perturbations used in this paper. Rather, we will
achieve transversality while having the divisor equation for the A∞ algebras of the
new branes in the blowup with only two insertions. We first introduce a class of
perturbations for which this restricted version of the divisor equation will hold.

Notation 5.9. Γ∗ is the stable domain type with only the root vertex v0, two incoming
unforgettable boundary leaves e′, e′′ and one outgoing boundary leaf e0 (which must
also be unforgettable), and m(ϵ) interior leaves where m(ϵ) is the expected number

of intersections of the basic Maslov 2 disks with the Donaldson hypersurface D̃.
Denote the segments corresponding to the two incoming edges by Te′ , Te′′ ⊂ UΓ∗.
Each multivalued perturbation PΓ∗ restricts to two multivalued functions

Fe′ = p1F
′
1 + · · ·+ pkF

′
k : Te′ × Lϵ → R, Fe′′ = p1F

′′
1 + · · ·+ pkF

′′
k : Te′′ × Lϵ → R.

Definition 5.10. A perturbation PΓ∗ is called symmetric if with respect to the
obvious identification Te′ ∼= Te′′ , as multivalued functions (with weights) one has
Fe′ = Fe′′ .

Now consider the situation of the divisor equation. As Lϵ
∼= (S1)n, there exists

a perfect Morse function FLϵ that has exactly 2n critical points. We call such a
function a minimal Morse function on this torus. There are exactly n critical points,
denoted by x1, . . . , xn that have Morse index n − 1. By choosing orientations on
their unstable manifolds, x1, . . . , xn give a basis of H1(Lϵ). Also let x0 be the unique
critical point of index n, whose unstable manifold is oriented in the same way as Lϵ.
Let Γβ̃,i,j be the map type determined by a basic disk class β̃ ∈ H2(X̃, Lϵ), incoming

critical points xi, xj and outgoing critical point x0. Let Γβ̃ denote the map type

without the incoming edges and only one output labelled by x0.

Lemma 5.11. There exists a symmetric multivalued perturbation PΓ∗ such that the
moduli spaces MΓβ̃,i,j

(PΓ∗) are regular for any basic disk class β̃.

Proof. The proof is an averaging argument. Fix such a disk class β̃. Consider the
moduli space of JŨ -holomorphic disks u : S → X in this class with one boundary
marked point ze ∈ S. The Blaschke formula (5.2) implies that this moduli space is a
smooth manifold of dimension equal to dimLϵ and the evaluation map u 7→ u(ze) at
the boundary marking ze is a diffeomorphism onto Lϵ. Therefore, the moduli space
MΓβ̃

contains only one configuration (up to permuting interior markings) whose

boundary is an embedded circle ∂β̃ ⊂ Lϵ. Choose two perturbations to the negative
gradient flow equation of fLϵ , gives two perturbations of the unstable manifolds
W u(xi) for each i, denoted by W u

e1(xi), W
u
e2(xi). We may require that W u

e1(xi),
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W u
e2(xj) always intersect transversely and intersect transversely with ∂β̃ so that

W u
e1(xi) ∩W u

e2(xj) ∩ ∂β̃ = ∅. Switching the two perturbations does not alter this
condition. Regarding the two perturbations as a perturbation of on the two incoming
leaves of Γ∗ and the switching produces a 2-valued perturbation PΓ∗ . □

Lemma 5.12. The following divisor relation holds:

(5.4) #MΓβ,i,j
(PΓ) + #MΓβ,j,i

(PΓ) = ⟨xi, ∂β⟩⟨xj , ∂β⟩MΓβ
(PΓ)

Here ⟨xi, ∂β⟩ is the intersection number between the unstable manifold xi and bound-
ary class ∂β ∈ H1(Lϵ).

Proof. Suppose that perturbations Fe1 , Fe2 on the incoming edges have been chosen.
For any perturbation datum PΓ0 we obtain a perturbation datum for PΓ by pull-
back of PΓ0 everywhere except the edges e1, e2 where we take the perturbation to
equal Fe1 , Fe2 . Notice that the moduli space MΓβ

(PΓ0) is always transversely cut
out. Any element of the moduli space MΓ∗

β,i,j
(PΓ∗) is determined by an element in

MΓ0
β
(PΓ0) obtained by forgetting the edges together with attaching points of the

edges e1, e2 which flow to x1, x2 under the perturbed gradient flow of Fe1 , Fe2 . For
any time-dependent perturbation Ft of FLϵ , the unstable manifold of xi, which is
the space of solutions to the equation

ẋ(t) +∇Ft(x(t)) = 0, t ∈ (−∞, 0],

is still a cycle and represents the same class in H1(Lϵ) as the unperturbed unstable
manifold. In the case when i = j, it follows that the number of such configurations
for any map of type Γ0(β;x0) is

1
2⟨xi, ∂β⟩⟨xj , ∂β⟩#MΓ0(β;x0)(PΓ), with the factor

of 1
2 appearing because the attaching points must appear in cyclic order, and the

number of attaching points in either order are equal by the symmetric assumption.
In the case when i ≠ j, a map of type Γ0(β;x0) together with the data of attaching
points contributes to exactly one of the two terms in the left hand side of (5.4)
depending on the cyclic ordering of z0 and the two attaching points. □

Example 5.13. We give an example to show why the divisor equation (5.4) does not
hold if multivalued perturbations are not allowed. Consider X = S2 with L = S1

being the equatorial circle equipped with a minimal Morse function F . Let x0 resp.
x1 ∈ L be the minimum resp. maximum point of F . There are two basic classes
β+, β− in H2(X,L) corresponding to the upper and lower hemisphere of S2, and
there is one map each of class β+, β− that has a single output mapping to x0.
We now count the elements in the moduli space MΓβ±,1,1

(PΓ). Let F e1 and F e2

be single-valued perturbations of F defined on the treed segments Te1 , Te2 . The
corresponding unstable manifolds p1 := W u

e1(x1) and p2 := W u
e2(x1) are distinct

points in L. Depending on the cyclic ordering of x0, p1 and p2, exactly one of the
moduli spaces MΓβ+,1,1

(PΓ), MΓβ−,1,1
(PΓ) is non-empty. Thus the relation (5.4)

does not hold for the classes β+, β−.
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Symmetric perturbations may not suffice to regularize other moduli spaces as one
needs to break the symmetry in order to regularize. Nonetheless, a perturbation
sufficiently close to a symmetric one will not change the divisor relation above.

Lemma 5.14. For each sufficiently small ϵ, there exist a coherent and strongly
regular system of perturbations P̃Γ for treed holomorphic disks in X̃ so that for the
basic disk classes, one has the relation (5.4).

Proof. For each Γ there are countably many map types Γ(β;xi, xj , x0). Since the
countable intersection of comeager sets is comeager, we may assume that PΓ has been
chosen so that (5.4) holds. The rest of the construction of coherent perturbations
now remains the same. □

We summarize all conditions that can be achieved in the following theorem.

Theorem 5.15. There exists a coherent system of perturbation data P̃ = (P̃Γ) for

treed disks in X̃ satisfying the following conditions.

(a) Each P̃Γ is strongly regular (see Definition 2.25).
(b) The system of perturbation data P = (PΓ) obtained from P̃ via the natural

projection map is coherent and each PΓ is strongly regular.
(c) If Γ is the domain type with a single vertex, two unforgettable incoming

boundary edges and one outgoing boundary edge, no interior leaves, then (5.4)
holds.

(d) In particular, if P̃Γ = (J̃Γ, H̃Γ, F̃Γ, M̃Γ), then J̃Γ agrees with JŨ in Ũ , H̃Γ

vanishes identically in Ũ , and M̃Γ is the identity in Ũ .

5.3. Point constraint and restricted perturbations. In this subsection, we
consider the Fukaya category, the quantum cohomology, the open-closed/closed-open
maps with a special bulk deformation. We first address some considerations for
transversality of treed disks before we take the blowup. We consider bulk deformations
of the form

b = b0 + q−ϵp

where ϵ > 0 and b0 is a bulk deformation whose components are disjoint from p. We
first refine the combinatorial structures for domain types. The datum for a domain
type Γ of treed disk includes a partition

Leaf•(Γ) = Leaf•,0(Γ) ⊔ Leaf•,ex(Γ)

where Leaf•,0(Γ) labels interior markings mapped into D or components of b0, while
the set of exceptional leaves Leaf•,ex(Γ) labels interior markings (called exceptional
markings) constrained by p. If Γ is such a stable domain type, let Γ′ be the domain
type obtained by forgetting Leaf•,ex(Γ) and stabilizing. This operation induces a
contraction map

UΓ → UΓ′ .

We make the following restrictions on perturbations.
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Definition 5.16. For each stable domain type Γ, a perturbation PΓ = (JΓ, FΓ, HΓ,MΓ)
is called restricted if it satisfies the following conditions.

(a) JΓ|U ≡ JU , HΓ|U ≡ 0, and MΓ|U = Id.
(b) Let Γ′ be the domain type obtained by forgetting Leaf•,ex(Γ). If Γ′ is not

empty, then PΓ is the pullback of a function on UΓ′ under the contraction
UΓ → UΓ′ .

Definition 5.17. A map type Γ is called p-uncrowded if on each ghost vertex
v ∈ Vert(Γ) there is at most one exceptional leaf.

We also modify the meanings of regular and strongly regular perturbations in
Definition 2.25 by requiring the same conditions only for map types that are both
uncrowded and p-uncrowded.

Proposition 5.18. There exists a coherent system of restricted and strongly regular
perturbations P = (PΓ)Γ.

Proof. The proof of the statement of the Proposition is similar to the proof of
Theorem 2.26. Note that there are no nonconstant holomorphic spheres contained in
the open subset U where the almost complex structure is unperturbed. □

Proposition 5.19. There exists a coherent system of restricted and strongly regular
perturbations P such that, for each essential map type Γ of expected dimension zero
or one and for each element of MΓ(PΓ) represented by a treed disk (C, u) for each
exceptional marking z ∈ C, the derivative of u at z is nonzero.

Proof. The vanishing of derivatives at markings is a phenomenon with codimension
two, hence generically cannot happen in a zero or one-dimensional moduli space. □

5.4. Pullback perturbations and exceptional regularity. In this subsection,
we discuss the transversality issues related to embedding the Fukaya category to
a blowup. In order to compare this category with the Fukaya category before the
blowup, we use the pullback perturbations which depends on markings mapped into
the pullback of a Donaldson hypersurface D ⊂ X. However, π−1(D) is no longer a
Donaldson hypersurface. This requires a modification of the general construction.

5.4.1. Exceptional regularity. We first consider treed disks for defining the Fukaya
category. Let Γ be any stable domain type (without exceptional leaves). As restricted
perturbations used downstairs (see Definition 5.16) are independent from exceptional

leaves, they can be pulled back to a perturbation on UΓ for treed disks in X̃. Indeed,
as JΓ is the standard almost complex structure JU in U , it lifts to the integrable
almost complex structure JŨ . The Hamiltonian perturbation HΓ, the diffeomorphism
MΓ both lifts as well. Therefore, each restricted perturbation PΓ corresponds to a
pullback perturbation upstairs. We denote the pullback by π∗PΓ. A map type for
treed disks in X̃ is denoted by Γ̃ and the corresponding moduli space is MΓ̃(π

∗PΓ).
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To regularize the moduli spaces of treed maps that have spherical components
mapped to the exceptional divisor we require a different notion of regularity, as the
normal direction to the exceptional divisor may bring in obstructions in the usual
sense. We define a subgraph of the type of a map corresponding to components that
map into the exceptional locus.

Definition 5.20. (Exceptional subtype) Let Γ be a domain type, u : C → X̃ be a
treed holomorphic disk of type Γ. Let Γex be the union of spherical subtrees Γ′′ of Γ
whose energy is positive and so that the images of the corresponding sub-curve C ′′ is
contained in the exceptional divisor Z̃ (such a subtree may have ghost components).13

In general, a treed holomorphic disk C of domain type Γ is called a type (Γ,Γex)-map
if Γex is union of all maximal spherical subtrees Γ′′ with∑

v∈Vert(Γ′′)

A(uv) > 0 and
⋃

v∈Vert(Γ′′)

uv(Sv) ⊂ Z̃.

The moduli space of maps to the blowup can be viewed as a fibre product in the
following way. We assume for simplicity that the graph Γex is connected and its
complement, denoted by Γ′, is also connected. Let Γex and Γ′ be the obviously induced
map types. Let uex and u′ be the restriction of u to these two parts. The perturbation
datum PΓ induces a perturbation datum PΓ′ on UΓ′ and a perturbation datum PΓex

on UΓex . The map u′ represents an element of MΓ′(PΓ′) and uex represents an
element of MΓex(PΓex). The moduli space of type (Γ,Γex) treed holomorphic disks
(with respect to the perturbation PΓ) can be identified with the fibre product

MΓ′(PΓ′)ev ×ev MΓex(PΓex)

where the target set of the two evaluation maps is the exceptional divisor Z̃.

Definition 5.21. The treed holomorphic disk u is regular as a type (Γ,Γex) map if
u′ and uex are both regular and the above fibre product is transverse at ([u′], [uex]).

In order to obtain corresponding regularity and compactness results, the notion of
strong regularity of Definition 2.25 needs the following modification.

Definition 5.22. Let Γ be a stable domain type. A pullback perturbation PΓ

(for treed disks in X̃) is called exceptionally regular if the following conditions are
satisfied: For each subgraph Γex ⊂ Γ whose vertices are all contained in Vert•(Γ), an

uncrowded treed holomorphic disk u : C → X̃ of domain type (Γ,Γex) is regular as a
map of type (Γ,Γex).

Proposition 5.23. There exists a coherent system of perturbations P = (PΓ)Γ for
treed disks in X satisfying the following conditions.

(a) Each PΓ is strongly regular (Definition 2.25.)

(b) The lifted perturbation π∗PΓ is strongly regular for curves in X̃ having no

components mapped into Z̃.

13A ghost spherical tree ∪v∈V Sv mapped into Z̃ with all neighboring components Sv′ not mapped
into Z̃ is not contained in Γex.
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(c) The lifted perturbation π∗PΓ is exceptionally regular.

Proof. The proof is similar to that of Theorem 5.15 and omitted. □

Remark 5.24. Exceptionally regularity implies regularity for the following maps
obtained by the forgetful construction. Let u : C → X̃ be a treed holomorphic disk of
type (Γ,Γex). Let C

′ be the (possibly disconnected) treed disk obtained by removing

all spherical components Sv labelled by vertices v in Γex, and u
′ : C ′ → X̃ the induced

map which has no nonconstant sphere components mapped into Z̃. Equip C ′ with
new markings corresponding to nodes connecting C ′ to its complement C − C ′. Let
Γ′ be the domain type (possibly disconnected) corresponding to C ′. (See Figure 26.)
By the locality property of the perturbation data (see Definition 2.13), PΓ induces a

perturbation datum PΓ′ so that u′ is PΓ′-holomorphic. The moduli space MΓ,Γex(X̃)
is then the fiber product of MΓ′(X) with MΓex(E), over some number I of copies

of Z̃ corresponding to edges connection Γ′ and Γex. Since nonconstant spheres in
Z̃ ∼= CPn−1 ⊂ O(−1) have obstructions to be deformed out of Z̃, the transversality at
nodes connecting components in Γex and not in Γex implies the evaluation map at the
new markings from the moduli space of PΓ′-holomorphic treed disks is transversal to
(Z̃)l at the point represented by u′. In particular, the curves in MΓ′(X) are regular.

z4z3

z2

z1

Figure 26. Forgetting sphere components mapped to the exceptional
divisor. The gray spheres are (possibly constant) holomorphic spheres
in the exceptional divisor. The markings supposed to be mapped
to the Donaldson hypersurfaces are not drawn. The exceptional
regularity requires regularity of the configuration on the right and
the transversality to the exceptional divisor at the markings
z1, z2, z3, z4.

5.4.2. Refined compactness for blowup. Finally, we show that a version of Gromov
compactness holds for the perturbations constructed as above, with complex structure
standard in a neighborhood of the exceptional locus. We first redefine the notion of
essential map types in the blowup case (see Definition 2.29), since the pullback of the

stabilizing divisor D̃ ⊂ X in X̃ is no longer a Donaldson hypersurface, but rather
represents the cohomology class π∗[ω] ∈ H2(X̃).
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Definition 5.25. A map type Γ of treed holomorphic disks in X̃ is called essential
if the edges e ∈ Edge(Γ) have no breakings, there are no edges e of length ℓ(e)
zero or infinity, no spherical vertices v ∈ Vert•(Γ), all interior constraints on edges

e ∈ Edge•(Γ) are either (D̃, 1) or b̃ and the following holds for each disk vertex

v ∈ Vert(Γ◦), if the homology class of the component Sv is β̃v, then the number

of interior leaves meeting v labelled by (D̃, 1) is equal to kω(βv), where βv is the

pushforward of β̃v to X.

Proposition 5.26 (Improved compactness). For a coherent collection (P̃Γ) of excep-

tionally regular perturbations, sequential compactness for moduli spaces M̃Γ(L, D̃(L))
of essential types of expected dimension at most one (exactly the same statement as
Lemma 2.31) holds. In particular, the limit of a convergent sequence uν of elements

u in a moduli space M̃Γ(L, D̃(L)) of essential map type of expected dimension at

most one has no component mapped into the exceptional divisor Z̃.

Proof. We extend the proof of Lemma 2.31 to the case of sphere bubbling in the
exceptional divisor, which is ruled out by an index argument. Consider an essential
map type Γ with index at most one and consider a sequence of treed holomorphic
disks ui : Ci → X̃ representing a sequence of points in MΓ(P̃Γ). By general
compactness results, a subsequence converges to a limiting treed holomorphic disk
u : C → X̃ of some type Γ′. Indeed, Gromov compactness for Hamiltonian-perturbed
pseudoholomorphic maps with Lagrangian boundary conditions shows that the maps
on each surface component have stable limits, after passing to a subsequence, and
convergence on the tree parts follows from compactness of the manifold. To see
that the limit has essential type, first one can as in the proof of Lemma 2.31 (also
the argument of Cieliebak–Mohnke [CM07]) remove crowded ghost components

uv : Sv → X̃, and so assume that the map type Γ′ of u is uncrowded. Second, if one
can rule out the possibility of a non-constant sphere uv : Sv → X̃ mapped into the
exceptional divisor Z̃, then the theorem follows from the same argument of the proof
of Lemma 2.31 as the exceptional regularity agrees with the regularity.

Suppose on the contrary that there are non-constant spherical components of u
mapped into the exceptional divisor. We derive a contradiction using the two types of
regularity conditions of Definition 5.22 and Remark 5.24. Let Π be the domain type
of u. Consider maximal sphere bubble trees Πex in Π whose energy is positive and so
that the corresponding maps u′ : C ′ → X̃ have images in Z̃. Let Π′ be the domain
type obtained from Π by removing Πex. Suppose Πex has m connected components
Πex,1, . . . ,Πex,m with positive degrees d1, . . . , dm. Suppose Π′ have k + 1 connected
components Π′

0, . . . ,Π
′
k where Π′

0 has boundary and Π′
1, . . . ,Π

′
k are spherical trees.

Suppose the homology class of Π′
i is βi and Π′

i has li new markings. Suppose the
component Π′

0 has map type Π0 and l0 new markings. Since each removed node is
replaced by two new markings, we have the equality

l := l0 + l1 + · · ·+ lk = k +m.
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To simplify the computation of the indices, without loss of generality, assume all the
spherical trees Πex,i or Π

′
j (j ≥ 1) have single vertices and the disk components have

no bubbling of disks or breaking of edges; otherwise, the index of the strata would
be even lower. The index of u as a (Π,Πex)-type map (see Definition 5.22) is (here
2n is the dimension of X and d = d1 + · · ·+ dm is the total degree of spheres in the
exceptional divisor).

k∑
i=1

2n+m(βi) + 2li − 6︸ ︷︷ ︸
index of Π′

i

+ ind(Π0) + 2l0︸ ︷︷ ︸
index of Π′

0

+(2n− 2)m+ 2nd+ 2l − 6m︸ ︷︷ ︸
index of Πex

− 2nl︸︷︷︸
matching condition

= (2n− 6)k − (2n− 4)l + (2n− 8)m+ ind(Γ) + 2d

= 2d− 2k − 4m+ ind(Γ) ≥ 0

Hence

(5.5) d ≥ k + 2m.

On the other hand, consider the induced object of type Γ′. The index is

k∑
i=1

2n+m(βi) + 2li − 6︸ ︷︷ ︸
index of Π′

i

+ ind(Π0) + 2l0︸ ︷︷ ︸
index of Π′

0

− 2l︸︷︷︸
constraints at new markings

= (2n− 6)k + ind(Γ)− 2(n− 1)d ≥ 0.

Hence

d ≤ k − 2k

n− 1
.

This contradicts (5.5). Hence in the limit there cannot be any non-constant spherical
components mapped into the exceptional divisor. On the other hand, using ordinary
(but not the exceptional) regularity one can also see that there is no constant spherical
component that is mapped into the exceptional divisor. □

5.4.3. Refined compactness for treed disks with point constraints. The exceptional
regularity achieved upstairs also implies the refined compactness for curves downstairs.
Let Γ be an essential map type of expected dimension 0 or 1 downstairs with l
exceptional markings.

Lemma 5.27. For generic perturbations PΓ, we can achieve an additional regularity
condition: for each representative (C, u) of points in MΓ(PΓ), the fiber u−1(p) is the
set of the l exceptional markings.

Proof. Indeed, each additional point mapped to p cuts down the dimension by
2n − 2 ≥ 2. Moreover, by Proposition 5.19, the derivatives at the exceptional
markings are nonzero. Hence (C, u) lifts to a treed disk (C, ũ) that intersects Z̃ at
the positions of the exceptional markings. □

Lemma 5.28. Given a map ũ : C → X̃, let u = π ◦ ũ denote the projection with
exceptional markings at u−1(p). The indices of Γ of u and Γ̃ of ũ coincide.
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Proof. Let n be the complex dimension of X. By the relation between canonical
classes before and after the blowup, one has

c1(X̃) = π∗c1(X)− (n− 1)PD([Z̃]).

where PD denotes the Poincaré dual. The lemma follows from Riemann-Roch. □

Proposition 5.29. Let Γ be an essential map type of expected dimension 0 resp. 1.
Then MΓ(PΓ) is compact resp. compact up to at most one of the degenerations listed
in Lemma 2.31.

Proof. Suppose (Ci, ui) be a sequence of treed disks of map type Γ and (Ci, ũi) be the

sequence of lifts. Suppose their map types are Γ̃i. By the relation between symplectic
forms (see (5.1)), the topological energy of the types Γ̃i is uniformly bounded. Hence

by Gromov compactness, we may assume that Γ̃i are all identical to a map type
Γ̃. By Lemma 5.28, the expected dimension of MΓ̃(PΓ) is either zero or one. The
exceptional regularity of the perturbation implies that this moduli space is compact
up to at most one codimension one degenerations listed in Lemma 2.31. In particular,
the limiting configuration contains no spherical components Sv, v ∈ Vert•(Γ). □

5.5. The Fukaya category and open-closed/closed-open maps. We describe
how to construct the Fukaya category for blow-ups in the case of a point bulk
deformation with small negative q-valuation.

5.5.1. Insertions with negative q-valuations and convergence. Consider a bulk defor-
mation in X of the form

b+ q−ϵp

We will define a curved A∞ category which is formally

Fuk∼L(X, b+ q−ϵp).

Notice that its definition does not automatically follow from the general case because
of the negative exponent.

Lemma 5.30. There exists ϵ0 > 0 such that for any Riemann surface Σ with boundary
∂Σ, any domain-dependent almost complex structure J : Σ → Jtame(X,ω) whose
restriction to U is JU , for any J-holomorphic curve u : Σ → X with u(∂Σ) ∩ U = ∅,
we have the energy bound

E(u) ≥ 2ϵ0#u
−1(p).

Proof. This follows from the generalization of Gromov’s monotonicity result for
J-holomorphic curves to the case with multiplicities (see [Bao16, Theorem 12]; the
result can also be derived from [Fis11]). □

Corollary 5.31. There exists ϵ0 > 0 such that for all ϵ ∈ (0, ϵ0], the Fukaya category
Fuk∼L (X, b0+q

−ϵq), the quantum cohomology ring QH•(X, b0+q
−ϵp), the open-closed

map [OC(b0 + q−ϵp)], and the closed-open map [CO(b0 + q−ϵp)] are all well-defined.
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Proof. We only prove for the case of Fuk∼L (X, b0 + q−ϵp); other cases are similar. In-
deed, it suffices to show that the sum (3.5) gives a well-defined element of CF •(L0, Ld).
As the moduli space for each individual essential map type of expected dimension
zero is compact, we need to show that when ϵ is small, for each a > 0, there are only
finitely many nonempty moduli spaces

MΓ(PΓ) ⊂ M(x)0

that contribute to md(a1, . . . , ad) and that satisfy

A(Γ)− ϵ#Leafex(Γ) < a.

Indeed, if ϵ is smaller than the ϵ0 of Lemma 5.30, then the number of exceptional
markings is bounded in terms of the area. By Gromov compactness, there can only
be finitely many such map types. □

5.5.2. Categories of old branes in the blowup. We wish to identify the Fukaya category
of the old branes with a subscategory of the Fukaya category of the blow-up. We must
deal with the issue that the pullback hypersurface π−1(D) ⊂ X̃ is not a Donaldson

hypersurface in the blowup X̃, as its Poincaré dual is k[π∗ω]. Therefore, below any
given energy level, there might be infinitely many essential map types with unbounded
numbers of interior markings contributing to the definition of the composition maps.
To show that the structural maps (higher compositions, chain-level open/closed and
closed/open maps) are defined, we need to show the following:

Lemma 5.32. Given any energy bound E and constraints at semi-infinite edges/leaves,
there are at most finitely many essential map types Γ below the energy bound that
have a nonempty moduli space.

Proof. Given a non-empty moduli space MΓ̃(PΓ) and a point in it, after forgetting
interior gradient leaves, a representative (C, ũ) projects to a treed disk (C, u) in X.
The relation between symplectic classes (see (5.1)) implies that

E(ũ) = E(u)− ϵ⟨ũ, [Z̃]⟩ = E(u)− ϵ#u−1(p).

When ϵ is smaller than the ϵ0 of Lemma 5.30, the energy bound upstairs implies a
uniform bound on #u−1(p). Therefore, E(u), which is also the intersection number
between ũ and π−1(D), is uniformly bounded. It follows that there can be at most
finitely many domain types supporting such map types with nonempty moduli spaces
given an energy bound. □

Gromov compactness then implies the finiteness of contributing moduli spaces
and hence finite counts defining the coefficients of the structure maps.

5.5.3. Homotopy invariance of the category of old branes. In this section, we sketch
the comparison between two constructions of the Fukaya category of old branes in
the blowup, the general version provided in Section 2 and Section 3 and the special
version using pullback perturbations. We use the strategy of Appendix A, although
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in the latter case the divisor used is not a Donaldson hypersurface. For simplicity,
we assume that the bulk deformation b̃ in the blowup is trivial.

We first specify different types of domains. The domains used in the pullback
construction are called π−1(D)-stabilized domains. On the other hand, let D̃ ⊂ X̃
be a Donaldson hypersurface with respect to the blowup symplectic structure ω̃ and
J̃0 be an ω̃-tamed almost complex structure such that (D̃, J̃0) satisfies conditions of
Proposition 5.2. By following the general construction of Section 2 and Section 3, we
have a different version of Fukaya category for branes in L. The domains used in
this case are called D̃-stabilized domains.

Now introduce treed disks with two types of interior markings to incorporate two
stabilizing divisors. A (π−1(D), D̃)-stabilized treed disk (or bi-stabilized treed disk)
is a treed disk with a partition of the set of interior markings into two groups. By
forgetting one group of markings and stabilizing one can obtain from a bi-stabilized
treed disk either a π−1(D)-stabilized treed disk or a D̃-stabilized treed disk. A

perturbation used for π−1(D)-stabilized treed disk resp. D̃-stabilized treed disk can
be pulled back to a bi-stabilized treed disk. The pullback perturbation on longer
satisfies the locality property in the sense of Definition 2.13; but it is still partly
local in the sense of Definition A.1. Moreover, the composition maps defined using
bi-stabilized treed disks with either one of the pullback perturbations agree with
the composition maps obtained using just one type of markings. Counts of quilted
treed disks using generic homotopy between these two system of partly local pullback
perturbations defines a homotopy equivalence of A∞ categories. Notice that we still
need to use the argument of exceptional regularity (see Definition 5.22) to obtain the
refined compactness result for zero or one-dimensional moduli spaces. We summarize
the conclusion here.

Theorem 5.33. The Fukaya category Fuk∼π−1(L)(X̃, b) defined using pullback re-

stricted perturbations from X is A∞ homotopy equivalent to the Fukaya category
defined using a Donaldson hypersurface in X̃.

6. Proof of the main theorem

6.1. Embedding of the downstairs Fukaya category. In this section we prove
the main Theorem 1.1 following the strategy sketched in the introduction. We first
prove Theorem 1.11. Recall that X̃ is an ϵ-blowup of X at a point p ∈ X and E ⊂ X̃
is the exceptional divisor produced by the blowup. The basic ingredient of the proof
is a correspondence between treed disks in X̃ and treed disks in X defined as follows.
Given a map ũ : C → X̃, we obtain u : C → X by composing ũ with the projection
map π : X̃ → X. For the map u, the points in u−1(p) are designated as exceptional
markings.

We introduce the following notation for moduli spaces with insertions at the
exceptional locus or blowup point. Let b be a bulk deformation in X disjoint from p
and b̃ = π−1(b) its preimage in X̃. Let
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• Γ̃ be an essential map type (see Definition 2.29) in X̃ with boundary conditions

from the collection L̃. For each vertex v ∈ Vert(Γ) (which must be a disk

by the definition of essential map type), let β̃v be the labelling homology

class. Then β̃v has a well-defined intersection number dv with the exceptional
divisor Z̃;

• Γ′ be the map type in X obtained from Γ̃ by replacing the decorations
β̃v ∈ H2(X̃, |L̃|) with their projections βv ∈ H2(X, |L|) and adding to each
vertex v a set of dv exceptional leaves Leafex(Γ) (to be mapped to p). Notice

that Γ̃ uniquely determines Γ′.

Let PΓ′ belong to the coherent system of perturbations (for treed disks in X) chosen
in Section 2. Remember that because PΓ′ does not depend on the positions of the
exceptional leaves, it lifts to a perturbation for treed disks in X of domain type
Γ, denoted by PΓ. The moduli spaces are denoted MΓ̃(PΓ) upstairs and MΓ′(PΓ′)

downstairs. For each vertex v, let dex(β̃v) denote the pairing of the homology class

β̃v with the class of the exceptional divisor.

Theorem 6.1. Suppose Γ̃ is an essential map type of expected dimension zero.
Composition with projection from X̃ to X induces a surjection

(6.1) MΓ′(PΓ′) →
⋃

Γ̃7→Γ′

MΓ̃(PΓ).

An element in MΓ̃(PΓ) has

dex(Γ̃) :=
( ∑
v∈Vert(Γ)

dex(β̃v)
)
!

number of pre-images under (6.1) that differ from each other in the ordering of the
exceptional leaves.

Proof. By the definition of essential map types (see Definition 2.29), if Γ̃ is essential,

so is Γ′. Moreover, by Lemma 5.28, if Γ̃ has index zero, so does Γ′. Choose a point
in MΓ′(PΓ′) represented by a treed disks u : C → X. Since JΓ coincides with JU
inside U , u lifts to a map

ũ : C \ π−1(p) → X̃

which projects down to u. Moreover, by the requirement on the perturbation, at each
point of u−1(p), to derivative of u is nonzero. Then ũ extends continuously, hence

smoothly, to a treed disk ũ : C → X̃. If we remove the exceptional markings, then ũ
has an essential map type Γ̃ which descends to Γ. Moreover, as the perturbation PΓ

does not depend on the positions of the exceptional markings, ũ indeed represents
an element of MΓ̃(PΓ). Hence the map (6.1) is defined.

Now we prove that the map (6.1) is surjective and has the expected degree. Fix

such a map type Γ̃ and let ũ : C → X̃ represent an arbitrary point of MΓ̃(PΓ). By
the transversality condition in Definition 5.22, see also Remark 5.24, the curve ũ
intersects Z̃ transversely. Moreover, as Z̃ is almost complex, each intersection point
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contributes 1 to the intersection number. Hence on each disk component Sv ⊂ C, ũ
intersects Z̃ at exactly dex(β̃v) points. Therefore, the point represented by ũ is in

the image of (6.1) where the intersection points with Z̃ are at the positions of the

original exceptional markings. Furthermore, as there are dex(Γ̃)! many ways to label

the exceptional markings, each point in MΓ̃(PΓ) has exactly dex(Γ̃)! preimages. By
comparing the orientations, this number is indeed the degree. □

Proof of Theorem 1.11 from the Introduction. The map (6.1) constructed in Theo-
rem 6.1 preserves orientations o(u), number of interior leaves d•, and (after the
adjustment by q−ϵ in the bulk insertion p) symplectic areas in the sense that

A(ũ) = A(u)− ϵ([ũ].[Z̃]).

Indeed, any pseudoholomorphic curve in X̃ projects to a curve inX, with intersections
ũ−1(Z̃) with the exception locus Z̃ mapping to intersections u−1(p) with the blowup
point p.

Regarding orientations, after capping off the the strip like ends as in [WW] we
may assume that the boundary condition is given by a single totally real subbundle
(∂u)∗TL. Any deformation of the Lagrangian (∂u)∗TL to a trivial one for ϕ induces

a similar isotopy for ϕ̃. The pullback ũ∗TX̃ of the tangent bundle of X̃ around an
intersection with the exceptional divisor Z̃ has a natural trivialization away from
ũ−1(Z̃). The projection π naturally identifies sections of ũ−1(Z̃) locally with sections
of the u∗TX vanishing at 0. The orientations on moduli spaces of disks constructed in
[FOOO09] are defined by pinching off sphere bubbles on which the linearized operator
has a complex kernel and cokernel, preserving the complex structure. It follows that
the induced orientations on the determinant lines for u and ũ are equal. □

6.2. Open-closed maps from old branes. Recall from Section 3.3 that the
quantum cohomology is defined, as a vector space, as the Morse homology of a
Morse-Smale pair. We choose the Morse-Smale pair (fX , hX) on X satisfying the
following conditions (recall that X is connected):

Assumption 6.1. (a) fX has a unique critical point xmax of maximal Morse
index and a unique critical point xmin of minimal Morse index.

(b) For a critical point x different from xmax resp. xmin, p is not contained in
the unstable resp. stable manifold of x.

In particular, p is not a critical point.

On the other hand, the pullback π∗fX : X̃ → R is a Morse-Bott function on the
blowup X̃ that requires some perturbation. We choose a Morse-Smale pair (fX̃ , hX̃)

on X̃ satisfying the following conditions.

Assumption 6.2. (a) (fX̃ , gX̃) agrees with (π∗fX , π
∗hX) outside a small neigh-

borhood of Z̃.



FUKAYA CATEGORIES OF BLOWUPS 105

(b) For each critical point x ∈ crit(fX) ⊂ crit(fX̃) that is not xmax resp. xmin,
the unstable resp. stable manifold of x of the flow of −∇fX̃ coincides with
the unstable resp. stable manifold of x of the flow of −∇fX .

The natural inclusion crit(fX) ⊂ crit(fX̃) extends to a linear map CF •(X) →
CF •(X̃). The above conditions on the Morse-Smale pairs imply that it is a chain
map and that the induced map on cohomology agrees with the (injective) pullback

QH•(X) → QH•(X̃).

Proposition 6.2. The following diagram is commutative:

(6.2)

HH•
(
Fuk♭L(X, b+ q−ϵp)

)
//

π∗

��

QH•(X, b+ q−ϵp)

π∗

��

HH•
(
Fuk♭L̃(X̃, b̃)

)
// QH•(X̃, b̃)

where the horizontal arrows are [OC(b+ q−ϵp)] resp. [OC(b̃)]. In particular,

dim
(
[OC(b̃)](HH•(Fuk

♭
L̃(X̃, b̃)))

)
≥ dim

(
Im([OC(b+ q−ϵp)])

)
.

Proof. We check that the diagram (6.2) commutes on the chain level by identifying
the moduli spaces involved in the definition. The structure constants of the open-
closed maps count treed disks with an interior constraint on an unstable manifold in
X resp. X̃. Suppose x ∈ crit(fX) \ {xmin}. By Theorem 6.1, treed disks in X with
the outgoing gradient leaf labelled by x are in bijection (up to permuting constrained

leaves labelled by p) with treed disks in X̃ with output the same constraint, as
negative gradient trajectories starting from x do not go near p. As in the proof of
Theorem 1.11 on page 104, the bijection preserves the orientations o(u) and the
counting coefficients in defining the open-closed maps. Therefore, the diagram (6.2)
commutes up to multiples of the identities in the quantum cohomology. On the other
hand, in the direction spanned by xmin (which is a Morse cocycle in both X and

X̃) the open-closed map always only has classical contributions (see Lemma 3.19).
Hence (6.2) commutes. □

6.3. Floer cohomology of new branes. In this section, we discuss the Fukaya
algebras of branes supported on the exceptional torus in the blowup. The construction
of perturbations relies on choosing a Donaldson hypersurface of the blowup, which is
not the pullback of the Donaldson hypersurface D ⊂ X. Nevertheless, there exists a
special Donaldson hypersurface D̃ ⊂ X̃ which is holomorphic near the exceptional
locus Z̃. We first recall the computation of the potential function and the Floer
cohomology of these branes in [CW17].

Theorem 6.3. [CW] Let Lϵ be the exceptional Lagrangian, which is monotone in a

neighborhood of Z̃.
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(a) For each local system

y : H1(Lϵ) ∼= Cn → Λ×, y = (y1, . . . , yn)

the Fukaya algebra CF •((Lϵ, y), (Lϵ, y)) is weakly unobstructed.
(b) There exists a particular weakly bounding cochain bex(y) ∈ MC(Lϵ, y) such

that

(6.3) W (bex(y)) = q
ϵ

n−1

(
y1 + · · ·+ yn + y1 · · · yn + h.o.t

)
where h.o.t. denotes higher order terms measured by q-valuation.

(c) There are n − 1 distinct local systems y(k), k = 1, . . . , n − 1, such that for
b(k) := bex(y(k)), one has

HF •((Lϵ, y(k), b(k)), (Lϵ, y(k), b(k))) ∼= H∗(Lϵ,Λ).

Proof. The computation of the potential function in [CW] was carried out in the

following way. First, by a neck-stretching argument along the hypersurface ∂Ũ ∼=
S2n−1, the Fukaya algebra (possibly with a bulk deformation supported away from the

exceptional divisor Z̃) of Lϵ with any local system is A∞ homotopy equivalent to a
“broken Fukaya algebra” defined by counting holomorphic buildings. The holomorphic
buildings contains levels in X and in certain toric pieces. Second, by turning on
gradient flows of a Morse function H on ∂Ũ/S1 ∼= Pn−1, the broken Fukaya algebra
is A∞ homotopy equivalent to another A∞ algebra defined by counting holomorphic
buildings whose levels are separated by Morse gradient lines of H of any fixed length
τ . Third, while the A∞ homotopy type of the Fukaya algebra does not depend on
τ , when τ goes to ∞, by dimension counting, the holomorphic buildings must be
Maslov index two disks in the level containing Lϵ. Denote by mτ=∞

k the composition
maps of the last Fukaya algebra. The potential in the neck-stretched limit is

mτ=∞
0 (1) = q

ϵ
n−1 (y1 + · · · yn + y1 · · · yn + h.o.t) 1Lϵ

=:Wex(y1, · · · , yn)1Lϵ
.

Using the positivity of the toric piece, one can see that bτ=∞ := Wex(y)1Lϵ
is a

weakly bounding cochain. As an A∞ homotopy equivalence identifies Maurer-Cartan
solution spaces and preserves the potential function, the original Fukaya algebra of
(Lϵ, y) is weakly unobstructed, with the weakly bounding cochain bτ=∞ identified
with a weakly bounding cochain bex(y) ∈MC(Lϵ, y), at which the potential function
has the value Wex(y).

To identify nontrivial Floer cohomologies, consider the leading order term

W0 = q
ϵ

n−1 (y1 + · · · yn + y1 · · · yn)
and its critical points. Indeed,

dW0 = 0 =⇒ y1 · · · ŷi · · · yn = −1

which has n− 1 solutions y0,(k), k = 1, . . . , n− 1 where

(6.4) y0,(k) =

(
exp

(
(2k − 1)π

√
−1

n− 1

)
, . . . , exp

(
(2k − 1)π

√
−1

n− 1

))
.
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Computing the second-order derivatives shows that the Hessian is non-degenerate
at those critical points. The higher order terms in Wex will not change the number
of critical points and the non-degeneracy of the Hessian. Let y(1), . . . , y(n−1) be the
corresponding critical points. Standard arguments as in [FOOO10, Theorem 4.10]
that for these local systems, the Floer cohomology (for the τ = ∞ Fukaya algebra
with the weakly bounding cochain) is isomorphic to the ordinary cohomology of
Lϵ. As A∞ homotopy equivalence preserves Floer cohomology, the last assertion is
proved. □

Definition 6.4. The exceptional collection of branes in the blowup X̃ is

E := {L(k) = (Lϵ, y(k), b(k)) | k = 1, . . . , n− 1}
where y(1), . . . , y(n−1) are the critical points of Wex and b(k) are weakly bounding
cochains provided above. Notice that the collection also depends on the bulk
deformation b̃ in X̃.

To compute the ring structure on the Floer cohomologies, we need a version of
the divisor equation as in [Cho05, Proposition 6.3].

Proposition 6.5. If the perturbation data for treed disks in X̃ are chosen such that
(5.4) holds, then the following (restricted) divisor equation holds. For any two Morse
cocycle x1, x2 on Lϵ of degree 1 (i.e. linear combinations of critical points of Morse
indices 1) and any basic disk class β

(6.5) m2,β(x1, x2) +m2,β(x2, x1) = ⟨[x1], ∂β⟩⟨[x2], ∂β⟩m0,β(1).

Proof. The statement of the Proposition is a direct consequence of Lemma 5.12. □

Proposition 6.6. The branes L(k) = (Lϵ, y(k), b(k)) ∈ E, k = 1, . . . , n − 1 have
distinct values of the potential function and so generate orthogonal summands
of the Fukaya category Fuk♭E(X̃, π

−1(b)). Moreover, each Floer cohomology ring
HF •(L(k),L(k)) is isomorphic to a Clifford algebra corresponding to a non-degenerate
quadratic form whose leading order is the Hessian of W0 at y0,(k) (see (6.4)).

Proof. Direct calculation shows that the critical values of W0 are all distinct. As the
bulk deformation has positive q valuations, the actual potential function Wex is a
higher order deformation of W0. So the critical values remain distinct. By definition
of the spectral decomposition, L(k) span orthogonal summands in Fuk♭E(X̃, π

−1(b)).

Now we prove the second claim. For each E > 0 and x ∈ CF •(L̂(k), L̂(k)), let x
≤E

be the truncation of x at the energy level E. Then (6.5) implies that for generators
a1, a2 living over Morse cocycles x1, x2 of degree 1, one has

m2(a1, a2)
≤ ϵ

n−1 +m2(a2, a1)
≤ ϵ

n−1 =
∑
β

⟨x1, ∂β⟩⟨x2, ∂β⟩m0(1)
≤ ϵ

n−1

= ∂x1∂x2Wex(y(k))
≤ ϵ

n−1
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where the summation runs over all the basic disk classes β. In this computation,
m0(1) is viewed as a function of the representation y defined by the local system y
and taking the second derivative with respect to y. By direct calculation, the right
hand side is a non-degenerate quadratic form. It follows that HF •(L(k),L(k)) is
a deformation of the Clifford algebra of a non-degenerate quadratic form (i.e. the
Hessian of W0 at the k-th critical point). Such Clifford algebras are rigid by Lemma
6.7 below so HF •(L(k),L(k)) is itself a Clifford algebra. □

Lemma 6.7. Let A be the Clifford algebra of a non-degenerate quadratic form on a
vector space V of dimension n. The Z2-graded Ext groups14 Exts(A,A) vanish for
s > 0. The Hochschild homology HH•(A,A) is one-dimensional and generated by
the class in HH0(A,A) of v1 . . . vn ∈ A, where v1 . . . vn is an orthogonal basis for V .

Proof. (See also [?, Lemma 3.8.5]) the graded Hochschild homology of Clifford
algebras is computed in Kassel [Kas86, Section 6,Proof of Proposition 1]. For the
result on the Ext groups see Sheridan [She16, (6.1.6)]. □

Remark 6.8. By definition, a formal deformation of an algebra A over a field Λ of
characteristic zero is a Λ[[ℏ]]-algebra structure over A[[ℏ]] (where ℏ is a formal variable)
whose zero order term is the algebra A. The Floer cohomology HF •(L(k),L(k))
provides a “first-order” deformation of the Clifford algebra associated to the Hessian
of W0 at its k-th critical point, which can be extended to a formal deformation.

Corollary 6.9. For k = 1, . . . , n− 1, the Hochschild homology of the A∞ algebra
Hom•(L(k),L(k)) is one-dimensional.

Proof. The Clifford algebra is intrinsically formal by Sheridan [She16, Corollary 6.4],
meaning that the A∞ algebra Hom•(L(k),L(k)) is quasi-isomorphic to its cohomology
algebra, which in this case is a Clifford algebra. As quasiisomorphisms of A∞
algebras admits homotopy inverses (see [Sei08b, Corollary 1.14]), the A∞ algebra
Hom•(L(k),L(k)) is A∞ homotopy equivalent to the cohomology algebra, hence has
isomorphic Hochschild homology. □

6.4. Open-closed map from the new branes. In this section, we examine the
open-closed maps on the collections of branes in the blowup constructed above.
For this, we need to specify a Morse function that facilitates the calculation. Let
(z1, . . . , zn) be the Darboux coordinates in the neighborhood U of p used for con-

structing the blowup. Inside the exceptional divisor Z̃ ⊂ X̃ we specify the following
cycles

Z̃k =
{
[z1, . . . , zk+1, 0, . . . , 0] ∈ Z̃ ∼= CPn−1

} ∼= CPk.

Let [Z̃k] ∈ H2k(X̃) be the homology class. Then

H̃•(Z̃) = span
{
[Z̃1], . . . , [Z̃n−]

}
14In Sheridan [She16, Section 6] the Hochschild cohomology groups are written in terms of the

Ext groups by recombining the bi-gradings. However, in the current situation the algebra A is only
Z2-graded and we wish to avoid combining the Z-grading and Z2-grading.
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where H̃•(Z̃) is the reduced homology.

Lemma 6.10. For any δ > 0, there exists a Morse-Smale pair (fX̃ , hX̃) on X̃
satisfying the following conditions.

(a) There is a Morse-Smale pair (fX , hX) on X with a unique local maximum

at p such that outside a neighborhood Ṽ of Z̃, (fX̃ , hX̃) = (π∗fX , π
∗hX) and

|fX̃ − π∗fX | < δ.

(b) crit(fX̃)∩Z̃ is the n toric fixed points of CPn−1 with Morse indices 2, 4, . . . , 2n−
2, 2n. We call them the exceptional critical points.

(c) Each exceptional critical point is δMorse-closed but not exact.

(d) The gradient vector field of fX̃ is tangent to Z̃ and the Hessian of fX̃ is

negative definite on the normal direction of Z̃. The stable manifolds of the
exceptional critical points are Z̃n−1 \ Z̃n−2, . . ., Z̃1 \ Z̃0, and Z̃0 respectively.

Proof. Choose a Morse-Smale pair (fX , hX) on X such that p is the unique local
maximum. We may assume that in the Darboux neighborhood U of p,

fX(z1, . . . , zn) = −|z1|2 − · · · − |zn|2.
Consider the function

(z1, . . . , zn) 7→
n∑
i=1

ai|zi|2.

For generic real numbers ai this induces a Morse function fZ̃ on Z̃ = CPn−1 with

critical points equal to the toric fixed points. Regard a neighborhood of Z̃ as a
neighborhood of the zero section in O(−1) and denote a normal vector by ξ. Define

fX̃ = δρ(|ξ|)fZ̃ − |ξ|2.
where ρ : R → R is a smooth cut-off function supported near 0. For any δ > 0,
fX̃ coincides with π∗fX outside the support of ρ, and so defines a function on X̃.

Moreover, when δ is sufficiently small, the only critical points near Z̃ are the critical
points of fZ̃ . We take hX̃ to be π∗hX outside the support of ρ, the Fubini-Study

metric on O(−1) near Z̃, and a generic interpolation in between. This makes (fX̃ , hX̃)
a Morse-Smale pair. Moreover, the stable manifolds of these exceptional critical points
are contained in Z̃ as the Hessian in the normal direction is negative definite. □

We fix the following notations. Choose a Morse-Smale pair (fX̃ , hX̃) as above to
define the open-closed map. Let x∗ ∈ Lϵ be the (only) critical point of FLϵ of Morse
index 0. We consider the unit disk D ⊂ C equipped with the distinguished points
0 ∈ int(D) and 1 ∈ ∂D.

Lemma 6.11. For each k = 1, . . . , n − 1 there is a unique map uk : D → X̃ of
Maslov index 2(n− k) bounding Lϵ and satisfying

(6.6) uk(0) ∈ Z̃k, uk(1) = x∗, A(uk) ≤
(n− k)ϵ

n− 1
.
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The map uk is regular as a map with these constraints (that is, the linearized operator

restricted to sections lying in T Z̃k at 0 and 1 is surjective) and there are no other
stable disks with these properties.

Proof. Let u be a holomorphic disk satisfying (6.6). The requirement that A(u) =
(n−k)ϵ
n−1 prevents the map from leaving the toric neighborhood Ũ , by Proposition 5.7.

Therefore, we may write

u = [u0, . . . , un]

using the homogeneous coordinates viewing the local model as a toric quotient. By
the Blaschke classification of holomorphic disks (see (5.2)), the condition u(0) ∈ Z̃k
requires that u0 and uk+2, . . . , un have degree at least one and have a common zero
at an interior point. Hence the Maslov index of u is at least 2(n − k). As Lϵ is

monotone in Ũ , the energy of u is at least (n−k)ϵ
n−1 . Hence the degrees of u1, . . . , uk+1

are all zero. The Blaschke classification then implies that there is exactly one such
disk satisfying in addition u(1) = x∗, up to PSL(2;R) symmetry. Denote such a
map by uk. Its regularity follows from the regularity of Blashcke disks in the toric
case (see [CO06]). The uniqueness of uk as a stable disk with one output is also
obvious. □

We compute the open-closed map on the exceptional Lagrangian branes. Similar
computations will also appear in the example of the Clifford torus in the projective
space considered below in Subsection 6.6. Recall that the Vandermonde matrix

(6.7) T (a0, . . . , am) :=


1 1 · · · 1
a0 a1 · · · am
...

...
. . .

...
am0 am1 · · · amm


has determinant

detT (a1, . . . , am) =
∏
i<j

(aj − ai).

This determinant is non-singular when ai ̸= aj . Denote

(6.8) ςk := exp

(
(2k − 1)π

√
−1

n− 1

)
, k = 1, . . . , n− 1

which are the components of the critical points (6.4). Define an (n − 1) × (n − 1)
matrix FFTq whose (i, j)-entry is (qϵςj)

i. Namely

(6.9) FFTq =


qϵς1 qϵς2 · · · qϵςn−1

(qϵς1)
2 (qϵς2)

2 · · · (qϵςn−1)
2

...
...

. . .
...

(qϵς1)
n−1 (qϵς2)

n−1 · · · (qϵςn−1)
n−1

 .
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Its determinant is

det(FFTq) = q(n−1)ϵς1 · · · ςn−1 detT (q
ϵς1, . . . , q

ϵςn−1)

= q(n−1)ϵς1 · · · ςn−1

∏
i<j

(qϵςj − qϵςi) ̸= 0.

Hence FFTq defines an invertible linear map.

We will show that the leading order term of the open-closed map is given by such a
finite Fourier transform. Write QH•(X̃, b̃) as the direct sum (as vector spaces) of the

image of QH•(X, b) under pull-back and a collection of cycle classes [Z̃1], . . . , [Z̃n−1],

supported on the exceptional divisor Z̃ ∼= Pn−1 with each Z̃k diffeomorphic to a
complex projective space Pk. Note that the point class [Z̃0] = [pt] is not an additional
generator. Thus we have a splitting of vector spaces

(6.10) QH•(X̃, b̃) ∼= QH•(X, b)⊕QH•(Pn−1)/Λ[pt] ∼= QH•(X, b)⊕ Λn−1.

Recall the definition of the exceptional collection E from Definition 6.4.

Lemma 6.12. There exists δ > 0 so that for any ϵ > 0 sufficiently small, the
leading order term in the restriction of the open-closed map OC(b̃)|HH•(Fuk

♭
E(X̃, b̃))

composed with projection

QH•(X̃, b̃) → QH•(X̃, b̃)/π∗QH•(X, b+ q−ϵp) ∼= span([Z̃1], . . . , [Z̃n−1])

is of the form

OC(b̃)|HH•(Fuk
♭
E(X̃, b̃))) mod QH•(X, b+ q−ϵp) = ϵFFTq mod qδ

with respect to the bases {L(i)}, {Z̃j} where FFTq is the matrix (6.9). As a result, for ϵ

sufficiently small OC(b̃)|HH•(Fuk
♭
E(X̃, b̃))) surjects onto QH•(X̃, b̃)/π∗QH•(X, b+

q−ϵp).

Proof. The proof is similar to the proof of surjectivity for the Clifford torus in
Theorem 6.15 below. Via the Blaschke classification (5.2), there is a unique disk of

Maslov index 2k with an interior point mapping to Z̃k and boundary on Lϵ. Let

γ1, . . . , γn ∈ π1((S
1)n)

be the standard set of generators for π1((S
1)n) and the representation defined by

the local system y ∈ H1(Lϵ,Λ) is written in coordinates as

(y1, . . . , yn) = (y(γ1), . . . , y(γn)).

By Proposition 5.7, there exists a constant δ > 0 independent of ϵ so that any disk
that leaves the fixed exceptional region Ũ and bounds Lϵ must have energy greater
than δ. Hence, the leading order contributions in the open-closed map OC(b̃) come

from configurations with no interior insertions labelled by the bulk deformation b̃.
These are holomorphic disks u : D → X̃ with a single point constraint u(z) = x
on the boundary z ∈ ∂D. It follows that for each brane L(k) = (Lϵ, y(k), b(k)), the

open-closed map OC(b̃) sends the point class [pt](k) ∈ HF •(L(k),L(k)) to

(OC(b̃))([pt](k))mod QH•(X, b+ q−ϵp) = (y(γ1), y(γ1γ2), . . . , y(γ1 . . . γn)) + h.o.t.
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similar to the terms in (6.12). Recall that the representation defined by the local
system y(k) in the brane L(k) is a higher order perturbation of the representation

ς(k) = (ςk, . . . , ςk)

where ςk is in (6.4). Then we see

OC(b̃)([pt](k)) = (qϵςk, . . . , q
(n−1)ϵςn−1

k ) + h.o.t.

Therefore, in our preferred basis, OC(b̃) is the matrix FFTq plus a higher order
perturbation, hence is invertible. □

For the exceptional collection one has the following result.

Lemma 6.13. The intersection pairing on the image of HH•(Fuk
♭
E(X̃, b̃)) is non-

degenerate.

Proof. The image of HH•(Fuk
♭
E(X̃, b̃)) is the span of the exceptional cycles, up

to higher order corrections. Since Z̃n = ⟨Z̃, c1(O(−1))n⟩ = (−1)n−1 in H(X̃) is

non-zero, the powers of Z̃ give a basis for the span of exceptional classes on which
the pairing is non-degenerate. □

6.5. Split-generation for the blowup. We conclude by proving the main theorem,
which now follows from a dimension count.

Proof of Theorem 1.1. For sufficiently small ϵ, π−1(L) and Lϵ are disjoint. Hence by
Theorem 4.11 the images of

HH•(Fuk
♭
π−1(L)(X̃, π

−1(b))), HH•(Fuk
♭
E(X̃, π

−1(b)))

under the open-closed map OC(π−1(b)) are orthogonal with respect to the intersection
pairing. By Lemma 6.13, these two images have trivial intersection. Therefore it
suffices to show that their images have complementary dimensions. Indeed, by
Corollary 6.9,

dimHH•(Fuk
♭
E(X̃, b̃))) = n− 1.

By Lemma 6.12,

dim
(
OC(π−1(b))

(
HH•(Fuk

♭
E(X̃, π

−1(b)))
))

= n− 1.

On the other hand, by Theorem 1.11

dim
(
OC(π−1(b))

(
HH•(Fuk

♭
π−1(L)(X̃, π

−1(b)))
))

= dimQH•(X, b+ q−ϵp).

The claim now follows. □

Proof of Corollary 1.5. Equation (1.3) is an immediate consequence of the split
generation statement and the fact that the exceptional and unexceptional Lagrangians
are disjoint. For the splitting of quantum cohomology, consider the decomposition
of the quantum cohomology QH•(X̃, π−1(b)) according to subspaces generated the
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collectionsMC(π−1(L)) and E. By proof of Theorem 1.1 above, these have orthogonal
images with trivial intersection. Hence we have

QH•(X̃, π−1(b)) ∼= QH•
π−1(L)(X̃, π

−1(b))⊕QH•
E(X̃, π

−1(b))

where the dimension of the second summand is n − 1. By the calculation of the
potential function, the bulk-deformed quantum cohomology QH•

E(X̃, π
−1(b)) is the

direct sum of the n− 1 generalized eigenspaces of the quantum multiplication by [ω]
corresponding to the eigenvalues equal to the n− 1 critical values of the potential
function Wex. Hence

QH•
G(X̃, π

−1(b)) ∼= QH•(pt)⊕n−1.

and the second claim of Corollary 1.5 follows. □

6.6. The example of projective spaces. Lastly, we show that there is a nonempty
set of examples for which our theorem applies. The argument is an explicit computa-
tion for a projective space and the Clifford torus. For X = CPn, we normalize the
toric invariant symplectic form ω such that its integral

∫
P1 v

∗ω over the standard

generator v : P1 → Pn of H2 is 1. Let L ⊂ Pn be the Clifford torus

L ∼= (S1)n = {[z0, . . . , zn] | |z0| = · · · = |zn|} ,

which is the only member of the collection L. The potential function of the Clifford
torus is computed in [Cho05] and [CO06]. For the standard complex structure JPn on
Pn, all holomorphic disks are regular. Hence, there exists a Donaldson hypersurface
D ⊂ Pn which intersects the Maslov index two holomorphic disks transversely. We
can then require that the domain-dependent almost complex structures on domains
with minimal number of interior markings (which is the case for Maslov index two
disks that have minimal areas) actually coincide with JPn . The inductive construction
of the coherent system of perturbation data extends to this case. Therefore, under
our general framework, the count of Maslov index two disks coincides with the count
of the standard Maslov index two disks. For any local system with representation y
with corresponding brane L, one has

m0(1) = q
1

n+1

(
y1 + · · ·+ yn +

1

y1 · · · yn

)
1L =:W (y)1L.

One can also verify that

mk

(
1L, . . . , 1L

)
=

{
1L − 1L, k = 1

0, k ≥ 2.

Hence ∑
k≥0

mk

(
W (y)1L, . . . ,W (y)1L

)
= m0(1) +W (y)m1(1L) =W (y)1L.

Therefore, we obtain a distinguished weakly bounding cochain by =W (y)1L for L.
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To compute the Floer cohomology, note that the critical points of the potential
function are
(6.11)

y(k) = (ς(k), . . . , ς(k)) =

(
exp

(
2kπ

√
−1

n+ 1

)
, . . . , exp

(
2kπ

√
−1

n+ 1

))
, 0 ≤ k ≤ n.

We choose the following set of weakly unobstructed branes:

L :=
{
L(k) = (L, y(k), by(k)) | k = 0, . . . , n

}
.

For each bulk deformation b, consider the flat A∞ category Fuk♭L(X, b) with the
above n+ 1 objects. Recall that by the definition of Hochschild homology there is a
linear map

n⊕
k=0

HF •(L(k),L(k)) → HH•(Fuk
♭
L(X, b)).

Lemma 6.14. HH•(Fuk
♭
L(CPn)) is (n+ 1)-dimensional with a basis given by the

images of [pt(k)] ∈ HF •(L(k),L(k)).

Proof. The argument is similar to that for Theorem 6.3. Indeed, one can identify
the Floer cohomology HF •(L(k),L(k)) as the Clifford algebra associated to the
(non-degenerate) Hessian of W at the k-th critical point y(k). □

Theorem 6.15. Let b = 0 be the trivial bulk deformation. Let H ∈ H2(CPn,Z) be
the hyperplane class. We have the following:

(a) The matrix of the open-closed map

[OC(0)] : HH•(Fuk
♭
L(CPn)) → QH•(CPn)

equals T (q
1

n+1 ς(0), . . . , q
1

n+1 ς(n)) plus a higher order term with respect to the
basis [pt(0)], . . . , [pt(n)] of the Hochschild homology and the basis 1, H, . . . ,Hn

of the quantum cohomology. Here T is the Vandermonde matrix from (6.7)
and ς(i) are the (n + 1)-th roots of unity from (6.11). In particular, the
open-closed map is an isomorphism.

(b) The closed-open maps CO0,L(k)
: QH•(CPn) → HF •(L(k),L(k)) are given by

H l 7→ q
n−l
n+1 ςn−l(k) [1L(k)

], k, l = 0, . . . , n

where [1L(k)
] ∈ HF •(L(k),L(k)) is the identity element.

Proof. We choose a particular Morse-Smale pair on CPn to simplify the computation.
The function

f(z0, . . . , zn) =
n∑
i=0

ai|zi|2
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for a0 > a1 > · · · > an descends to a Morse function on CPn whose critical points
are the toric fixed points. The closure of the unstable manifolds are the cycles

Zk = {[z0, . . . , zk, 0, . . . , 0] ∈ CPn}, k = 0, . . . , n

which represents the classes 1, H,H2, . . . ,Hn.

We give an explicit computation of the open-closed map using the Blaschke
classification. Recall by Proposition 6.6 that the branes L(l) have different values of
the potential for distinct l, and so Hom(L(l),L(m)) = 0 by definition for l,m distinct.
To prove (a), recall from Proposition 6.6 that the Floer cohomology HF •(L(m),L(m))

a non-degenerate Clifford algebra corresponding to the Hessian ∂a∂bW (y) of the
potential W (y). By Corollary 6.9 the Hochschild homology HH•(HF

•(L(m),L(m)))
has a single generator, which must be the the point class [pt] ∈ HFn(L(m),L(m)) since
its image under the open-closed map is non-trivial. Via the Blaschke classification
(5.2) there is a unique disk u : D → X of Maslov index I(u) = 2k with an interior
point z ∈ D mapping to Zk and boundary on L. Identify L ∼= (S1)n via the local
model and let

γ1, . . . , γn ∈ H1((S
1)n)

be the standard set of generators for H1((S
1)n). By (5.2) again, the contributions in

the open-closed map OC(0) arise from disks

u : C → X, u(ze) ⊂ Zk

with a single point constraint ze in the interior of C. It follows that the open-closed
map OC(0) is given as a function of the representation defined by the local system y
on the point class [pt] ∈ HF •(L(k),L(k)) by

(6.12) [OC(0)]([pt]) = (1, y(γ1), y(γ1γ2), . . . , y(γ1 . . . γn))

As a result, the point class in the brane with representation defined by local system
y(k) is mapped under the open-closed map OC(0) to

[Z0] + q1/(n+1)ς[Z1] + q2/(n+1)ς2[Z2] + . . .+ qn/(n+1)ςn[Zn].

In the basis given by [Z0], . . . , [Zn] the open-closed map has the matrix as claimed.

For (b) note that for each cycle Pℓ, the Blaschke products mapping 0 to Pℓ with
index 2(n− ℓ) are those with the first n− ℓ components

(u1, . . . , un−ℓ)(z) = u : D → Cn+1, z 7→
(
ζi
z − a

1− za

)
i=1,...,n−ℓ

.

are non-vanishing with a common root at some a ∈ D. Hence the moduli space
of holomorphic disks bounding Lϵ with one interior input labelled by Zl and one
boundary output is non-empty only if the output is a point constraint. In the case
of a point constraint there is a single disk with an interior point mapping to Zk and
the contribution is y(k),1 . . . y(k),n−ℓ1L(k)

∈ HF (L(k),L(k)). □
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Remark 6.16. The closed-open map is a ring homomorphism as predicted by Theorem
3.34. For example, in quantum cohomology we have [Pn−1]n+1 = q while in Hochschild
cohomology

(CO0,L(k)
([Pn−1])n+1 = (q1/(n+1)y(k),1)

n+1 = q

for any of the branes L(k) in question.

6.6.1. Point bulk deformations. We extend the above calculation to the bulk de-
formed case considered in this paper. First we know from Corollary 5.31 that the
bulk-deformed curved Fukaya category Fuk∼L(CPn, q−ϵp) is well-defined when ϵ is
sufficiently small. Its homotopy equivalence class is also independent of the choice of
the point p. Now we recalculate the potential function for the choice p = [0, . . . , 0, 1].
Suppose we have a rigid holomorphic disk u : D → CPn passing through p at interior
markings l times. By the Blaschke classification of holomorphic disks, we know that
the Maslov index µ(u) of u is at least 2ln. The dimension of the moduli space of
such marked disks with 1 boundary marking is

n+ µ(u)− 2 + 2l − 2ln ≥ n+ 2l − 2.

In order to contribute to m0(1), the dimension is at most n. Hence l = 0, 1. While
the l = 0 case corresponds to the original calculation ....., when l = 1, there is exactly
one Maslov 2n disk passing through p in the interior and passing through a fixed
point on L. Hence in this case

m0(1) =

(
q

1
n+1

(
y1 + · · ·+ yn +

1

y1 · · · yn

)
+ q

n
n+1

−ϵy1 · · · yn
)
1L =:Wϵ(y)1L.

(Note that n ≥ 2.) When ϵ is small, m0(1) is a higher order perturbation of W (y).
By the non-degeneracy of the Hessian of W at critical points, there are exactly n+ 1
critical points

yϵ,(k) = (ςϵ,(k), . . . , ςϵ,(k))

where ςϵ,(k) ∈ Λ is a solution to

1

xn
− q

n−1
n+1

−ϵxn = x

as a higher order perturbation of ς(k). For the branes L̂ϵ,(k) corresponding to the
local systems yϵ,(k), one has a canonical weakly bounding cochain

bϵ,(k) :=Wϵ(yϵ,(k))1L.

Take the corresponding weakly unobstructed branes, one obtains the flat A∞ category

Fuk♭Lϵ
(CPn, q−ϵp).

Corollary 6.17. For any sufficiently small ϵ, the bulk-deformed open-closed map

[OC(q−ϵp)] : HH•(Fuk
♭
L(CPn, q−ϵp)) → H•(CPn)

is a linear isomorphism.
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Proof. We compute the disks with bulk insertions at a point. We still take p =
[0, 0, . . . , 0, 1]. As [OC(q−ϵp)] in the direction of 1 = PD([Zn])) is always only the
classical contribution (see Lemma 3.19), we only need to compute in the directions
of H,H2, . . . ,Hn, whose representatives Zn−1, . . ., Z0 are all disjoint from p. The
requirement that the disk passes through p forces n additional roots in the Blaschke
product (5.2). So the total number of roots in any Blaschke disk with at least one
point constraint at p that also contribute to the open-closed map in the directions
of Zn−1, . . . , Z0, is at least n. It follows the matrix of [OC(q−ϵq)] is that of [OC(0)]
plus terms with q-valuation at least n

n+1 − ϵ or greater. Hence [OC(q−ϵp)] is still an
isomorphism. □

Appendix A. Partly-local domain-dependent almost complex
structures

In this appendix, we fill a gap pointed out by Nick Sheridan in the proof of
independence of genus zero Gromov-Witten invariants from the choice of divisor in
the Cieliebak-Mohnke perturbation scheme [CM07]. We then use the same argument
to show that the Fukaya category defined using stabilizing divisors is independent of
the choice of stabilizing divisor.

A.1. Independence of Gromov-Witten invariants. The proof of independence
of genus zero Gromov-Witten invariants of a rational symplectic manifold X from
the choice of Donaldson hypersurfaces in [CM07, 8.18] depends on the construction
of a parametrized moduli space for the following situation: Given a type Γ of stable
marked curve let UΓ → MΓ denote the universal curve over the compactified moduli
space MΓ of curves of type Γ. Let Jτ (X,ω) denote the space of ω-tamed almost
complex structures on the given symplectic manifold (X,ω) with rational symplectic
class [ω] ∈ H2(X,ω). A domain-dependent almost complex structure is a map

JΓ : UΓ → Jτ (X,ω).

Associated to a coherent collection of sufficiently generic choices J = (JΓ) is a
Gromov-Witten pseudocycle M0,n(X,β) ⊂ Xn for each number of markings n and
each class β ∈ H2(X).

Naturally, one wishes to show that the resulting pseudocycle is independent, up to
cobordism between pseudocycles, from the choice of Donaldson hypersurface. Suppose
that D′, D′′ ⊂ X are two Donaldson hypersurfaces and J ′ = (J ′

Γ′), J ′′ = (J ′′
Γ′′) are

two collections of domain dependent almost complex structures depending on the
intersection points with D′ resp. D′′, depending on some combinatorial type Γ′ resp.
Γ′′. Consider the pullback

(f ′′)∗J ′
Γ′ , (f ′)∗J ′′

Γ′′ : UΓ → J (X,D′, D′′)

to a common universal curve UΓ for some type Γ recording both sets of markings (so
that if Γ′ resp. Γ′′ has n′ resp. n′′ leaves then Γ has n′ + n′′ leaves). One wishes to
construct a homotopy between (f ′′)∗J ′

Γ′ , (f ′)∗J ′′
Γ′′ to construct a cobordism between



FUKAYA CATEGORIES OF BLOWUPS 118

the corresponding pseudocycles M′
n(X,β) and M′′

n(X,β) . Unfortunately, as pointed
out by Nick Sheridan, the pullbacks (f ′′)∗J ′

Γ′ , (f ′)∗J ′′
Γ′′ do not satisfy the locality

condition used to show compactness. That is, the restriction of the almost complex
structures (f ′)∗J ′′

Γ′′ (or (f ′′)∗J ′
Γ′) to some irreducible component Sv of the domain

curve C are not independent of markings on other components Sv′ ̸= Sv, because
collapsed components Sv may map to non-special points f ′(Sv) = {w} ∈ f ′(C) under
the forgetful map f ′.

In this appendix we modify the definition of the locality on the collapsed compo-
nents so that one may homotope between the two domain-dependent almost complex
structures without losing compactness. Instead of directly homotoping between the
given pull-backs, one first homotopes each pullback to an almost complex structure
that is equal to a base almost complex structure near any special point.

A.2. Partly local perturbations. We introduce the following notation for stable
maps with two types of markings. Let Γ be a combinatorial type of genus zero
stable curve with n = n′ + n′′ markings. Let D′, D′′ be Donaldson hypersurfaces
in the symplectic manifold (X,ω), that is, symplectic hypersurfaces representing
large multiples k′[ω] resp. k′′[ω] of the symplectic class [ω] ∈ H2(X,Q). Suppose
D′ and D′′ intersect transversely. Let J (X,D′, D′′) be the space of ω-tamed almost
complex structures onX that makeD′ andD′′ almost complex. Let J E(X,D′, D′′) ⊂
J (X,D′, D′′) be some contractible subset of almost complex structures J : TX → TX
preserving TD′ and TD′′ taming the symplectic form ω and so that any non-constant
pseudoholomorphic J-holomorphic map u : C → X with some given energy bound
E(u) < E to X meets D′, D′′ each in at least three but finitely many distinct points
u−1(D′), u−1(D′′) in the domain C as in [CM07, 8.18]. Let

JD′,D′′ ∈
⋂
E

J E(X,D′, D′′)

be a base almost complex structure that satisfies these conditions without restriction
on the energy of the map u : C → X.

The universal curve breaks into irreducible components corresponding to the
vertices of the combinatorial type. Let UΓ → MΓ be the closure of the universal
curve of type Γ. For each vertex v ∈ Vert(Γ) let Γ(v) denote the tree with the
single vertex v and edges those of Γ meeting v. Let UΓ,v ⊂ UΓ be the component

corresponding to v, obtained by pulling back UΓ(v) so that UΓ is obtained from the
disjoint union of the curves UΓ,v → MΓ by identifying at nodes.

Cieliebak-Mohnke [CM07] requires that the almost complex structure is equal to
the base almost complex structure near the nodes. This condition is not true for
domain-dependent almost complex structures pulled back under forgetful maps, and
so must be relaxed as follows. Recall that Knudsen’s (genus zero) universal curve
UΓ [Knu83] is a smooth projective variety, and in particular a complex manifold. A
domain-dependent almost complex structure for type Γ of stable genus zero curve is
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an almost complex structure

JΓ : T (UΓ ×X) → T (UΓ ×X)

that preserves the splitting of the tangent bundle T (UΓ ×X) into factors TUΓ × TX
and that is equal to the standard complex structure on the tangent space to the
projective variety UΓ, and gives rise to a map from UΓ to J (X,D′, D′′) with the
same notation JΓ. Let

J E
Γ (X,D′, D′′) ⊂ Map(UΓ,J E(X,D′, D′′))

denote the space of such maps taking values in J E(X,D′, D′′). With this definition,
the standard proof of Gromov convergence applies: Any sequence uν : Cν → X of JΓ-
holomorphic maps with energy E(u) < E may be viewed as a finite energy sequence
of maps to UΓ ×X. Therefore it has a subsequence with a Gromov limit u : C → X
where the stabilization Cs of C is a fiber of UΓ and u is pseudoholomorphic for
the pull-back of the restriction of JΓ to Cs. If we restrict to sequences of maps
uν : Cν → X sending the markings to D′ or D′′ then in fact Cs is equal to C, since
non-constant components of u with fewer than three markings are impossible.

We distinguish components of the curve that are collapsed under forgetting the
first or second group of markings. Let

f ′ : UΓ → UΓ′′ , f ′′ : UΓ → UΓ′

denote the forgetful maps forgetting the first n′ resp. last n′′ markings and stabilizing.
Call a component of C f ′-unstable if it is collapsed by f ′, and f ′-stable otherwise,
in which case it corresponds to a component of f ′(C). f ′′-unstable components are
defined similarly.

Definition A.1. (Local and partly local almost complex structures)

(a) A domain-dependent almost complex structure

JΓ : UΓ → J (X,D′, D′′)

is local if and only if for each v ∈ Vert(Γ) the restriction JΓ|UΓ,v is local in the

sense that JΓ|UΓ,v is pulled back from some map JΓ,v defined on the universal

curve UΓ(v) and equal to JD′,D′′ near any special point of UΓ,v.
(b) A domain-dependent almost complex structure

JΓ : UΓ → J (X,D′, D′′)

is (f ′-local if and only if
(i) for each v ∈ Vert(Γ) such that UΓ,v is f ′-stable (that is, has sufficiently

many D′′ markings) then JΓ|UΓ,v is local in the sense that JΓ|UΓ,v is

pulled back from some map JΓ,v defined on the universal curve UΓ(v)

and equal to JD′,D′′ near any point z ∈ C mapping to a special point
f ′(z) of f ′(C), and

(ii) for each v ∈ Vert(Γ) such that UΓ,v is f ′-unstable (that is, does not

have sufficiently many D′′ markings) then JΓ|UΓ,v is constant on each

fiber of UΓ,v → MΓ.
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The definition of f ′′-local is similar. In either case, we say that JΓ is partly-
local.

Remark A.2. Note that f ′-pullbacks (f ′)∗JΓ′′ are f ′-local, and local almost complex
structures are f ′-local. The condition that an almost complex structure be f ′-local
is weaker than the condition that it be pulled back under f ′, because the restriction
JΓ|UΓ,v is allowed to depend on special points z ∈ UΓ,v that are forgotten under f ′.

Remark A.3. One can reformulate the f ′-local condition as a pullback condition
for a forgetful map that forgets almost the same markings as those forgotten by
f ′. Let C be a curve of type Γ. Let Cus ⊂ C be the locus collapsed by f ′. For
each connected component Ci, i = 1, . . . , k of Cus mapping to a marking of f ′(C)
choose j(i) so that zj(i) ∈ Ci. Let Ius ⊂ {1, . . . , n} denote the set of indices j of
markings zj ∈ Cus with zj ̸= zj(i),∀i. Forgetting the markings with indices in Ius

and collapsing defines a map f : C → f(C) such that any collapsed component
of C maps to a special point of f(C). Let Γf denote the combinatorial type of
f(C). Then JΓ is f ′-local if and only if JΓ = f∗JΓf is pulled back from a local
domain-dependent almost complex structure JΓf : UΓf → J (X,D′, D′′). Indeed, the
collapsed components under C → f(C) are the same as those of f ′ : C → f ′(C)
since adding a single marking zi on the components that collapse Sv to markings
f(Sv) ⊂ f(C) does not stabilize Sv. So the pull-back condition JΓ = f∗JΓf requires
JΓ to be constant on the components Sv such that dim(f(Sv)) = 0. On the other
hand, any irreducible component of f(C) is isomorphic, as a stable marked curve, to
an irreducible component of C not collapsed under f ′.

Remark A.4. There also exist domain-dependent almost complex structures that
are both f ′ and f ′′-local. Indeed, suppose that C is a curve of type Γ, and K ⊂
{1, . . . , n′+n′′} is the set of markings on components collapsed by f ′ or f ′′. Forgetting
the markings zk, k ∈ K defines a forgetful map f ss : C → f ss(C), where f ss(C) is
of some (possibly empty) type Γss. Let JΓss : UΓss → J (X,D′, D′′) be a domain-
dependent almost complex structure for type Γss. Then (f ss)∗JΓss is both f ′ and
f ′′-local (taking the constant structure JD′,D′′ if Γss is empty.)

Lemma A.5. The space of f ′-local resp. f ′′-local resp. f ′ and f ′′-local almost
complex structures tamed by or compatible with the symplectic form ω is contractible.
Any f ′-local resp. f ′′-local resp. f ′ and f ′′-local JΓ|∂UΓ defined on the boundary
∂UΓ := UΓ|∂MΓ extends to a f ′-local resp. f ′′-local resp. f ′ and f ′′-local structure
JΓ over an open neighborhood of the boundary ∂UΓ in UΓ.

Proof. Contractibility follows from the contractibility of tamed or compatible almost
complex structures. Since the space of f ′-local tamed almost complex structures is
contractible, it suffices to show the existence of an extension of JΓ near any stratum
UΓ1 ⊂ UΓ and then patch together the extensions. Local domain-dependent almost
complex structures JΓ extend by a gluing construction in which open balls U+, U−
around a node are replaced by a punctured ball V ∼= U×

+
∼= U×

− on which the almost
complex structure is equal to the base almost complex structure JD′,D′′ .
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In the partly-local case, recall from Remark A.3 that JΓ is the pull-back of a local
almost complex structure JΓf near any particular fiber of the universal curve. Define
an extension of JΓ near curves of type Γ1 by first extending JΓf and then pulling
back. In more detail, let C be such a curve and let C1, . . . , Ck denote the connected
components of C collapsed by f ′ to a non-special point of f ′(C). Choose a marking
zi ∈ Ci and let Γps resp. Γps

1 denote the type obtained from Γ resp. Γ1 by forgetting
all markings on Ci except zi, for each i = 1, . . . , k. Consider the forgetful map

f : UΓ → UΓf

that forgets all but the marking zi on Ci. As discussed in Remark A.3 JΓ1 is the
pullback of a complex structure

J
Γf
1
: U

Γf
1
→ J (X,D′, D′′).

Since the complex structure J
Γf
1
is constant equal to the base almost complex structure

JD′,D′′ near the nodes (which must join non-collapsed components) J
Γf
1
naturally

extends to a domain-dependent almost complex structure JΓf on a neighborhood N
Γf
1

of U
Γf
1
in UΓf by taking JΓf to equal JD′,D′′ near the nodes. Now take JΓ = f∗JΓf

to obtain an extension of JΓ from UΓ1 to a neighborhood f−1(N
Γf
1
). The proof for

f ′ local or f ′ and f ′′-local structures is similar. □

A.3. Transversality. We wish to inductively construct partly-local almost complex
structures so that the moduli spaces of stable maps define pseudocycles. Recall
that the combinatorial type of a stable map is obtained from the type of stable
curve by decorating the vertices with homology classes; we also wish to record the
intersection multiplicities with the Donaldson hypersurfaces. More precisely, a type
of stable map u from C to (X,D′, D′′) consists of a type Γ the stable curve C
(the graph with vertices corresponding to components and edges corresponding to
markings and nodes) with the labelling of vertices v ∈ Vert(Γ) by homology class
d(v) = [u|Sv] ∈ H2(X), labelling of the semi-infinite edges e by either D′ or D′′,15

and by the intersection multiplicities m′(e),m′′(e) with D′ and D′′ (possibly zero if
the corresponding marking does not map to D′ or D′′. A stable map is adapted of
type Γ if each connected component of u−1(D′) resp. u−1(D′′) contains at least one
marking ze corresponding to an edge e labelled D′ resp. D′′, and each marking ze
maps to D′ or D′′ depending on its label. A stable map is adapted of type Γ if

(a) each connected component of u−1(D′) resp. u−1(D′′) contains at least one
marking ze corresponding to an edge e with labelling m′(e) ≥ 1 resp. m′′(e) ≥
1, and

(b) if m′(e) ≥ 1 resp. m′′(e) ≥ 1, then the marking ze is mapped to D′ resp. D′′.

By forgetting the extra data and stabilization one can associate to each type
of stable maps to a type of stable curves. In notation we do not distinguish the

15To obtain evaluation maps one should allow additional edges, but here we ignore evaluation
maps.
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two notions of types. Given a type of stable map Γ choose a domain-dependent
almost complex structure JΓ. Denote by MΓ(X, JΓ) the moduli space of adapted
JΓ-holomorphic stable maps u : C → X of type Γ, such that for each v ∈ Vert(Γ)
with d(v) ̸= 0, the image of uv is not contained in D′ ∪D′′, and for each semi-infinite
edge e attached to v, the local intersection number of uv with D′ resp. D′′ at ze
is equal to m′(e) resp. m′′(e). The moduli space MΓ(X, JΓ) is locally cut out by
a smooth map of Banach manifolds: Given a local trivialization of the universal
curve given by an subset Mi

Γ ⊂ MΓ and a trivialization C ×Mi
Γ → U iΓ = UΓ|Mi

Γ
,

we consider the space of maps Map(C,X)k,p of Sobolev class k, p for p ≥ 2 satisfying
the above constraints and k sufficiently large to the space of 0, 1-forms with values in
TX given by the Cauchy-Riemann operator ∂JΓ associated to JΓ. The linearization
of this operator is denoted Du (or Du,JΓ to emphasize dependence on JΓ) and the
map u is called regular if Du is surjective. We call a type Γ of stable map u : C → X
crowded if there is a maximal ghost subtree of the domain C1 ⊂ C with more than
one marking ze ∈ C1 and uncrowded otherwise. It is not in general possible to achieve
transversality for crowded types using the Cieliebak-Mohnke perturbation scheme.

Definition A.6. We say a domain-dependent almost complex structure JΓ is regular
for a type of map type Γ with underlying domain type Γ if

(a) if Γ is uncrowded then every element of the moduli space MΓ(X, JΓ) of
adapted JΓ-holomorphic maps is regular; and

(b) If Γ is crowded then there exists a regular JΓps for some uncrowded type
Γps obtained by forgetting all but one marking ze on each maximal ghost
component for curves of type Γ such that JΓps is equal to JΓ on all non-constant
components, that is, all components of UΓ on which the maps u : C → X in
MΓ(X, JΓ) are non-constant.

Recall the construction by Floer [Flo88, Lemma 5.1] of a subspace of smooth
functions with a separable Banach space structure. Let ϵ = (ϵℓ, ℓ ∈ Z≥0) be a
sequence of constants converging to zero. Let JΓ(X)ϵ denote the space of domain-
dependent almost complex structures of finite Floer norm as in [Flo88, Section 5]. In
particular, JΓ(X)ϵ allows variations with arbitrarily small support near any point.

Proposition A.7. (a) For a regular domain-dependent almost complex structure
JΓ′′ the pull-back (f ′)∗JΓ′′ is regular, and similarly for the pull-back (f ′′)∗JΓ′

for regular JΓ′.
(b) Suppose that JΓ|∂UΓ is f ′-local and is a regular domain-dependent almost

complex structure defined on the boundary ∂UΓ → ∂MΓ. The set of regular
f ′-local extensions is comeager, that is, is the intersection of countably many
sets with dense interiors.

(c) Any parametrized-regular homotopy JΓ,t|∂UΓ between two regular f ′-local

domain-dependent almost complex structures JΓ,0, JΓ,1 on the boundary ∂UΓ

may be extended to a parametrized-regular one-parameter family of f ′-local
structures JΓ,t equal to JΓ,t over UΓ.
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Proof. Item (a) is immediate from the definition, since any variation of JΓ′′ induces
a variation of (f ′)∗JΓ′′ . (b) is an application of Sard-Smale applied to a universal
moduli space. We sketch the proof, which is analogous to that in Cieliebak-Mohnke
[CM07, Chapter 5]. By Lemma A.5, JΓ|∂UΓ has an extension over the interior.
For transversality, first consider the case of an uncrowded type Γ of stable map
with domain type Γ. Choose open subsets LΓ, NΓ ⊂ UΓ of the boundary resp.
markings and nodes, such that LΓ is union of fibers of UΓ containing the restriction
UΓ|∂MΓ and NΓ is sufficiently small so that the intersection of the complement
of NΓ with each component of each fiber of UΓ not meeting LΓ is non-empty. Let
Muniv

Γ (X) denote the universal moduli space consisting of pairs (u, JΓ), where

u : C → X is a JΓ-holomorphic map of some Sobolev class W k,p, kp ≥ 3, p ≥ 2
on each component (with k sufficiently large so that the given vanishing order at
the Donaldson hypersurfaces D′, D′′ is well-defined). Let J E

Γ (X,NΓ, SΓ) ⊂ J E
Γ (X)

denote the space of JΓ ∈ J E
Γ (X)ϵ that are f

′-local domain-dependent almost complex
structures that agree with JD′,D′′ on the neighborhood NΓ of the nodes and markings

z ∈ UΓ that map to special points f ′(z) ∈ Uf ′(Γ) as in Definition A.1, and equal to
the given extension in the neighborhood LΓ of the boundary, and constant on the
components required by f ′-locality in Definition A.1. By elliptic regularity, Muniv

Γ (X)
is independent of the choice of Sobolev constants used in its construction.

The universal moduli space is a smooth Banach manifold by an application of
the implicit function theorem for Banach manifolds. Let U iΓ → Mi

Γ, i = 1, . . . ,m
be a collection of open subsets of the universal curve UΓ → MΓ on which the
universal curve is trivialized via diffeomorphisms U iΓ → Mi

Γ × C. The space of pairs

(u : C → X, JΓ) with [C] ∈ Mi
Γ, u of type Γ of class W k,p on each component,

and JΓ ∈ J E
Γ (X,NΓ, SΓ) is a smooth separable Banach manifold. Since we assume

that JΓ is regular on the boundary ∂UΓ, an argument using Gromov compactness
shows that by choosing LΓ sufficiently small we may assume that D̃u,JΓ is surjective
for [C] ∈ LΓ, since regularity is an open condition in the Gromov topology [MS04,

Section 10.7]. Let D̃u,JΓ the linearization of (u, JΓ) 7→ ∂JΓu, and suppose that η

lies in the cokernel of D̃u,JΓ . We have D∗
uη

s = 0 where Du is the usual linearized
Cauchy-Riemann operator [MS04, p. 258] for the map; in the case of vanishing
constraints at the Donaldson hypersurfaces see Cieliebak-Mohnke [CM07, Lemma
6.6]. By variation of the almost complex structure JΓ and unique continuation, η
vanishes on any component on which u is non-constant. On the other hand, for
any constant component uv : Sv → X, the linearized Cauchy-Riemann operator
Duv on a trivial bundle u∗vTX is regular with kernel ker(Duv) the space of constant
maps ξ : Cu → (uv)

∗TX. It follows by a standard inductive argument that the
same holds true for a tree C ′ = ∪v∈V Sv, du|C′ = 0 of constant pseudoholomorphic
spheres so the element η vanishes on any component Sv ⊂ C on which u is constant.

It follows that Muniv,i
Γ (X) is a smooth Banach manifold. For a comeager subset

J reg
Γ (X) ⊂ JΓ(X) of partly almost complex structures in the space above, the moduli

spaces Mi
Γ(X) = MΓ(X)|Mi

Γ
are transversely cut out for each i = 1, . . . ,m. The
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transition maps between the local trivializations Mi
Γ∩Mj

Γ → Aut(C) induce smooth

maps Mi
Γ(X)|Mi

Γ∩M
j
Γ
→ Mj

Γ(X)|Mi
Γ∩M

j
Γ
making MΓ(X) into a smooth manifold.

Next, consider a crowded type Γ with domain type Γ. Let f : Γ → f(Γ) be
a map forgetting all but one marking on each maximal ghost component C ′ ⊂ C
and stabilizing; the multiplicities m′(e),m′′(e) at any marking ze is the sum of the
multiplicities of markings in its preimage f−1(ze). Define JΓf as follows.

(a) If UΓf ,v
∼= UΓ,v let JΓf |UΓf ,v be equal to JΓ|UΓ,v.

(b) Otherwise let JΓf : UΓf ,v → J E(X,D′, D′′) be constant equal to JD′,D′′ .

The map JΓf is continuous because any non-collapsed ghost component Sv ⊂ C must
connect at least two non-ghost components Cv1 , Cv2 ⊂ C and the connecting points
of the non-ghost components f ′(Cv1), f

′(Cv2) is a node of the curve f ′(f(C)) of type
f ′(Γf ). For a comeager subset of JΓ described above, the complex structures JΓf

are also regular by the argument for uncrowded types. Item (c) is a parametrized
version of (b). □

Corollary A.8. There exists a regular homotopy JΓ,t, t ∈ [−1, 1] between (f ′′)∗J ′
Γ′

and (f ′)∗J ′′
Γ′′ in the space of maps UΓ → J (X,D′, D′′) that are f ′-local for t ∈ [−1, 0]

and f ′′-local for t ∈ [0, 1]

Proof. Let J = (JΓ) be a collection of regular domain-dependent almost complex
structures that are both f ′ and f ′′-local, as in Remark A.4. By part (b) above, for
each type Γ there exists a regular homotopy from JΓ to (f ′)∗JΓ′′ resp. (f ′′)∗JΓ′

extending given homotopies on the boundary. The existence of a regular homotopy
now follows by induction. □

A.4. Homotopy invariance of Fukaya categories. We wish to show, as claimed
in Remark 3.3, that the A∞ homotopy type of FukL(X, b) (as a curved A∞ algebra
with curvature with positive q-valuation over the Novikov ring Λ≥0) is independent
of the choice of almost complex structures, perturbations,16 stabilizing divisors, and
depend only on the isotopy class of bulk deformation. The argument uses a moduli
space of quilted disks with seams labelled by the diagonal, as in [CW, Section 5.5].
The hardest part is showing independence of the choice of Donaldson hypersurface.
Let D′, D′′ be two Donaldson hypersurfaces that intersect transversely. Let C = S∪T
be a quilted treed disk of type Γ. Each component Sv, v ∈ Vert(Γ) has some distance

(A.1) d(v) =
∑

e∈Edge(Γ)v′v

ℓ(e) ∈ R

measuring the sum of the lengths of edges e ∈ Edge(Γ)v
′
v to a vertex v′ corresponding

to a quilted component. Thus d(v) is negative if v comes after the quilted components
in order of components starting with the incoming edges, positive distance if it comes

16We do not use Hamiltonian perturbations of Lagrangians in this paper, so the Fukaya category
we use here is defined over Λ≥0.
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before, and zero distance if Sv is itself quilted. We now consider perturbations PΓ

for D′ ∪D′′-adapted maps, with each marking labelled by the divisor to which it
maps. The perturbations PΓ are required to satisfy the following properties:

(a) On the components Sv with d(v) = +∞, the perturbation PΓ is required to
be a partly-local perturbation obtained by pull-back of maps forgetting the
D′′-markings of some perturbation scheme Pf ′′(Γ) for markings mapping to
D′.

(b) On the components Sv with d(v) = −∞, the perturbation PΓ is required to
be partly-local perturbations obtained by pull-back of maps forgetting the
D′-markings of some perturbation scheme Pf ′(Γ) for markings mapping to
D′′.

One obtains from such a scheme an A∞ morphism

ϕd : CF (Ld−1, Ld;D
′)⊗ . . .⊗ CF (L0, L1;D

′) → CF (L0, Ld;D
′′)[1− d]

where the inclusion of D′ or D′′ in the notation indicates which perturbation scheme
is being used. To justify the existence of such a perturbation scheme, note that as in
the proof of Lemma A.5, any partly local perturbation scheme may be homotoped to a
local one by homotoping to the base almost complex structure on certain components,
and the space of local perturbations is contractible. Similarly, reversing the roles of
D′′, D′ one obtains an A∞ morphism

ψd : CF (Ld−1, Ld;D
′′)⊗ . . . CF (L0, L1;D

′′) → CF (L0, Ld;D
′)[1− d].

Then an argument using twice-quilted treed disks produces A∞ homotopies from
ψ ◦ ϕ, ϕ ◦ ψ to the relevant identities.

There are some minor differences between the case of genus zero Gromov–Witten
invariants and the case of Fukaya category. For example, the universal curve in the
Gromov–Witten case is itself a manifold, a fact which can be used to simplify the
description of the space of perturbations.

Remark A.9. We also require a version of homotopy invariance which allows one
of the divisors to be stabilizing only for disks in a certain subset, as in the case of
the inverse image of a Donaldson hypersurface in the blow-down discussed in the
main body of the paper. We consider the following situation: Let U ⊂ X be an open
subset disjoint from L, J an almost complex structure on X and Z̃ ⊂ U a J-almost
complex submanifold with the property that any non-constant holomorphic sphere
in U is contained in Z̃ and has positive Chern number. Let D′, D′′ be codimension
two J-almost complex submanifolds with the property that any holomorphic sphere
not contained in Z̃ meets D′, D′′ in finitely many but at least three points, and any
holomorphic disk bounding L meets D′, D′′ at least once. By perturbing the almost
complex structure using domain-dependent perturbations away from U one finds
that the moduli spaces of holomorphic disks of expected dimension at most one
are regular and define Fukaya categories Fuk∼L(X, b;D

′) and Fuk∼L(X, b;D
′′), as in

Section 5.4.1, with compactness as in Lemma 5.26. The argument above now gives
the desired homotopy equivalence.



FUKAYA CATEGORIES OF BLOWUPS 126

References

[AAK16] Mohammed Abouzaid, Denis Auroux, and Ludmil Katzarkov, Lagrangian fibrations
on blowups of toric varieties and mirror symmetry for hypersurfaces, Publications
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Publications Mathématiques. Institut de Hautes Études Scientifiques 124 (2016), 165–
317.

[Sik94] Jean-Claude Sikorav, Some properties of holomorphic curves in almost complex manifolds,
Holomorphic curves in symplectic geometry, Springer, 1994, pp. 165–189.

[Smi12] Ivan Smith, Floer cohomology and pencils of quadrics, Invent. Math. 189 (2012), no. 1,
149–250. MR 2929086

[Sta63] James Stasheff, Homotopy associativity of H-spaces, Transactions of the American
Mathematical Society 108 (1963), 275–312.

[Sta70] , H-spaces from a homotopy point of view, Lecture Notes in Mathematics, vol.
161, Springer-Verlag, Berlin, 1970.

[WW] Katrin Wehrheim and Chris Woodward, Orientations for pseudoholomorphic quilts,
https://arxiv.org/abs/1503.07803.

[XW18] Guangbo Xu and Chris Woodward, An open quantum Kirwan map, https://arxiv.
org/abs/1806.06717, 2018.

[Yua21] Hang Yuan, Family Floer superpotential’s critical values are eigenvalues of quantum
product by c1, http://arxiv.org/abs/2112.13537, 2021.

[Zin08] Aleksey Zinger, Pseudocycles and integral homology, Transactions of the American
Mathematical Society 360 (2008), 2741–2765.

Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India.

Email address: sushmita@imsc.res.in

Mathematics-Hill Center, Rutgers University, 110 Frelinghuysen Road, Piscataway,
NJ 08854-8019, U.S.A.

Email address: ctw@math.rutgers.edu

Department of Mathematics, Texas A&M University, College Station, TX 77843.

Email address: guangboxu@tamu.edu

https://arxiv.org/abs/1503.07803
https://arxiv.org/abs/1806.06717
https://arxiv.org/abs/1806.06717
http://arxiv.org/abs/2112.13537

	1. Introduction
	1.1. Outline of proof

	2. Moduli spaces of treed disks
	2.1. Trees
	2.2. Treed disks
	2.3. Rational branes
	2.4. Perturbations
	2.5. Holomorphic treed disks
	2.6. Transversality
	2.7. Boundary strata

	3. Fukaya categories and quantum cohomology
	3.1. Composition maps
	3.2. Hochschild (co)homology
	3.3. Quantum cohomology
	3.4. Open-closed maps
	3.5. Spectral decomposition under open-closed map
	3.6. Closed-open maps

	4. Abouzaid's split-generation criterion
	4.1. The Cardy diagram
	4.2. Holomorphic treed annuli
	4.3. Commutativity
	4.4. Orthogonality for disjoint Lagrangians

	5. Fukaya categories of blowups
	5.1. The geometry of the blowup
	5.2. A perturbation system for the new branes
	5.3. Point constraint and restricted perturbations
	5.4. Pullback perturbations and exceptional regularity
	5.5. The Fukaya category and open-closed/closed-open maps

	6. Proof of the main theorem
	6.1. Embedding of the downstairs Fukaya category
	6.2. Open-closed maps from old branes
	6.3. Floer cohomology of new branes
	6.4. Open-closed map from the new branes
	6.5. Split-generation for the blowup
	6.6. The example of projective spaces

	Appendix A. Partly-local domain-dependent almost complex structures
	A.1. Independence of Gromov-Witten invariants
	A.2. Partly local perturbations
	A.3. Transversality
	A.4. Homotopy invariance of Fukaya categories

	References

