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DUISTERMAAT-HECKMAN DISTRIBUTIONS
FOR GROUP VALUED MOMENT MAPS

A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARD

ABsTRACT. We introduce equivariant Liouville forms and Duistermaat-Heckman dis-
tributions for Hamiltonian group actions with group valued moment maps. The theory
is illustrated by applications to moduli spaces of flat connections on 2-manifolds.

1. INTRODUCTION

One of the fundamental invariants of a Hamiltonian G-space M in symplectic geometry
is the Duistermaat-Heckman measure m on the dual of the Lie algebra g*, defined as
the push-forward of the canonical volume form under the moment map. The measure
m encodes volumes of reduced spaces, and by the Duistermaat-Heckman theorem its
derivatives describe mixed Chern numbers for the corresponding level set.

More generally there are “twisted” DH-distributions which contain information on
more complicated intersection pairings on reduced spaces. DH-distributions have a num-
ber of interesting properties [[J] and they can be computed using localization techniques
@50

In [[[] a definition was given of a Hamiltonian G-space (M, w, ®) for which the moment
map P takes values not in g* but in the group G itself. Basic examples are GG-conjugacy
classes, with moment map the inclusion into (¢, and moduli spaces of flat connections
on surfaces with boundary, with moment map the holonomies around the boundary
components. Many concepts from the theory of g*-valued moment maps carry over to
this setting. In particular, there is a notion of reduction and the reduced spaces are
symplectic.

One of the differences to Hamiltonian spaces in the usual sense is that non-degeneracy
of the 2-form w is replaced by a more complicated condition involving the moment map.
Hence the top exterior power of w does not in general define a volume form on M.

We will show in this paper that there exist, nevertheless, canonical volume forms on
group valued Hamiltonian G-spaces whose push-forward m under ® plays the role of
DH-measures. Our construction uses an exotic version of equivariant de Rham theory,
the “group valued” equivariant de Rham theory developed in [P]. Its definition is similar
to that of the usual equivariant de Rham cohomology, however the defining complex of
equivariant differential forms is non-commutative.

Just as in the g*-valued theory, the DH-distributions m for group valued Hamiltonian
Gi-spaces describe volumes of reduced spaces, and by an extension of the DH theorem its

derivatives give formulas for mixed characteristic numbers of the level sets. Again, there
1
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are more general “twisted” DH-distributions which encode more complicated intersection
pairings on reduced spaces. In [J] we prove a localization theorem for group valued
equivariant cohomology, which computes the DH-distributions in terms of fixed point
contributions.

The Duistermaat-Heckman measure and the volume form appear in the following
way in the theory of moduli spaces of flat connections on 2-manifolds: Suppose G is a
compact, connected and simply connected Lie group, together with an invariant inner
product on its Lie algebra. For all h > 0 the space G** carries the structure of a group
valued Hamiltonian G-space, where the action is by conjugation on each factor and the
moment map ® : G** — G reads

h

(I)(alabla <o 7ahabh) = H[%bi]-

i=1
The reduced space at the group unit, M(X) := ®~'(¢e)/G, is the moduli space of all
flat G-connections on a compact, oriented 2-manifold ¥ of genus h, and it is shown in
M that the symplectic structure obtained by reduction is equal to that coming from
the gauge theory construction in Atiyah-Bott [f, [j]. The equivariant Liouville form on
G*" can be explicitly computed in this case, and the associated volume form is found to
coincide with Haar measure d Volgen. Hence, the push-forward m = ®.(d Volgen) plays
the role of the Duistermaat-Heckman measure, and its value at the group unit is (up to
a normalizing constant) the symplectic volume of the moduli space M(X), as computed
by Witten [B4, BH]. The argument extends to surfaces with boundary, with prescribed
holonomies around the boundary circles.

The plan of this article is as follows. In Section 2 we provide background material on
group valued Hamiltonian G-spaces. In particular, we recall how to obtain the symplectic
structure on moduli spaces of flat connection from this point of view. Section 3 is
a review of the construction of equivariant Liouville forms for Hamiltonian G-spaces.
In Section 4 we describe the “group valued” equivariant cohomology which we use in
Section 5 to construct Liouville forms, volume forms and DH-distributions for group
valued moment maps. Section 6 describes their behavior under direct products and under
“exponentiating”. In Section 7 we show that the DH-distributions encode intersection
pairings on reduced spaces. In Section 8 we extend our constructions (most of which
use an assumption that G be a product of a simply connected group and a torus) to
arbitrary compact Lie groups. In Section 9 we apply our theory to moduli spaces of flat
connections.

Acknowledgment: We are grateful to M. Vergne for a number of helpful comments on
this paper.
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2. GROUP VALUED HAMILTONIAN (G-SPACES

In this section we give a brief introduction to the theory of Hamiltonian G-spaces with
group valued moment map. Throughout this paper G denotes a compact, connected Lie
group with Lie algebra g. For any G-manifold M and all £ € g, we denote by &y the
corresponding fundamental vector field: &, = %|t:0 exp(—t&)*. Given a basis e, of g we
will denote by ¢, the contractions and by L, the Lie derivatives with respect to (e,)n-
The structure constants f¢, of g in such a basis are defined by [e,, €3] = f5e. (using
summation convention).

2.1. g*-valued Hamiltonian G-spaces. A Hamiltonian G-space in the usual sense
(that is, with g*-valued moment map) is a triple (M, wy, ®o) consisting of a G-space M,
a 2-form wp, and an equivariant map ®; € C°°(M, g*)“ satisfying

dwp = 0 (Cocycle condition)
(Ep)wo = d(Po, &) (Moment map condition)
ker((wo)m) = {0} (Non-degeneracy).

The first two conditions imply that wy is G-invariant. Sometimes we drop the last
condition, in which case we call (M, wy, ®o) a degenerate Hamiltonian G-space.
Fundamental examples for g*-valued Hamiltonian G-spaces are coadjoint orbits O C
¢g”, with moment map the embedding &y : O — g*. The 2-form is uniquely determined
by the moment map condition, and is explicitly given by the Kirillov-Kostant-Souriau

(KKS) formula

(1) wo((&)o(p), (E2)o(u)) = (1 [, &)
forall p € O, &,& €g.

Given any Hamiltonian G-space (M, wq, ®¢), with 0 a regular value of ®q, the reduced
space (symplectic quotient) M,.; := ®5'(0)/G naturally carries the structure of a sym-
plectic orbifold. More generally, if i € g* is a regular value one defines M, = &' (1)/G,,
where (G, is the stabilizer of p. Letting O = G- 1 be the coadjoint orbit through x, and
O~ =G - (—u), there is a natural isomorphism (“shifting-trick”)

MM = MO = (M X O_)red-

2.2. Group valued Hamiltonian G-spaces. In the definition of a group valued Hamil-
tonian G-space the target of the moment map is the group G itself, with & acting by
conjugation. Let the Lie algebra g be equipped with an invariant inner product -, used
to identify g* = g. The group G carries a bi-invariant closed 3-form

1.

1 _
=—0-10,0]=—0-0

where 0,0 € Q'(G,g) are the left /right invariant Maurer-Cartan forms, respectively.
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Definition 2.1. A G-valued Hamiltonian G-space is a triple (M,w, ®) consisting of a
G-manifold M, a 2-form w, and an equivariant map ® € C*(M, ) satisfying the
following three conditions:

dw = &%y (®-relative cocycle condition)
evw = 20%(0+ 0)-¢ (Moment map condition)
kerw, = {{u(m)| Adgmyé =—¢} (Minimal degeneracy condition).

We will sometimes omit the minimal degeneracy condition, in which case we call
(M,w,®) a degenerate G-valued Hamiltonian G-space. The definition can be motivated
as follows. The second condition is the natural G-analogue of the moment map condition
for g*-valued Hamiltonian G-spaces. Since

Ealn =500 +7) - ¢,

the first two conditions imply that Lg,w = 0 so that w is G-invariant. Since ®*0 =
Adg ®*, the moment map condition forces

kerw,, 2 {&n(m)| Adgm) £ = =}

so that the third condition is a minimal degeneracy condition for w. See [[] for more
details, and further motivation in terms of the Cartan model of equivariant cohomology.
One of the results of this paper we will be a much more attractive formulation of the
minimal degeneracy condition.

Notice that if the group G is abelian, the form 7 vanishes and the first and third
condition say that the 2-form w is symplectic. In this case, our definition reduces to the
usual definition of a torus-valued moment map (cf. [[9, [4]).

2.3. Examples of G-valued Hamiltonian spaces.

2.3.1. Conjugacy classes. The most fundamental examples for group valued Hamiltonian
(i-spaces are conjugacy classes C C (/, with moment map the embedding ® : C — G.
Again the 2-form is uniquely determined by the moment map condition and is given by

(2) w((&)e(9), (&2)e(9)) = % (Ady = Ady-1)& - & (6,6 € 9)-

for all ¢ € C. Equation (f) is the group analogue to the KKS formula ([l), with the
skew-adjoint operator ad, on g replaced by the skew-adjoint operator %(Adg —Ad,-1).

Notice that the 2-form w is degenerate if and only if Ad, : g — g (¢ € C) has an
eigenvalue equal to —1. In fact it can happen that w vanishes identically; this is the
case if and only if g squares to an element in the center Z((). Conjugacy classes also
illustrate the following fact:

G-valued Hamiltonian G-spaces for non-simply connected Lie groups GG need not
be orientable.

A counter-example is the conjugacy class of the rotation group G = SO(3) corresponding
to rotations by an angle 180°, which is isomorphic to R P(2).
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2.3.2. The double. The double D(() is the analogue for group valued Hamiltonian spaces
to the cotangent bundle T*G. Let D(G) = G x G, with the group G* acting by

(91,92) - (a,b) = (g1 agy", g2 bgy ')

Define a 2-form

1 L,
w = 5(01-92+91-92)
where the superscripts denote the projections to the respective factor in D(G) = G x G,
and a moment map

®: D(G) — G* (a,b) s (abya™'b71).
Then (D(G),w, ®) is a group valued Hamiltonian G*-space.

2.3.3. The spinning 4-sphere. Let S* be the unit sphere in R®, equipped with the rotation
action of SU(2) induced from the defining action on C? and the identification R® = C2HR.
We will show that S* with this action admits the structure of a group valued Hamiltonian
SU(2) space.

Choose the basis e, = o, of su(2) given by Pauli matrices

(i0 (0 -1 (0
TV = ) 2T 0 ) PTG o0 )

and define an invariant metric on su(2) by declaring this basis to be orthonormal. A
matrix A =t/ 4 n,0, is contained in SU(2) if and only if t*4n,n, = 1. Using the metric
to pull down indices, the structure constants are fup. = —2€up.. Let u: C*\{0} — su(2)
be the equivariant function

<(|21|2 — |2}y + 2Im(1 %) 0y + 2R6(212_2)03>

TR TP

taking values in the unit sphere. Since the restriction of the function (C*\{0}) x R —
R, (z1,22,8) = cos(E)/]|z]|* to S* extends smoothly over the north pole A" = (0,0, 1)
and the south pole § = (0,0, —1), it follows that the map

O(z1,29,8) = sin(%) + COS(%)UULU@

restricts to a smooth, equivariant map ® : S* — SU(2). Now let © € Q(C*\{0},R?)
be the unique connection 1-form such that O vanishes on radial vectors, and let w €

Q?(SN{S,N}) be the 2-form
w = —guaG)a ds — 3 sin(7s)eqpetigdupdu..

We claim that w pulls back to a smooth 2-form on all of S* and that (5% w,®) is a
group valued Hamiltonian SU(2)-space.
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a. w extends to a smooth 2-form on S*. Near the north pole A', we may take (21, 23)
as coordinates on S*. To show that w is smooth near A" we compare to the 2-form

on C%,
i
wo = —dz, dz,.
2
The moment map for the SU(2)-action on C? is given by ®o(z1, 22) = Z||z||> u. Away
from the origin, wy can be re-written in terms of ©:

T T
Wy = §ua(9a(il||z:||2 ~3 ||Z||2 Eapethadupdu,.

(Indeed, since wg is completely determined by all 1-forms ¢,wy it suffices to verify
the moment map condition; this is easily done using ¢,dus; = Lous = 2¢,5:u.) The
difference between w and wy is

1 .
w—wo = (|22 sin(a][2]?)easerts duyd..

8

which is smooth at the origin. A similar argument applies to the south pole S € S4.
b. w satisfies the moment map condition. Using ¢,dus = L,us = 2¢€,5u; we have

Law = —guads + 5 sin(ms)dug.
On the other hand, for the Maurer-Cartan form one finds
— 1
o0, = —guads + 5 sin(ms)du, — cos%%)cabcubduc
1
o*0, = —guads + 5 sin(ms)du, + COS2(§)6abcubduc

This shows t,w = %CI)*((% +0,).

c. The condition dw = ®*n. Since almost all orbits have codimension one, it suffices
to verify ¢, (dw — ®*n) = 0. Using ¢,n = —%d(@a + 0,) this follows from the moment
map condition together with invariance of w.

2.4. Constructions with group valued Hamiltonian G-spaces.

2.4.1. Fusion. Given a Hamiltonian G x G-space (in the usual sense), the same space
with diagonal G-action and sum of the two moment map components is a Hamiltonian
G-space. Similarly, for any group valued Hamiltonian G x (G-space the same space
with diagonal action and product of the moment map components is a group valued
Hamiltonian G-space. However, it is necessary to modify the 2-form as well:

Theorem 2.2. [[I] Let H,G be compact connected Lie groups and (M,w, (®1, P4, ¥)) a
group valued Hamiltonian G X G x H-space. Let M = M with diagonal G x H-action,
and 2-form

1 _
&= wt ;070 930,
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Then (M,JJ, (®1D2, V) is a group valued Hamiltonian G x H-space called the (internal)
fusion of M.

In the particular case M = M; x M, where M; are group valued Hamiltonian G' x H;-
spaces, we write M =: M, ® M, and call this the fusion product of M; and M,. It is
shown in [f] that the fusion product is associative and commutative: That is, the group
valued Hamiltonian spaces obtained by fusions with different orderings of the G-factors
are isomorphic.

2.4.2. Reduction. Just as for Hamiltonian spaces one has the notion of reduction: Let
(M,w,(®,¥)) be a group valued Hamiltonian ¢ x H-space and suppose that the identity
element e € (G is a regular value of ®. As shown in [[[, this implies that the G-action on
®~!(e) is locally free. Moreover, the 2-form w and the map ¥ descend to the reduced
space

M, =07 '(e)/G.

giving M,.q the structure of a group valued Hamiltonian H-space. (Strictly speaking
M,y may have orbifold singularities unless the G-action is free; however the definition
of a group valued Hamiltonian space extends directly to orbifolds). In particular, if
H = {e} this quotient is symplectic. If one drops the regularity assumption, the reduced
space M,.q is a stratified symplectic space in the sense of Sjamaar-Lerman [PJ]. That
is, it is a singular space stratified by smooth symplectic manifolds, the singularities are
conical and are given by certain normal forms described in [B7].

More generally, if ¢ € (G is a regular value of ® one can define the reduction M, =
®~!(g)/G, which is a group valued Hamiltonian H-space. Letting C = G - g be the
corresponding conjugacy class, and C~ = G - (¢7'), there is a natural isomorphism
(“shifting trick”)

Mg =~ My = (M ®C_)red-

Example 2.3. For any group valued Hamiltonian G x H-space M, there is a canonical
isomorphism (D(G)® M ),.q = M ( where we are taking the fusion product with respect
to the {e} x G C G*-action on D(G)). In particular, D(G)¢ = (D(G) ® C™)pea = C™.

Fxample 2.4. The moment map for the spinning 4-sphere is a surjection onto SU(2), and
defines a circle fibration except over the two elements of the center (where the fiber is
a point). It follows that S* is a multiplicity-free space, that is, all reduced spaces (S%),
are points.

2.4.3. Ezponentials. There is a way of “exponentiating” Hamiltonian G-spaces in the
usual sense to group valued Hamiltonian spaces. We use the inner product on g to
identify g* = g. Let J : g — R be the determinant of the Jacobian of the exponential
map exp : g — G. Let @ € Q?%(g) be the image of the closed form exp*n € Q°(g) under
the de Rham homotopy operator Q*(g) — Q*'(g).
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Theorem 2.5. [[I] Let (M,wo, ®g) is a Hamiltonian space in the usual sense (possibly
degenerate). Then (M,w, ®) with moment map & = exp(Po) and 2-form w = wy + Py
is a (degenerate) group valued Hamiltonian G-space. The form w satisfies the minimal
degeneracy condition at m € M if and only if (wo)n, is non-degenerate and J(®o(m)) # 0.

Conversely, if (M, w, ®) is a group valued Hamiltonian G-space such that the exponen-
tial map has a well-defined inverse log : U — g over an open subset U C ¢ containing
O(M), then (M,w — log(®)*w,log(®)) is a Hamiltonian G-space in the usual sense.

2.5. Example: Moduli spaces of flat connections. We now explain the construction
of the symplectic structure on moduli spaces of flat connections using group valued
moments maps (cf [[l). For simplicity, we make the assumption that the Lie group G is
connected and simply connected. Let ¥} be the compact, connected, oriented 2-manifold
with of genus ~ with r boundary components, By, ..., B.. Since (i is simply connected,
every principal G-bundle over ¥} is trivial.

Identify the space of Lie-algebra valued 1-forms Q' (X}, g) with the space of connections
on the trivial bundle ¥ x G. For any A € Q'(X4,g) let F4 be its curvature. For every
boundary circle B; we choose a base point p; € B;. Let Holg, : Q'(¥},g) — G be the
map which takes a connection to the holonomy around the loop based at p; and winding
once around B; in positive direction. Let C*°(X}, ) be the gauge group, with gauge
action g+ A = Ad,(A) — g*0. Given a collection of conjugacy classes Cy, ... ,C, let

_{Ae 0}, 9)| F4 =0, Holg,(A) € C; for all j}
N O (X5, G)

be the moduli space of flat connections with specified holonomies. For r > 1 and
generic conjugacy classes C; it is a finite dimensional compact orbifold, and according to
Atiyah-Bott [{, fI] it carries a natural symplectic structure. (For non-generic conjugacy
classes or in the case without boundary it is a stratified symplectic space in the sense of
Sjamaar-Lerman [PF].)

In [M] it was shown that the symplectic form can be obtained by reduction from a
space with group valued moment map: First, let M(X]) = E(G) = G x GG be the
fusion of the double. The G-action is the action by conjugation on each factor, and the
moment map is a Lie group commutator (a,b) — [a,b] = aba™'b~'. The space M(X7)
can be interpreted as a moduli space of all flat connections on a 1-punctured torus X1,

M(%5,C)

up to gauge transformations that are trivial at the base point; the moment map is the
holonomy around the boundary loop. Similarly the fusion product

MED®.. oM eC ®...8C,

can be interpreted as a moduli space of flat connections on ¥;*!: More precisely it is the
space of flat connections such that the holonomies around the first r boundary compo-
nents are contained in the specified conjugacy classes, divided by gauge transformations
g € C(X}) for which ¢(p,11) = e. The moment map is interpreted as the holonomy
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around remaining boundary component B,i;. Reduction corresponds to setting this
holonomy equal to e and dividing out the residual gauge action. Therefore,

MECO)=(ME)®...oMEI)eC®...aC)

red’

It is proved in [[]] that the symplectic structure obtained by this procedure agrees with
that from the gauge-theory construction in Atiyah-Bott. The case without boundary
is included since M(X9) = M (X}, {e}). The symplectic volume of the spaces M (X, C)
was computed by Witten [BH]. Using the result of this paper, we will give in Section
an elementary proof of Witten’s formulas.

3. EQUIVARIANT LIOUVILLE FORM FOR ¢g"-VALUED MOMENT MAPS

For any manifold M together with a closed 2-form wy, we define the Liouville form as
the exponential expwy. Its top form degree part (expwo)jip) is a volume form if and only
if wg is non-degenerate. If (M,wo, ®y) is a (possibly degenerate) Hamiltonian G-space
the 2-form, and therefore the Liouville form, have equivariant extensions to cocycles
in equivariant cohomology. In this section we summarize the definition and basic facts
about equivariant Liouville forms, which we will then extend to group valued moment
maps.

3.1. The Weil algebra. Let G be a compact Lie group with Lie algebra g, and let
€, € g be a basis.

The Weil algebra Wg = @, W[ is the tensor product of the symmetric algebra and the
exterior algebra over g*,

Wi = @ gt
25+k=r
Let y* € Alg* and v® € S'g* be the generators corresponding to the dual basis ¢* € g*.
The coadjoint action of GG on g* induces actions on Sg* and Ag*, hence also on Wg;
let L, =L, ®141® L, be the Lie derivatives. Let ¢, =1 ® ¢, :+ W5 — Wé_l be the
extension of the natural contraction mapping on Ag*. Finally let the differential d be
given by the formula

1
(3) d= (L@ 1y + (v" = 3 fiy"y e

The derivations ¢, L, and d satisfy the same (super-) bracket relations as contractions,
Lie derivatives, and exterior differential for a G-manifold M:

[Lavbb] =0, [Lavd] = LUH [Lavbb] = fszbm
(4) [Lo,d] =0, [La, Lp) = 5L, [d,d] =0.
The elements y® are analogues to connection 1-forms, since t,y° = §°. By a result of

Cartan [[]] the differential complex (Wg,d) is acyclic. Hence We is morally the de
Rham complex of the classifying bundle EG.
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We will also need a “Weil algebra with generalized coefficients”, defined as follows.
Let &'(g*) be the convolution algebra of compactly supported distributions. The space
of distributions supported at 0 is a subalgebra, and is naturally identified with Sg* by
the isomorphism sending the generator v* € Sg* to the distribution %|t:05tea- Define

We = E'(g*) @ Ag*. The derivations ¢y, L,,d extend to Wg, still satisfying (f]).
Let 79 € C*(g*) @ Ag" be the function

(5) To(p) = eXp(—%fiby“bec)-

It is invertible and acts on /WG by multiplication, preserving the subspace W¢. Conju-
gation by 75! simplifies the differential (cf. [, Section 5.1)

Ad(rg ) d = v, Ad(ry ") te = ta — fcb/,ccyb.

a

Under the natural pairing of We with Qg*) = C>=(g*) @ Ag, this says that Ad(r;')d
and Ad(7; ') ¢, are dual to operators on Q(g*),

(6) Ad(TO_I) d= _d*v Ad(TO_I) la = _(dﬂa + La)*'

3.2. Equivariant cohomology. Given a G-manifold M, one defines the equivariant
cohomology of M to be the cohomology of the basic subcomplex, consisting of elements
which are both invariant and horizontal:

HE(M) := H*(We @ Q(M))asic)-
Under our assumption that G is compact, it can be shown that this definition agrees
with the topological definition of equivariant cohomology (over R). The space Hj (M) is
a module over the ring HZ(pt) = (S*g*)“ of invariant polynomials. Replacing W with
We we also define a Zy-graded space
Ha(M) = H((Wg © QM ))uasic)

which is a module over the ring ﬁg(pt) = &'(g")“ of compactly supported invariant
distributions. If M is compact and oriented integration over M defines natural maps

/M:HG(M)—>(Sg*)G, /M:ﬁG(M)—>E’(g*)G.

Let II : /WG — R be the natural projection, induced by the inclusion {e¢} — G. It
is a product 1I = fg* @ P, of horizontal projection P, : A*g* — A’g* = R and the

integration map fg* : &'(g*) — R. Since Il is a chain map and a ring map, it induces for
any G-manifold M a ring homomorphism in cohomology, ﬁg(M) — H(M).
The operator P, @ 1 on Wg @ Q(M) restricts to an algebra isomorphism
Phor @ 1: (/WG ® Q(M))basic = (g/(g*) & Q(M))G

The space ag(M) = (&'(g") @Q(M))“ equipped with the differential dg induced by this
isomorphism is called the Cartan model for Hz(M). One finds that dg = 1 @ d — 0* @ ¢,.
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3.3. Equivariant Liouville forms for Hamiltonian G-spaces. We first describe a
form Ay € We @ Q(g*) that appears in the definition of the Liouville form. View the
function p — 7o(p)d,, as an element of Wg @ Q°(g*) and let

Ag = e_yadMTO(M)(Su S (/WG ® Q*(g*))G'

Notice that 75 'Ag is is the kernel of the identity map of /Wg, using the pairing with
Q(g*) introduced at the end of Section B.1]. Equation (f|) hence shows that

(7) dAO == 0, LaAO == —d/,La Ao.

Suppose M is a GG-manifold, together with an equivariant map ®, € C°>°(M, g*)“ and a
2-form wy € Q*(M). We define the equivariant Liouville form of the triple (M, wq, o)
to be the form .
,Co == GWOCI)SAO € WG X Q(M)

From ([) it follows that the equivariant Liouville form £y is closed if and only if wy
is closed, and that its horizontality is equivalent to the moment map condition for ®,.
Recall that the combination of these two conditions implies that wy and hence also Lg
are invariant. In this case Ly defines a cohomology class

[Co] € Ha(M).
The 2-form wy is non-degenerate if and only if the top degree part of the form
Lo=(IT® 1)Ly = e
is a volume form; in this case Vol(M) = fM €0 is called the Liouville volume of M.

3.4. Example: Coadjoint orbits. Let &5 : O — g* be a coadjoint orbit. Use an
invariant inner product on g to identify g = g*. Let k = k%¢, € QY(O, g) be the unique
Lie-algebra valued 1-form on O defined by

(o(p))ru = prgx €

where prs i@ — g is the orthogonal projection onto gj. The symplectic form ([J) on O
can be written

1

2
Since (®g)*dp, = (ad,,)apk’ and (ad,,)ap = fabefte, it follows that the equivariant Liouville
form equals

wo = (adu)ablialib.

1
/:’0 = eXp(_§(adM)ab(/ia —I_ ya)(/ib —I_ yb))(s@ov

which is just 79de, with y® replaced by y* + k®. Using the operator exp(k®t,) generating
this shift we have shown that

Lo = exp(k®ey) PG(100).

The volume form on O can be computed as the top degree part of I'y = expwy: Given
u € O, let detgt (ad,) > 0 be the determinant of ad,, viewed as an automorphism of
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1
gj. There is a unique orientation on gj = T,0 for which the Pfaffian detét(— ad,) is

positive. Assume with no loss of generality that the first [ = dimgj elements of the basis

e, are an oriented basis of gj. Then &'...x'is the Riemannian volume form d Volg;em
form on C, and the definition of the Pfaffian shows that

(FO)[top] = det;f(_ ad,) d Volpiem -

This gives the well-known formula

Vol GG
Vol G,

Vol(O) = |detgs (ad,,)|?
where Vol(() and Vol(( ) are the Riemannian volumes of (¢ and G,,.

3.5. Twisted DH-distributions. Let (M,wy, ®9) be a compact, oriented (possibly
degenerate) Hamiltonian G-space, with Liouville form Ly. The integral

My = / /:,0 € g/(g*)G,
M

is called the Duistermaat-Heckman measure. It is equal to the push-forward my =
(®0)«(L'o)[top) where the orientation is used to view (I'o)pop] as a (signed) measure. More
generally, given an equivariant differential form Gy € (Wg @ Q(M))pasic, the twisted
Duistermaat-Heckman distribution mgo is defined by

mgo = / ﬁoﬁo S g/(g*)G
M

The map Fy — mgo

homology Hg(M) — &(g*). The distributions my° appear for example in work of
Jeffrey-Kirwan [[@], Duistermaat [[Z], Vergne [BJ and Paradan [PI]]. They are sup-
ported on the image of ® and their singular support is contained in the set of singular
values of .

At regular values p of @y they encode intersection pairings of reduced spaces:

vanishes on coboundaries and therefore descends to a map in co-

Bo
me _xua/‘ »
() dw%o_k%w)Mfd%k‘

Here O is the coadjoint orbit through p, (Mo, woe) the reduced space, k the number of
elements in a generic stabilizer for the G-action, and ko : Hg(M) — H(Mo) the “Kir-
wan map” defined by pull-back to ®;'(O) followed by the isomorphism Hg(®5'(0)) =
H(Mop). For a proof of (J) see e.g. [[J].
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4. GROUP VALUED EQUIVARIANT COHOMOLOGY

Before we extend the definition of equivariant Liouville forms to group valued moment
maps, we define a complex of group-valued equivariant forms. The Liouville form will
be a closed form in this complex.

This section summarizes material from the paper [J] to which we refer for proofs and
further details.

4.1. The non-commutative Weil algebra. Suppose GG is a compact connected Lie
group, and let its Lie algebra g be equipped with an invariant inner product. Let e, € g
be an orthonormal basis and f,;. the structure constants for this basis.

Let Cl(g) be the Clifford algebra of g, defined as the quotient of the tensor algebra
by the ideal generated by all £ ® £ — %f €. Thus if 2, € Cl(g) are the generators with
respect to the basis {e,}, we have [x,, 2] = d4 (using graded commutators). We let
o : Cl(g) = Ag be the symbol map defined by

o(xj oo i) =Ygy Yjey 1< oo < Js
Let £(G) be the convolution algebra of (compactly supported) distributions on GG. The
universal enveloping algebra U(g) embeds into £'(() as the subalgebra of distributions
with support at the group unit, by the map given on generators as u, %|t:0 exp(te,).
The non-commutative Weil algebra W¢ and the non-commutative Weil algebra with
generalized coefficients are the Zs-graded algebras

We = Ulg) @ Cl(g), We = &'(G) @ Cl(g).

The Lie derivatives for the diagonal G-action are inner derivations L, = ad(u, + ¢.)
where

1
(9) Ga = _§fabc Tp L.

Define a derivation d = ad(D) where

D = Uqglq — gfabcxawbxc-
It is shown in [[] that
1 1
1 Dzz_aa__acac-
(10) 2“ u 48fb Jab

Since ([[0) is contained in the center U(g)“ of the universal enveloping algebra, it fol-
lows that d* = ad(D?) = 0 showing that d is a differential. Putting ¢, = ad(w,), the
derivations ¢,, L, and d satisfy the bracket relations (), for example Cartan’s formula
[ta,d] = L, follows from [z,, D] = g,.

Let Spin(g) be the spin group, defined as the image of so(g) C 1 (g) under the

(Clifford) exponential map. The G-action on Cl(g) defines a homomorphism
g — so(g) C Clg), p = ftaga
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where g, was defined in ([]). If we make the assumption that G is a product of a simply
connected group and a torus, it exponentiates to a map 7: G — Spin(g) — Cl(g). Thus

%fabc Ha Tp xc)
which shows that formally, 7 is a group analogue to the function 7o introduced in (ff).
By definition, 7(g1)7(g2) = 7(g192) and g - © = Ad(7(g))x for all = € Cl(g).

The function 7 acts on WG by multiplication from the left. The conjugates of d and ¢,
under 7 are dual to operators on (), as follows. Use the left-invariant Maurer-Cartan
forms 6, to trivialize T*G to identify Q(G) = C*(G) @ Ag*, and use the symbol map to
identify WG = &'(G) @ Ag. Under the pairing given by these identifications, one finds
that the 7-conjugates of the operators d, ¢, are dual to operators on Q(G):

(11) 7(exp p) = exp(—

(12) Ad(r7)(d) = —(d+)", Ad(T7)(ta) = —(ta + %(Ga +0.))".

Moreover, the map 7 takes the multiplication map Multyy for WG into a map dual to
the comultiplication exp(—%@igz) o Multy, : Q*(G) — Q*(G' x G)

—2
(13) 771 o Multyy o(tT®@T) = (e_%eéea o Multg,)*
where the superscripts denote the pull-backs to the respective G-factor.

One of the main results in [J] is the construction of a linear map (called quantization
map) Q@ : Wg — We which restricts to an isomorphism Wg — Weg and which satisfies

[Q7LUL] = 07 [Qv La] = 07 [de] = 0.
The map Q is most easily described by duality to a map Q(G) — Q(g),
(14) 77 0 Qo= (e oexp)”,

where @ € 02(g)“ was introduced in Section 43 In [} we give an explicit formula
for @ and show in particular that on the subalgebra £'(g) C Weg, it restricts to the

Duflo map exp, 0Jz : E'(g) — &'(G). Here J7 is the square root of the Jacobian of the
exponential map exp: g — G.

4.2. Group valued equivariant cohomology. For any G-manifold M, the equivari-
ant cohomology algebras Heg(M) and He (M) are defined as the cohomology of the basic
subcomplexes

(We @ QM) pasic = (Wa @ QM))E,. (We @ QM) )asic = (We © QM)

They are modules over the ring of Casimir elements He(pt) = U(g)“ resp. of invariant

distributions ﬁg(pt) = &'(G)Y. If M is compact and oriented, integration over M defines
maps

/ Ha(M) — Ulg / Ha(M) = £'(G)°.
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The quantization map Q : /WG — WG induces linear maps
Q: Ho(M) — Ha(M), Ha(M) — Ha(M),

the second of which is an isomorphism. By Theorem 8.1 in [[] these two maps are
actually ring maps. For the case M = {pt}, this becomes the fact that the Duflo map
restricts to ring homomorphisms

exp.oJ? 1 £(g)7 = £(G)Y, S(@)7 = Ulg)®.

The quantization map is clearly functorial with respect to pull-backs and integrations.
For example, if M is compact and oriented, we have the identity

(15) [ em=af m=ewist [ 5
for all 3 € Ha(M).

4.3. Cartan model. Consider the horizontal projection map Phor = [[5¢p25 : Cl(g) —
R. Using the symbol map to identify Cl(g) = Ag it is equal to projection to Ag, however
it is not a ring map for the Clifford multiplication. We extend P, to projection maps
We — &'(G) and Wg — U(g)“. For any G-manifold M, horizontal projection ( Py, @ 1)

in the Weil algebra part induces vector space isomorphisms
(16)  (Wa @ UM))pasic = (E(G) @ QMNE, (Wa @ QM) )pasic = (U(g) @ QUM))E
The spaces

Ca(M) = (£1(G) © UM))®, Ca(M) = (U(g) ® QM)

equipped with the differential dg and algebra structure induced by this isomorphism, is
called the Cartan model for He(M). The ring structure on the Cartan model induced by
(Id) has an explicit description. First, define a new ring structure on Q(M) by setting

b1 © B = diagly 2'+%(5, @ o)
where diag,; : M — M x M is the diagonal embedding, and ¢!, /* are the contractions

a’a

on QM x M) =Q(M) ® Q(M) with respect to the first respectively second G-factor.

(Notice that the space of invariant forms is a subring for the new ring structure). Let

© be the ring structure on ag(M) induced by the given ring structure (convolution) on

E'(G) and the new ring structure © on Q(M).

Proposition 4.1. [l The map ([§) is a ring map for the product © on 5g(M), and a

s

chain map provided Co(M) is equipped with the differential

fabc
24

Here ul and uf* are the operators of left/right convolution by u,.

1
dgz1®d—§(uf—|—u§)®aa—l— 1@ tatple.
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As a direct consequence, the map
T 1: (W X Q(M))pasic — QM)

given by composition of P, @1 and fG is a ring map for the product ® on Q(M)“, and
also a chain map if the space Q(M)“ is equipped with the differential

1
d + ﬂfubcLaLch-

We will also need the following result, describing “restriction to the diagonal” in terms
of Cartan models:

Proposition 4.2. [[] Let M be a G x G-manifold, and M the same manifold with
diagonal G-action. Let a € Weaxa @ QUM ) )pasic, and let & be its image under the map
Multyy : (WGXG ® Q(M))basic — (WG ® Q(M))basic- Then

(Phor ©1)(@) = (Multg). @ 2% ) 0 ( Py, @ 1)(a).
5. LIOUVILLE FORM FOR GROUP VALUED HAMILTONIAN SPACES

For the next few Sections we will make the following assumption on the group G:

Assumption (S): G is a direct product of a compact, connected, simply con-
nected Lie group and a torus.

This restriction will be lifted in Section B. Assumption (S) is required for the function
7 : (G — Cl(g) to be well-defined. It also implies that the half-sum p of positive roots
(for any given choice of maximal torus and positive Weyl chamber) is a weight for
(7, parametrizing an irreducible representation V,. The character x, € C*(G) of this
representation is given by

(17)

using the unique smooth square root which equal 1 at g = e.

5.1. Definition of the equivariant Liouville form. In this section we construct
the equivariant Liouville form for any group valued Hamiltonian G-space (M,w, ®) as a
cocycle for group valued equivariant cohomology. We first give the description in the Weil

model (WG @ Q(M))pasic. The two maps G — Cl(g), g — 7(g) and G — E'(G), g — 4,
combine into a map G — Wg, g — 7(g)d,, which can be viewed as an element of

We @ Q°(@). The group analogue to Ag is the form
A= el r(g)5, = 7(g)e™"8, € We 0 Q(G).

Similar to 75 *Ag, the form 77!'A is the kernel of the identity map of Wg, using the
pairing with Q(G) introduced in Section [ Hence ([J) implies

1 _
(18) dA = = A, h = (0,4 0.
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The definition of a Liouville form for G-valued Hamiltonian spaces is parallel to that for
g*-valued Hamiltonian spaces, the form A replacing the form Ag:

Definition 5.1. Suppose that M is a G-manifold together with a 2-form w and an
equivariant map ® : M — (. We define the equivariant Liouville form of (M,w,®) by

L= e“D"A € W @ QM)

It is immediate from the properties of A that £ is closed if and only if dw = ®*n,
and that horizontality of £ is equivalent to the moment map condition in Definition .1].
(Recall from Section P.J that the combination of these two conditions implies that w,
hence also L, is invariant.) That is, (M,w, ®) is a (degenerate) Hamiltonian G-space if
and only if £ represents a cohomology class [£] € ﬁg(M) As for Hamiltonian spaces
we define a differential form

I'=Il®1)L e M),

and if M is compact and oriented we refer to Vol(M) = [, T as the (signed) Liouville
volume.

Theorem 5.2. Let (M,w,®) be a possibly degenerate group valued Hamiltonian G-
space. Then:
a. The space (M,w,®) is non-degenerate if and only if the top degree part 'y, is a
volume form.

b. I'fop) is related to the top degree part of expw by

"y "

dim‘; Lltop) = (€)top)-

P

The proof of Theorem [.2 will be given in Section f.3 It will require the following
explicit description of I'. By definition

=M@ 1)(e®A)=e’ 0 (T2 1)(A) = 07
where ~
7' = (Phor @ 1)(e7"% 1) € Q%(Q).
Proposition 5.3. The differential form 7" on G is given by the formula

Xo(9) L Ad, -1, 55
(19) T Ty, P <_ 1 <Adz +1>a69“9’7>'

The right hand side of ([9) is well-defined in the sense that the zeroes of x, compensate
the singularities of the exponential.

Proof. The operator P, combines with the factor exp(—x,0,) to produce the symbol
map: Indeed o can be defined as the composition of two maps exp(—2x,y) : Cl(g) —
Cl(g) @ Ag and Py, @1 : Cl(g) @ Ag — Ag. It follows that the form 7' is obtained from

the symbol o(7) by replacing 2y, with §,.
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As a special case of [[]], Proposition 3.13, together with the formula ([7]) for y,, the
symbol of 7 is given by

Xo(9) Ady —1
2 = - a )
(20) o(r(9) = gi 7 e (= (g psen)
which proves Proposition f.3. O
Using Equation ([9) we have found the following expression for the differential form T',
w XP((I)) 1 Ad@ —1 *7) Ak
21 I'= — - ¢°0,070, ).
(21) © dimv, < Ayt b)

Since L is basic and closed, the discussion in previous Section shows that I' is closed
under the differential d + ifabcLaLch on Q(M)“.

Remark 5.4. Originally, we discovered the volume form Iy, directly in terms of the
above differential form expression. The similarity of the form 7’ with the symbol of the
map 7 : G — Cl(g) was pointed out to us by N. Berline and B. Kostant.

5.2. The Liouville form for a conjugacy class. Before we continue the discussion
of the equivariant Liouville form in the general case, let us examine the example of a
conjugacy class in more detail.

Let ® : C — G be a conjugacy class. By equivariance the Liouville form is determined
by its value at any point ¢ € C. Let g, be the Lie algebra of the centralizer G of ¢ and let
pros : g — g; be projection onto its orthogonal complement. Let x = r,e, € QYC, g)
be the Lie algebra valued 1-form defined by

(22) t(€e(g))rg = pras(€)
for all £ € g. The 2-form w on C (cf. (P) ) can be written

w =

1
_Z(Adg — Adg—l)ablialib.
Proposition 5.5. The equivariant Liouville form for the conjugacy class C = G - g is
given by the formula
(23) L =exp(—ty @ Kq)P"(79.).
The top form degree part of the form I' is a volume form on C, and in particular defines

an orientation. The corresponding Liouville volume of C reads

Vol G

Vol G,

where Vol G and Vol G, are the Riemannian volumes. The volume form L',y is related
to the top exterior power of the 2-form w on C by

w ¢ x
(25) (e )[top] = H‘p/p Uitop)

(24) Vol(C) = |detgr (Ad, —1)|2
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Proof. Our proof uses two formulas from Clifford calculus. Suppose V' is an oriented
FEuclidean vector space, and S € so(V'). Let x, € CI(V) be the generators corresponding
to some choice of oriented, orthonormal basis of V', and let x, be odd elements in some
commutative super-algebra A. Then

(26) ( 1;[ /<;5> Lg exp(%Sabxaxb) = det%(Z sinh(g)) Ki...Kyp

where the square root is defined as a Pfaffian. Moreover,

(27) exp(—tqkq) €Xp (%Sabxaxb> = exp(wsz) exp(—x,7, ) exp (%Sabxaxb>

where 7, = (1 — €%),56; and @, = $(sinh(S5))akarks. Both equations are proved by

block-diagonalizing the matrix 5. For (B§) this is carried out in Mathai-Quillen [[J],
Proposition 2.10 and for (B7) in [F], Lemma 7.5.

Choose € g such that exppu = g. We will apply Equations () and (27) to V = g
and S = —ad,, with k as defined in (). Notice that 7(g) = exp(%Sabxaxb) takes its
values in the Clifford algebra CI(V') C Cl(g).

We may assume with no loss of generality that the basis of g is chosen in such a way
that the first [ elements e, ... , ¢ are a basis for g;.

Then wy is just the 2-form w on C and ~, = d*0,.. FEquation (R7) therefore becomes

exp(—tqkq)T(g) = exp(w) exp(—xaga) 7(9)

which proves (BJ). Since taking the top degree part commutes with the projection
H®1: <fG®Phor> ®17

o = (Pror 1 [ Lon

G

Using (B3) and (E4),

(/G,C>[top] = H(—Lﬁ @ kg)7(g) = detng (2 sinh(a;i))/il ook #£ 0.

=1
Since this expression does not contain Clifford variables x,, it is not affected by the
horizontal projection Pj,,., showing that ', is a volume form. Since £x;...x; is the

Riemannian volume form on 7,C, and since |det(2 sinh(adT“)M = |detgs(Ad, —1)|, this
proves (P4). Finally, since

exp(w)op] = deti (sinh(ad,))d Volgiem
by definition of the Pfaffian, and since

det% (sinh(ad,)) .
% e detﬂcosh(ﬂ)) = 7XP(.6XPM)
2 dimV,

% 3 ady
dletggL (2 smh(T))
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we obtain the formula (PJ). O

5.3. Proof of Theorem p.2. We are now in position to prove Theorem [.9, saying that
the top degree part of I' is a volume form if and only if w is minimally degenerate.

Proof of Theorem [5.3. Let (M,w,®) be a group valued Hamiltonian G-space, possibly
degenerate. Let m € M, and g = ®(m). There is a natural splitting of the tangent space
T, M given by
T.M =g, O F

where g; is embedded by means of the fundamental vector fields and F =
(dp®)~'(Ty(Gy)). The 2-form on g is just the 2-form corresponding to its identifi-
cation with the tangent space to the conjugacy class GG - g. It is verified in Section 7 of
[ that this splitting is w-orthogonal, that is, w(vy,vs) = 0 for vy € g; and vy € E and
that the restriction wy = w|p is non-degenerate if and only if w satisfies the minimal
degeneracy condition at m, that is if and only if kerw,, = {&u(m)|€ € ker(Ad, +1)}.
Hence

I, = Fgé_ A exp(wg)
where Fg;_ is the form corresponding to the identification g; = T,(G - g), and therefore
(D )ttop = (Ut Ditep) A €xp(wis )ftop]-
Since (I,

degenerate. This proves the first assertion, and the second assertion follows from

;.)[top] is non-vanishing, it follows that (I';,)pep # 0 if and only if wg is non-

X, (9)
(eXP(wg;))[top] = dian (Fg;)[top]
P

by (B3). O

Remark 5.6. In contrast to Hamiltonian G-spaces, the volume form for a group valued
Hamiltonian G-space depends not only on the 2-form but also on the moment map. For
example, if (M,w,®) is a group valued Hamiltonian G-space and ¢ € Z(() a central
element, then ® = ¢® is a moment map for the same group action and 2-form w. The
new Liouville form is £' = 7(¢)d.L. Since p is a weight for (¢, it defines a homomorphism
T — S t — 1. We have

(28) T(c) = ¢,
as one can see for example from the formula (R) for the symbol, o(7)(c) = dfgf;)p = c*.

Therefore, L = ¢ 6. L and
[ = ¢T.

One has ¢® = £1: indeed, ¢** = 1 since 2p is a weight for G/Z(G). In general ¢® # 1 so
that I” may differ from I' by sign.
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5.4. DH-distributions. The definition of DH-distributions for group valued Hamilton-
ian spaces (M,w, ®) is analogous to that for g*-valued moment maps (Section B.3). Let
(M,w,®) be a compact, oriented, possibly degenerate (G-valued Hamiltonian G-space,
with Liouville form £. The integral

m::/M,CEE’(G)G

is called the Duistermaat-Heckman measure. It is equivalently given as a push-forward,
m = O, (I')pop. More generally, given any equivariant differential form 8 € (Wg ®
Q(M))pasic we define

m? = / BL € £(G)°.
M

The map
(WG @ Q(M))basic — g/(G)Gv 6 = mﬁ
descends to a linear map in cohomology, Hg(M) — £'(G)Y. One can define a similar

map ﬁg(M) — &'(G)Y ~ only on Hg (M) however one has the following locality property
of the distributions m”:

Proposition 5.7. For any 3 € Wg @ Q(M))pasic, the support of the distribution mP is
contained in the image of ® and its singular support in the set of singular values of ®.

Proof. By Proposition [I.], and since (P, @ 1)L = I'dg,

w' = [ 60)= [ (P 0160 = [ (Prr 2 1)(3) & T,

M
Writing (Pro, @ 1)(8) = >, u’ @ 35 € (U(g) @ Q(M))“ we find

m’ = ZUJ/MWJ OT)do =) ul O(87 @ D)y,
J J

This proves the proposition since the support of ®.(35 © '), is contained in the image
of ® and the singular support in the set of singular values, and since left convolution by
u’ is given by application of a differential operator. O

In what follows, we will often find it convenient to express DH-distributions in terms of
their Fourier coefficients: Given an irreducible representation V) labeled by a dominant
weight A, with character y,, we have

(29) mlg) = Y hale ) S

For a conjugacy class C C G, the Duistermaat-Heckman measure m¢ is given by

me = Vol(C) &
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where d¢ is the unique invariant measure supported on C and with integral 1, and where
Vol(C) is given by (P4). Its Fourier coefficients are, therefore,

(30) (me, xa) = Vol(C)xA(C).

5.5. Example: The double D(G). As an example, we calculate the volume form and
the DH-distribution for the double D(G'). We claim:

Proposition 5.8. Let G be a compact, connected, simply connected Lie group and let
D(G) = G x G be the double. The volume form Iy, on D(G) is equal to the Riemann-
ian volume form dVolgxe on D(G) (for the canonical orientation). In particular, the

Liouville volume Vol(D(G)) is equal to the Riemannian volume, Vol(G)?. The Fourier
coefficients of the DH measure are

(31) <m7 Xa @ X/\2> = VOI(G)z 5/\17/\2'
Proof. We use the trivialization of the tangent bundle T(D(G)) = D(G) x (g & g) by

means of left invariant vector fields. The skew-symmetric matrix describing w at a point

(a,b) has block form,

L 0 — Ady— Ad,—
2\ Ad, + Ady 0

which has determinant

Ad, —|—2Ada_1> det <Ada —|—2Adb_1> — det <Ada25—|-1 Ada_12b_1 —|—1>‘

det(B) = det <

This proves

1 1/ Ad 1 Ad 1
(exp w)jop) = det?(B)d Volgxg = det5< @21 + @22 + > Volgya
(Here we take the unique smooth square root which is equal 1 at (a,b) = (e,¢€); the

sign is verified by evaluating both sides at (e,e)). By the second part of Theorem [.3
this shows that I'y,,) = d Volgyg. The measure m € (G x () is the push-forward of
d Volgy under the map (a,b) — (ab,a™'b7"). We calculate

(1,0 @ Yag) = / @) yan(ab™) dadb = Vol(G)26), ..
D(G)

6. FUSION PRODUCTS AND EXPONENTIALS

In this Section we discuss the behavior of the equivariant Liouville form under the two
basic operations with group valued Hamiltonian spaces: Fusion and Exponentials.
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6.1. Multiplicative properties of the Liouville form. Suppose both G and H are
a product of a connected, simply connected Lie group and a torus.

Theorem 6.1 (Diagonal G-action). Let (M,w,®) be a group valued Hamiltonian G x
G x H-space (possibly degenerate), with moment map & = (b1, Py, W), and let
(M 0, (91D,, V) be its internal fusion. Denote by L, L the Liouville forms and let
I' = (H @ 1)L and [ = (I @ 1)/3 Then

(32) L = (Multy @1)L
and

= 1 1,2
(33) F - exp(2 a a) F

In particular, the top degree part does not change: F[top] = Do) If B € Wexaxn @
Q(M))basiCJ and B its image in Weaxn @ Q(M))basic, the corresponding DH-distributions
m? and m° are related by push-forward under the G-multiplication Mult,

(34) @’ = (Multg),m”.

Proof. Recall that 771A is the kernel of the identity map of Wg. Therefore, the kernel
for the multiplication map is 7' A'A%, where A', A? € We @ Q*(G x G) be the pull-backs
of A to the first/second factor. Equation ([[3) is equivalent to

(35) AA? = ¢73% 70 (1 @ Multy,)A.

Since @ = w + 10} Ga, Equation (BJ) follows directly from (BH) and the definition of the
Liouville form. Equatlon (B3) is a consequence of (B2) and Pr0p081t10n 3. Equation
(@) follows since ﬁﬁ is the image of BL under the map (WGXGXH @ QUM ) )pasic —

(WGXH & Q(M))baszc- ]

In the special case that M = M; x M, is the direct product of two group valued
Hamiltonian G-spaces, Theorem [.]] says:

Corollary 6.2. If (M;,w;, ®;) (j=1,2) are two group valued Hamiltonian G-spaces, with
Liouville forms Ly, Ly, then the Liouville form for the fusion product My & My is the
product of the Liouville forms, L1L4, and the volume form is the direct product of the
volume forms, (I'y )iop) X (I'2)top)-

Given equivariant forms [3; € (WG @ QU M;))pasic, the twisted DH distribution for their
product 313, € (Wg®Q(M1 X M3))pasic is the convolution product m{' >|<m2 of the twisted
DH distribution mfj for the factors.

Note that this result looks quite complicated if it is spelled out in terms of the differ-
ential form expression (RI]) for A =T d¢ !
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FEquation (B4) can be re-phrased in terms of Fourier coefficients as follows. Suppose

H = {e} for simplicity and let A be a dominant weight for G. Then (B4) says that

. 8
I¢] _ <TT1 s XA © X/\>
This follows from the formula for convolution of characters (cf. [[[0], Proposition (4.16)):
< dVolg> . < dVolg> B 1 < dVolg>
Vol ) T\ GG T P dim v WM Vel @

Frxample 6.3. Recall that the volume form on the double D(() was simply the Riemann-
ian volume form and that the Fourier coefficients were calculated in (BIl). The Theorem
tells us that the volume form for its internal fusion D(G) is still the Riemannian volume
form, and that the Fourier coefficients for the DH measure are

(37) (i = G

6.2. The Liouville form for exponentials. In this section we compare the equivariant
Liouville forms of a Hamiltonian space (M, wq, @) and of its exponentlal

Since Q(Ag) is the kernel of the quantization map We — Wg, the description ([J) of
the quantization map is equivalent to the equation

(38) Q(Ag) = €7(1 @ exp™)A.
This implies the following Theorem.

Theorem 6.4 (Exponentials). Let (M,wy, ®o) be a (possibly degenerate) Hamiltonian
Gi-space, with equivariant Liouville form Lo. Then (M,wy + @i, exp(Po)) is a group
valued Hamiltonian G-space, with Liouville form L the quantization

(39) L= Q(Lo).
The top degree parts of the forms o = (Il @ 1)Ly and I' = (Il @ 1)L are related by
(40) Piop) = (9577) (To) s

Let By € (Wa @ QUM ) )pasic be a cocycle and 8 = Q(fo) its quantization. If M is compact

and oriented,
(a1) = exp,(JHm®).

Proof. The first two statements are immediate from (BY). Equation (f(]) follows from
(BY) and the definitions of £y and Q. Since Q is a ring homomorphism in cohomology,

Q([BoLo]) = Q([Bo])Q([Lo]) = [BL]. Therefore, Equation (f]) follows from ([[7). O
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Given two Hamiltonian G-spaces (M;,w(, ®}) ( 7 = 1,2 ), the direct product My x M
with diagonal G-action becomes a (possibly degenerate) group valued Hamiltonian G-
space in two different ways, according whether one takes the product before or after
fusion. The two resulting moment maps are

exp(®f + @) resp.  exp(®;) exp(®?).

If we denote the equivariant Liouville forms for M; by £ (viewed as forms on the product
M, x M), the Liouville forms for the first method is Q(£}£3) and for the second method
it reads Q(L5)Q(L3).

Combining Theorem [.4 with the fact [J] that Q is a ring homomorphism in cohomol-
ogy, we have:

Proposition 6.5. Gliven two Hamiltonian G-spaces (Mj,wé,q)é) (7 =1,2 ) with equi-
variant Liouville forms L} (viewed as forms on the product My x My ), the forms Q(L{L3)
and Q(LL)Q(L3) are cohomologous.

7. INTERSECTION PAIRINGS ON REDUCED SPACES

At regular values of ® the twisted DH distributions m” have a simple interpretation.
Recall (see e.g. [[[]) that for any G-manifold X with a locally free G-action, the pull-back
map QX/G) = UX)pasic € Wa @ Q(X))pasic induces an isomorphism in cohomology,
He(X) — H(X/G). In particular, if (M,w,®) is a group valued Hamiltonian G-space
and C some conjugacy class which is contained in the set of regular values of ®. we obtain
a map

K¢ . Hg(M) — H(Mc)
by composition of the isomorphism Q7! : He(M) = Hg(M), pull-back to the level set
Hg(M) — Hg(®71(C)), and isomorphism Hg(®1(C)) = H(®(C)/G).

Theorem 7.1. Let (M,w,®) be a compact, oriented, group valued Hamiltonian G'-space
(possibly degenerate), and 3 € Ha(M). If the conjugacy class C is contained in the set

of reqular values of ®, the value of the function on C is given by the formula

mﬁ ‘ . VOlG/ /i(ﬁ)ewc
dVolgle — kVolC [y, ¢

where VolC is the Liouville volume of the conjugacy class C and k is the number of
elements in a generic stabilizer for the G-action on ®~1(C).

_mP
dVolg

Proof. We begin by proving the theorem for the simplest case C = {e}. Passing to a
neighborhood ®~!(U/) where U C G is a sufficiently small invariant open neighborhood
of e, we can assume that (M,w,®) is the exponential of some Hamiltonian G-space

(M, wo, ®o). Put 3y = Q71(3). Since m” = exp*(J%mOO) we have

Vol G
o = Ok /]wmd ﬁo(ﬁo)v

_ b
e N d\/olg*

mﬁ
d volg
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where we have used (§). The result follows since ko(3y) = k.(3). We now reduce the
case of arbitrary conjugacy classes C to the case of the trivial conjugacy class by means
of the shifting-trick,

MC = (M ® C_)red-

Let dc— € £'(G) be the invariant measure with support C~ = G - g~ and integral 1.
The Duistermaat-Heckman measure for the conjugacy class C~ is Vol(C) d¢c-. Letting m”
be the twisted DH-distribution for M, the corresponding distribution for the product
M @ C~ is the convolution Vol(C)m” * d.- (see Corollary f-3). By the above we have

=i ), e

On the other hand, the value of the convolution product with d¢ at the group unit reads

1

m? % §o-

m’ bl w’ ‘
dVOlG e N dVOlG C'
Comparing the two expressions completes the proof. O

The above result can be reformulated in terms of the Fourier coefficients of m?. Eval-

uating (B9) on C we find

(42) /MC ke(B)ee = % > e

A

provided the sum on the right hand side converges. In case of convergence problems
apply (as in K. Liu [[[]) the smoothing operator e'®, ¢+ > 0 to m”, where A is the
Laplace-Beltrami operator on . Recall that for all dominant weights A,

Axx = =[x+ pl* = llpl*)x
This gives

kVolC

we — T —t|[A+p|? B -
/M re(B)e™ = Rarae Am 2 (m”, ()
c A

where the sum is absolutely convergent for all ¢ > 0 and the limit ¢ — 07 exists.

As a special case, suppose P € U(g)“ is in the center of the universal enveloping
algebra and 8 = P®1 is its image under the map U(g)% = (W )pasic = Wa@QUM))pasic-
In this case m”? is obtained from m by application of the bi-invariant differential operator
corresponding to P,

m’ = P(m).
The pre-image 3y = Q7 '(3 is just the invariant polynomial on g corresponding to P
under the Duflo isomorphism S(g)® = U(g)“, and the class kc(3) = x(Q(8)) is the

characteristic class of the bundle ®~*(C) — M, attached to the invariant polynomial
p = Bo by the Chern-Weil homomorphism S(g)¢ — H(Mc).
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8. GENERALIZATION TO ARBITRARY COMPACT LIE GROUPS

Our construction of an equivariant Liouville form was made under the assumption (S)
that the group G is a product of a simply connected group and a torus. Recall from
Section R.3.] that without this assumption, group valued Hamiltonian G-spaces are not
necessarily orientable.

We will show that dropping Assumption (S) naturally leads to Liouville volumes with
values in the orientation bundle. Recall that the orientation bundle oy; for any manifold
M is the associated bundle P xz, R, where the principal Zy-bundle P is the oriented
double cover of M.

One defines the space of twisted differential forms
O (M) := Q(M,on)

as sections of ANT*M @ op. It is a module over the space Q(M) of differential forms on
M. The real line bundle A"T*M & ops 1s isomorphic to the density bundle of M; hence
the space Q7 (M) is just the space of smooth densities of M.

For any compact, connected Lie group G there is a finite, connected covering G — G,
where G is a product of a simply connected group and a torus. Its kernel is a subgroup
R Cm(G).

Suppose (M,w,®) is a group valued Hamiltonian G—space Let M — M be the
Covermg space obtained by pulling back the covering (i — G under the map @, and let
®: M — G be the corresponding map. Let & € QQ(M) be the puH back of w. The
G-action on M and the conjugation action on G induce a G-action on M lettmg G act
by the covering map to G the trlple (M w CI)) is a group valued Hamiltonian G—space
For all ¢ € R let S, : M — M denote the corresponding deck transformation. By
construction all deck transformations commute with the é—action, preserve the 2-form,

and satisfy Sj@ = c®. Ifg e G maps to g € (G there is a natural isomorphism of reduced
spaces

—~

M; = M,.
On M our previous considerations apply, and we obtain a Liouville form
L = exp(B) exp(—,00,) 7(®) 55 € £(G) @ Cl(g) @ UM).
We have ~ ~
SHL =7(c)d.L.
Recall from (B§) that 7(¢) = ¢ = +1. It follows that S. changes the orientation by

¢’, and the form L satisfies S*,C = 5. L. Pushing forward to &G, multlphcatlon by

d. becomes an identity, and L becomes a closed form £’ € WG ® Q(M) with property
S*¥L' = ¢’ L', or equivalently a closed form

L € (WG @ Qt(M))basic-
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Similarly T descends to a form I' € (M) with top degree part I'y,,) a nowhere vanishing
density, so that the volume Vol(M) = fM L'ltop) is defined. The Duistermaat-Heckman
measure m is as before defined as m = fM L= 0. I, and given 8 € (Wa @ w(M))pasic

one can once again define twisted DH-distributions

mﬁ:/Mﬁ/Q.

Theorem [7.1] interpreting these distributions in terms of intersection pairings on reduced
spaces goes through verbatim, as does its proof.

FExample 8.1. Let (M w,®) be a group valued Hamiltonian G-space. Let G act on M
by the covering G — G. Suppose ¢ admits a lift to an equivariant map d: M — G
(This happens for instance for the fusion of the double D(G) ) Then (M w CI)) is a group
valued Hamiltonian G- space. The space M considered above is just M =M x R, with

CI)(m c) = cCI)( ). In particular, if G is semi-simple and (i its universal cover (so that
R = m1((), the space Mred has #m1(G) connected components, given as reduced spaces

M. for c € m(G) C Z(G)

Example 8.2. Suppose that C C (¢ is a conjugacy class. Then Cis just the pre-image of
C in (G, and therefore is a finite union of conjugacy classes in G.

One easily verifies that the formulas for the D H-measures of the double D(G') (Propo-

sition p.§), its fusion E(G), or for a conjugacy class C C G (Proposition p.5) continue to
hold.

9. APPLICATION TO MODULI SPACES OF FLAT CONNECTIONS

In this Section we explain how Witten’s formulas for volumes of moduli spaces of
flat connections follow from the results of this paper. For other proofs of the volume
formulas, see K. Liu [[7], Bismut-Labourie [[], or Meinrenken-Woodward [2(].

Let ¢ be a compact, connected Lie group. Using the notation from Section P.j,
Theorem [.]] says that the volume form on the space M(X]) = D(G) = G x G is just

the Riemannian volume form, and the volume form on the fusion product
MED®.. oMY eC®...8C,

is just the direct product of the volume forms on the factors. Consequently, letting m]
and m¢ be the DH measures for M(X1) (cf. (B7)) resp. for a conjugacy class C (cf. (B0))

the Fourier coefficients of the DH-measure m are
(dim V3 )r+h-1 (dim V4 )2h+r—1
For h > 2 and r > 1, and generic conjugacy classes C; the action of G on the level set

®~!(e) is locally free, with generic stabilizer the center Z((). In this case the symplectic
volume of the reduced space is given by #7(() times the value of m at the group unit.

(m, x») = = (Vol @)
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It follows that that the symplectic volume of the moduli space M(X},C) is given by the
formula

[[= (&)

(dim V3 )2h 2

Vol(M(X},.C)) = #Z(G) Vol(G)*~? ﬁVol(Cj) >

which is Witten’s formula [PJ].

If G is simply connected, one obtains from this formula the volume of the moduli
space of flat connection on a surface ©9 without boundary since this moduli spae is
just M(X},{e}). (This is as long as the generic stabilizer is discrete, by the continuity
properties of the DH-measure.)

A mild complication arises for non-simply connected groups. Indeed, if G is semi-
simple but not simply connected not every G-bundle P over ¥/ is trivial. The bundle
P becomes trivial if restricted to the surface with boundary X} obtained from ¥} by
removing a small disk, and also over the disk itself. The gluing function along the
boundary is a map S* — (&, whose homotopy class defines the topological type of P.
Therefore the topological types of G-bundles over ¥} are classified by elements of ().

Let M(X}):= D(G)®...® D(G) = G* let ® : M(X}) — G be the moment map
and @ : M%) — G the unique lift such that 6(6, ...,e)=e. Given ¢ € m(G) C Z(G)
the quotient M) (2} = 6_1(0)/@ is the moduli space of flat connections on the bundle
parametrized by ¢. The reduced space M(X9) := ®~!(e)/G = M(X} ) eq is the space of

isomorphism classes of flat G-bundles over X9, and is a disjoint union
M) = [ M9E.
cem (G)
The DH-measure m for the space (M(X}),w, Ci)) has Fourier coefficients
(m, x») = Vol(G)**(dim V4 )*"

for any dominant weight A of (. Since the generic stabilizer for the (-action has

#Z(G) = #7(G) #m1(G) elements, and Vol(é) = #m1(G) Vol(G), Equation ({2) yields

L #2(G) xale™h)

4 1 M(c) Y0y — 1 2h—2 #

( 3) Vo ( ( h)) Vo (G) #ﬂ_l(G) z/\: (dimVA)zh_l

in accordance with Witten’s result ([PJ], Section 4.1). Summing over all ¢ € m(G)
we recover the fact that the volume of the moduli space of flat bundles Vol(M(X9)) is
given by the same formula as for the simply connected case (as a sum over irreducible

characters for G = G//m ().
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