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DUISTERMAAT-HECKMAN DISTRIBUTIONSFOR GROUP VALUED MOMENT MAPSA. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDAbstract. We introduce equivariant Liouville forms and Duistermaat-Heckman dis-tributions for Hamiltonian group actions with group valued moment maps. The theoryis illustrated by applications to moduli spaces of 
at connections on 2-manifolds.1. IntroductionOne of the fundamental invariants of a HamiltonianG-spaceM in symplectic geometryis the Duistermaat-Heckman measure m on the dual of the Lie algebra g�, de�ned asthe push-forward of the canonical volume form under the moment map. The measurem encodes volumes of reduced spaces, and by the Duistermaat-Heckman theorem itsderivatives describe mixed Chern numbers for the corresponding level set.More generally there are \twisted" DH-distributions which contain information onmore complicated intersection pairings on reduced spaces. DH-distributions have a num-ber of interesting properties [13] and they can be computed using localization techniques[13, 8, 6].In [1] a de�nition was given of a Hamiltonian G-space (M;!;�) for which the momentmap � takes values not in g� but in the group G itself. Basic examples are G-conjugacyclasses, with moment map the inclusion into G, and moduli spaces of 
at connectionson surfaces with boundary, with moment map the holonomies around the boundarycomponents. Many concepts from the theory of g�-valued moment maps carry over tothis setting. In particular, there is a notion of reduction and the reduced spaces aresymplectic.One of the di�erences to Hamiltonian spaces in the usual sense is that non-degeneracyof the 2-form ! is replaced by a more complicated condition involving the moment map.Hence the top exterior power of ! does not in general de�ne a volume form on M .We will show in this paper that there exist, nevertheless, canonical volume forms ongroup valued Hamiltonian G-spaces whose push-forward m under � plays the role ofDH-measures. Our construction uses an exotic version of equivariant de Rham theory,the \group valued" equivariant de Rham theory developed in [2]. Its de�nition is similarto that of the usual equivariant de Rham cohomology, however the de�ning complex ofequivariant di�erential forms is non-commutative.Just as in the g�-valued theory, the DH-distributions m for group valued HamiltonianG-spaces describe volumes of reduced spaces, and by an extension of the DH theorem itsderivatives give formulas for mixed characteristic numbers of the level sets. Again, there1



2 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDare more general \twisted" DH-distributions which encode more complicated intersectionpairings on reduced spaces. In [3] we prove a localization theorem for group valuedequivariant cohomology, which computes the DH-distributions in terms of �xed pointcontributions.The Duistermaat-Heckman measure and the volume form appear in the followingway in the theory of moduli spaces of 
at connections on 2-manifolds: Suppose G is acompact, connected and simply connected Lie group, together with an invariant innerproduct on its Lie algebra. For all h � 0 the space G2h carries the structure of a groupvalued Hamiltonian G-space, where the action is by conjugation on each factor and themoment map � : G2h ! G reads�(a1; b1; : : : ; ah; bh) = hYi=1[ai; bi]:The reduced space at the group unit, M(�) := ��1(e)=G, is the moduli space of all
at G-connections on a compact, oriented 2-manifold � of genus h, and it is shown in[1] that the symplectic structure obtained by reduction is equal to that coming fromthe gauge theory construction in Atiyah-Bott [4, 5]. The equivariant Liouville form onG2h can be explicitly computed in this case, and the associated volume form is found tocoincide with Haar measure dVolG2h . Hence, the push-forward m = ��(dVolG2h) playsthe role of the Duistermaat-Heckman measure, and its value at the group unit is (up toa normalizing constant) the symplectic volume of the moduli space M(�), as computedby Witten [24, 25]. The argument extends to surfaces with boundary, with prescribedholonomies around the boundary circles.The plan of this article is as follows. In Section 2 we provide background material ongroup valued HamiltonianG-spaces. In particular, we recall how to obtain the symplecticstructure on moduli spaces of 
at connection from this point of view. Section 3 isa review of the construction of equivariant Liouville forms for Hamiltonian G-spaces.In Section 4 we describe the \group valued" equivariant cohomology which we use inSection 5 to construct Liouville forms, volume forms and DH-distributions for groupvalued momentmaps. Section 6 describes their behavior under direct products and under\exponentiating". In Section 7 we show that the DH-distributions encode intersectionpairings on reduced spaces. In Section 8 we extend our constructions (most of whichuse an assumption that G be a product of a simply connected group and a torus) toarbitrary compact Lie groups. In Section 9 we apply our theory to moduli spaces of 
atconnections.Acknowledgment: We are grateful to M. Vergne for a number of helpful comments onthis paper.



DUISTERMAAT-HECKMAN DISTRIBUTIONS 32. Group valued Hamiltonian G-spacesIn this section we give a brief introduction to the theory of Hamiltonian G-spaces withgroup valued moment map. Throughout this paper G denotes a compact, connected Liegroup with Lie algebra g. For any G-manifold M and all � 2 g, we denote by �M thecorresponding fundamental vector �eld: �M = dd t jt=0 exp(�t�)�. Given a basis ea of g wewill denote by �a the contractions and by La the Lie derivatives with respect to (ea)M .The structure constants f cab of g in such a basis are de�ned by [ea; eb] = f cabec (usingsummation convention).2.1. g�-valued Hamiltonian G-spaces. A Hamiltonian G-space in the usual sense(that is, with g�-valued moment map) is a triple (M;!0;�0) consisting of a G-space M ,a 2-form !0, and an equivariant map �0 2 C1(M; g�)G satisfyingd!0 = 0 (Cocycle condition)�(�M )!0 = dh�0; �i (Moment map condition)ker((!0)m) = f0g (Non-degeneracy):The �rst two conditions imply that !0 is G-invariant. Sometimes we drop the lastcondition, in which case we call (M;!0;�0) a degenerate Hamiltonian G-space.Fundamental examples for g�-valued Hamiltonian G-spaces are coadjoint orbits O �g�, with moment map the embedding �0 : O ,! g�. The 2-form is uniquely determinedby the moment map condition, and is explicitly given by the Kirillov-Kostant-Souriau(KKS) formula !0�(�1)O(�); (�2)O(�)� = h�; [�1; �2]i(1)for all � 2 O; �1; �2 2 g.Given any Hamiltonian G-space (M;!0;�0), with 0 a regular value of �0, the reducedspace (symplectic quotient) Mred := ��10 (0)=G naturally carries the structure of a sym-plectic orbifold. More generally, if � 2 g� is a regular value one de�nesM� = ��10 (�)=G�where G� is the stabilizer of �. Letting O = G � � be the coadjoint orbit through �, andO� = G � (��), there is a natural isomorphism (\shifting-trick")M� �= MO := (M �O�)red:2.2. Group valued HamiltonianG-spaces. In the de�nition of a group valued Hamil-tonian G-space the target of the moment map is the group G itself, with G acting byconjugation. Let the Lie algebra g be equipped with an invariant inner product �, usedto identify g� �= g. The group G carries a bi-invariant closed 3-form� = 112� � [�; �] = 112� � [�; �]where �; � 2 
1(G; g) are the left/right invariant Maurer-Cartan forms, respectively.



4 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDDe�nition 2.1. A G-valued Hamiltonian G-space is a triple (M;!;�) consisting of aG-manifold M , a 2-form !, and an equivariant map � 2 C1(M;G)G satisfying thefollowing three conditions:d! = ��� (�-relative cocycle condition)�(�M )! = 12��(� + �) � � (Moment map condition)ker!m = f�M (m)j Ad�(m) � = ��g (Minimal degeneracy condition):We will sometimes omit the minimal degeneracy condition, in which case we call(M;!;�) a degenerate G-valued Hamiltonian G-space. The de�nition can be motivatedas follows. The second condition is the natural G-analogue of the moment map conditionfor g�-valued Hamiltonian G-spaces. Since�(�G)� = �12d(� + �) � �;the �rst two conditions imply that L�M! = 0 so that ! is G-invariant. Since ��� =Ad� ���, the moment map condition forcesker!m � f�M (m)j Ad�(m) � = ��g:so that the third condition is a minimal degeneracy condition for !. See [1] for moredetails, and further motivation in terms of the Cartan model of equivariant cohomology.One of the results of this paper we will be a much more attractive formulation of theminimal degeneracy condition.Notice that if the group G is abelian, the form � vanishes and the �rst and thirdcondition say that the 2-form ! is symplectic. In this case, our de�nition reduces to theusual de�nition of a torus-valued moment map (cf. [19, 14]).2.3. Examples of G-valued Hamiltonian spaces.2.3.1. Conjugacy classes. The most fundamental examples for group valued HamiltonianG-spaces are conjugacy classes C � G, with moment map the embedding � : C ,! G.Again the 2-form is uniquely determined by the moment map condition and is given by!((�1)C(g); (�2)C(g)) = 12 (Adg�Adg�1)�1 � �2 (�1; �2 2 g):(2)for all g 2 C. Equation (2) is the group analogue to the KKS formula (1), with theskew-adjoint operator ad� on g replaced by the skew-adjoint operator 12(Adg�Adg�1).Notice that the 2-form ! is degenerate if and only if Adg : g ! g (g 2 C) has aneigenvalue equal to �1. In fact it can happen that ! vanishes identically; this is thecase if and only if g squares to an element in the center Z(G). Conjugacy classes alsoillustrate the following fact:G-valued Hamiltonian G-spaces for non-simply connected Lie groups G need notbe orientable.A counter-example is the conjugacy class of the rotation group G = SO(3) correspondingto rotations by an angle 180o, which is isomorphic to RP (2).



DUISTERMAAT-HECKMAN DISTRIBUTIONS 52.3.2. The double. The doubleD(G) is the analogue for group valued Hamiltonian spacesto the cotangent bundle T �G. Let D(G) = G �G, with the group G2 acting by(g1; g2) � (a; b) = (g1 ag�12 ; g2 bg�11 ):De�ne a 2-form ! = 12(�1 � �2 + �1 � �2)where the superscripts denote the projections to the respective factor in D(G) = G�G,and a moment map � : D(G) ! G2; (a; b) 7! (ab; a�1b�1):Then (D(G); !;�) is a group valued Hamiltonian G2-space.2.3.3. The spinning 4-sphere. Let S4 be the unit sphere inR5, equipped with the rotationaction of SU(2) induced from the de�ning action on C 2 and the identi�cationR5 = C 2�R.We will show that S4 with this action admits the structure of a group valued HamiltonianSU(2) space.Choose the basis ea = �a of su(2) given by Pauli matrices�1 = � i 00 �i � ; �2 = � 0 �11 0 � ; �3 = � 0 ii 0 � ;and de�ne an invariant metric on su(2) by declaring this basis to be orthonormal. Amatrix A = tI+na�a is contained in SU(2) if and only if t2+nana = 1. Using the metricto pull down indices, the structure constants are fabc = �2�abc. Let u : C 2nf0g ! su(2)be the equivariant functionu = ua�a = 1jjzjj2�(jz1j2 � jz2j2)�1 + 2 Im(z1z2)�2 + 2Re(z1z2)�3�taking values in the unit sphere. Since the restriction of the function (C 2nf0g) � R!R; (z1; z2; s) 7! cos(�s2 )=jjzjj2 to S4 extends smoothly over the north pole N = (0; 0; 1)and the south pole S = (0; 0;�1), it follows that the map�(z1; z2; s) = sin(�s2 ) + cos(�s2 )ua�arestricts to a smooth, equivariant map � : S4 ! SU(2). Now let � 2 
1(C 2nf0g;R3)be the unique connection 1-form such that � vanishes on radial vectors, and let ! 2
2(S4nfS;Ng) be the 2-form! = ��2ua�a ds� 18 sin(�s)�abcuadubduc:We claim that ! pulls back to a smooth 2-form on all of S4, and that (S4; !;�) is agroup valued Hamiltonian SU(2)-space.



6 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDa. ! extends to a smooth 2-form on S4. Near the north pole N , we may take (z1; z2)as coordinates on S4. To show that ! is smooth near N we compare to the 2-formon C 2 , !0 = i�2 dza dza:The moment map for the SU(2)-action on C 2 is given by �0(z1; z2) = �2 jjzjj2 u. Awayfrom the origin, !0 can be re-written in terms of �:!0 = �2ua�adjjzjj2 � �8 jjzjj2 �abcuadubduc:(Indeed, since !0 is completely determined by all 1-forms �a!0 it su�ces to verifythe moment map condition; this is easily done using �adus = Laus = 2�astut.) Thedi�erence between ! and !0 is! � !0 = 18(� jjzjj2 � sin(�jjzjj2))�abcuadubduc:which is smooth at the origin. A similar argument applies to the south pole S 2 S4.b. ! satis�es the moment map condition. Using �adus = Laus = 2�astut we have�a! = ��2uads+ 12 sin(�s)dua:On the other hand, for the Maurer-Cartan form one �nds���a = ��2uads+ 12 sin(�s)dua � cos2(�s2 )�abcubduc���a = ��2uads+ 12 sin(�s)dua + cos2(�s2 )�abcubducThis shows �a! = 12��(�a + �a).c. The condition d! = ���. Since almost all orbits have codimension one, it su�cesto verify �a(d! ����) = 0. Using �a� = �12d(�a + �a) this follows from the momentmap condition together with invariance of !.2.4. Constructions with group valued Hamiltonian G-spaces.2.4.1. Fusion. Given a Hamiltonian G � G-space (in the usual sense), the same spacewith diagonal G-action and sum of the two moment map components is a HamiltonianG-space. Similarly, for any group valued Hamiltonian G � G-space the same spacewith diagonal action and product of the moment map components is a group valuedHamiltonian G-space. However, it is necessary to modify the 2-form as well:Theorem 2.2. [1] Let H;G be compact connected Lie groups and (M;!; (�1;�2;	)) agroup valued Hamiltonian G �G �H-space. Let ~M = M with diagonal G �H-action,and 2-form ~! = ! + 12��1� � ��2�:



DUISTERMAAT-HECKMAN DISTRIBUTIONS 7Then ( ~M; ~!; (�1�2;	)) is a group valued Hamiltonian G�H-space called the (internal)fusion of M .In the particular case M = M1�M2 where Mj are group valued Hamiltonian G�Hj -spaces, we write ~M =: M1 ~M2 and call this the fusion product of M1 and M2. It isshown in [1] that the fusion product is associative and commutative: That is, the groupvalued Hamiltonian spaces obtained by fusions with di�erent orderings of the G-factorsare isomorphic.2.4.2. Reduction. Just as for Hamiltonian spaces one has the notion of reduction: Let(M;!; (�;	)) be a group valued HamiltonianG�H-space and suppose that the identityelement e 2 G is a regular value of �. As shown in [1], this implies that the G-action on��1(e) is locally free. Moreover, the 2-form ! and the map 	 descend to the reducedspace Mred := ��1(e)=G:giving Mred the structure of a group valued Hamiltonian H-space. (Strictly speakingMred may have orbifold singularities unless the G-action is free; however the de�nitionof a group valued Hamiltonian space extends directly to orbifolds). In particular, ifH = feg this quotient is symplectic. If one drops the regularity assumption, the reducedspace Mred is a strati�ed symplectic space in the sense of Sjamaar-Lerman [22]. Thatis, it is a singular space strati�ed by smooth symplectic manifolds, the singularities areconical and are given by certain normal forms described in [22].More generally, if g 2 G is a regular value of � one can de�ne the reduction Mg =��1(g)=Gg which is a group valued Hamiltonian H-space. Letting C = G � g be thecorresponding conjugacy class, and C� = G � (g�1), there is a natural isomorphism(\shifting trick") Mg �= MC := (M ~ C�)red:Example 2.3. For any group valued Hamiltonian G � H-space M , there is a canonicalisomorphism (D(G)~M)red = M ( where we are taking the fusion product with respectto the feg �G � G2-action on D(G)). In particular, D(G)C = (D(G) ~ C�)red = C�.Example 2.4. The moment map for the spinning 4-sphere is a surjection onto SU(2), andde�nes a circle �bration except over the two elements of the center (where the �ber isa point). It follows that S4 is a multiplicity-free space, that is, all reduced spaces (S4)gare points.2.4.3. Exponentials. There is a way of \exponentiating" Hamiltonian G-spaces in theusual sense to group valued Hamiltonian spaces. We use the inner product on g toidentify g� �= g. Let J : g ! R be the determinant of the Jacobian of the exponentialmap exp : g! G. Let $ 2 
2(g) be the image of the closed form exp� � 2 
3(g) underthe de Rham homotopy operator 
?(g)! 
?�1(g).



8 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDTheorem 2.5. [1] Let (M;!0;�0) is a Hamiltonian space in the usual sense (possiblydegenerate). Then (M;!;�) with moment map � = exp(�0) and 2-form ! = !0 + ��0$is a (degenerate) group valued Hamiltonian G-space. The form ! satis�es the minimaldegeneracy condition at m 2M if and only if (!0)m is non-degenerate and J(�0(m)) 6= 0.Conversely, if (M;!;�) is a group valued HamiltonianG-space such that the exponen-tial map has a well-de�ned inverse log : U ! g over an open subset U � G containing�(M), then (M;! � log(�)�$; log(�)) is a Hamiltonian G-space in the usual sense.2.5. Example: Moduli spaces of 
at connections. We now explain the constructionof the symplectic structure on moduli spaces of 
at connections using group valuedmoments maps (cf [1]). For simplicity, we make the assumption that the Lie group G isconnected and simply connected. Let �rh be the compact, connected, oriented 2-manifoldwith of genus h with r boundary components, B1; : : : ; Br. Since G is simply connected,every principal G-bundle over �rh is trivial.Identify the space of Lie-algebra valued 1-forms 
1(�rh; g) with the space of connectionson the trivial bundle �rh �G. For any A 2 
1(�rh; g) let FA be its curvature. For everyboundary circle Bj we choose a base point pj 2 Bj. Let HolBj : 
1(�rh; g) ! G be themap which takes a connection to the holonomy around the loop based at pj and windingonce around Bj in positive direction. Let C1(�rh; G) be the gauge group, with gaugeaction g �A = Adg(A)� g��. Given a collection of conjugacy classes C1; : : : ; Cr letM(�rh; C) = fA 2 
1(�rh; g)j FA = 0; HolBj(A) 2 Cj for all jgC1(�rh; G)be the moduli space of 
at connections with speci�ed holonomies. For r � 1 andgeneric conjugacy classes Cj it is a �nite dimensional compact orbifold, and according toAtiyah-Bott [5, 4] it carries a natural symplectic structure. (For non-generic conjugacyclasses or in the case without boundary it is a strati�ed symplectic space in the sense ofSjamaar-Lerman [22].)In [1] it was shown that the symplectic form can be obtained by reduction from aspace with group valued moment map: First, let M(�11) = eD(G) = G � G be thefusion of the double. The G-action is the action by conjugation on each factor, and themoment map is a Lie group commutator (a; b) 7! [a; b] = aba�1b�1. The space M(�11)can be interpreted as a moduli space of all 
at connections on a 1-punctured torus �11,up to gauge transformations that are trivial at the base point; the moment map is theholonomy around the boundary loop. Similarly the fusion productM(�11)~ : : :~M(�11)~ C1 ~ : : :~ Crcan be interpreted as a moduli space of 
at connections on �r+1h : More precisely it is thespace of 
at connections such that the holonomies around the �rst r boundary compo-nents are contained in the speci�ed conjugacy classes, divided by gauge transformationsg 2 C1(�r+1h ) for which g(pr+1) = e. The moment map is interpreted as the holonomy



DUISTERMAAT-HECKMAN DISTRIBUTIONS 9around remaining boundary component Br+1. Reduction corresponds to setting thisholonomy equal to e and dividing out the residual gauge action. Therefore,M(�rh; C) = �M(�11)~ : : :~M(�11)~ C1 ~ : : :~ Cr�red:It is proved in [1] that the symplectic structure obtained by this procedure agrees withthat from the gauge-theory construction in Atiyah-Bott. The case without boundaryis included since M(�0h) = M(�1h; feg). The symplectic volume of the spaces M(�rh; C)was computed by Witten [25]. Using the result of this paper, we will give in Section 9an elementary proof of Witten's formulas.3. Equivariant Liouville form for g�-valued moment mapsFor any manifold M together with a closed 2-form !0, we de�ne the Liouville form asthe exponential exp!0. Its top form degree part (exp!0)[top] is a volume form if and onlyif !0 is non-degenerate. If (M;!0;�0) is a (possibly degenerate) Hamiltonian G-spacethe 2-form, and therefore the Liouville form, have equivariant extensions to cocyclesin equivariant cohomology. In this section we summarize the de�nition and basic factsabout equivariant Liouville forms, which we will then extend to group valued momentmaps.3.1. The Weil algebra. Let G be a compact Lie group with Lie algebra g, and letea 2 g be a basis.The Weil algebra W ?G = �rW rG is the tensor product of the symmetric algebra and theexterior algebra over g�, W rG = M2j+k=r Sjg� 
^kg�:Let ya 2 ^1g� and va 2 S1g� be the generators corresponding to the dual basis ea 2 g�.The coadjoint action of G on g� induces actions on Sg� and ^g�, hence also on WG;let La = La 
 1 + 1 
 La be the Lie derivatives. Let �a = 1 
 �a : W ?G ! W ?�1G be theextension of the natural contraction mapping on ^g�. Finally let the di�erential d begiven by the formula d = (La 
 1)ya + (va � 12fabcybyc)�a:(3)The derivations �a; La and d satisfy the same (super-) bracket relations as contractions,Lie derivatives, and exterior di�erential for a G-manifold M :[�a; �b] = 0; [�a;d] = La; [La; �b] = f cab�c;[La;d] = 0; [La; Lb] = f cabLc; [d;d] = 0:(4)The elements ya are analogues to connection 1-forms, since �ayb = �ba. By a result ofCartan [11] the di�erential complex (WG;d) is acyclic. Hence WG is morally the deRham complex of the classifying bundle EG.



10 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDWe will also need a \Weil algebra with generalized coe�cients", de�ned as follows.Let E 0(g�) be the convolution algebra of compactly supported distributions. The spaceof distributions supported at 0 is a subalgebra, and is naturally identi�ed with Sg� bythe isomorphism sending the generator va 2 Sg� to the distribution @@tjt=0�tea. De�necWG := E 0(g�)
 ^g�. The derivations �a; La;d extend to cWG, still satisfying (4).Let �0 2 C1(g�)
 ^g� be the function�0(�) = exp(�12f cabyayb�c):(5)It is invertible and acts on cWG by multiplication, preserving the subspace WG. Conju-gation by ��10 simpli�es the di�erential (cf. [2], Section 5.1)Ad(��10 ) d = va�a; Ad(��10 ) �a = �a � f cab�cyb:Under the natural pairing of cWG with 
(g�) = C1(g�) 
 ^g, this says that Ad(��10 ) dand Ad(��10 ) �a are dual to operators on 
(g�),Ad(��10 ) d = �d�; Ad(��10 ) �a = �(d�a + �a)�:(6)3.2. Equivariant cohomology. Given a G-manifold M , one de�nes the equivariantcohomology of M to be the cohomology of the basic subcomplex, consisting of elementswhich are both invariant and horizontal:H?G(M) := H?((WG 
 
(M))basic):Under our assumption that G is compact, it can be shown that this de�nition agreeswith the topological de�nition of equivariant cohomology (over R). The space H?G(M) isa module over the ring H?G(pt) = (S?g�)G of invariant polynomials. Replacing WG withcWG we also de�ne a Z2-graded spacebHG(M) = H((cWG 
 
(M))basic)which is a module over the ring bHG(pt) = E 0(g�)G of compactly supported invariantdistributions. If M is compact and oriented integration over M de�nes natural mapsZM : HG(M)! (Sg�)G; ZM : bHG(M)! E 0(g�)G:Let � : cWG ! R be the natural projection, induced by the inclusion feg ,! G. Itis a product � = Rg� 
Phor of horizontal projection Phor : ^?g� ! ^0g� = R and theintegration map Rg� : E 0(g�)! R. Since � is a chain map and a ring map, it induces forany G-manifold M a ring homomorphism in cohomology, bHG(M)! H(M).The operator Phor 
 1 on cWG 

(M) restricts to an algebra isomorphismPhor 
 1 : (cWG 
 
(M))basic �= (E 0(g�)
 
(M))G:The space bCG(M) = (E 0(g�)

(M))G equipped with the di�erential dG induced by thisisomorphism is called the Cartan model for bHG(M). One �nds that dG = 1
d�va
 �a.



DUISTERMAAT-HECKMAN DISTRIBUTIONS 113.3. Equivariant Liouville forms for Hamiltonian G-spaces. We �rst describe aform �0 2 cWG 
 
(g�) that appears in the de�nition of the Liouville form. View thefunction � 7! �0(�)�� as an element of cWG 

0(g�) and let�0 := e�yad�a�0(�)�� 2 (cWG 

?(g�))G:Notice that ��10 �0 is is the kernel of the identity map of cWG, using the pairing with
(g�) introduced at the end of Section 3.1. Equation (6) hence shows thatd�0 = 0; �a�0 = �d�a �0:(7)Suppose M is a G-manifold, together with an equivariant map �0 2 C1(M; g�)G and a2-form !0 2 
2(M). We de�ne the equivariant Liouville form of the triple (M;!0;�0)to be the form L0 = e!0��0�0 2 cWG 
 
(M):From (7) it follows that the equivariant Liouville form L0 is closed if and only if !0is closed, and that its horizontality is equivalent to the moment map condition for �0.Recall that the combination of these two conditions implies that !0 and hence also L0are invariant. In this case L0 de�nes a cohomology class[L0] 2 bHG(M):The 2-form !0 is non-degenerate if and only if the top degree part of the form�0 = (�
 1)L0 = e!0is a volume form; in this case Vol(M) = RM e!0 is called the Liouville volume of M .3.4. Example: Coadjoint orbits. Let �0 : O ,! g� be a coadjoint orbit. Use aninvariant inner product on g to identify g �= g�. Let � = �aea 2 
1(O; g) be the uniqueLie-algebra valued 1-form on O de�ned by�(�O(�))�� = prg?� �where prg?� : g! g is the orthogonal projection onto g?� . The symplectic form (1) on Ocan be written !0 = �12(ad�)ab�a�b:Since (�0)�d�a = (ad�)ab�b and (ad�)ab = fabc�c, it follows that the equivariant Liouvilleform equals L0 = exp(�12(ad�)ab(�a + ya)(�b + yb))��0;which is just �0��0 with ya replaced by ya+�a. Using the operator exp(�a�a) generatingthis shift we have shown that L0 = exp(�a�a) ��0(�0�):The volume form on O can be computed as the top degree part of �0 = exp!0: Given� 2 O, let detg?� (ad�) > 0 be the determinant of ad�, viewed as an automorphism of



12 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDg?� . There is a unique orientation on g?� �= T�O for which the Pfa�an det 12g?� (� ad�) ispositive. Assume with no loss of generality that the �rst l = dimg?� elements of the basisea are an oriented basis of g?� . Then �1 : : : �l is the Riemannian volume form dVolRiemform on C, and the de�nition of the Pfa�an shows that(�0)[top] = det 12g?� (� ad�) dVolRiem :This gives the well-known formulaVol(O) = jdetg?� (ad�)j 12 VolGVolG�where Vol(G) and Vol(G�) are the Riemannian volumes of G and G�.3.5. Twisted DH-distributions. Let (M;!0;�0) be a compact, oriented (possiblydegenerate) Hamiltonian G-space, with Liouville form L0. The integralm0 = ZM L0 2 E 0(g�)G;is called the Duistermaat-Heckman measure. It is equal to the push-forward m0 =(�0)�(�0)[top] where the orientation is used to view (�0)[top] as a (signed) measure. Moregenerally, given an equivariant di�erential form �0 2 (WG 
 
(M))basic, the twistedDuistermaat-Heckman distribution m�00 is de�ned bym�00 = ZM �0L0 2 E 0(g�)G:The map �0 7! m�00 vanishes on coboundaries and therefore descends to a map in co-homology HG(M) ! E 0(g�)G. The distributions m�00 appear for example in work ofJe�rey-Kirwan [16], Duistermaat [12], Vergne [23] and Paradan [21]. They are sup-ported on the image of � and their singular support is contained in the set of singularvalues of �0.At regular values � of �0 they encode intersection pairings of reduced spaces:m�00dVol�g ���O = VolGkVolO ZMO �O(�0)e!O :(8)Here O is the coadjoint orbit through �, (MO; !O) the reduced space, k the number ofelements in a generic stabilizer for the G-action, and �O : HG(M) ! H(MO) the \Kir-wan map" de�ned by pull-back to ��10 (O) followed by the isomorphism HG(��10 (O)) �=H(MO). For a proof of (8) see e.g. [12].



DUISTERMAAT-HECKMAN DISTRIBUTIONS 134. Group valued equivariant cohomologyBefore we extend the de�nition of equivariant Liouville forms to group valued momentmaps, we de�ne a complex of group-valued equivariant forms. The Liouville form willbe a closed form in this complex.This section summarizes material from the paper [2] to which we refer for proofs andfurther details.4.1. The non-commutative Weil algebra. Suppose G is a compact connected Liegroup, and let its Lie algebra g be equipped with an invariant inner product. Let ea 2 gbe an orthonormal basis and fabc the structure constants for this basis.Let Cl(g) be the Cli�ord algebra of g, de�ned as the quotient of the tensor algebraby the ideal generated by all � 
 � � 12� � �. Thus if xa 2 Cl(g) are the generators withrespect to the basis feag, we have [xa; xb] = �ab (using graded commutators). We let� : Cl(g)! ^g be the symbol map de�ned by�(xj1 : : : xjs) = yj1 : : : yjs; j1 < : : : < jsLet E 0(G) be the convolution algebra of (compactly supported) distributions on G. Theuniversal enveloping algebra U(g) embeds into E 0(G) as the subalgebra of distributionswith support at the group unit, by the map given on generators as ua 7! dd tjt=0 exp(tea).The non-commutative Weil algebra WG and the non-commutative Weil algebra withgeneralized coe�cients are the Z2-graded algebrasWG := U(g)
 Cl(g); cWG := E 0(G) 
 Cl(g):The Lie derivatives for the diagonal G-action are inner derivations La = ad(ua + ga)where ga = �12fabc xb xc:(9)De�ne a derivation d = ad(D) whereD = uaxa � 16fabcxaxbxc:It is shown in [2] that D2 = 12uaua � 148fabcfabc:(10)Since (10) is contained in the center U(g)G of the universal enveloping algebra, it fol-lows that d2 = ad(D2) = 0 showing that d is a di�erential. Putting �a = ad(xa), thederivations �a; La and d satisfy the bracket relations (4), for example Cartan's formula[�a;d] = La follows from [xa;D] = ga.Let Spin(g) be the spin group, de�ned as the image of so(g) � Cl(2)even(g) under the(Cli�ord) exponential map. The G-action on Cl(g) de�nes a homomorphismg! so(g) � Cl(g); � 7! �aga



14 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDwhere ga was de�ned in (9). If we make the assumption that G is a product of a simplyconnected group and a torus, it exponentiates to a map � : G! Spin(g) ,! Cl(g): Thus� (exp �) = exp(�12fabc �a xb xc)(11)which shows that formally, � is a group analogue to the function �0 introduced in (5).By de�nition, � (g1)� (g2) = � (g1g2) and g � x = Ad(� (g))x for all x 2 Cl(g).The function � acts on cWG by multiplication from the left. The conjugates of d and �aunder � are dual to operators on 
(G), as follows. Use the left-invariant Maurer-Cartanforms �a to trivialize T �G to identify 
(G) �= C1(G)
^g�, and use the symbol map toidentify cWG = E 0(G) 
 ^g. Under the pairing given by these identi�cations, one �ndsthat the � -conjugates of the operators d; �a are dual to operators on 
(G):Ad(��1)(d) = �(d + �)�; Ad(��1)(�a) = �(�a + 12(�a + �a))�:(12)Moreover, the map � takes the multiplication map MultW for cWG into a map dual tothe comultiplication exp(�12�1a�2a) �Mult�G : 
�(G)! 
�(G�G)��1 �MultW �(� 
 � ) = (e� 12 �1a�2a �Mult�G)�(13)where the superscripts denote the pull-backs to the respective G-factor.One of the main results in [2] is the construction of a linear map (called quantizationmap) Q : cWG ! cWG which restricts to an isomorphism WG !WG and which satis�es[Q; �a] = 0; [Q; La] = 0; [Q;d] = 0:The map Q is most easily described by duality to a map 
(G) ! 
(g),��1 � Q � �0 := (e$ � exp�)�;(14)where $ 2 
2(g)G was introduced in Section 2.4.3. In [2] we give an explicit formulafor Q and show in particular that on the subalgebra E 0(g) � cWG, it restricts to theDu
o map exp� �J 12 : E 0(g)! E 0(G). Here J 12 is the square root of the Jacobian of theexponential map exp : g! G.4.2. Group valued equivariant cohomology. For any G-manifold M , the equivari-ant cohomology algebras HG(M) and bHG(M) are de�ned as the cohomology of the basicsubcomplexes(WG 
 
(M))basic = (WG 

(M))Ghor; (cWG 

(M))basic = (cWG 
 
(M))Ghor:They are modules over the ring of Casimir elements HG(pt) = U(g)G resp. of invariantdistributions bHG(pt) = E 0(G)G. IfM is compact and oriented, integration overM de�nesmaps ZM : HG(M)! U(g)G; ZM : bHG(M)! E 0(G)G:



DUISTERMAAT-HECKMAN DISTRIBUTIONS 15The quantization map Q : cWG ! cWG induces linear mapsQ : bHG(M)! bHG(M); HG(M)! HG(M);the second of which is an isomorphism. By Theorem 8.1 in [2] these two maps areactually ring maps. For the case M = fptg, this becomes the fact that the Du
o maprestricts to ring homomorphismsexp� �J 12 : E 0(g)G ! E 0(G)G; S(g)G ! U(g)G:The quantization map is clearly functorial with respect to pull-backs and integrations.For example, if M is compact and oriented, we have the identityZM Q(�) = Q(ZM �) = exp�(J 12 ZM �)(15)for all � 2 bHG(M).4.3. Cartan model. Consider the horizontal projection map Phor =Q� ��x� : Cl(g)!R. Using the symbol map to identify Cl(g) �= ^g it is equal to projection to ^0g, howeverit is not a ring map for the Cli�ord multiplication. We extend Phor to projection mapscWG ! E 0(G) andWG ! U(g)G. For any G-manifoldM , horizontal projection (Phor
1)in the Weil algebra part induces vector space isomorphisms(cWG 
 
(M))basic �= (E 0(G)
 
(M))G; (WG 
 
(M))basic �= (U(g)
 
(M))G(16)The spaces bCG(M) = (E 0(G) 
 
(M))G; CG(M) = (U(g)
 
(M))G;equipped with the di�erential dG and algebra structure induced by this isomorphism, iscalled the Cartan model for bHG(M). The ring structure on the Cartan model induced by(16) has an explicit description. First, de�ne a new ring structure on 
(M) by setting�1 � �2 = diag�M e 12 �1a�2a(�1 
 �2)where diagM : M ! M �M is the diagonal embedding, and �1a; �2a are the contractionson 
(M �M) = 
(M) 
 
(M) with respect to the �rst respectively second G-factor.(Notice that the space of invariant forms is a subring for the new ring structure). Let� be the ring structure on bCG(M) induced by the given ring structure (convolution) onE 0(G) and the new ring structure � on 
(M).Proposition 4.1. [1] The map (16) is a ring map for the product � on bCG(M), and achain map provided bCG(M) is equipped with the di�erentialdG = 1 
 d� 12(uLa + uRa )
 �a + fabc24 1
 �a�b�c:Here uLa and uRa are the operators of left/right convolution by ua.



16 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDAs a direct consequence, the map�
 1 : (cWG � 
(M))basic ! 
(M)Ggiven by composition of Phor 
1 and RG is a ring map for the product � on 
(M)G, andalso a chain map if the space 
(M)G is equipped with the di�erentiald + 124fabc�a�b�c:We will also need the following result, describing \restriction to the diagonal" in termsof Cartan models:Proposition 4.2. [2] Let M be a G � G-manifold, and ~M the same manifold withdiagonal G-action. Let � 2 (cWG�G 
 
(M))basic, and let ~� be its image under the mapMultW : (cWG�G 
 
(M))basic ! (cWG 

( ~M ))basic. Then(Phor 
 1)(~�) = �(MultG)� 
 e 12 �1a�2a � � (Phor 
 1)(�):5. Liouville form for group valued Hamiltonian spacesFor the next few Sections we will make the following assumption on the group G:Assumption (S): G is a direct product of a compact, connected, simply con-nected Lie group and a torus.This restriction will be lifted in Section 8. Assumption (S) is required for the function� : G ! Cl(g) to be well-de�ned. It also implies that the half-sum � of positive roots(for any given choice of maximal torus and positive Weyl chamber) is a weight forG, parametrizing an irreducible representation V�. The character �� 2 C1(G) of thisrepresentation is given by ��(g)dimV� = det 12 �1 + Adg2 �(17)using the unique smooth square root which equal 1 at g = e.5.1. De�nition of the equivariant Liouville form. In this section we constructthe equivariant Liouville form for any group valued Hamiltonian G-space (M;!;�) as acocycle for group valued equivariant cohomology. We �rst give the description in the Weilmodel (cWG 
 
(M))basic. The two maps G! Cl(g); g 7! � (g) and G 7! E 0(G); g 7! �gcombine into a map G ! cWG; g 7! � (g)�g, which can be viewed as an element ofcWG 
 
0(G). The group analogue to �0 is the form� = e�xa�a � (g)�g = � (g)e�xa�a�g 2 cWG 
 
(G):Similar to ��10 �0, the form ��1� is the kernel of the identity map of cWG, using thepairing with 
(G) introduced in Section 4.1. Hence (12) impliesd� = ���; �a� = �12(�a + �a)�:(18)



DUISTERMAAT-HECKMAN DISTRIBUTIONS 17The de�nition of a Liouville form for G-valued Hamiltonian spaces is parallel to that forg�-valued Hamiltonian spaces, the form � replacing the form �0:De�nition 5.1. Suppose that M is a G-manifold together with a 2-form ! and anequivariant map � : M ! G. We de�ne the equivariant Liouville form of (M;!;�) byL := e!��� 2 cWG 
 
(M)It is immediate from the properties of � that L is closed if and only if d! = ���,and that horizontality of L is equivalent to the moment map condition in De�nition 2.1.(Recall from Section 2.2 that the combination of these two conditions implies that !,hence also L, is invariant.) That is, (M;!;�) is a (degenerate) Hamiltonian G-space ifand only if L represents a cohomology class [L] 2 bHG(M). As for Hamiltonian spaceswe de�ne a di�erential form � = (�
 1)L 2 
(M)G;and if M is compact and oriented we refer to Vol(M) = RM � as the (signed) Liouvillevolume.Theorem 5.2. Let (M;!;�) be a possibly degenerate group valued Hamiltonian G-space. Then:a. The space (M;!;�) is non-degenerate if and only if the top degree part �[top] is avolume form.b. �[top] is related to the top degree part of exp! by�� ��dimV��[top] = (e!)[top]:The proof of Theorem 5.2 will be given in Section 5.3. It will require the followingexplicit description of �. By de�nition� = (�
 1)(e!���) = e! ��(�
 1)(�) = e!��� 0where � 0 = (Phor 
 1)(e�xa�a� ) 2 
?(G):Proposition 5.3. The di�erential form � 0 on G is given by the formula� 0g = ��(g)dimV� exp�� 14 �Adg �1Adg+1�ab�a�b�:(19)The right hand side of (19) is well-de�ned in the sense that the zeroes of �� compensatethe singularities of the exponential.Proof. The operator Phor combines with the factor exp(�xa�a) to produce the symbolmap: Indeed � can be de�ned as the composition of two maps exp(�2xbyb) : Cl(g) !Cl(g)
^g and Phor 
 1 : Cl(g)
^g! ^g. It follows that the form � 0 is obtained fromthe symbol �(� ) by replacing 2ya with �a.



18 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDAs a special case of [7], Proposition 3.13, together with the formula (17) for ��, thesymbol of � is given by�(� (g)) = ��(g)dimV� exp�� �Adg�1Adg+1�abyayb�;(20)which proves Proposition 5.3.Using Equation (19) we have found the following expression for the di�erential form �,� = e! ��(�)dimV� exp�� 14 �Ad��1Ad�+1�ab���a���b�:(21)Since L is basic and closed, the discussion in previous Section shows that � is closedunder the di�erential d + 124fabc�a�b�c on 
(M)G.Remark 5.4. Originally, we discovered the volume form �top directly in terms of theabove di�erential form expression. The similarity of the form � 0 with the symbol of themap � : G! Cl(g) was pointed out to us by N. Berline and B. Kostant.5.2. The Liouville form for a conjugacy class. Before we continue the discussionof the equivariant Liouville form in the general case, let us examine the example of aconjugacy class in more detail.Let � : C ,! G be a conjugacy class. By equivariance the Liouville form is determinedby its value at any point g 2 C. Let gg be the Lie algebra of the centralizerGg of g and letprg?g : g ! g?g be projection onto its orthogonal complement. Let � = �aea 2 
1(C; g)be the Lie algebra valued 1-form de�ned by�(�C(g))�g = prg?g (�)(22)for all � 2 g. The 2-form ! on C (cf. (2) ) can be written! = �14(Adg�Adg�1)ab�a�b:Proposition 5.5. The equivariant Liouville form for the conjugacy class C = G � g isgiven by the formula L = exp(��a 
 �a)��(� ��):(23)The top form degree part of the form � is a volume form on C, and in particular de�nesan orientation. The corresponding Liouville volume of C readsVol(C) = jdetg?g (Adg�1)j 12 VolGVolGg :(24)where VolG and VolGg are the Riemannian volumes. The volume form �[top] is relatedto the top exterior power of the 2-form ! on C by(e!)[top] = ����dimV� �[top](25)



DUISTERMAAT-HECKMAN DISTRIBUTIONS 19Proof. Our proof uses two formulas from Cli�ord calculus. Suppose V is an orientedEuclidean vector space, and S 2 so(V ). Let xa 2 Cl(V ) be the generators correspondingto some choice of oriented, orthonormal basis of V , and let �a be odd elements in somecommutative super-algebra A. Then�Y� ��� �� exp(12Sabxaxb) = det 12 (2 sinh(S2 ))�1 : : : �n(26)where the square root is de�ned as a Pfa�an. Moreover,exp(��a�a) exp �12Sabxaxb� = exp($2) exp(�xr
r) exp �12Sabxaxb�(27)where 
r = (1 � eS)rs�s and $2 = 12(sinh(S))ab�a�b. Both equations are proved byblock-diagonalizing the matrix S. For (26) this is carried out in Mathai-Quillen [18],Proposition 2.10 and for (27) in [2], Lemma 7.5.Choose � 2 g such that exp� = g. We will apply Equations (26) and (27) to V = g?gand S = � ad�, with � as de�ned in (22). Notice that � (g) = exp(12Sabxaxb) takes itsvalues in the Cli�ord algebra Cl(V ) � Cl(g).We may assume with no loss of generality that the basis of g is chosen in such a waythat the �rst l elements e1; : : : ; el are a basis for g?g .Then $2 is just the 2-form ! on C and 
r = ���r. Equation (27) therefore becomesexp(��a�a)� (g) = exp(!) exp(�xa�a) � (g)which proves (23). Since taking the top degree part commutes with the projection�
 1 = � RG
Phor�
 1, �[top] = (Phor 
 1)(ZG L)[top]:Using (23) and (26),� ZG L�[top] = lY�=1(��� 
 ��)� (g) = det 12g?g �2 sinh(ad�2 )��1 : : : �l 6= 0:Since this expression does not contain Cli�ord variables xa, it is not a�ected by thehorizontal projection Phor, showing that �[top] is a volume form. Since ��1 : : : �l is theRiemannian volume form on T�C, and since jdet�2 sinh(ad�2 )�j = jdetg?g (Adg�1)j, thisproves (24). Finally, sinceexp(!)[top] = det 12g?g (sinh(ad�))d VolRiemby de�nition of the Pfa�an, and sincedet 12g?g (sinh(ad�))det 12g?g (2 sinh(ad�2 )) = det 12 (cosh(ad�2 )) = ��(exp�)dimV�



20 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDwe obtain the formula (25).5.3. Proof of Theorem 5.2. We are now in position to prove Theorem 5.2, saying thatthe top degree part of � is a volume form if and only if ! is minimally degenerate.Proof of Theorem 5.2. Let (M;!;�) be a group valued Hamiltonian G-space, possiblydegenerate. Let m 2M , and g = �(m). There is a natural splitting of the tangent spaceTmM given by TmM = g?g �Ewhere g?g is embedded by means of the fundamental vector �elds and E =(dm�)�1(Tg(Gg)). The 2-form on g?g is just the 2-form corresponding to its identi�-cation with the tangent space to the conjugacy class G � g. It is veri�ed in Section 7 of[1] that this splitting is !-orthogonal, that is, !(v1; v2) = 0 for v1 2 g?g and v2 2 E andthat the restriction !E = !jE is non-degenerate if and only if ! satis�es the minimaldegeneracy condition at m, that is if and only if ker!m = f�M (m)j� 2 ker(Adg +1)g.Hence �m = �g?g ^ exp(!E)where �g?g is the form corresponding to the identi�cation g?g �= Tg(G � g), and therefore(�m)[top] = (�g?g )[top] ^ exp(!E)[top]:Since (�g?g )[top] is non-vanishing, it follows that (�m)[top] 6= 0 if and only if !E is non-degenerate. This proves the �rst assertion, and the second assertion follows from(exp(!g?g ))[top] = ��(g)dimV� (�g?g )[top]by (25).Remark 5.6. In contrast to Hamiltonian G-spaces, the volume form for a group valuedHamiltonian G-space depends not only on the 2-form but also on the moment map. Forexample, if (M;!;�) is a group valued Hamiltonian G-space and c 2 Z(G) a centralelement, then �0 = c� is a moment map for the same group action and 2-form !. Thenew Liouville form is L0 = � (c)�cL. Since � is a weight for G, it de�nes a homomorphismT ! S1; t 7! t�. We have � (c) = c�;(28)as one can see for example from the formula (20) for the symbol, �(� )(c) = ��(c)dimV� = c�.Therefore, L0 = c� �cL and �0 = c��:One has c� = �1: indeed, c2� = 1 since 2� is a weight for G=Z(G). In general c� 6= 1 sothat �0 may di�er from � by sign.



DUISTERMAAT-HECKMAN DISTRIBUTIONS 215.4. DH-distributions. The de�nition of DH-distributions for group valued Hamilton-ian spaces (M;!;�) is analogous to that for g�-valued moment maps (Section 3.5). Let(M;!;�) be a compact, oriented, possibly degenerate G-valued Hamiltonian G-space,with Liouville form L. The integralm := ZM L 2 E 0(G)Gis called the Duistermaat-Heckman measure. It is equivalently given as a push-forward,m = ��(�)[top]. More generally, given any equivariant di�erential form � 2 (WG 

(M))basic we de�ne m� = ZM �L 2 E 0(G)G:The map (WG 
 
(M))basic ! E 0(G)G; � 7! m�descends to a linear map in cohomology, HG(M) ! E 0(G)G. One can de�ne a similarmap bHG(M)! E 0(G)G { only on HG(M) however one has the following locality propertyof the distributions m�:Proposition 5.7. For any � 2 (WG 

(M))basic, the support of the distribution m� iscontained in the image of � and its singular support in the set of singular values of �.Proof. By Proposition 4.1, and since (Phor 
 1)L = ���,m� = ZM(�L) = ZM(Phor 
 1)(�L) = ZM (Phor 
 1)(�)� ���:Writing (Phor 
 1)(�) =PJ uJ 
 �J 2 (U(g) 

(M))G we �ndm� =XJ uJ ZM (�J � �) �� =XJ uJ ��(�J � �)[top]:This proves the proposition since the support of ��(�J ��)[top] is contained in the imageof � and the singular support in the set of singular values, and since left convolution byuJ is given by application of a di�erential operator.In what follows, we will often �nd it convenient to express DH-distributions in terms oftheir Fourier coe�cients: Given an irreducible representation V� labeled by a dominantweight �, with character ��, we havem�(g) =X� hm� ; ��i��(g�1) dVolGVolG :(29)For a conjugacy class C � G, the Duistermaat-Heckman measure mC is given bymC = Vol(C) �C



22 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDwhere �C is the unique invariant measure supported on C and with integral 1, and whereVol(C) is given by (24). Its Fourier coe�cients are, therefore,hmC; ��i = Vol(C)��(C):(30)5.5. Example: The double D(G). As an example, we calculate the volume form andthe DH-distribution for the double D(G). We claim:Proposition 5.8. Let G be a compact, connected, simply connected Lie group and letD(G) = G�G be the double. The volume form �[top] on D(G) is equal to the Riemann-ian volume form dVolG�G on D(G) (for the canonical orientation). In particular, theLiouville volume Vol(D(G)) is equal to the Riemannian volume, Vol(G)2. The Fouriercoe�cients of the DH measure arehm; ��1 
 ��2i = Vol(G)2 ��1;�2:(31)Proof. We use the trivialization of the tangent bundle T (D(G)) = D(G) � (g � g) bymeans of left invariant vector �elds. The skew-symmetric matrix describing ! at a point(a; b) has block form, B = 12 � 0 �Adb�Ada�1Ada+Adb�1 0 �which has determinantdet(B) = det�Adb+Ada�12 �det�Ada+Adb�12 � = det�Adab+12 Ada�1b�1 +12 �:This proves(exp!)[top] = det 12 (B)dVolG�G = det 12�Ad�1 +12 Ad�2 +12 �VolG�G(Here we take the unique smooth square root which is equal 1 at (a; b) = (e; e); thesign is veri�ed by evaluating both sides at (e; e)). By the second part of Theorem 5.2this shows that �[top] = dVolG�G. The measure m 2 E 0(G � G) is the push-forward ofdVolG�G under the map (a; b) 7! (ab; a�1b�1). We calculatehm; ��1 
 ��2i = ZD(G) ��1(ab)��2(a�1b�1) dadb = Vol(G)2��1;�2:6. Fusion products and exponentialsIn this Section we discuss the behavior of the equivariant Liouville form under the twobasic operations with group valued Hamiltonian spaces: Fusion and Exponentials.



DUISTERMAAT-HECKMAN DISTRIBUTIONS 236.1. Multiplicative properties of the Liouville form. Suppose both G and H area product of a connected, simply connected Lie group and a torus.Theorem 6.1 (Diagonal G-action). Let (M;!;�) be a group valued Hamiltonian G �G � H-space (possibly degenerate), with moment map � = (�1;�2;	), and let( ~M; ~!; (�1�2;	)) be its internal fusion. Denote by L; ~L the Liouville forms and let� = (�
 1)L and ~� = (�
 1) ~L. Then~L = (MultW 
1)L(32)and ~� = exp(12 �1a�2a) �:(33)In particular, the top degree part does not change: ~�[top] = �[top]. If � 2 (WG�G�H 

(M))basic, and ~� its image in (WG�H 

( ~M))basic, the corresponding DH-distributionsm� and ~m~� are related by push-forward under the G-multiplication MultG,~m~� = (MultG)�m�:(34)Proof. Recall that ��1� is the kernel of the identity map of cWG. Therefore, the kernelfor the multiplication map is ��1�1�2, where �1;�2 2 cWG

�(G�G) be the pull-backsof � to the �rst/second factor. Equation (13) is equivalent to�1�2 = e� 12 �1a �2a (1
Mult�G)�:(35)Since ~! = ! + 12�1a �2a, Equation (32) follows directly from (35) and the de�nition of theLiouville form. Equation (33) is a consequence of (32) and Proposition 4.2. Equation(34) follows since ~� ~L is the image of �L under the map (cWG�G�H 
 
(M))basic !(cWG�H 
 
( ~M))basic.In the special case that M = M1 �M2 is the direct product of two group valuedHamiltonian G-spaces, Theorem 6.1 says:Corollary 6.2. If (Mj ; !j;�j) (j=1,2) are two group valued Hamiltonian G-spaces, withLiouville forms L1;L2, then the Liouville form for the fusion product M1 ~M2 is theproduct of the Liouville forms, L1L2, and the volume form is the direct product of thevolume forms, (�1)[top] � (�2)[top].Given equivariant forms �j 2 (cWG

(Mj))basic, the twisted DH distribution for theirproduct �1�2 2 (cWG

(M1�M2))basic is the convolution product m�11 �m�22 of the twistedDH distribution m�jj for the factors.Note that this result looks quite complicated if it is spelled out in terms of the di�er-ential form expression (21) for � = � �� !



24 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDEquation (34) can be re-phrased in terms of Fourier coe�cients as follows. SupposeH = feg for simplicity and let � be a dominant weight for G. Then (34) says thathm~�; ��i = hm�; �� 
 ��idimV� :(36)This follows from the formula for convolution of characters (cf. [10], Proposition (4.16)):���dVolGVolG � � ��� dVolGVolG � = ��;� 1dimV����dVolGVolG �:Example 6.3. Recall that the volume form on the double D(G) was simply the Riemann-ian volume form and that the Fourier coe�cients were calculated in (31). The Theoremtells us that the volume form for its internal fusion ~D(G) is still the Riemannian volumeform, and that the Fourier coe�cients for the DH measure areh~m; ��i = (VolG)2dimV� :(37)6.2. The Liouville form for exponentials. In this section we compare the equivariantLiouville forms of a Hamiltonian space (M;!0;�0) and of its exponential.Since Q(�0) is the kernel of the quantization map cWG ! cWG, the description (12) ofthe quantization map is equivalent to the equationQ(�0) = e$(1 
 exp�)�:(38)This implies the following Theorem.Theorem 6.4 (Exponentials). Let (M;!0;�0) be a (possibly degenerate) HamiltonianG-space, with equivariant Liouville form L0. Then (M;!0 + ��0$; exp(�0)) is a groupvalued Hamiltonian G-space, with Liouville form L the quantizationL = Q(L0):(39)The top degree parts of the forms �0 = (�
 1)L0 and � = (�
 1)L are related by�[top] = (��0J 12 ) (�0)[top]:(40)Let �0 2 (WG

(M))basic be a cocycle and � = Q(�0) its quantization. If M is compactand oriented, m� = exp�(J 12m�00 ):(41)Proof. The �rst two statements are immediate from (38). Equation (40) follows from(38) and the de�nitions of L0 and Q. Since Q is a ring homomorphism in cohomology,Q([�0L0]) = Q([�0])Q([L0]) = [�L]. Therefore, Equation (41) follows from (15).



DUISTERMAAT-HECKMAN DISTRIBUTIONS 25Given two Hamiltonian G-spaces (Mj ; !j0;�j0) ( j = 1; 2 ), the direct product M1�M2with diagonal G-action becomes a (possibly degenerate) group valued Hamiltonian G-space in two di�erent ways, according whether one takes the product before or afterfusion. The two resulting moment maps areexp(�10 + �20) resp. exp(�10) exp(�20):If we denote the equivariant Liouville forms forMj by Lj0 (viewed as forms on the productM1�M2), the Liouville forms for the �rst method is Q(L10L20) and for the second methodit reads Q(L10)Q(L20).Combining Theorem 6.4 with the fact [2] that Q is a ring homomorphism in cohomol-ogy, we have:Proposition 6.5. Given two Hamiltonian G-spaces (Mj ; !j0;�j0) ( j = 1; 2 ) with equi-variant Liouville forms Lj0 (viewed as forms on the productM1�M2), the forms Q(L10L20)and Q(L10)Q(L20) are cohomologous.7. Intersection pairings on reduced spacesAt regular values of � the twisted DH distributions m� have a simple interpretation.Recall (see e.g. [15]) that for anyG-manifoldX with a locally freeG-action, the pull-backmap 
(X=G) ! 
(X)basic � (WG 
 
(X))basic induces an isomorphism in cohomology,HG(X) ! H(X=G). In particular, if (M;!;�) is a group valued Hamiltonian G-spaceand C some conjugacy class which is contained in the set of regular values of �, we obtaina map �C : HG(M)! H(MC)by composition of the isomorphism Q�1 : HG(M) �= HG(M), pull-back to the level setHG(M)! HG(��1(C)), and isomorphism HG(��1(C)) �= H(��1(C)=G).Theorem 7.1. Let (M;!;�) be a compact, oriented, group valued Hamiltonian G-space(possibly degenerate), and � 2 HG(M). If the conjugacy class C is contained in the setof regular values of �, the value of the function m�dVolG on C is given by the formulam�dVolG ���C = VolGkVol C ZMC �C(�)e!Cwhere VolC is the Liouville volume of the conjugacy class C and k is the number ofelements in a generic stabilizer for the G-action on ��1(C).Proof. We begin by proving the theorem for the simplest case C = feg. Passing to aneighborhood ��1(U) where U � G is a su�ciently small invariant open neighborhoodof e, we can assume that (M;!;�) is the exponential of some Hamiltonian G-space(M;!0;�0). Put �0 = Q�1(�). Since m� = exp�(J 12m�00 ) we havem�dVolG ���e = m�00dVolg� ���0 = VolGk ZMred �0(�0);



26 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDwhere we have used (8). The result follows since �0(�0) = �e(�). We now reduce thecase of arbitrary conjugacy classes C to the case of the trivial conjugacy class by meansof the shifting-trick, MC = (M ~ C�)red:Let �C� 2 E 0(G) be the invariant measure with support C� = G � g�1 and integral 1.The Duistermaat-Heckman measure for the conjugacy class C� is Vol(C) �C�. Letting m�be the twisted DH-distribution for M , the corresponding distribution for the productM ~ C� is the convolution Vol(C)m� � �C� (see Corollary 6.2). By the above we haveVol(C)m� � �C�dVolG ���e = 1k ZMC �C(�)e!C:On the other hand, the value of the convolution product with �C at the group unit readsm� � �CdVolG ���e = m�dVolG ���C:Comparing the two expressions completes the proof.The above result can be reformulated in terms of the Fourier coe�cients of m�. Eval-uating (29) on C we �ndZMC �C(�)e!C = kVolC(VolG)2 X� hm�; ��i��(C�)(42)provided the sum on the right hand side converges. In case of convergence problemsapply (as in K. Liu [17]) the smoothing operator et�; t > 0 to m�, where � is theLaplace-Beltrami operator on G. Recall that for all dominant weights �,��� = �(jj�+ �jj2 � jj�jj2)��:This gives ZMC �C(�)e!C = kVol C(VolG)2 limt!0+X� e�tjj�+�jj2 hm�; ��i��(C�)where the sum is absolutely convergent for all t > 0 and the limit t 7! 0+ exists.As a special case, suppose P 2 U(g)G is in the center of the universal envelopingalgebra and � = P
1 is its image under the map U(g)G = (WG)basic ! (WG

(M))basic.In this case m� is obtained from m by application of the bi-invariant di�erential operatorcorresponding to P , m� = P (m):The pre-image �0 = Q�1� is just the invariant polynomial on g corresponding to Punder the Du
o isomorphism S(g)G �= U(g)G, and the class �C(�) = �(Q(�0)) is thecharacteristic class of the bundle ��1(C) ! MC attached to the invariant polynomialp = �0 by the Chern-Weil homomorphism S(g)G ! H(MC).



DUISTERMAAT-HECKMAN DISTRIBUTIONS 278. Generalization to arbitrary compact Lie groupsOur construction of an equivariant Liouville form was made under the assumption (S)that the group G is a product of a simply connected group and a torus. Recall fromSection 2.3.1 that without this assumption, group valued Hamiltonian G-spaces are notnecessarily orientable.We will show that dropping Assumption (S) naturally leads to Liouville volumes withvalues in the orientation bundle. Recall that the orientation bundle oM for any manifoldM is the associated bundle P �Z2 R, where the principal Z2-bundle P is the orienteddouble cover of M .One de�nes the space of twisted di�erential forms
t(M) := 
(M;oM )as sections of ^T �M 
 oM . It is a module over the space 
(M) of di�erential forms onM . The real line bundle ^nT �M 
 oM is isomorphic to the density bundle of M ; hencethe space 
nt (M) is just the space of smooth densities of M .For any compact, connected Lie group G there is a �nite, connected covering bG! G,where bG is a product of a simply connected group and a torus. Its kernel is a subgroupR � �1(G).Suppose (M;!;�) is a group valued Hamiltonian G-space. Let cM ! M be thecovering space obtained by pulling back the covering bG! G under the map �, and letb� : cM ! bG be the corresponding map. Let b! 2 
2(cM) be the pull-back of !. TheG-action on M and the conjugation action on bG induce a G-action on cM ; letting bG actby the covering map to G, the triple (cM; b!; b�) is a group valued Hamiltonian bG-space.For all c 2 R let Sc : cM ! cM denote the corresponding deck transformation. Byconstruction all deck transformations commute with the bG-action, preserve the 2-form,and satisfy S�c b� = cb�. If ĝ 2 bG maps to g 2 G there is a natural isomorphism of reducedspaces cMĝ �= Mg:On cM our previous considerations apply, and we obtain a Liouville formbL = exp(b!) exp(�xab���a) � (b�) �b� 2 E 0( bG)
 Cl(g)
 
(cM):We have S�c bL = � (c)�c bL:Recall from (28) that � (c) = c� = �1: It follows that Sc changes the orientation byc�, and the form bL satis�es S�c bL = c��c bL. Pushing forward to E 0(G), multiplication by�c becomes an identity, and bL becomes a closed form L0 2 cWG 
 
(cM ) with propertyS�cL0 = c�L0, or equivalently a closed formL 2 (cWG 
 
t(M))basic:



28 A. ALEKSEEV, E. MEINRENKEN, AND C. WOODWARDSimilarly b� descends to a form � 2 
t(M) with top degree part �[top] a nowhere vanishingdensity, so that the volume Vol(M) = RM �[top] is de�ned. The Duistermaat-Heckmanmeasure m is as before de�ned as m = RM L = ���[top]; and given � 2 (WG 
!(M))basicone can once again de�ne twisted DH-distributionsm� = ZM �L:Theorem 7.1 interpreting these distributions in terms of intersection pairings on reducedspaces goes through verbatim, as does its proof.Example 8.1. Let (M;!;�) be a group valued Hamiltonian G-space. Let bG act on Mby the covering bG ! G. Suppose � admits a lift to an equivariant map b� : M ! bG.(This happens for instance for the fusion of the double eD(G).) Then (M;!; b�) is a groupvalued Hamiltonian bG-space. The space cM considered above is just cM = M �R, withb�(m; c) = cb�(m). In particular, if G is semi-simple and bG its universal cover (so thatR = �1(G), the space Mred has #�1(G) connected components, given as reduced spacescMc for c 2 �1(G) � Z( bG).Example 8.2. Suppose that C � G is a conjugacy class. Then bC is just the pre-image ofC in bG, and therefore is a �nite union of conjugacy classes in bG.One easily veri�es that the formulas for the DH-measures of the double D(G) (Propo-sition 5.8), its fusion eD(G), or for a conjugacy class C � G (Proposition 5.5) continue tohold. 9. Application to moduli spaces of flat connectionsIn this Section we explain how Witten's formulas for volumes of moduli spaces of
at connections follow from the results of this paper. For other proofs of the volumeformulas, see K. Liu [17], Bismut-Labourie [9], or Meinrenken-Woodward [20].Let G be a compact, connected Lie group. Using the notation from Section 2.5,Theorem 6.1 says that the volume form on the space M(�11) = eD(G) = G � G is justthe Riemannian volume form, and the volume form on the fusion productM(�11)~ : : :~M(�11)~ C1 ~ : : :~ Cris just the direct product of the volume forms on the factors. Consequently, letting m11and mC be the DH measures for M(�11) (cf. (37)) resp. for a conjugacy class C (cf. (30))the Fourier coe�cients of the DH-measure m arehm; ��i = (hm11; ��i)hQrj=1hmCj ; ��i(dimV�)r+h�1 = (VolG)2h Qrj=1Vol(Cj)��(Cj)(dimV�)2h+r�1For h � 2 and r > 1, and generic conjugacy classes Cj the action of G on the level set��1(e) is locally free, with generic stabilizer the center Z(G). In this case the symplecticvolume of the reduced space is given by #Z(G) times the value of m at the group unit.



DUISTERMAAT-HECKMAN DISTRIBUTIONS 29It follows that that the symplectic volume of the moduli space M(�rh; C) is given by theformula Vol(M(�rh; C)) = #Z(G) Vol(G)2h�2 rYj=1Vol(Cj)X� Qrj=1 ��(Cj)(dimV�)2h+r�2which is Witten's formula [25].If G is simply connected, one obtains from this formula the volume of the modulispace of 
at connection on a surface �0h without boundary since this moduli spae isjust M(�1h; feg). (This is as long as the generic stabilizer is discrete, by the continuityproperties of the DH-measure.)A mild complication arises for non-simply connected groups. Indeed, if G is semi-simple but not simply connected not every G-bundle P over �h0 is trivial. The bundleP becomes trivial if restricted to the surface with boundary �1h obtained from �h0 byremoving a small disk, and also over the disk itself. The gluing function along theboundary is a map S1 ! G, whose homotopy class de�nes the topological type of P.Therefore the topological types of G-bundles over �h0 are classi�ed by elements of �1(G).Let M(�1h) := eD(G) ~ : : :~ eD(G) �= G2h, let � : M(�1h) ! G be the moment mapand b� : M(�1h)! bG the unique lift such that b�(e; : : : ; e) = e. Given c 2 �1(G) � Z(G)the quotient M (c)(�h0) = b��1(c)= bG is the moduli space of 
at connections on the bundleparametrized by c. The reduced space M(�0h) := ��1(e)=G = M(�1h)red is the space ofisomorphism classes of 
at G-bundles over �0h, and is a disjoint unionM(�0h) = ac2�1(G)M (c)(�0h):The DH-measure m for the space (M(�1h); !; �̂) has Fourier coe�cientshm; ��i = Vol(G)2h(dimV�)2h�1for any dominant weight � of Ĝ. Since the generic stabilizer for the Ĝ-action has#Z(Ĝ) = #Z(G)#�1(G) elements, and Vol(Ĝ) = #�1(G) Vol(G), Equation (42) yieldsVol(M (c)(�0h)) = Vol(G)2h�2 #Z(G)#�1(G)X� ��(c�1)(dimV�)2h�1(43)in accordance with Witten's result ([25], Section 4.1). Summing over all c 2 �1(G)we recover the fact that the volume of the moduli space of 
at bundles Vol(M(�0h)) isgiven by the same formula as for the simply connected case (as a sum over irreduciblecharacters for G = Ĝ=�1(G)).
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