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1 IntroductionA Hamiltonian action is called multiplicity-free if all the symplectic reduced spaces are zero dimen-sional, or equivalently if the invariant functions form an abelian Poisson algebra [15]. The namecomes from the fact that the geometric quantization of any multiplicity-free action is a multiplicity-free representation, that is, contains each irreducible representation at most once (at least if theaction admits a K�ahler quantization [4]; see also [13] and [26].) Recall that by a theorem of Kirwan[21], if a compact Lie group acts on a compact connected symplectic manifold in a Hamiltonianfashion, then the intersection of the image of the moment map with a positive Weyl chamber is aconvex polytope, called the moment (or Kirwan) polytope. The moment polytope is the classicallimit of the set of highest weights of irreducibles appearing the geometric quantization of the ac-tion, in a sense that can be made precise. The multiplicity-free conjecture suggests that any twomultiplicity-free actions of compact connected Lie groups on compact connected symplectic mani-folds with the same moment polytope and same principal isotropy subgroup are isomorphic. In thecase of torus actions, this conjecture was proved by Delzant [7]. Delzant also characterized exactlywhich polytopes occur and showed that any multiplicity-free torus action (under the assumptionsabove) is the Hamiltonian action associated to a toric variety.In this paper we prove the multiplicity-free conjecture for actions of non-abelian groups whosemoment maps are transversal to a Cartan subalgebra, and that satisfy some further assumptionswhich will be described later. We also characterize the convex polytopes that occur as momentpolytopes of these actions by a simple symmetry condition involving local Weyl groups. Thisgeneralizes the �rst half of Delzant's theorem.1 The project was suggested by V. Guillemin.The motivating examples of the multiplicity-free actions studied in this paper are Hamiltonianactions underlying certain multiplicity-free branching laws in the representation theory of compactgroups. By a multiplicity-free branching law, we mean an irreducible representation of a compactconnected group H that is multiplicity-free under the action of G. The corresponding Hamiltoniangroup action is by the Borel-Weil theorem a coadjoint orbit of H , considered as a Hamiltonian G-space. The results in this paper do not apply to all of the actions corresponding to multiplicity-freebranching laws, but do apply to the most famous of these, the action of U(n) on a generic coadjointorbit of U(n+ 1).To state the main result precisely, let G be a compact connected Lie group, T � G a maximaltorus, and W the Weyl group of T � G, which acts on t� � g�. Let t�+ be a closed positive Weylchamber.De�nition 1.1 We say that a convex polytope � � t�+ of maximal dimension is re
ective at x 2 �if2 1Iglesias [19] and Delzant [8] have proved generalizations of Delzant's theorem for groups of low rank. Sjamaarand Guillemin [27] have proved a generalization for groups of arbitrary rank, which depends on an assumption onthe stabilizers.2The term re
ective has no connection with the term re
exive in e.g. [3].2



(a) the set of hyperplanes that intersect � in facets (i.e., codimension 1 faces) that contain x isinvariant under the stabilizer Wx of x, and(b) any open facet of � containing x in its closure is contained in the open positive Weyl chamberint t�+.� is called re
ective if � is re
ective at all points x 2 �. Condition (a) is equivalent to requiringthat if H is a hyperplane such that H \� is a facet containing x, and w 2 Wx then H \ w� is afacet of w�. That is, the facets of � \continue through the walls".Given a convex polytope � � t�+ of maximal dimension and a point x 2 �, let V (x) � g bea set of inward-pointing normal vectors to facets (i.e. codimension 1 faces) of � meeting x. Theelements of V (x) are de�ned up to multiplication by positive scalars. Note that condition (a) inDe�nition 1.1 is equivalent to requiring that for each v 2 V (x) and w 2 Wx we have wv 2 RV (x).Example 1.2 Consider the polytopes shown in Figure 1, in the case G = U(2).x x(1) (2) (3)Figure 1: Re
ective and non-re
ective polytopes(1) is re
ective, since Wx is trivial for all x 2 �.(2) is not re
ective. Let x be the vertex lying in the Weyl wall. Then V (x) = f(1; 0); (�1;�1)gand the nontrivial element w of Wx acts by w(x; y) = (y; x). The vector w(1; 0) = (0; 1) doesnot lie in RV (x).(3) is re
ective, since V (x) = f(1; 0); (0;�1)g is invariant under w, up to sign.� is called simple at x if V (x) is linearly independent. If V (x) consists of rational vectors withrespect to the lattice L := exp�1(Id), then we will always assume that V (x) is in minimal form,that is, for any v 2 V (x) and a 2 R we have av 2 V (x) if and only if a 2 Z. We say � is Delzant atx if V (x) is a sub-basis of the lattice L, that is, a basis of the lattice L \ span(V (x)). � is simple(resp. Delzant) if � is simple (resp. Delzant) at all points x 2 �.If M is a compact connected Hamiltonian G-space with moment map � : M ! g�, then�(M) \ t�+ is called the moment, or Kirwan polytope. We say that M is transversal if � istransversal to t�, that is, for all p 2 ��1(t�), we haveIm d�p + t� = g�: (1)3



The main result of this paper is thatTheorem 1.3 The map assigning to each action its moment polytope is a bijection between \torsion-free", transversal, multiplicity-free actions of G on compact, connected symplectic manifolds andre
ective, Delzant convex polytopes of maximal dimension in t�+.\Torsion-free" means that certain isotropy groups (including the principal isotropy subgroup) aretrivial. The exact de�nition is given in De�nition 6.1.There are two results which provide simple criteria in terms of the moment polytope for deter-mining when an action lies within the scope of the classi�cation Theorem 1.3. In a separate paper[30] we proveTheorem 1.4 A multiplicity-free action of a compact group on a compact connected symplecticmanifold that is locally free on a dense subset is transversal if and only if the moment polytope issimple and re
ective.Proposition 6.2 of this paper states that that under certain assumptions a transversal, multiplicity-free space is \torsion-free" if and only if the moment polytope is Delzant.Our approach is completely symplectic. That is, we nowhere assume the existence of com-plex structures, although of course the motivating examples possess them. The basic techniqueis to study the inverse image Y+ of the positive Weyl chamber under the moment map. Y+ is amultiplicity-free T -space. and except for compactness satis�es the assumptions of Delzant's theo-rem. In the K�ahler situation, Y+ is not necessarily a complex submanifold, since the moment mapis not algebraic. The approach taken here is therefore very di�erent from the one taken in alge-braic geometry, where the analogous situation is known as \spherical", and there is a classi�cationtheorem involving \colored fans". (See [5],[23].) At present it seems unclear how the two theoriesare related. An important outstanding question is whether all of the symplectic manifolds studiedhere are K�ahler, that is, whether the second half of Delzant's theorem generalizes.3It was originally hoped that the study of transversal multiplicity-free actions would lead to a(weighted) lattice-point counting formula similar to those coming from the study of toric varieties(see e.g. [22]) but lack of a description of the Todd class of these manifolds has so far preventedany progress towards this goal.This paper is organized into the proofs of the di�erent parts of Theorem 1.3. After section2, which discusses examples, and section 3, which reviews Delzant's work, we show in section 4that the moment polytope of any transversal, multiplicity-free space is re
ective. In section 5, wediscuss the consequences of the de�nition of re
ective 1.1, and give combinatorial proofs of someproperties of the moment polytopes of these actions �rst discovered by Guillemin and Souza. Insection 6, we show that the question of whether or not the moment polytope is Delzant is relatedto the triviality of certain discrete stabilizers. In section 7, we prove a relationship between theorbit-type decomposition of the manifold and the decomposition of the moment polytope into open3Added in proof: This question has been answered negatively by the author, [31], using work of S. Tolman, andindependently by F. Knop. 4



faces. In section 8 we make a preliminary attempt to show that given a re
ective Delzant polytope�, we can construct a torsion-free, transversal, multiplicity-free space with moment polytope �. Insection 9, we show that two actions satisfying these assumptions and having the same polytope areisomorphic. In section 10, we develop a gluing technique which completes the construction begunin section 8.I would like to thank Victor Guillemin and Regina Souza for sharing with me their unpublishedwork on multiplicity-free transversal actions, which was the starting point for this project. It's alsoa pleasure to thank Victor Guillemin for constant support and encouragement, and Yael Karshon,Allen Knutson, Eugene Lerman, Eckhard Meinrenken, Reyer Sjamaar, and Sue Tolman for manysuggestions and ideas.2 ExamplesThe motivating examples of transversal multiplicity-free spaces are certain coadjoint orbits of com-pact Lie groups, under the actions of subgroups. For simplicity, in each example the Lie algebra isidenti�ed with its dual using an invariant inner product.2.1 Generic U(3)-orbits under the action of U(2).This example is taken from [16, page 364]. Let � = (�1; �2; �3) with �1 > �2 > �3 and let M� bethe coadjoint orbit of U(3) containingi0B@ �1 0 00 �2 00 0 �3 1CA 2 u(3)�:To simplify notation, we multiply M� by �i, so that M� becomes the set of hermitian matriceswith eigenvalues �1; �2; and �3. By embedding G = U(2) in U(3) by U ! diag(1; U) we induceon M� the structure of a Hamiltonian U(2)-space. The moment map � for the U(2) action is theprojection of M� onto u(2)�.Proposition 2.1 The moment polytope �� = �(M�) \ t�+ is equal to [�2; �1]� [�3; �2].Proof - An element A 2M� lies in ��1(t�+) if and only if A is of the formA = 0B@ a0 a1 a2a�1 �1 0a�2 0 �2 1CA (2)where �1 � �2, a0 2 R, and a1; a2 2 C. Thus ��1(t�+) is the set of matrices of the form (2) suchthat (�1 � �)(�2� �)(�3 � �) = det(A� �I)= (�1 � �)(�2 � �)(a0 � �� a1a�1�1 � � � a2a�2�2 � �);5



that is, P (�) = (�1 � �)(�2� �)(�3� �)(�1 � �)(�2 � �) = (a0 � �)� a1a�1�1 � � � a2a�2�2 � �: (3)To solve (3) for �1 and �2 we separate into two cases.Case �1 6= �2: (3) holds if and only if�a1a�1 = Res�1P (�) = (�1 � �1)(�2 � �1)(�3 � �1)�2 � �1 (4)�a2a�2 = Res�2P (�) = (�1 � �2)(�2 � �2)(�3 � �2)�1 � �2 (5)and �nally a0 = P (�0) + �0 + a1a�1�1 � �0 + a2a�2�2 � �0 : (6)for some �0 6= �1; �2. Since �a1a�1 and �2 � �1 are negative, (4) has a solution if and only if thenumerator (�1 � �1)(�2 � �1)(�3 � �1) is positive, that is, �1 2 [�2; �1] or �1 < �3. Similarly, (5)has a solution if �2 2 [�3; �2] or �2 > �1. Since �1 � �2, the possibilities �1 < �3 and �2 > �1 areimpossible.Case �1 = �2: (3) holds if and only if the pole in P (�) at � = �1 is order 1, that is, �i = �1 forsome i 2 f1; 2; 3g, a0 satis�es (6) and�(a1a�1 + a2a�2) =Yj 6=i(�j � �1)which has a solution exactly when �1 = �2 = �2. 2These calculations show that the level sets ��1(x) for x 2 �� are as follows. (e.g. for x lyingin the left open facet of ��, ��1(x) �= S1.) S3 S1 ptS1 (S1)2 S1pt S1 ptFigure 2: The sets ��1(x) for x 2 ��The action of T on a generic �ber ��1(x) �= T is free, so T acts e�ectively on Y+ = ��1(int t�+),and G acts e�ectively on M�. Since dim M� = 6 = (dim+rank)U(2),M� is multiplicity-free. Thefollowing lemma, which will be proved in section 4, shows that M� is transversal.6



Lemma 2.2 (Guillemin) If M is any Hamiltonian G-space with moment map � :M ! g�, thenM is transversal if and only if for all x 2 �, the semisimple part Kx of Gx acts locally freely on��1(x).Let x be the unique point of �� contained in the Weyl wall, so that Gx = U(2). It follows from theabove computation that the semisimple part, SU(2), of U(2) acts freely on ��1(x) �= S3 �= SU(2),so M� is transversal.2.2 Symplectic cuts of M�We begin by de�ning symplectic cutting, following E. Lerman [24]. We then apply the techniqueto M� to produce examples of both transversal and non-transversal actions.Let M be a Hamiltonian G-space with moment map � : M ! g�, and let f : M ! R be themoment map for a circle action which commutes with the action of G. De�ne g :M � C! R byg(m; z) = f(m) + jzj2=2:With respect to the standard product symplectic structure on M � C, g is the moment map forthe diagonal circle action, which is equivariant with respect to the action of U(2) on the left factor.For a 2 R, the level set g�1(a) has the formg�1(a) �= f�1(a) [ (f�1(�1; a)� S1):If S1 acts freely on f�1(a), then the reduced spaceg�1(a)=S1 �= f�1(a)=S1 [ f�1(�1; a)is by the Marsden-Weinstein-Meyer theorem a Hamiltonian G-space. Following Lerman, we callM�a := g�1(a)=S1 the symplectic cut of M at a.Now let M = M� and let f = Tr � be the Hamiltonian of the action of the center, Z, of U(2)on M�. By our previous description of the level sets ��1(x) we see that Z acts freely on ��1(x)except for the vertices in int t�+x = (�2; �3); x = (�1; �3); or x = (�1; �2):The key point is that Z does act freely on ��1(�2; �2). Hence Z acts freely on f�1(a) \ ��1(t�+)except for a = �2 + �3; a = �1 + �3; or a = �1 + �3:Since Z acts U(2)-equivariantly, Z acts freely on f�1(a) except for these values of a. If (M�)�a issmooth, its moment polytope is (��)�a = fx 2 ��j Tr(x) � ag:7



In particular, if 2�2 < �1 + �3, then (M�)�2�2 is smooth and has the moment polytope picturedin Figure 1, (2). The polytopes in (1) and (3) are the moment polytopes of the spaces (M�)�2�2��for � small. Note that by the Duistermaat-Heckman theorem, these spaces are equivariantly home-omorphic! That is, the polytopes in Figure 1, (1), (2), and (3) correspond to a variation of thesymplectic structure on (M�)�2�2 . As we noted before, only (1) and (3) are re
ective.We conclude by verifying the prediction of Theorem 1.4. Let �� denote the moment map ofthe action of U(2) on (M�)�2�2+�. If � < 0, then ��1� (�2; �2) = ;. If � > 0, then ��1� (�2; �2) �=��1(�2; �2) �= S3, on which SU(2) acts freely. If � = 0, then ��1� (�2; �2) �= ��1(�2; �2)=Z �= S2 onwhich SU(2) cannot act freely. By Guillemin's Lemma 2.2 (M�)�2�2+� is transversal if and only if� 6= 0.2.3 Generic coadjoint orbits of SO(6) under the action of SO(5)In this section we study a family of Hamiltonian SO(5)-structures on SO(6)=SO(2)3. As with theprevious example, this family includes both transversal and non-transversal actions. Some membersof the family have the same moment polytopes, and we identify the equivariant symplectomorphismguaranteed by Theorem 1.3.Let � = (�1; �2; �3) with �1 > �2 > j�3j and let M� be the coadjoint orbit of0BBBBBBBBB@ 0 �1 0 0 0 0��1 0 0 0 0 00 0 0 �2 0 00 0 ��2 0 0 00 0 0 0 0 �30 0 0 0 ��3 0 1CCCCCCCCCA 2 oo(6)�:Let G = SO(5) which embeds in SO(6) by A! diag(A; 1).Case �3 6= 0: An argument similar to that for the action of U(2) on U(3)=U(1)3 shows that themoment polytope is �� = [�2; �1]� [j�3j; �2], the level sets ��1(x); x 2 �� are as shown in Figure3, and M� is a transversal, multiplicity-free SO(5)-space.Case �3 = 0. The moment polytope �� = [�2; �1]� [0; �2] and the level sets ��1(x) are as shownin Figure 4.As before, M� is multiplicity-free. However, if for example x = (�2; 0) then Kx = SO(3) whichcannot act locally freely on ��1(x) �= S2. By Guillemin's Lemma 2.2, M� is not transversal. Themoment polytope �� violates part (2) of the de�nition of re
ective 1.1.Now let �3 6= 0 and let �0 = (�1; �2;��3) so that �� = ��0 . By Theorem 1.3, there must exist anSO(5)-equivariant symplectomorphism ' :M� �=M�0 . One such map is de�ned by '(p) = Ad�(g)pwhere g 2 O(6) is the element g = diag(1; 1; 1; 1; 1;�1). The union M�[M�0 is a coadjoint orbit ofO(6), whose components are SO(6)-orbits. The components are SO(5)-symplectomorphic because8



S3 S1 ptS1 (S1)2 S1pt S1 ptFigure 3: The level sets ��1(x) for x 2 �� for �3 6= 0.S3 S1 ptS1 (S1)2 S1S2 S1 � S2 S2Figure 4: The level sets ��1(x) for x 2 �� for �3 = 0.the outer automorphism of SO(6) has SO(5) as its �xed point set. One can see this easily fromthe Dynkin diagram.3 The abelian caseIn this section we review the proof of Delzant's theorem. The proof here is almost the same asDelzant's proof in [7]. The di�erences are that our construction uses symplectic cutting, and theuniqueness argument uses �Cech cohomology.Let G be a torus of dimension n. Since G is abelian, the points in the principal stratum of theorbit-type decomposition of M have the same stabilizer, so that G acts generically freely (that is,freely on a dense subset) if and only if the action is e�ective (that is, G injects into Di�(M).)Theorem 3.1 (Delzant) Let G be a torus. There is a one-to-one correspondence between ef-fective, multiplicity-free actions of the torus G on compact, connected symplectic manifolds, and9



Delzant polytopes of maximal dimension in g�. Furthermore, any such action is the Hamiltonianaction associated to a toric variety.3.1 Multiple symplectic cutsLerman [24] de�nes symplectic cutting for torus actions as follows. Suppose that (M;!) is aHamiltonian G-space with moment map � :M ! g�, and thatf :M ! Rdis a moment map for a G-equivariant action of a d-dimensional torus T d. De�neg :M � Cd ! Rdby g(m; z) = f(m)� jzj2=2where jzj2=2 denotes (jz1j2=2; : : : ; jzdj2=2) 2 Rd. g is a moment map for the diagonal action of T don M � Cd. For a 2 Rd, de�ne the symplectic cut M�a of M at a as the symplectic reductionM�a := g�1(a)=T d. M�a can be written as a disjoint unionM�a �= [I�f1;:::;dg0@\i2I f�1i (ai) \ \i=2I f�1i (�1; ai)1A =T I : (7)Here, T I denotes the torus with Lie algebra span(fei; i 2 Ig) and e1; : : : ; ed is the standard basis forRd. By the Marsden-Weinstein-Meyer theorem, if T d acts freely on g�1(a) then M�a is a smoothHamiltonian G-space. The space M�a is de�ned in an analogous way, as the reduction of M � Cdat a by the anti-diagonal action of T d.Examples(1) Let M = Cn, G = Tn, and �(z1; : : : ; zn) = (jz1j2=2; : : : ; jznj2=2). De�ne f = Pni=1 jzij2=2.Then g(z1; : : : ; zn; w) =X jzij2=2 + jwj2=2so g�1(a)=S1 = CPn. The moment polytope of M�a is��a = fx 2 (R+)njXxi=2 � ag;i.e., the standard n-simplex.(2) The following example illustrates that small symplectic cuts are \blow-ups" of �xed pointmanifolds. (See [24].) Let M = CP 2 = f(z1; z2; z3)jP jzij2=2 = 1g=S1, � be the momentpolytope of M , and f = jz2j2=2. For a 2 (0; 1), the symplectic cut M�a is smooth and hasmoment polytope ��a = f(x1; x2) 2 �j x2 � ag:10



Figure 5: Constructing CP 2 by symplectic cuttingAn element of M�a is an equivalence class[(z1; z2; z3; w)]where X jzij2=2 = 1; jz2j2 + jwj2 = 2aand (z1; z2; z3; w) � (gz1; gz2; gz3; w) � (z1; g0z2; z3; g0w)for elements g; g0 2 U(1). The map(z1; z2; z3; w)! (wz1; z2; wz3)induces a map M�a ! (C3 � f0g)=C� �= CP 2which is onto and one-to-one, except at [(0; 1; 0)], which has �ber CP 1. That is, M�a is the\blow-up" of CP 2 at [(0; 1; 0)].Figure 6: Blowing up CP 2.3.2 ConstructionLet G be an n-torus. Choose a basis for g and an inner product so that g �= g� �= Rn, and let � � Rnbe a Delzant polytope of maximal dimension. In this subsection we present Lerman's version ofthe construction of an e�ective multiplicity-free G-action with moment polytope � by symplecticcutting on Cn. 11



Let F1; : : : ; Fd be the facets of �, v1; : : : ; vd 2 g their inward-pointing normal vectors, and�1; : : : ; �d 2 R constants such thatFi = � \ fx 2 g�jhx; vii = �ig:Let M = Cn and � :M ! Rn the moment map�(z1; : : : ; zn) = const + (jz1j2=2; : : : ; jznj2=2)where const 2 Rn is chosen so that � lies in the interior of �(M). De�ne f :M ! Rd byfi = h�; viiand letM�� be the symplectic cut ofM at � 2 Rd with respect to f . IfM�� is smooth, its momentpolytope is fx 2 �(M)jhx; vii � �ig = �:By equation (7) without loss of generality it su�ces to show that T k acts freely onk\i=1 f�1i (ai) \ d\i=k+1 f�1i (�1; ai) � ��1(F1 \ : : :\ Fk):If F1 \ : : :\ Fk is non-empty, by the de�nition of a Delzant polytope, the map T k ! G given byexp(X tiei)! exp(X tivi)is an injection. Here e1; : : : ; ek is the standard basis for the Lie algebra Rk of T k. Since G actsfreely on ��1(F1 \ : : :\ Fk), T k acts freely, and so M�� is smooth.Since symplectic reductions of symplectic manifolds with invariant K�ahler structures are K�ahler(see [13])M�� is K�ahler. The action of G extends to an action of the complexi�ed group GC. SinceG is a torus, the dimension of a GC-orbit containing p is twice the dimension of the G-orbitcontaining p. M�� has an open GC orbit, and is therefore a toric variety.3.3 Consequences of multiplicity-freeLetM be a compact, connected symplectic manifold with a Hamiltonian action of a torus G. Thereare two natural decompositions of M : M = [F����1(F )where the union is over faces F of �, and the orbit-type decomposition. The following lemmashows that if the action is e�ective and multiplicity-free, these two decompositions are related.Lemma 3.2 (Delzant) Let G be a torus, and let M be a compact connected symplectic manifoldwith an e�ective, multiplicity-free action of G and moment polytope �. If F is a face of �, andp is any point in ��1(F ), then the stabilizer, Gp, of p is connected and its Lie algebra gp is theannihilator F 0 of F in g�. 12



Proof - Let N be the component of the �xed point set of Gp containing p, which is a symplecticsubmanifold of M containing the orbit Gp of p. Since G is abelian, Gp is isotropic, sodimN � 2 dimGp = 2dimG=Gp: (8)On the other hand, let V = Tp(M). Under the action ofGp, V breaks up into the sum of irreducibles.Let Vtriv (resp. Vnon�triv) be the sum of the trivial (resp. non-trivial) irreducibles, which aresymplectic sub-representations.By the equivariant Darboux theorem, V is a local model for the action of Gp on M near p.That is, there exists a neighborhood of 0 in V that is Gp-symplectomorphic to a neighborhood of pin M . Clearly, Vtriv is a local model for N . Since Gp acts e�ectively, Gp injects into Sp(Vnon�triv).Since Gp is abelian, dim Vnon�triv � 2 dimGpand dimN = dim V � dimVnon�triv (9)� 2 dimG� 2 dimGp (10)= 2 dimG=Gp: (11)Equations (8) and (11) imply that dimN = 2dimG=Gp and dim Vnon�triv = 2dimGp. Let� : Gp ! Sp(Vnon�triv)be the representation of Gp on Vnon�triv . Then �(Gp) is a maximal torus in Sp(Vnon�triv), andsince � is an injection, Gp is connected. LetVnon�triv �= Ckbe the decomposition of Vnon�triv into Gp irreducibles, so that �(Gp) �= U(1)k and has Lie algebrau(1)k �= Rk. Let e1; : : : ; ek 2 Rk be the standard basis vectors, and de�ne vi 2 gp byvi = (d�)�1(ei)so that fv1; : : : ; vkg is a basis for L \ gp. The moment map h�; vii for the action of exp(Rvi) islocally h�; vii = jzij2=2and therefore has a local minimum at p. By a Morse-theoretic lemma of Atiyah [1] and Guilleminand Sternberg [12] h�; vii has a global minimum at p. �(p) lies in the intersection of k supportinghyperplanes with normal vectors v1; : : : ; vk. Since v1; : : : ; vk are linearly independent, the face Fcontaining �(p) is at most dimension n� k.On the other hand, G=Gp acts generically freely on the symplectic manifold N , so that �(N)is a convex polytope of dimension n � k, and since G=Gp acts freely at p, �(p) lies in the interiorof �(N). Therefore, the dimension of F is exactly n� k, and its annihilator is gp. 213



Corollary 3.3 Let M be a compact connected symplectic manifold with an e�ective multiplicity-free action of G and moment polytope �. Then1. The polytope � is a Delzant polytope.2. A vector v 2 g is normal to a facet F of � if and only if the �xed point set of exp(Rv) � Gacting on M has a component of codimension 2.3. Let F be any face, and de�ne GF := Gp for any element p 2 ��1(F ). Let HF � G be asubgroup such that G = GF � HF . (HF exists since GF is connected.) Then ��1(F ) is aprincipal HF -bundle over F .Proof - The �rst assertion is contained in the proof of the lemma above. To prove the secondassertion, note the tangent space to ��1(F ) at p is Vtriv, so that ��1(F ) is dimension 2 dimF , Bythe lemma, the �xed point set of exp(Rv) is the union of sets ��1(F ) such that v is normal to F , andthe assertion follows. To prove the third assertion, note that since HF acts freely at p 2 ��1(F ),Im d�p must be at least dimension dimF , and so � restricts to a submersion of ��1(F ) onto F .Therefore, the �bers are smooth, of dimension 2 dimF � dimF = dimF = dimHF . Because the�bers of � over F are connected by a lemma of Atiyah [1] and Guillemin and Sternberg [12], HFacts transitively and freely on the �bers of �, and the claim follows. 23.4 UniquenessLetM1 andM2 be compact, connected symplectic manifolds with e�ective, multiplicity-free actionsof a torus G and suppose that �1(M1) = �2(M2) =: �. The purpose of this subsection is to provethat in this situation M1 and M2 are equivariantly symplectomorphic.Let F be a face of �, x a point in F , and for i = 1; 2 let pi be a point in ��1i (x). By Lemma3.2, Gp1 = Gp2 = GF . By the local normal form theorem of Marle and Guillemin and Sternberg(see e.g. [28, Proposition 2.5], there exist neighborhoods of pi in Mi that are G-equivariantlysymplectomorphic to neighborhoods of the zero section inG�GF ((g=gF )� �Wi)where Wi := (T (Gpi))!i=T (Gpi) are the symplectic slices to the orbits Gpi �Mi. In our case, onechecks that Wi �= Vnon�triv;i, and since GF is isomorphic to a maximal torus in Sp(Wi), the vectorspaces W1 and W2 are isomorphic symplectic representations of GF . It follows that there existsneighborhoods, Ui of pi in Mi and an equivariant symplectomorphism U1 �= U2. Since M1 and M2are multiplicity-free, the sets Ui are of the form ��1i (V ), for some neighborhood V of x in �.The construction of a global equivariant symplectomorphism follows from a �Cech cohomologyargument,4 which is a modi�cation of one given by Hae
iger and Salem [17] for actions of tori4This argument is joint work with E. Lerman and S. Tolman14



on orbifolds. Let fVjg be a good cover of � such that for each j there exists an equivariantsymplectomorphism 'j : ��11 (Vj)! ��12 (Vj). Consider the sheafDi�(!;�; G)which assigns to any V � � the group of G-equivariant symplectomorphisms of ��1(V ) whichpreserve the moment map �. For each i and j, de�ne ij = '�1i 'j :The collection f ijg de�nes a cocycle 2 �C1(�;Di�(!;�; G)):It su�ces to show that  is the boundary of some element f�ig 2 �C0(�;Di�(!;M=G;G)). Indeed,the collection of maps 'i�i satisfy 'i�i = 'j�jon ��11 (Vi \ Vj), and therefore de�ne a global equivariant symplectomorphism M1 !M2.To show that  is cohomologically trivial, let C1G be the sheaf which assigns to each open subsetV � � the G-invariant smooth functions on ��1(V ). There is a morphism of sheavesC1G ! Di�(!;�; G)given by assigning to some f 2 C1G (V ) the time one exponential of the corresponding Hamiltonianvector �eld. Let R be the constant sheaf which assigns to each open set V a copy of the realnumbers R. Let L be the constant sheaf which assigns to each open subset of � the abelian groupL = ker exp : g ! G. There is a morphism of sheavesL �R! C1Ggiven by assigning to some (l; r) 2 L� R the G-invariant function r + h�; li.Lemma 3.4 Let (M;!) be a compact connected symplectic manifold with a multiplicity-free, ef-fective action of a torus G with moment map � : M ! g�. Then the sequence of sheaves0! L�R! C1G ! Di�(!;�; G)! 0 is exact.Proof - First, we show that the third arrow is surjective. For any x 2 �, let V be a contractibleneighborhood of x 2 �, and let U = ��1(V ). We can assume that V is small enough so thatU is an invariant tubular neighborhood of the orbit ��1(x). Let ' : U ! U be an equivariantsymplectomorphism, which preserves the moment map. Since � �= M=G, ' acts trivially on theset of orbits M=G. A lemma of Hae
iger, Salem, and Schwarz [17, Theorem 3.1] implies that thereexists a smooth invariant map � :M ! G such that '(p) = �(p)p: Since V is simply connected, �lifts to a map � :M ! g. De�ne X 2 Vect(U) byXp = �(p)#p :15



Since � is G-invariant, X is equal to �(p)# on the G-orbit through p. Therefore, the time oneexponential of X is '. It remains to show that X is Hamiltonian. Recall the following facts aboutthe basic subcomplex (
�basic(U); d).(1) If ' is an equivariant di�eomorphism of U that induces the identity on U=G, then ' actstrivially on 
basic.(2) If U is a tubular neighborhood of an orbit, then H�basic(U) = 0.(1) is proved by looking at the top-dimensional stratum of the orbit-type decomposition. (2) followssince U is equivariantly contractible to the orbit, on which any basic form vanishes.To show that X is Hamiltonian, let Y 2 g. By de�nition of the moment map!(X; Y #) = Xh�; Y i = 0:Since X and ! are G-invariant, {X! is also G-invariant, and so {X! is basic. Because d of any basicform is also basic, LX! = d{X! is basic as well. Since ' = exp1X is symplectic,0 = Z 10 ddt(exptX)�! dt= Z 10 (exptX)�LX! dt= Z 10 LX! dt (by (1))= LX!:By (2), {X! = df for some G-invariant function f de�ned on U .Exactness at L � R follows from the assumption that G acts e�ectively. It remains to showexactness at C1G . Let V � � be a connected open set, and let (l; r) be any element of L� R. TheHamiltonian vector �eld of fl = r+ h�; li is the vector �eld l#, which has time one exponential theidentity map. Conversely, suppose that f 2 C1G (��1(V )) has Hamiltonian vector �eld Xf , and thetime one exponential of Xf is the identity. Since Xf� = 0, Xf is tangent to the orbits of G. SinceXf is G-invariant, on any orbit Gp of G, Xf must equal Y #, for some Y 2 g. We can thereforede�ne a map �� : � ! g by requiring that ��(x)# = Xf on ��1(x). (The map �� is not uniquelyde�ned on faces of �.) Since G acts generically freely on the set ��1(int �), the image of �� liesgenerically in L, and since L is discrete, �� is generically constant, equal to some �xed element l 2 L.It follows that Xf = Xfl on ��1(int �), and by continuity on M . The one-forms df and dfl aretherefore equal, and the di�erence f � fl is a constant r 2 R. 2Consider the long exact sequence of �Cech cohomology groups associated to the short exactsequence above. Because of the existence of invariant partitions of unity, C1G is a �ne sheaf, andtherefore �Hi(�;Di�(!;G;�)) �= �Hi+1(�;L) for all i > 0. Since � is contractible, the lattergroups are zero. It follows that [ ] 2 �H1(�;Di�(!;�; G)) is zero, as required. 216



Finally we note for future reference the following lemma.5Lemma 3.5 Let G be a torus, let M be a compact manifold with an action of G, and supposethat the �xed point set MG is discrete. Let !1 and !2 be G-invariant symplectic forms on M , andsuppose that �1 and �2 are moment maps for the action of G on (M;!1) and (M;!2) respectively.If �1jMG = �2jMG, then [!1] = [!2].Proof - Let i :MG !M denote the inclusion ofMG in M . By [2, page 23] the map i� : H�G(M)!H�G(MG) in equivariant cohomology is injective. Let ~!1 and ~!2 be the equivariant extensions of!1 and !2 given by �1 and �2. The assumption guarantees that i�[ ~!1] = i�[ ~!2] which implies that[ ~!1] = [ ~!2] and hence [!1] = [!2]. 24 Consequences of transversalitySince Im d�p is the annihilator g0p of gp (see [12]) the transversality conditionIm d�p + t� = g�: (12)is equivalent to g0p + t� = g�or gp \ t? = f0g: (13)By the equivariance of �, the subalgebra gp is contained in g�(p), so if g�(p) = t then (13) isautomatic.We now prove Lemma 2.2, which has already been used several times. For each x 2 t�, let Kxbe the semisimple part of the stabilizer, Gx, of x, and kx its Lie algebra.Proof of Lemma 2.2 - By de�nition, Kx acts locally freely at p 2 ��1(x) if and only if kx\gp = f0g:Suppose that Kx acts locally freely at p. Since gx \ t? � kx \ t? and gp � gx we havegp \ t? = (gp \ gx) \ t?= (gp \ kx) \ t? = f0gas required.On the other hand, suppose M is transversal and X 2 kx \ gp. We must show that X = 0. Weclaim that for some k 2 Kx, the vector Ad(k)X lies in t?. It follows that X 2 gkp \ t?, which ifX 6= 0 violates (13). An invariant inner product gives an identi�cation of the orbit KxX with thecoadjoint orbit KxX� � k�x. The orbit KxX� has a Hamiltonian action of the maximal torus, Tx, of5I would like to thank the referee for pointing out the right form of this lemma.17



Kx, whose moment map, �, is the projection onto t�x. It su�ces to show that ��1(0) is non-empty.This is a consequence of Kostant convexity: If Wx is the Weyl group of Tx � Kx, the vector1jWxj Xw2Wx wX� (14)lies in �(KxX�) by convexity. Since (14) is Weyl invariant, and Kx is semisimple, (14) is the zerovector. 2By the transversality assumption, ��1(t�) is a smooth submanifold, but in general ��1(t�) isnot symplectic. Guillemin observed that Lemma 2.2 produces local models for ��1(t�) where itis not a symplectic submanifold. Let � be a Weyl wall, that is, a connected component of theorbit-type decomposition of t�+, and de�ne G� = Gx for any x 2 �. By the cross-section theorem ofGuillemin and Sternberg [16, Theorem 26.2], there exists a neighborhood, U , of ��1(�) in ��1(g��)that is symplectic. Let K� be the semi-simple part of G� with Lie algebra k� . Let P denote theprojection P : g�� ! k�� :Then P �� is a moment map for the action of K� on U . By de�nition, ��1(�) is an open subset of(P � �)�1(0) = ��1(z��);where z� is the Lie algebra of the center Z� of G�. Since K� acts locally freely on ��1(�), ��1(�)is a coisotropic submanifold, and by the equivariant coisotropic embedding theorem (see [16, page315]) there exists an equivariant symplectomorphism  of a neighborhood of ��1(�) in U with aneighborhood of ��1(�) in ��1(�)� k�� : (15)The Hamiltonian structure on (15) is given as follows. Let� 2 
1(��1(�); k�)be a G�-invariant connection form for the action of K�. That is, if X 2 k�, then �(X#) = X . Let!� be the pullback of ! to ��1(�). Then the symplectic form on ��1(�)� k�� is!� + dh�; �iwhere � denotes the projection ��1(�) � k�� onto k�� . The action of G� is given by g(p; k) =(gp;Ad�(g)k), and the moment map for the action of K� is the projection (p; k) 7! k. Denote by ithe inclusion of ��1(t�) in M , and by j the inclusion of ��1(�)� t�� in ��1(�)� k��. Restricting  to ��1(t�), we have:Lemma 4.1 (Guillemin) Let (M;!) be a compact Hamiltonian G-space with moment map � :M ! g� such that � is transversal to t�. Then for any Weyl wall �, there exists near a T -equivariantdi�eomorphism  of a neighborhood of ��1(�) in ��1(t�) with a neighborhood of ��1(�)� f0g in��1(�)� t�� such that  �(i�!) = j�(!� + dh�; �i).That is, we have a local model for ��1(t�) despite the fact that i�! is degenerate at ��1(�).18



4.1 Consequences of transversal and multiplicity-freeThe main result of this section isProposition 4.2 Let M be a compact, connected, transversal, multiplicity-free G-space containinga dense subset on which G acts locally freely. Then the moment polytope of M is re
ective.We begin by giving an alternative formulation of the de�nition of a re
ective polytope in thecase that the elements of V (x) are rational vectors.Lemma 4.3 Let � � t�+ be a convex polytope, x 2 �, and suppose that V (x) � t consists ofrational vectors in minimal form. Then � is re
ective at x if and only if (1) the set V (x)[�V (x)is invariant under Wx, and (2) all open facets of � meeting x are contained in int t�+. Furthermore,� is re
ective if and only if � is re
ective at vertices.Proof - Assume that � is re
ective at x. If v 2 V (x) is in minimal form, then since W leaves Linvariant, wv is also in minimal form. Therefore c(wv) 2 V (x) for some constant c 2 R if and onlyif �wv 2 V (x). The proof of the last assertion is left to the reader. 2Proof of Proposition 4.2 - We have to show that any open facet F of � is interior, that is, lies inthe open chamber int t�+. For any simple root �, the hyperplane ker� is supporting, so F \ ker�is either empty or F . Therefore, F is contained in some Weyl wall, �. Since K� acts locally freelyon ��1(�), by the Marsden-Weinstein-Meyer theorem, Y� := ��1(�)=K� is Hamiltonian Z�-spacewith moment image � \ �, which has at worst orbifold singularities. Since any orbit is isotropic,dim� \ � � 12 dim Y�: (16)But we know that dim Y� = dimM � (dim g� � dim �)� dimK� (17)= (dim+rank)(G)� dimG+ dimZ� � dimK� (18)= 2 dimZ� + rank K� � dimK�: (19)Since K� is semisimple, dimK� � 3 rank K�, sodim� \ � � 12 dim Y� � dimZ� � rank K� = n � 2codim � (20)which at most n � 2, if � 6= int t�+. This observation is due to R. Souza [29]. Therefore, � cannotcontain F .To prove that V (x) is rational and V (x)[�V (x) isWx-invariant we need the following extensionof Delzant's Lemma 3.2, noted in [8]. For any Hamiltonian G-spaceM with moment map � :M !g�, we denote by Y+ the inverse image Y+ := ��1(int t�+), which is a connected Hamiltonian T -space(see e.g. [25].) 19



Lemma 4.4 (Delzant) LetM be a compact connected multiplicity-free Hamiltonian G-space con-taining a dense subset on which G acts locally freely. Let � :M ! g� denote the moment map, �the moment polytope, S � T the principal isotropy subgroup of T acting on Y+, and Q the quotientQ = T=S. Since S is discrete, the map T ! Q induces an identi�cation of t and q. If F is a faceof � lying in int t�+, and p 2 ��1(F ), then the isotropy subgroup Qp is connected with Lie algebraqp equal to F 0, and � is Delzant at �(p) with respect to the lattice ker exp : q ! Q.Proof - The proof goes exactly as in the abelian case, with M replaced by Y+, until we come tothe Morse theoretic lemma of Atiyah and Guillemin and Sternberg, which requires compactness.Let h�; vii have a local minimum at a point p 2 Y+, and let U be a neighborhood of p in Y+ sothat h�; vii restricted to U takes its minimum at p. Since T is abelian we can assume that Uis T -invariant. Suppose that h�; vii does not have a global minimum at p. Then there exists asequence xn of points in � approaching �(p), with hxn � �(p); vii < 0. Let qn 2 ��1(xn). Bycompactness of M , we can assume that qn approaches a point q 2 M . By continuity �(q) = x.Since qn =2 U , the point q does not lie in U . But U \ ��1(x) is closed, and therefore U \ ��1(x)is both closed and open in ��1(x), which implies that ��1(x) is not connected, contradicting atheorem of Kirwan [20]. 2Now let x be a point of � contained in �, F a facet of � meeting x, v the normal vector to F ,and p 2 ��1(F ). Since F is interior, by Lemma 4.4Qp = exp(Rv):Let (q; t) =  (p) be the image of p in ��1(�)� t�� . By the equivariance of  ,Qq = exp(Rv):Suppose that [w] lies in the Weyl group W� of T� in K�, and let w 2 K� be a representative of [w].The stabilizer Qwq of wq equals Qwq = exp(R wv):We can assume that t is small enough so that (wq; t) lies in the domain of  �1. Let p0 2 U bede�ned by p0 =  �1(wq; t):Then p0 2 ��1(int t�+) and Qp0 = exp(R wv)so that by Lemma 4.4, �(p0) lies in a facet, F 0, with normal vector �wv.It remains to check that F 0 meets x. Let fps; s 2 [0; 1)g be a path of points in M with p0 = psuch that �(ps) 2 F and �(ps) ! x. De�ne (qs; ts) =  (ps). Because ts ! 0, �(qs) ! x. Bycompactness we can assume that qs ! q1 for some q1 2 ��1(x). Therefore wqs ! wq1, and if wede�ne p0s =  �1(wqs; ts), then �(p0s) ! �(wq1) = x. By Lemma 4.4, since Gp0s is constant, thepoints ��1(p0s) all lie in F 0. 20



5 Consequences of re
ectivityIn this section we show that re
ectivity leads to a number of restrictions on the polytope, includinga restriction discovered by Guillemin [9] which is (4) in the proposition below.Proposition 5.1 Let � � t�+ be a re
ective polytope of maximal dimension, x a point in �, � theWeyl wall containing x, and r(�) the set of simple roots perpendicular to �.(1) Let r 2 W� be a simple re
ection and v 2 V (x) such that rv 6= v. Then rv 2 �V (x).(2) If � 2 r(�) and v 2 V (x) then (�; v) � 0.(3) Any v 2 V (x) is perpendicular to all but at most one element of r(�).(4) The elements of r(�) are orthogonal. Consequently, k� is a product of su(2)'s.Proof of (1) - Let � = (v; x) so that (v; y)� � for all y 2 �. By assumption, rv 2 �V (x). Supposethat rv 2 +V (x). Then (rv; x) = (v; rx) = (v; x) = �so (rv; y)� � for any y 2 �. If r is the simple re
ection corresponding to � 2 r(�), then(rv; y) = �v � 2 (�; v)(�; �)�; y� � �: (21)If (�; v) > 0, let y lie in the facet F with normal vector v, so that (v; y) = �. Since byassumption F is interior, (�; y) > 0 which implies (rv; y)< � { a contradiction.On the other hand, if (�; v) < 0, then (rv; y) = � only if (v; y) = � and (�; y) = 0, whichimplies, for instance, that the facet with normal vector rv is contained in ker� and therefore is notinterior.Proof of (2) - If (�; v) 6= 0 then rv 6= v and therefore by (1) rv 2 �V (x). Since (�rv; x) = �(v; x) =��, we have (�rv; y) = �2 (�; v)(�; �)�� v; y� � ��:for all y 2 �. Suppose that (�; v) < 0. The inequalities (v; y) � � and (�; y) � 0 imply that(�rv; y) � ��. Therefore, (�rv; y) = � for all y 2 �, which is impossible since � is of maximaldimension.Proof of (3) and (4) - Let �1; �2 2 r(�) and let r1 2 W� be the re
ection corresponding to �1.There must exist a vector v 2 V (x) such that (v; �1) 6= 0: If not, then(x� t�1; v) = (x; v)for all v 2 V (x), so for t > 0 small, x� t�1 2 �; which is impossible since (x� t�1; a1) < 0 and �is contained in t�+. 21



By (1), �r1v 2 V (x), and by de�nition(r1v; �2) = (2 (�1; v)(�1; �1)�1 � v; �2) � 0by (2). Since �1 and �2 are simple and distinct, (�1; �2) � 0, and by (2) (�1; v) and (�2; v) are atleast 0. Therefore (r1v; �2), (�1; �2), and (v; �2): must all be zero. 2Proposition 5.1 (4) implies that if M is a Hamiltonian G-space satisfying the assumptions ofProposition 4.2, then its moment polytope � intersects only those walls � such that the Lie algebrak� is a product of su(2)'s. This was �rst proved by Guillemin [9] by a di�erent method. We willgive another proof, if M is torsion-free, in Corollary 6.5.The following corollary gives the form of the set V (x) for any point x 2 �.Corollary 5.2 Let � be a re
ective polytope of maximal dimension, and let � be a Weyl wallmeeting �. Then(1) For each �i 2 r(�) there exists a vector �i 2 z� such that (�i � �i)=2 are normal vectors tofacets F� of � and the intersection F+ \ F� equals � \ ker�i. If � is simple, then �i isunique.(2) For any x 2 �, the elements of V (x) not of the form �i� �i, for some �i 2 r(�) and �i 2 z�,lie in z�.Proof - By the proof of (3) and (4) of Proposition 5.1, there exists v 2 V (x) such that (�i; v) 6= 0.By rescaling, we can assume that v = (�i + �i)=2for some �i 2 t such that (�i; �i) = 0. By Proposition 5.1, (3), if i 6= j then0 = (�j ; v) = (�j ; (�i + �i)=2):which by (4), equals (�j ; �i=2). Hence, �i 2 z� . This also shows that any v 2 V (x) such that(v; �i) 6= 0 must be of the form (�i + �i)=2, for some �i 2 r(�); �i 2 z� . If v is not of this form,then (�j ; v) = 0, for all j, that is, v 2 z� .Suppose that v = (�i + �i)=2 and let r be the re
ection corresponding to �i. By 5.1 (1)�rv = (�i � �i)=2 2 V (x):Let � = (v; x) so that (�rv; x) = ��. Note thatF+ \ F� = fy 2 �j(y; (�i � �i)=2) = ��g= fy 2 �j(y; �i) = 0 and (y; �i=2) = �gwhich is contained in ker�i. On the other hand, if y 2 � \ ker�i, then(y;��i=2) � ��;so that (y; �i=2) = � and y 2 F+ \ F�. If � is simple, then since span(�i � �i; �i � �0i) =span(�i; �i; �0i), �i must be unique. 2 22



6 The Delzant conditionFor each Weyl wall � � t�+, let G� be its isotropy subgroup, and K� = (G�; G�) its semisimplepart. We �rst de�ne (see Lemma 2.2)De�nition 6.1 A compact connected transversal Hamiltonian G-space is torsion-free if and onlyif (a) G acts freely on a dense set,(b) K� acts freely on ��1(�) for all Weyl walls �.(c) K� is simply connected.The purpose of this section is to proveProposition 6.2 LetM be a compact connected symplectic manifold with a transversal multiplicity-free action of G which is free on a dense subset. Let � be the moment polytope of the action, andsuppose that K� is simply connected for all Weyl walls � such that �\� 6= ;: ThenM is torsion-freeif and only if � is Delzant.Remark 6.3 In particular � is simple. There is a stronger result, proved in [30]: � is simpleif M is compact, connected, transversal, and multiplicity-free. If M is not transversal, � is notnecessarily simple.Proof - First, assume M is torsion-free, so that K� acts freely on ��1(�) for all walls �. Considerthe Hamiltonian action of Z� on Y� . Let S� be the principal isotropy subgroup, that is, the kernelof the action Z� ! Di�(Y�); and let T� denote the maximal torus of K�.Lemma 6.4 There exists an isomorphism 
 : S� ! T� and an action � : T� ! Di�(��1(�))commuting with the action of K� such that S� acts by � � 
.Proof - Since Z� is abelian, its orbits in Y� are isotropic submanifolds. A generic orbit is isomorphicto Q� := Z�=S�, and therefore dimQ� � 12(dim Y�)� dimZ� � dimT�by (20). (Equality holds if and only if dimK� = 3dimT�.) Hence,dim S� � dimT�: (22)Let q 2 ��1(�) be any point, and let K�q denote the �ber of ��1(�) containing q. Since S� actstrivially on the base Y� , K�q is invariant under the action of S�. Since the action of S� commutes23



with that of T�, S� acts on the quotient (K�q)=T�. Because the Euler characteristic of (K�q)=T�(which is the order of W�) is non-zero, the action of S� has a �xed point [p] 2 (K�q)=T�. Letp 2 K�q be a representative of [p], that is, [p] = T�p. The action of S� on K�q = K�p is equalto the action on T�p, extended to K�p by requiring K�-equivariance. De�ne a map 
 : S� ! T�by sp = 
(s)p. Since S� commutes with T�, the map 
 is a homomorphism. To show that 
is an isomorphism, note that if K�p is a generic �ber, then S� acts freely on K�p. Indeed, bythe Guillemin local model, since S� acts generically freely on ��1(t�), S� acts generically freelyon ��1(�). In fact, by choosing an S�-invariant connection on ��1(�), the �bers of ��1(�) are(S� �K�)-di�eomorphic, so S� acts freely on every �ber. Therefore, 
 is an injection. By (22), 
is an isomorphism.Let � denote the action of S� on ��1(�) given by�(s)q = s
(s)�1qfor s 2 S� and q 2 ��1(�). A computation shows that T�p is the �xed point set of � on K�p. Sincethe �bers of ��1(�) are (K� � S�)-di�eomorphic, the �xed point set of � is a principal T�-bundle� � ��1(�):Therefore ��1(�) �= K� �T� �: (23)We de�ne the right action � of T� on ��1(�) by extending the action of T� on � byK�-equivariance.By construction, S� acts by � � 
. 2Corollary 6.5 (1) dimK� = 3dimT�.(2) dim Y� = 2dimQ�:Since K� is by assumption simply-connected, (1) implies that K� must be a product of SU(2)'s.See proposition 5.1, (4). (2) says that Y� is multiplicity-free under the (e�ective) action of Q�. Insummary, for all walls �, ��1(�) is a principal K�-bundle over the multiplicity-free space Y�.Suppose that x 2 � is contained in a Weyl wall �. We wish to show that V (x) is a latticesub-basis for L � t.Lemma 6.6 Let v be any vector in V (x). If �i 2 r(�) is a simple root such that (v; �i) 6= 0, thenv = �i � d
�1�i.Proof - By Corollary 5.2 there exists � 2 z� such that v = (�i + �)=2. Let p lie in the �xed pointset of exp(Rv) acting on ��1(�). For some k 2 K�, we have kp 2 �. Letv0 = Ad(k)v = (Ad(k)�i + �i)=2so that kp is �xed by exp(Rv0) and v00 = (Ad(k)�i + d
(�i))=2:24



Since the action � is trivial on �, the point kp is also �xed by exp(Rv00), and since v00 2 k� and K�acts freely, the vector v00 must vanish. Since d
(�i) 2 t� we have that k 2 N(T�) and since k� is aproduct of su(2)'s this implies that Ad(k)�i = ��i, as required. 2De�ne �i := d
�1�i, VZ(x) := V (X) \ z� andVK(x) := f(�i � �i)=2 j i = 1; : : : ; codim(�)g:so that by Lemma 6.6 V (x) = VK(x) [ VZ(x). We claim that VK(x) is a basis for the latticeL \ (t� + s�). Since each �ber of ��1(�) is isomorphic to SU(2)k, and T� (resp. S�) acts by theleft (resp. right) action of U(1)k exp( kXi=1 ti�i + kXj=1 sj�j) = Idif and only if ti; sj 2 Z=2 and ti + si 2 Z for all i, which proves the claim.Lemma 6.7 The Lie algebra gp contains VZ(x).Proof - Let u 2 VZ(x) be a normal vector to a facet F of �, and let pj 2 F be a sequence ofpoints such that �(pj) ! x: By compactness, we can assume that pj ! q, where q 2 ��1(x). ByDelzant's lemma, gpj = Ruand therefore by continuity exp(tu)q = q for all t 2 R:Since M is multiplicity-free, p = gq for some g 2 G� , and since u 2 z�, Ad(g)u = u 2 gp: 2Let L0 denote the lattice L0 := ker exp : q� ! Q�and let � : z� ! q� denote the projection of z� onto q� . We think of q�� sitting inside z�� as thesubspace annihilating s�, so that q�� contains � \ �. Let V�(x) � q� denote the normal vectors tofacets of � \ � at x.Lemma 6.8 The projection � gives an isomorphism between VZ(x) and V�(x). Furthermore, V�(x)is a lattice sub-basis of L0 � q�.Proof - Let v 2 VZ(x) be the normal vector to a face F of � meeting x. Then by Lemma 4.4,��1(F ) is contained in a codimension 2 component, C, of the �xed point set of exp(Rv) actingon Y+. Since v 2 z� , C is a K�-bundle over Q(C), where Q : ��1(�) ! Y� is the projection.Furthermore, Q(C) is contained in the �xed point set, (Y�)v, of exp(Rv) acting on Y� . If (Y�)v iscodimension 0, then v 2 s� , which is a contradiction since S� acts freely on ��1(�). Therefore,Q(C) is a codimension 2 component of (Y�)v. Delzant's Lemma 3.2, and Corollary 3.3 apply to the25



action of Q� on Y� even though Y� is not compact. (The proof is the same as that of Lemma 4.4.)Therefore, �(v) 2 V�(x). If elements v; w 2 VZ(x) have the same projection �(v) = �(w), then byLemma 6.7, v � w 2 s� \ gp. Since S� acts freely, v � w = 0. It remains to show that VZ(x) ismapped onto V�(x). Let F be any facet of �\ �. We can write F = F 0 \�\ � where F 0 is a facetof �. If F 0 has normal vector v lying in VK(x), then F 0 contains � \ �, so F 0 \� \ � = � \ �.Therefore, v 2 VZ(x). 2Now suppose that u 2 L \ span(V (x)) and that u = uk + uz with uk 2 t� and uz 2 z�. Sinceexp(uz) equals exp(uk)�1, exp(uz) 2 T� \ Z� � S�:By Lemma 6.8 there exist a unique element u0 2 spanZ(VZ(x)) such that uz � u0 2 s�, and u0 canbe written uniquely as a linear combination of elements of VZ(x), with integer coe�cients. By the�rst part of the proof, we can writeu� u0 = uk + (uz � u0) 2 t� + s�uniquely as a linear combination with integer coe�cients of elements of VK(x), which shows thatV (x) is a lattice sub-basis.Let � be Delzant, and suppose that there exists some g 2 K� and some point p 2 ��1(�) suchthat gp = p. We claim that g = Id. Since hgh�1 �xes hp, for any h 2 G�, we can assume thatg 2 T�. Let  be the map in Lemma 4.1, and let t 2 int (t�)�+ be small enough so that (p; t) liesin the domain of  . If we de�ne q =  (p; t), then by the equivariance of  , gq = q. Let F � �be the open face containing �(q), which meets �(p). By Lemma 4.4, g lies in Tq = exp(F 0)). ByCorollary 5.2, the normal vectors to facets meeting �(p) are of the form(�1 � �1)=2; : : : ; (�k � �k)=2; v1; : : : ; vl (24)where �i; vi 2 z� and k = codim �. By Corollary 5.2 the intersection of the facets F�;i with normalvectors �i � �i is contained in ker�i, so �(q) cannot be contained in both F+;i and F�;i. Withoutloss of generality, the normal vectors to facets meeting �(q) are(�1 � �1)=2; : : : ; (�k0 � �k0)=2; v1; : : : ; vl0for some k0 < k, l0 < l, such that k0 + l0 = codim F . The vectors�1; (�1 � �1)=2; : : : ; �k; (�k � �k)=2; v1; : : : ; vlgenerate the same lattice as the lattice generated by (24), which since � is Delzant is a latticesub-basis. Therefore, the vectors�1; : : : ; �k; (�1� �1)=2; : : : ; (�k0 � �k0)=2; v1; : : : ; vl0generate a lattice sub-basis. It follows that the intersection T� \ Tq = fIdg which implies thatg = Id. 2 26



7 The orbit-type decomposition of MIn the multiplicity-free case, the quotient M=G is homeomorphic to the moment polytope �,so it's natural to look for a relationship between the orbit-type decomposition of M=G and thedecomposition of � into faces.We de�ne an equivalence relation on the set of faces of � as follows. A facet F0 with normalvector v0 is called re
ected from a facet F1 with normal vector v1 if the intersection F0 \ F1 isnon-empty and the v0 = wv1, for some w 2 W which �xes the intersection F0 \ F1. We say that aface F0 is re
ected from a face F1 if any facet containing F0 is re
ected from some facet containingF1. We say that two faces F0 and Fl are re
ection-equivalent if there exist a sequence of facesF1; : : : ; Fl�1 such that Fj is re
ected from Fj+1 for j = 0; : : : ; l� 1.Example 7.1 For polytope � = [�3; �2] � [�2; �1] shown in Figure 2, there are six equivalenceclasses. One contains the left facet, the top facet, and the zero dimensional face f(�2; �2)g. Therest contain a single face.The purpose of this section is to proveTheorem 7.2 Let M be a torsion-free, transversal, multiplicity-free, compact, connected Hamil-tonian G-space with moment map � : M ! g� and moment polytope �. A connected componentof a stratum of the orbit-type decomposition of M is a union of sets ��1(F ) over faces F of �re
ection-equivalent to some �xed face, F0.For any x 2 �, let V �K (x) be the set of vectors in V (x) of the form (�i � �i)=2, so thatVK(x) = V +K (x) [ V �K (x). The span of V �K (x) is then the image of t� under the mapd� : t� ! t� + s�t 7! (t; d
�1(t)):We extend d� to t by setting d� = 0 on z� , and prove the following generalization of Delzant'sLemma 3.2.Lemma 7.3 The stabilizer, Gp, of any point p in ��1(x) is connected and its Lie algebra, gp, isK�-conjugate to span(VZ(x) [ V �K (x)).Proof - By Lemma 4.1, the level sets of � �� are equivariantly di�eomorphic, so Gp = Gq for someq 2 Y+, and the �rst claim follows from Lemma 4.4.To prove the second assertion, suppose that x lies in a Weyl wall �. We can assume that p 2 �.By de�nition, � is the �xed point set of the action �, so gp contains span(V �K (x)) = Im d�: ByLemma 6.7, gp contains VZ(x). 27



It remains to show that gp is contained in span(V �K (x)[VZ(x)). Since for any v 2 gp, the vector(d�)v lies in spanV �K (x) it su�ces to show that v� (d�)v lies in span(VZ(x)). Note that v � (d�)vlies in gp \ z�. Indeed, let v = vk + vz with vk 2 t� and vz 2 z� . Thenv � (d�)v = (vk + vz)� (vk � (d
)vk) = vz � (d
)vk:Therefore, it su�ces to show that gp\z� is contained in span(VZ(x)). Since gp contains span(VZ(x)),it su�ces to show that the dimension of gp\z� is at most that of span(VZ(x)). Let � be the quotientmap � : z� ! q� : Since p 2 �, gp \ s� = f0g;so that � restricted to gp\ z� is an injection. By Corollary 6.8, � is also injective on span(VZ(x)), soit su�ces to show that the dimension of �(gp\ z�) is at most that of �(span(VZ(x)) = span(V�(x)):If Q : ��1(�)! Y� is the projection, then�(gp \ z�) � (q�)Q(p) = span(V�(x))by Lemma 3.2 applied to the action of Q� on Y� . 2Proof of Theorem 7.2 - Let F0 and F1 be faces of �, and let x and y be points in F0 and F1,respectively. It su�ces to consider the case that F0 is contained in F1, so that V (x) � V (y), and toshow that F0 is re
ected from F1 if and only if ��1(F0) and ��1(F1) have the same orbit-type. Let� be the Weyl wall containing F0. The faces F0 and F1 are re
ected if and only if for any v 2 V (x),the vector wv lies in V (y) for some w 2 Wx. That is, V (x) = WxV (y), which holds if and only ifVZ(x) � VZ(y) and for some choice of V �K (x), the di�erence V �K (x)� V �K (y) lies in VZ(y). That is,V �K (x) [ VZ(x) = V �K (y) [ VZ(y):By Lemma 7.3 F0 is re
ected from F1 if and only if the sets ��1(F0) and ��1(F1) have the sameorbit-type. 2Example 7.4 Let M be the 10-dimensional coadjoint orbit of G2 through the point x picturedbelow, so that M �= G2=(SU(2)� U(1)). We show that the orbit-type decomposition of the actionof SU(3) � G2 on M has three components. The moment polytope � can be computed using, forinstance, a formula of Guillemin and Prato [11], and is pictured as the shaded region in the �gurebelow on the right. A local model forM in a neighborhood of x shows that SU(3) acts genericallyfreely. By 1.4, since � is re
ective and simple, M is transversal. Since � is Delzant, by Proposition6.2, M is torsion-free. By Theorem 7.2, the orbit-type decomposition of � consists of only threestrata: fxg, @��fxg, and int �. These facts can be veri�ed using the embedding of G2 in SO(7).8 Construction IThe purpose of this section is to show how the technique of symplectic cutting using componentsof the moment map (used in Lerman's version of the construction of multiplicity-free torus actions)28



x x
Figure 7: The point x 2 Lie(G2)�, and the moment polytope � � su(3)�.generalizes to the non-abelian case. Let Q : g� ! t�+be the quotient map which assigns to each x 2 g� the unique point in Gx \ t�+. The map Q iscontinuous, and smooth on g�reg . Let ~� = Q ��:If v 2 g, then h~�; vi is a G-invariant function onM , which is continuous but not necessarily smootheverywhere. Regardless, we will use the following proposition to show that we can cut with acomponent h~�; vi of ~� as long as the \cut hyperplane" H de�ned by ( ; v) = � is perpendicularto any Weyl wall � meeting H \ �, or equivalently, v 2 z� for any such wall �. Recall that if �is any Weyl wall, then U� � g�� is called a cross-section for � if for any point x 2 U�, Gx � G�.By the Guillemin-Sternberg cross-section theorem, [16, Theorem 26.2] ��1(U�) is a HamiltonianG�-space.Proposition 8.1 For any Weyl wall � and vector v 2 z�, h~�; vi is smooth on G��1(U�). Further-more, the Hamiltonian vector �eld ~Xv associated to h~�; vi is equal to the Hamiltonian vector �eldXv associated to h�; vi on ��1(U�).This implies that the 
ow of ~Xv is equal to the 
ow of Xv on ��1(U�). Since the 
ow of ~Xv isG-equivariant, this implies that the 
ow of ~Xv is periodic, if v is rational, wherever it is de�ned.Proof - Suppose that �(p) 2 �. Since v 2 z�,h~�; vi = h�; vi on ��1(U�). (25)Since G��1(U�) = G�G� ��1(U�)29



the function h~�; vi is smooth on G��1(U�). Since h~�; vi is G-invariant, the 
ow of ~Xv preserves��1(U�), and since the 
ow of Xv also preserves ��1(U�), the two vector �elds are the Hamiltonianvector �elds corresponding to the same function h~�; vi = h�; vi on ��1(U�). HenceXv = ~Xv on ��1(U�);and the 
ow of ~Xv is the 
ow ofXv on ��1(U�) extended to G��1(U�) by requiring G-equivariance.2 Because symplectic cutting is a local operation, we can (following [24]) de�ne the symplectic cutofM at � as long as f is smooth in a neighborhood U of f�1(�). Indeed, the symplectic cut U�� iswell-de�ned, and has a dense subset U>� which is equivariantly symplectomorphic to f�1(�;1)\U .We de�ne M�� to be the union of U�� and f�1(1; �)�M modulo the identi�cation of U>� withf�1(�;1)\ U �M .Remark 8.2 A G-invariant complex structure onM is not necessarily preserved by the 
ow of ~Xv.In particular, a symplectic cut of M using h~�; vi does not in general inherit a complex structurefrom M .Proposition 8.1 allows us to generalize the construction of multiplicity-free torus actions. Wesay that a polytope �1 � � is a clean sub-polytope of � if for every facet F of � meeting �1,F \�1 is a facet of �1. Equivalently, V (x) � V1(x) (up to positive scaling) for all x 2 �1, whereV1(x) is the set of normal vectors to facets of �1 meeting x.Theorem 8.3 LetM be as in Theorem 1.3, and let �1 be Delzant, re
ective, and clean subpolytopeof �. Then there exists a connected, compact, transversal, torsion-free, multiplicity-free space M1with moment polytope �1, obtained from M by symplectic cutting.Proof - Let v1; : : : ; vd be the normal vectors to the facets F1; : : : ; Fd of �1 that are not of the formF \�1 where F is a facet of �. Let �1; : : : ; �d 2 R be constants such that Fi = �\fxjhx; vii = �ig:Fix i, and let x be a point in Fi which is contained in a Weyl wall �. Since �1 is a clean sub-polytope, VK(x) � (VK)1(x) and since these two sets are of order 2codim(�), they are equal.Hence, vi 2 V1(x)� (VK)1(x) = (VZ)1(x):That is, vi 2 z�. Therefore, the function fi = h~�; viiis smooth near f�1i (�i).To show that the symplectic cut of M using f = (f1; : : : ; fd) at � = (�1; : : : ; �d) is smooth, letT k be the torus whose Lie algebra is span(v1; : : : ; vk). By (7) without loss of generality it su�cesto show that T k acts freely on k\i=1 f�1i (�i) \ d\i=k+1 f�1i (�1; �i): (26)30



Let p lie in (26) and suppose that x = �(p). Since T k acts K�-equivariantly, we can assume thatp 2 �. By Lemma 7.3 gp = span((VZ)(x) [ V �K (x)):Since �1 is Delzant, V1(x) is a lattice sub-basis, and therefore(V1(x)� V (x))[ VZ(x) [ V �K (x) � V1(x)is a lattice sub-basis. It follows that T k \ Gp = fidg: (27)Symplectic cutting leaves a dense subset unchanged, so that M�� is multiplicity-free. To showthatM�� is torsion-free and transversal, we must prove that G�p \K� = fidg, where G�p = Gp�T kis the stabilizer of G acting on ��1��(x). We can assume that Gp � T . Because r(�) [ V �K (x)generates the same lattice as VK(x), and �1 is Delzant(V1(x)� V (x))[ VZ(x) [ V �K (x) [ r(�)is a lattice sub-basis, and so (T k � Gp) \ T� = fidg:Since the �bers of � are compact and connected, M�� is compact and connected also. 2Although this theorem allows us to construct in�nitely many families of multiplicity-free,torsion-free, transversal spaces it is not enough to construct all of them, except in exceptionalcases, e.g., when G is abelian, or equal to U(2), SU(3), or SO(4). For instance, in the caseG = U(2), it's not hard to see that any re
ective polytope is a clean sub-polytope of the polytopein Figure 2 of the action of U(2) a coadjoint orbit of U(3).Example 8.4 Let M be the generic coadjoint orbit of U(4) with distinct eigenvalues i�1; i�2; i�3and i�4, and let G = U(3) be embedded in U(4) by A ! diag(1; A). Choose the positive Weylchamber to be int t�+ = f(�1; �2; �3) 2 R3j�1 < �2 < �3g: By a generalization of the argument inSection 2.1, the moment polytope ofM is the box � = [�1; �2]�[�2; �3]�[�3; �4]: Let f = h~�;�e1�e2 + e3i and � = 2�2+ �4� �, for � > 0 small. The polytopes � and ��� = fx 2 �jf(x) � �g areshown in Figure 8. By Theorem 8.3, there exists a space M�� with moment polytope ���.Theorem 8.5 Let � � t�+ be a re
ective Delzant polytope, and � a Weyl wall intersecting � suchthat � is contained in a cross-section for �. That is, for any x 2 �, Gx � G�. Then there existsa transversal, torsion-free, multiplicity-free, compact, connected G-space M with moment polytope�.Proof - Let x be any point in � \ � and in the notation of Corollary 5.2 letVK(x) = f(�1 � �1)=2; : : : ; (�k � �k)=2g:31



Figure 8: The polytopes � and ���.De�ne a map d
 : t� ! z� by (d
)�i = �i: We claim that d
 induces an injection 
 : T� ! Z�.Since � is Delzant, there exists a choice of scalars c�i 2 R+ such thatfc�1 (�1 � �1); : : : ; c�k (�k � �k)gis a basis for L \ span(VK(x)). In particular the vectors c�i (�i � �i) are in minimal form. Sinceci(�i��i) is a lattice element, ci(�i+�i) is a lattice element also, because L is invariant under W .Therefore c+i = c�i . Consider the three-dimensional subalgebragi := R�i + g�iand let Gi = exp(gi), which is isomorphic to either SU(2) or SO(3). We claim that the latteris impossible. Indeed, since the center of SO(3) is trivial, the 1-parameter subgroup exp(R�i)intersects exp(R�i) trivially, so thatexp(c�i �i) = exp(c�i �i) = Id:That is, c�i �i 2 L, which implies that fc�i (�i � �i)g cannot be a lattice sub-basis. Therefore,Gi �= SU(2), and since �i is a minimal lattice element, c�i = 1=2: It follows that f�1; : : : ; �kg andf�1; : : :�kg are lattice sub-bases, which proves the claim.Let S� = 
(T�). Since S� is connected, we can �nd a subgroup Q� � Z� such that Z� = S��Q� .De�ne ~N = T �(K� �Q�):Let K� � Q� act on ~N by left translation, and let S� act by 
�1 : S� ! T� composed with theright action of T� on ~N . We claim that the action of K� � Z� on ~N descends to a transversal,torsion-free, multiplicity-free action of G� �= K� �K�\Z� Z�. Note that the kernel of the action ofK� � S� �Q� is the set f(g; 
(g)�1; Id); g 2 Z(K�)g:Indeed, an element (g; g0; g00) 2 K� � S� �Q� which acts trivially must have g00 = Id, and g actingK�-equivariantly. Thus, (g; g0; g00) acts trivially if and only if g 2 Z(K�), g0 = 
(g)�1, and g00 = Id,which shows that the action descends to an action of G�. Clearly, the action of K� on ~N is free.32



Since for any Weyl wall � , K� � K�, ~N is transversal and torsion-free. A dimension count showsthat ~N is multiplicity-free.Let � ~N denote the moment map for the action of G� on ~N . We claim that the convex polyhedralset � ~N := � ~N \ t�+ is given by� ~N = \v2VK(x)fy 2 t� j (y; v) � (x; v)g:It su�ces to consider the case ~N = T �SU(2) and G� = U(2). In this case with respect to thestandard basis for t �= R2, the unique positive root is � = (1;�1), and � = (1; 1), so thatf12(�� �)g = f(1; 0); (0;�1)gand we have to show that the moment \polytope" of T �SU(2) under the action of U(2) de�nedabove is the lower right quadrant. We identify T �(SU(2)) with SU(2)� su(2)� by left translation.The moment map for the left action of SU(2) is �L(g; v) = Ad�(g)v so that for any v 2 u(1)�, wehave ��1L (v) = f(g;Ad�(g)�1(v)) j g 2 SU(2)g:On the other hand, the moment map for the right action is �R(g; v) = v and so a moment map forthe right action of T� is �T (g; v) = �(v)where � : su(2)� ! u(1)� is the projection onto the Cartan subalgebra u(1)�. Therefore,�T (��1L (v)) = f�(Ad�(g)�1(v)) j g 2 SU(2)g = [�v;+v]and the moment \polytope" is the setfv(1;�1)+ w(1; 1) j v � 0; jwj � vgwhich is the lower right quadrant.Since � ~N contains � cleanly, by symplectic cutting as in the proof of Theorem 8.3, there existsa Hamiltonian G�-space N with moment polytope �. (Although ~N is not compact, its momentmap is proper and has connected �bers, and Theorem 8.3 extends to this case without di�culty.The details are left to the reader.)The existence of a Hamiltonian G-spaceM with moment polytope � follows from the followinglemma, and the assumption that � is contained in a cross-section for �:Lemma 8.6 Let H � G be a connected subgroup containing T and let (N; !) be a compact Hamil-tonian H-space with moment polytope �. Then if gx � h for all x 2 �, there exists a HamiltonianG-structure on M = G�H N with moment polytope �.33



Proof - Identify T �G with G � g� by left-translation, and let !can be the canonical symplecticform on G � g�. Let i be the inclusion of G � h� in G � g�. Then i�!can is symplectic at points(g; v) 2 G� h� such that Gv � H . The moment map �H for the action of H on (G� h�;�!can) is�H(g; v) = �v. Let N � G� h� be the product with closed two-form !prod = ��1! � ��2!can. Themoment map for the action of H on the product is � = �N � �H . Therefore��1(0) = f(m; g;�(m)) j m 2M; g 2 Gg:The assumption that gx � h for x 2 � guarantees that the !prod is non-degenerate at ��1(0), sothat the quotient ��1(0) �= G �H M is by the Marsden-Weinstein-Meyer theorem a symplecticmanifold. 29 UniquenessSuppose that M1 and M2 are as in Theorem 1.3 and have the same moment polytope �. We wantto construct an equivariant symplectomorphism ' :M1 �=M2.9.1 Local equivariant symplectomorphismFirst consider the situation when � \ � is closed, so that ��1i (�) are compact. By Lemma 6.4the generic stabilizers (S�)i of Z� acting on ��1i (�)=K� are connected. Their Lie algebras are(s�)i = (� \ �)0 � z�, so (S�)1 = (S�)2 = S�:By Corollary 6.5, the actions of Q� := Z�=S� on (Y�)i := ��1i (�)=K� are multiplicity-free, andtheir moment polytopes are � \ �. By Delzant's theorem there exists an Q�-equivariant symplec-tomorphism ' : (Y�)1 �= (Y�)2 =: Y� :The next step is to show that ��12 (�) �= ��11 (�) as K�-principal bundles. Let ci 2 H2(Y� ; t�)denote the Chern class of the bundles �i in equation (23). By de�nition, ci = [d�i] where �iis a connection form for the T�-action. It su�ces to show that c1 = '�c2. For t 2 t� small let�i(t) : Y� ! q�� denote the moment map for the action of Q� on (Y�; !�+hd�i; ti), where !� denotesthe symplectic form on Y� induced from !. By Lemma 3.5, it su�ces to show that �1(t) = �2(t)on the �xed point set (Y�)(Q�), for all t in a neighborhood U of 0. Since by Lemma 3.2, the imageof the �xed point set �i(t)((Y�)(Q�)) is the set of vertices of � \ �, and since �1(0) = �2(0), itsu�ces to show that the moment polytopes �1(t)(Y�) and �2(t)(Y�) are equal for all t in U . Wecan assume that �i are restrictions of K�-connection forms on ��1i (�) to �i, and that we have localequivariant symplectomorphisms  i : ��1i (�)� k�� ! ��1i (g��):For any t 2 t�� , de�ne it : �i ! �i � ftg byit(p) = (p; t):34



Then �i � � it descends to �i. It therefore su�ces to show that the sets (�i � � it)(�i) are equalfor i = 1; 2 and t small. By de�nition �i � ��1i (�) is the �xed point set of the sub-torus with Liealgebra span(�1 � �1; : : : ; �k � �k). By Lemma 4.4(�i �  i)(�i � int(t�)�+) = F \ int t�+where F is the intersection of the closed facets with normal vectors �1��1; : : : ; �k��k. Therefore,�i(t)(Y�) = F \ ��1(t):Hence, the bundles �1 �= �2 =: � are isomorphic.Example 9.1 In Example 8.4, let � be the wall given by �1 = �2, and take � = �1 + �2. Then Fis the facet given by �2 = �2, and F \ ��1(t) projected onto z��=s�� is constant (resp. non-constant)when the polytope is � (resp. ���.) Therefore, the bundle � is trivial (resp. non-trivial) for M(resp. M��).It remains to show that the actions �i : T ! Di�(�) of T on � are the same. De�ne a map� : T ! Di�(�) by �(t) = ��11 (t)�2(t)for t 2 T . Since �1 and �2 are isomorphic T�-bundles, the map � vanishes on T�, and for t 2 T� wede�ne tp := �1(p) = �2(p). Since �1 and �2 cover the same action on �=T�, for any p 2 � and t 2 Tthere exists an element �p(t) 2 T� such that �p(t)p = �(t)p. Since the action � commutes with theaction of T�, the map �p is a homomorphism, and since the set of homomorphisms from T to T�is discrete, �p := � does not depend on p. Let d� : t ! t� denote the di�erential of �, and let (gp)idenote the in�nitesimal stabilizers of a point p 2 � with respect to �i. Then (gp)1 = (Id+d�)(gp)2.By Corollary 3.3 (2), for any point x 2 � \ �, we haveV (x) = (Id + d�)V (x): (28)Let x be a vertex of � contained in � so that span(V (x)) = t. Suppose that for some v 2 V (x),d�(v) 6= 0, so that (Id + d�)nv = v + nd�v 2 V (x)for all n 2 Z. Since this is impossible, d� = 0. Therefore ��11 (�) and ��12 (�) are isomorphic asG�-spaces with 2-form, !� . We write ��1(�) := ��11 (�) �= ��12 (�).By (15) there exist local G�-equivariant symplectomorphisms  i : ��1i (U�) �= ��1(�) � k��:where U� � g�� is a neighborhood of �. Since ��1i (U�) are multiplicity-free G�-spaces, the equation' :=  �12 � 1 de�nes a G�-equivariant symplectomorphism of ��11 (G�V ) and ��12 (G�V ), where Vis some neighborhood of �\� in �. Since G��1i (V ) = G�G� ��1i (V ), the map ' extends to a map' : G��1i (V ) �= G��1i (V ) by requiring G-equivariance, and ' is easily checked to be symplectic.35



9.2 The non-compact caseIn general, � \ � is not closed. In this section we use E. Lerman's symplectic cutting trick tocompactify the sets ��1i (� \ �), which reduces this case to the previous one. See [25] for furtherdetails and applications of this technique.Let � be a simple root, and �+ = fy 2 �j(y; �) � �g;�� = fy 2 �j(y; �) � �g:Lemma 9.2 For � > 0 su�ciently small, �� are re
ective and Delzant.Proof - Let F be the facet of �+ de�ned byF = fy 2 �j(y; �) = �g:The facets of � are interior, so if � is su�ciently small, the facets of �+ are the facets of �, plusF . In particular, the facets of �+ are interior.To show � is Delzant, let x be a vertex of �+, and let V+(x) be the set of normal vectors tofacets of �+ meeting x. Either V+(x) = V (x) or V+(x) = V (x) [ f�g. If the latter is the case, letF 0 be the intersection of the closed facets of � containing x. We can assume that � is smaller than(�; y) for any point y in a closed face of � not meeting ker�. Therefore, F 0 meets ker�. Let y bea vertex of � contained in F 0 \ ker�. Then (�� �)=2 2 V (y). Since #V (x) = #V (y)� 1, eitherone or both of (�� �)=2 lie in V (x). B y Corollary 5.2, if both lie in V (x) then x 2 ker� which isimpossible. Suppose without loss of generality that (�+ �)=2 2 V (x). ThenV+(x) = f(�+ �)=2; �; v3; : : : ; vngand V (y) = f(�+ �)=2; (�� �)=2; v3; : : : ; vngfor some vectors v3; : : : ; vn 2 t, which shows that V+(x) and V (y) generate the same lattice.It remains to show that V+(x)[�V+(x) is Wx-invariant. Because � is re
ective, V (x)[�V (x)is Wx-invariant, so it su�ces to show that � is Wx-invariant. Suppose that (�0; x) = 0 for somesimple root �0. Since ker�0 \� is a closed face, by the de�nition of �,ker� \ ker�0 \� 6= ;and so by Corollary 6.5, or Proposition 5.1 (4), (�; �0) = 0. It follows that � is Wx-invariant. 2The idea now is to chop o� � near the boundary of �, and to apply the previous subsection tothe resulting symplectic manifold. For some small �(�) > 0 de�ne��(�) = fz 2 �j(z; �) � �(�) for � =2 r(�)g:36



By induction using the previous lemma, ��(�) is re
ective and Delzant. By Theorem 8.3 there existspaces M �(�)i with moment polytope ��(�) obtained from Mi by symplectic cutting. Let��(�) = fz 2 �j(z; �) > �(�); � =2 r(�)gwhich is an open subset of �, and let M �(�)i = ~��1i (��(�)):The sets M �(�)i are open subsets of Mi which are equivariantly symplectomorphic to dense subsetsof M �(�)i . Let �i;� be the moment maps for the actions of G on M �(�)i . By the previous subsection,there exists a neighborhood V� of ��(�) \ � in ��(�) and an equivariant symplectomorphism'� : ~��11;�(V�) �= ~��12;�(V�):Let V� = V� \ ��(�). The map '� restricts to an equivariant symplectomorphism of the sets~��1i (V�) � Mi for i = 1; 2. For any point x 2 � \ �, there exists an � > 0 su�ciently smallsuch that ~��1(x) � ~��1i (V�), which completes the proof that M1 and M2 are locally equivariantlysymplectomorphic.9.3 Local to GlobalThe existence of a global equivariant symplectomorphism follows from a �Cech cohomology argu-ment, as in the abelian case. Let fVig be a good cover of � such that for each i there exists anequivariant symplectomorphism 'i : ��11 (Vi)! ��12 (Vi). As in the abelian case, the maps ij = '�1i 'jde�ne a cocycle  in �C1(�;Di�(!;�1; G)), where Di�(!;�1; G) is the sheaf which assigns to eachopen subset V � � the group of equivariant symplectomorphisms of ~��11 (V ) which intertwine themoment map. To de�ne a global equivariant symplectomorphism M1 !M2 it su�ces to show thatthe cohomology class [ ] 2 �H1(�;Di�(!;�1; G))is trivial.Let L be the kernel of the map exp : t ! T , and L0 be the sheaf which assigns to any openV � � the subset of L which is invariant under Wx for all x 2 V . More precisely,L0(V ) = L \ (\x2V zx): (29)where zx denotes the Lie algebra of the center Zx of the isotropy subgroup Gx.Lemma 9.3 Let M be a compact connected symplectic manifold with a transversal, torsion-free,multiplicity-free action of G. Then the sequence of sheaves 0!R�L0 ! C1G ! Di�(!;�; G)! 0is exact. 37



Proof - First, we show that C1G surjects onto Di�(!;�; G). Let x 2 � be any point, and let V � �be a contractible neighborhood of x. Let ' be an element of Di�(!;�; G)(V ), and let � be theWeyl wall containing x. We can assume that V is small enough so that V is a cross-section for �,that is, for any point y 2 V , Gy � G�, and that K� acts freely on ��1(G�V ).We claim that there exists a smooth map � : ~��1(V ) ! G such that '(p) = �(p)p for allp 2 ~��1(V ). Let B = ��1(G�V )=K�, and let 'B : B �= B denote the di�eomorphism of B inducedby '. Since B=Z� = ��1(G�V )=G� �= V;and ' preserves �, ' induces the identity on B=Z�. It follows from the Hae
iger-Salem-Schwarzlemma [17, Theorem 3.1] that there exists a smooth map �Z : B ! Z� such that'B([p]) = �Z([p])[p]for all [p] 2 B. Replace �Z by its lift to ��1(G�V ). The map which assigns to any p 2 ��1(G�V )the point ��1Z (p)'(p) induces identity map on B. Since K� acts freely, for all p 2 ��1(G�V ),��1Z (p)'(p) = �K(p)pfor a unique �K(p) 2 K� . The assignment p! �K(p) de�nes a smooth map�K : ��1(G�V )! K�:We de�ne �(p) = �K(p)�Z(p);so that 'D(p) = �(p)p for all p 2 ��1(G�V ). The map � extends to ~��1(V ) = ��1(GV ) byrequiring that �(gp) = g�(p)g�1.The next step is to show that � lifts to a G-equivariant map �� : ~��1(V ) ! g. We claimthat the map �� : V ! T de�ned by ��(y) = �(p) for any p 2 ��1(y) is well-de�ned. Because' is G-equivariant, and Ky acts freely on ��1(y), �(p) must lie in Zy, and so � is constant on��1(y) = Gyp, which proves the claim. Since V is simply connected, we can lift �� to t, that is,there exists a continuous map �� : V ! t such thatexp(��)(y) = ��(y)for all y 2 V . In constructing the lift, we can require that ��(x) � zx. Since any Weyl wall �meeting V contains �, and z� � zx, we have ��(�) � z� . De�ne �� : ��1(V )! t by��(p) = ��(�(p)):The map �� extends to ~��1(V ) by requiring G-equivariance. Since �� is G-equivariant, we can de�nea G-invariant vector �eld X 2 Vect(M) by X(p) = ��(p)#p . By the same argument as in the abeliancase, X is the Hamiltonian vector �eld of some G-invariant function f 2 C1G (~��1(V )).38



To show exactness at C1G , let V � � be a connected open subset, and let l of L be invariantunder Wx for all x 2 V . By Proposition 8.1 the function fl = h~�; li is G-invariant and smooth, andthe time one exponential of the Hamiltonian vector �eld associated to fl is the identity. Conversely,let f 2 C1G (~��1(V )), and let Xf be its Hamiltonian vector �eld. Suppose that the time oneexponential of Xf is the identity. Since Xf� = 0, Xf is tangent to the level sets of �. If Tp is ageneric orbit of T in ��1(V \ int t�+), then Xf = l(p)#for a unique l(p) 2 L. Since l(p) varies continuously with p, l must be constant. By continuity,f = fl. Since f is smooth, l must be Wx-invariant for all x 2 V . This is because by the Guilleminlocal model ��1(t�) is locally equivariant symplectomorphic to ��1(�)� t�� near ��1(o), and t�� �=Rcodim �. For l0 2 t� , the map h~��1; l0i locally has the formh~��1; l0i(p; t) = jhl0; tij;which is not smooth. On the other hand, if l0 2 z� , then by 8.1, h~�; l0i is smooth at ��1(x). Itfollows that l 2 z�. The di�erence f � fl is a constant r 2 R. 2To show that  is cohomologically trivial, it su�ces to show that the cohomology groups�Hi(�;L0) vanish for i > 1. For each simple root �, let L� be sheaf which assigns to an opensubset V � � the group L(V ) = Z if V \ ker� 6= 0, and L�(V ) = f0g otherwise. That is, L� is thepush-forward of the constant sheaf Z on � \ ker� to �. We de�ne a morphism of sheaves�� : L ! L�as follows. For any open set V � � and l 2 L(V ) = L let��(l) = (l;�)2(�;�) if V \ ker� 6= 00 otherwise.We claim that 0! L0 ! L ! ��L� ! 0: (30)is a short exact sequence of sheaves. It su�ces to show that the sequence is exact on open setsV � � which are cross-sections for some Weyl wall � meeting �. By Section 6, the quotient latticeL(V )=L0(V ) = L=(L\ z�) �= M�i2r(�)Z[�i]=2where [�i] denotes the equivalence class of �i in L=(L \ z�). The claim follows.The higher cohomology groups of L are zero since � is contractible. The cohomology groups ofL� are isomorphic to the cohomology groups �Hi(� \ ker�; Z), which are also zero for i > 0. Bythe long exact sequence in cohomology, �Hi(�;L0) = 0 for i > 1, as required.39



10 Construction IILemma 10.1 Let M+ and M� be as in theorem 1.3 with moment polytopes �+ and ��, suchthat �0 = �+ \ �� is a Delzant, re
ective, clean sub-polytope of both �+ and ��. Supposethat the boundaries @(�0;��) of �0 in �� are disjoint. Then there exists a compact, connected,transversal, torsion-free, multiplicity-free space M with moment polytope � = �+ [��.Proof - By Theorem 8.3 there exist spacesM+;0 andM�;0 with moment polytope �0 obtained fromM+ andM� by symplectic cutting. By uniqueness, there exists an equivariant symplectomorphism' :M+;0 !M�;0:Let U+ = ~��1+ (�+ � @(�0;��)) and U� = ~��1� (�� � @(�0;�+))so that U� are open subset of M�. LetM�;0 = ~��1� (�0 � @(�0;�+)� @(�0;��)):The map ' restricts to an equivariant symplectomorphism ' : M+;0 �= M�;0. The sets M�;0 areequivariantly symplectomorphic to open subsets of U�. Let M be the space formed by taking thedisjoint union of U+ and U� and identifying the sets M�;0 using '. 2In particular, this gives a very indirect proof that � = �+ [�� is a convex polytope (which isnot necessarily true if @(�+ \��;��) are not disjoint. ) In the �gure below we give an exampleof this construction. The shaded regions are the polytope �0.Figure 9: The polytopes �� and �.Let � be any Delzant re
ective polytope. We wish to construct a transversal, torsion-free,multiplicity-free, compact, connected G-space M , having moment polytope �. Let �1; : : : ; �n bean ordering of the simple roots. For each k = 0; : : : ; n and subset I � f1; : : : ; kg, let�kI = (x 2 � ����� (x; �i) � �; i 2 I(x; �) � �=2; otherwise for i = 1; : : : ; k) :By construction, �nI is contained in a cross-section for the Weyl wall �, where � is the intersectionof ker�i for i 2 I . Furthermore, by induction using Lemma 9.2, �nI are re
ective and Delzant.40



By Theorem 8.5, there exist spaces MnI with moment polytopes �nI . Let I � f1; : : : ; kg andI 0 = I [ fk + 1g. If there exist spaces MkI and MkI 0 with moment polytopes �k+1I and �k+1I 0 , thenLemma 10.1 implies that there exists a space MkI with moment polytope �kI . By induction, thereexist spaces MkI with moment polytopes �kI (with the properties listed in Theorem 1.3) for allk = n; : : : ; 0. The polytope �0; is just �, so we have proved the last part of Theorem 1.3.Remark 10.2 In this remark we consider the e�ect of dropping (c) in the de�nition of torsion-free6.1. Let LK = L \ t�; LS = L \ s� ; LQ = L \ q�with t�; s�; q� as above. Lemma 6.4 implies that (1) the map t� ! s� given by �i ! �i induces anisomorphism of LK and LS , and since G acts generically freely we must have (2) Z(K�) = T� \S�.Conversely, given a convex polytope � � t�+ satisfying (1) and (2) at each Weyl wall, the sameconstruction as before produces a transversal multiplicity-free action with moment polytope �.The uniqueness part of Theorem 1.3, with the Delzant condition replaced by (1) and (2), alsoseems likely to be true. For example, it would su�ce to prove that the sheaf L0 described in (29)always has trivial cohomology in dimension 2.A The de�nition of a multiplicity-free actionThe term \multiplicity-free" comes from representation theory. Let V be a �nite-dimensionalcomplex representation of a compact connected Lie group G. We say that V is multiplicity-free ifeach irreducible occurs in V with multiplicity zero or one, or equivalently by Schur's lemma, if thealgebra EndG(V ) of G-equivariant endomorphisms is abelian. Let M be a Hamiltonian G-spacewith moment map � : M ! g�, where g is the Lie algebra of G. In geometric quantization, onetries to �nd a representation of (subalgebras of) the Poisson algebra C1(M) as operators on a\quantized space" Q(M). In analogue with the representation theory, we say (following Guilleminand Sternberg in [15]) that M is multiplicity-free if the Poisson algebra C1G (M) of G-invariantsmooth functions is an abelian Lie algebra. The purpose of this appendix is to proveProposition A.1 (1) Let G be a compact, connected Lie group, and M a compact, connectedHamiltonian G-space. Then C1G (M) is an abelian Poisson algebra (that is, has a trivialPoisson structure) if and only if all of the reduced spaces Ma = ��1(a)=Ga are points. Ifeither condition is true, we say M is multiplicity-free.(2) If in addition G acts locally freely on a dense set then M is multiplicity-free if and only ifdim(M) = dim(G) + rank(G).First suppose that G acts freely on ��1(a). By the Marsden-Weinstein-Meyer theorem thereduced space Ma is a symplectic manifold, and the restriction map ra : C1G (M) ! C1(Ma) isPoisson and surjective. Therefore, if C1G (M) is abelian, the algebra C1(Ma) must be abelian, andMa must be discrete. By Kirwan's theorem [20], Ma is connected, and therefore a point.41
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