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Abstract

Multiplicity-free Hamiltonian group actions are the symplectic analogs of multiplicity-free
representations, that is, representations in which each irreducible appears at most once. The
most well-known examples are toric varieties. The purpose of this paper is to show that under
certain assumptions multiplicity-free actions whose moment maps are transversal to a Cartan
subalgebra are in one-to-one correspondence with a certain collection of convex polytopes. This

result generalizes a theorem of Delzant concerning torus actions.
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1 Introduction

A Hamiltonian action is called multiplicity-free if all the symplectic reduced spaces are zero dimen-
sional, or equivalently if the invariant functions form an abelian Poisson algebra [15]. The name
comes from the fact that the geometric quantization of any multiplicity-free action is a multiplicity-
free representation, that is, contains each irreducible representation at most once (at least if the
action admits a K&hler quantization [4]; see also [13] and [26].) Recall that by a theorem of Kirwan
[21], if a compact Lie group acts on a compact connected symplectic manifold in a Hamiltonian
fashion, then the intersection of the image of the moment map with a positive Weyl chamber is a
convex polytope, called the moment (or Kirwan) polytope. The moment polytope is the classical
limit of the set of highest weights of irreducibles appearing the geometric quantization of the ac-
tion, in a sense that can be made precise. The multiplicity-free conjecture suggests that any two
multiplicity-free actions of compact connected Lie groups on compact connected symplectic mani-
folds with the same moment polytope and same principal isotropy subgroup are isomorphic. In the
case of torus actions, this conjecture was proved by Delzant [7]. Delzant also characterized exactly
which polytopes occur and showed that any multiplicity-free torus action (under the assumptions
above) is the Hamiltonian action associated to a toric variety.

In this paper we prove the multiplicity-free conjecture for actions of non-abelian groups whose
moment maps are transversal to a Cartan subalgebra, and that satisfy some further assumptions
which will be described later. We also characterize the convex polytopes that occur as moment
polytopes of these actions by a simple symmetry condition involving local Weyl groups. This
generalizes the first half of Delzant’s theorem.! The project was suggested by V. Guillemin.

The motivating examples of the multiplicity-free actions studied in this paper are Hamiltonian
actions underlying certain multiplicity-free branching laws in the representation theory of compact
groups. By a multiplicity-free branching law, we mean an irreducible representation of a compact
connected group H that is multiplicity-free under the action of GG. The corresponding Hamiltonian
group action is by the Borel-Weil theorem a coadjoint orbit of H, considered as a Hamiltonian G-
space. The results in this paper do not apply to all of the actions corresponding to multiplicity-free
branching laws, but do apply to the most famous of these, the action of U(n) on a generic coadjoint
orbit of U(n + 1).

To state the main result precisely, let G’ be a compact connected Lie group, T C G a maximal
torus, and W the Weyl group of 7' C 7, which acts on t* C g*. Let t] be a closed positive Weyl

chamber.

Definition 1.1 We say that a convex polytope A C t} of maximal dimension is reflective at z € A

if?

'Iglesias [19] and Delzant [8] have proved generalizations of Delzant’s theorem for groups of low rank. Sjamaar
and Guillemin [27] have proved a generalization for groups of arbitrary rank, which depends on an assumption on
the stabilizers.

2The term reflective has no connection with the term reflexive in e.g. [3].



(a) the set of hyperplanes that intersect A in facets (i.e., codimension 1 faces) that contain x is

invariant under the stabilizer W, of z, and

(b) any open facet of A containing x in its closure is contained in the open positive Weyl chamber

int t7.

A is called reflective if A is reflective at all points # € A. Condition (a) is equivalent to requiring
that if H is a hyperplane such that H N A is a facet containing =, and w € W, then H N wA is a
facet of wA. That is, the facets of A “continue through the walls”.

Given a convex polytope A C t} of maximal dimension and a point z € A, let V(z) C g be
a set of inward-pointing normal vectors to facets (i.e. codimension 1 faces) of A meeting z. The
elements of V(z) are defined up to multiplication by positive scalars. Note that condition (a) in

Definition 1.1 is equivalent to requiring that for each v € V(2) and w € W, we have wv € RV (z).

Example 1.2 Consider the polytopes shown in Figure 1, in the case G = U(2).

AN
(1) (2) (3)

Figure 1: Reflective and non-reflective polytopes

(1) is reflective, since W, is trivial for all 2 € A.

(2) is not reflective. Let 2 be the vertex lying in the Weyl wall. Then V' (z) = {(1,0), (-1, -1)}
and the nontrivial element w of W, acts by w(z,y) = (y,z). The vector w(1,0) = (0, 1) does
not lie in RV (z).

(3) is reflective, since V(z) = {(1,0), (0, —1)} is invariant under w, up to sign.

A 'is called simple at « if V(z) is linearly independent. If V' (z) consists of rational vectors with
respect to the lattice L := exp~!(Id), then we will always assume that V() is in minimal form,
that is, for any v € V() and @ € R we have av € V(z) if and only if a € Z. We say A is Delzant at
z if V(2) is a sub-basis of the lattice L, that is, a basis of the lattice L Nspan(V'(z)). A is simple
(resp. Delzant) if A is simple (resp. Delzant) at all points z € A.

If M is a compact connected Hamiltonian G-space with moment map ® : M — g*, then
®(M) Nt} is called the moment, or Kirwan polytope. We say that A is transversal if & is
transversal to t*, that is, for all p € ®~1(¢*), we have

Im d®, +t" =g". (1)



The main result of this paper is that

Theorem 1.3 The map assigning to each action its moment polytope is a bijection between “torsion-
[free”, transversal, multiplicity-free actions of G on compact, connected symplectic manifolds and

reflective, Delzant convex polytopes of maximal dimension in £} .

“Torsion-free” means that certain isotropy groups (including the principal isotropy subgroup) are
trivial. The exact definition is given in Definition 6.1.

There are two results which provide simple criteria in terms of the moment polytope for deter-
mining when an action lies within the scope of the classification Theorem 1.3. In a separate paper

[30] we prove

Theorem 1.4 A multiplicity-free action of a compact group on a compact connected symplectic
manifold that is locally free on a dense subset is transversal if and only if the moment polytope is

stmple and reflective.

Proposition 6.2 of this paper states that that under certain assumptions a transversal, multiplicity-
free space is “torsion-free” if and only if the moment polytope is Delzant.

Our approach is completely symplectic. That is, we nowhere assume the existence of com-
plex structures, although of course the motivating examples possess them. The basic technique
is to study the inverse image Y, of the positive Weyl chamber under the moment map. Y, is a
multiplicity-free T-space. and except for compactness satisfies the assumptions of Delzant’s theo-
rem. In the K&hler situation, Yy is not necessarily a complex submanifold, since the moment map
is not algebraic. The approach taken here is therefore very different from the one taken in alge-
braic geometry, where the analogous situation is known as “spherical”, and there is a classification
theorem involving “colored fans”. (See [5],[23].) At present it seems unclear how the two theories
are related. An important outstanding question is whether all of the symplectic manifolds studied
here are Kéhler, that is, whether the second half of Delzant’s theorem generalizes.?

It was originally hoped that the study of transversal multiplicity-free actions would lead to a
(weighted) lattice-point counting formula similar to those coming from the study of toric varieties
(see e.g. [22]) but lack of a description of the Todd class of these manifolds has so far prevented
any progress towards this goal.

This paper is organized into the proofs of the different parts of Theorem 1.3. After section
2, which discusses examples, and section 3, which reviews Delzant’s work, we show in section 4
that the moment polytope of any transversal, multiplicity-free space is reflective. In section 5, we
discuss the consequences of the definition of reflective 1.1, and give combinatorial proofs of some
properties of the moment polytopes of these actions first discovered by Guillemin and Souza. In
section 6, we show that the question of whether or not the moment polytope is Delzant is related
to the triviality of certain discrete stabilizers. In section 7, we prove a relationship between the

orbit-type decomposition of the manifold and the decomposition of the moment polytope into open

#Added in proof: This question has been answered negatively by the author, [31], using work of S. Tolman, and
independently by F. Knop.



faces. In section 8 we make a preliminary attempt to show that given a reflective Delzant polytope
A, we can construct a torsion-free, transversal, multiplicity-free space with moment polytope A. In
section 9, we show that two actions satisfying these assumptions and having the same polytope are
isomorphic. In section 10, we develop a gluing technique which completes the construction begun
in section 8.

I would like to thank Victor Guillemin and Regina Souza for sharing with me their unpublished
work on multiplicity-free transversal actions, which was the starting point for this project. It’s also
a pleasure to thank Victor Guillemin for constant support and encouragement, and Yael Karshon,
Allen Knutson, Eugene Lerman, Eckhard Meinrenken, Reyer Sjamaar, and Sue Tolman for many

suggestions and ideas.

2 Examples

The motivating examples of transversal multiplicity-free spaces are certain coadjoint orbits of com-
pact Lie groups, under the actions of subgroups. For simplicity, in each example the Lie algebra is

identified with its dual using an invariant inner product.

2.1 Generic U(3)-orbits under the action of U(2).

This example is taken from [16, page 364]. Let A = (A1, Ag, Az) with Ay > Ay > Az and let M) be
the coadjoint orbit of U(3) containing

A0 0
il 0 A 0 | eud).
0 0 As

To simplify notation, we multiply My by —t, so that M, becomes the set of hermitian matrices
with eigenvalues Ay, A9, and As. By embedding ¢ = U(2) in U(3) by U — diag(1,U) we induce
on M, the structure of a Hamiltonian U(2)-space. The moment map & for the U(2) action is the
projection of M) onto u(2)*.
Proposition 2.1 The moment polytope A\ = ®(My) Nt is equal to [Ag, Ai] X [Az, Ag].
Proof - An element A € M) lies in @~ (%) if and only if A is of the form

o dap daz

A= af m 0 (2)

a§ 0 H2
where pty > po, ag € R, and a1, a3 € C. Thus (I>_1(tj_) is the set of matrices of the form (2) such
that

A= AN)A2=A) (A3 —A) = det(A—AI)
ayay a0’

= (= A = A)(ap — A= T B,




that is,
A=A (A2 = A)(As = A)

(1 = A)(p2 — A)

To solve (3) for py and pgy we separate into two cases.

* *
a1ayq HYI5

I(ao—)\)— —

POy =

Case p; # pi2. (3) holds if and only if

AL — Ag — Az —
_ala»{:ReSMP()\):( 1 :ul)( 2 ,ul)( 3 :ul)

M2 — 1
A1 — Ay — A3 —
—aga; = Res,, P(A\) = (A1 = p2) (A2 = p12) (A3 — pia)
H1 — H2
and finally * *
a1aq 204

ag = P(X\g) + Ao+ .
0 (Ro) O =X | p2— Ao

fr— A p2— A

for some Ag # 1, pi2. Since —aja} and py — py are negative, (4) has a solution if and only if the

numerator (Ay — p1) (A2 — p1)(As — pa) is positive, that is, g1 € [Ag, A1] or g1 < As. Similarly, (5)

has a solution if py € [Az, Ag] or pg > Ay. Since py > g, the possibilities py < Az and g > Ay are

impossible.

Case pi1 = p2. (3) holds if and only if the pole in P(\) at A = iy is order 1, that is, A; = p; for

some 7 € {1,2,3}, ag satisfies (6) and
—(arai + aza3) = [T(N; = m)
J#

which has a solution exactly when py; = g = A5, O

These calculations show that the level sets ®~!(z) for # € A, are as follows. (e.g. for z lying

in the left open facet of Ay, ®~!(z) = S1)

e
“
e
%

Figure 2: The sets ®~1(xz) for z € A,

The action of T on a generic fiber ®~!(2) = T is free, so T acts effectively on Y = @~ (int £} ),
and G acts effectively on M. Since dim M) = 6 = (dim +rank)U(2), M) is multiplicity-free. The

following lemma, which will be proved in section 4, shows that M), is transversal.



Lemma 2.2 (Guillemin) If M is any Hamiltonian G-space with moment map ® : M — g*, then
M is transversal if and only if for all x € A, the semisimple part K, of G, acts locally freely on
O~1(z).

Let 2 be the unique point of Ay contained in the Weyl wall, so that G, = U(2). It follows from the
above computation that the semisimple part, SU(2), of U(2) acts freely on ®~!(z) = §3 = SU(2),

so M) is transversal.

2.2 Symplectic cuts of M,

We begin by defining symplectic cutting, following E. Lerman [24]. We then apply the technique
to My to produce examples of both transversal and non-transversal actions.

Let M be a Hamiltonian G-space with moment map ® : M — g*, and let f : M — R be the
moment map for a circle action which commutes with the action of G. Define g : M x C — R by

g(m, z) = f(m) +]z[*/2.

With respect to the standard product symplectic structure on M x C, g is the moment map for
the diagonal circle action, which is equivariant with respect to the action of U(2) on the left factor.
For a € R, the level set g7!(a) has the form

97 @) = fTH @) U (f7 (o0, a) x S1).
If ST acts freely on f~!(a), then the reduced space
g Ha)/S" = fTHa) /S U fH (—o0,a)

is by the Marsden-Weinstein-Meyer theorem a Hamiltonian G-space. Following Lerman, we call
M<, =g~ (a)/S" the symplectic cut of M at a.

Now let M = M) and let f = Tr ® be the Hamiltonian of the action of the center, 7, of U(2)
on M,. By our previous description of the level sets ®~!(z) we see that Z acts freely on ®~1(z)

except for the vertices in int ¢}
r = ()\27)\3)7 r = ()\17)\3)7 or r = ()\17)\2).

The key point is that Z does act freely on ®71(Ay, X7). Hence Z acts freely on f~'(a) N 1 (t1)
except for

LII)\2—|—>\37 LII)\1—|—>\37 OFQI)\1—|—>\3.

Since Z acts U(2)-equivariantly, Z acts freely on f~!(a) except for these values of a. If (M))<, is

smooth, its moment polytope is

(Ay)<a = {2 € Ay| Tr(z) < a}.



In particular, if 20y < A; 4 A3, then (M))<2y, is smooth and has the moment polytope pictured
in Figure 1, (2). The polytopes in (1) and (3) are the moment polytopes of the spaces (My)<ar,+c
for € small. Note that by the Duistermaat-Heckman theorem, these spaces are equivariantly home-
omorphic! That is, the polytopes in Figure 1, (1), (2), and (3) correspond to a variation of the
symplectic structure on (M))<2y,. As we noted before, only (1) and (3) are reflective.

We conclude by verifying the prediction of Theorem 1.4. Let &, denote the moment map of
the action of U(2) on (My)<ax,4e. If € < 0, then @71 (A, Ay) = 0. If € > 0, then &7 (Ag, Ay)
DAz, A2) 2 57 on which SU(2) acts freely. If € = 0, then ®7 (A, A2) = @71 (A2, X2)/Z = S? on
which SU(2) cannot act freely. By Guillemin’s Lemma 2.2 (M))<2x,4. is transversal if and only if

e#0.

2.3 Generic coadjoint orbits of SO(6) under the action of SO(5)

In this section we study a family of Hamiltonian SO(5)-structures on SO(6)/SO(2)?. As with the
previous example, this family includes both transversal and non-transversal actions. Some members
of the family have the same moment polytopes, and we identify the equivariant symplectomorphism

guaranteed by Theorem 1.3.
Let A = (A1, Az, Az) with Ay > Az > |As| and let M) be the coadjoint orbit of

0 A O 0 0 0
A 0 0 0 0 0
0 0 0 A 0 0
€ 6)*.
0 0 —X 0 0 0 00(6)
0 0 0 0 0 A
0 0 0 0 —X 0

Let G = SO(5) which embeds in SO(6) by A — diag(A4,1).

Case A3 # 0. An argument similar to that for the action of U(2) on U(3)/U(1)? shows that the
moment polytope is Ay = [Ag, A1] X [|A3], A, the level sets @7 1(z), 2 € A, are as shown in Figure
3, and M, is a transversal, multiplicity-free SO(5)-space.

Case A3 = 0. The moment polytope Ay = [A2, A1] X [0, Az] and the level sets ®~!(z) are as shown
in Figure 4.

As before, M is multiplicity-free. However, if for example = (A3, 0) then K, = SO(3) which
cannot act locally freely on ®~1(z) 2 S2. By Guillemin’s Lemma 2.2, M, is not transversal. The

moment polytope Ay violates part (2) of the definition of reflective 1.1.

Now let A3 # 0 and let X = (A1, Ag, —A3) so that Ay = Ay,. By Theorem 1.3, there must exist an
SO(5)-equivariant symplectomorphism ¢ : My = My/. One such map is defined by ¢(p) = Ad*(g)p
where g € O(6) is the element ¢ = diag(1,1,1,1,1,—1). The union M, U M) is a coadjoint orbit of
O(6), whose components are SO(6)-orbits. The components are SO(5)-symplectomorphic because



53 St i
o (8h)? st
pt St—pt

Figure 3: The level sets ®~!(z) for € A, for A3 # 0.

53 St pt

st (SH? st

52 StX 5?52
Figure 4: The level sets ®~!(z) for € A, for A3 = 0.

the outer automorphism of SO(6) has SO(5) as its fixed point set. One can see this easily from
the Dynkin diagram.

3 The abelian case

In this section we review the proof of Delzant’s theorem. The proof here is almost the same as
Delzant’s proof in [7]. The differences are that our construction uses symplectic cutting, and the
uniqueness argument uses Cech cohomology.

Let G be a torus of dimension n. Since (G is abelian, the points in the principal stratum of the
orbit-type decomposition of M have the same stabilizer, so that G acts generically freely (that is,
freely on a dense subset) if and only if the action is effective (that is, & injects into Diff (M).)

Theorem 3.1 (Delzant) Let G be a torus. There is a one-to-one correspondence between ef-

Sective, multiplicity-free actions of the torus G on compact, connected symplectic manifolds, and



Delzant polytopes of maximal dimension in g*. Furthermore, any such action is the Hamiltonian

action associated to a toric variety.

3.1 Multiple symplectic cuts

Lerman [24] defines symplectic cutting for torus actions as follows. Suppose that (M,w) is a

Hamiltonian G-space with moment map ® : M — g*, and that
f:M —R?
is a moment map for a G-equivariant action of a d-dimensional torus T¢. Define
g: M x c? - Rr?
by
g(m, z) = f(m) —|2]*/2
where |2]2/2 denotes (|21]%/2,...,|24|?/2) € R%. g is a moment map for the diagonal action of 7

on M x C%. For a € R?, define the symplectic cut Mc, of M at a as the symplectic reduction
M, := g7 (a)/T?. Mc, can be written as a disjoint union

M, 2 (ﬂ SN ai) () £ (=oo, az’)) /T (7)

Ic{1,..,d} \iel igI

Here, T' denotes the torus with Lie algebra span({e;,i € I'}) and ey, ..., eq is the standard basis for
R?. By the Marsden-Weinstein-Meyer theorem, if T¢ acts freely on g~'(a) then M, is a smooth
Hamiltonian G-space. The space M, is defined in an analogous way, as the reduction of M x c?

at a by the anti-diagonal action of T

Examples

(1) Let M = C*, G = T", and ®(z1,...,2,) = (|211*/2,...,|2.]?/2). Define f = S0, |z/|%/2.
Then
9(217 <y 2 w) = Z |ZZ|2/2 + |u)|2/2

s0 g~ (a)/S" = CP™. The moment polytope of M, is
Aco={r e R Y wi/2 < al,
i.e., the standard n-simplex.

(2) The following example illustrates that small symplectic cuts are “blow-ups” of fixed point
manifolds. (See [24].) Let M = CP? = {(z1, 29, 23)|>_ |2:]?/2 = 1}/5', A be the moment
polytope of M, and f = |z;]*/2. For a € (0,1), the symplectic cut M<, is smooth and has
moment polytope

A<y = {(21,22) € A| 23 < a}.

10



Figure 5: Constructing CP? by symplectic cutting

An element of M, is an equivalence class

[(Zlv 22 23, w)]

where

Y lElP2=1 ol 4wl =24

and

(21, 22, 23, w) = (921, 922, 923, w) = (21, 9'22, 23, g'w)
for elements g, ¢’ € U(1). The map
(217 295 23, w) — (U)Zh 22, U)Zg)

induces a map
Mc, — (C° - {0})/C* = CP?

which is onto and one-to-one, except at [(0,1,0)], which has fiber CP'. That is, M, is the
“blow-up” of CP? at [(0, 1,0)].

o

Figure 6: Blowing up CP?2.

3.2 Construction

Let G be an n-torus. Choose a basis for g and an inner product so that g = g* = R”, and let A C R"

be a Delzant polytope of maximal dimension. In this subsection we present Lerman’s version of

the construction of an effective multiplicity-free G-action with moment polytope A by symplectic

cutting on C".

11



Let Fi,..., F; be the facets of A, vy,...,v4 € g their inward-pointing normal vectors, and
A1, ..., Ag € R constants such that

F;=An{z eg|(x,v) = A}
Let M =C" and ® : M — R"™ the moment map
D(21,...,2,) = const + (|21*/2, .. ., |2a]*/2)
where const € R” is chosen so that A lies in the interior of ®(M). Define f: M — R? by
fi=(®,vi)

and let M) be the symplectic cut of M at A € R? with respect to f. If M is smooth, its moment
polytope is
{z € ®(M)|(z,v;) > X} = A.

By equation (7) without loss of generality it suffices to show that T* acts freely on

k d
()0 () fil(=o0,a) C @ (FN...NE).
=1 i=k+1

If 71 N...N F; is non-empty, by the definition of a Delzant polytope, the map 7% — G given by

exp(z tie;) — exp(z tiv;)

is an injection. Here ej,..., e, is the standard basis for the Lie algebra R* of T%. Since G acts
freely on @' (Fy N ...NF}y), T acts freely, and so M is smooth.

Since symplectic reductions of symplectic manifolds with invariant K&hler structures are Kéahler
(see [13]) M is Kdhler. The action of G extends to an action of the complexified group G'c. Since
(G is a torus, the dimension of a G¢c-orbit containing p is twice the dimension of the G-orbit

containing p. M) has an open G¢ orbit, and is therefore a toric variety.

3.3 Consequences of multiplicity-free

Let M be a compact, connected symplectic manifold with a Hamiltonian action of a torus G. There

are two natural decompositions of M:
M= ] e '(F)
FCA

where the union is over faces F' of A, and the orbit-type decomposition. The following lemma

shows that if the action is effective and multiplicity-free, these two decompositions are related.

Lemma 3.2 (Delzant) Let G be a torus, and let M be a compact connected symplectic manifold
with an effective, multiplicity-free action of G and moment polytope A. If I is a face of A, and
p is any point in ®~1(F), then the stabilizer, G,, of p is connected and its Lie algebra g, is the
annihilator FO of F in g*.

12



Proof - Let N be the component of the fixed point set of ¢, containing p, which is a symplectic
submanifold of M containing the orbit G'p of p. Since G is abelian, G'p is isotropic, so

dim N > 2dim Gp = 2dim G/G),. (8)

On the other hand, let V.= T,(M). Under the action of G, V breaks up into the sum of irreducibles.
Let Viiw (resp. Vien—triv) be the sum of the trivial (resp. non-trivial) irreducibles, which are
symplectic sub-representations.

By the equivariant Darboux theorem, V' is a local model for the action of G, on M near p.
That is, there exists a neighborhood of 0 in V' that is ,-symplectomorphic to a neighborhood of p
in M. Clearly, Vi, is a local model for N. Since &, acts effectively, G, injects into Sp(Von—triv)-
Since G, is abelian,

dim Vion—triv > 2dim G,

and
dimN = dimV —dim V,on—triv (9)
< 2dimG - 2dim G, (10)

Equations (8) and (11) imply that dim N = 2dim G/G,, and dim V55,44 = 2dim G,,. Let
P Gp — Sp(Vnon—triv)

be the representation of G, on Vip—tri. Then p(Gp) is a maximal torus in Sp(Vien—tri), and

since p is an injection, (), is connected. Let

k
Vnon—triv =C

~

be the decomposition of V. —tr4 into G, irreducibles, so that p(G)) = U(l)k and has Lie algebra
u(1)* 2 R*. Let ey, ..., e, € R* be the standard basis vectors, and define v; € gp by

v = (dp) ™' (e:)

so that {vy,...,vx} is a basis for L N g,. The moment map (@, v;) for the action of exp(Rv;) is
locally
(@, v) = |2i]*/2

and therefore has a local minimum at p. By a Morse-theoretic lemma of Atiyah [1] and Guillemin
and Sternberg [12] (®, v;) has a global minimum at p. ®(p) lies in the intersection of k supporting
hyperplanes with normal vectors vy, ..., v;. Since vy, ..., v are linearly independent, the face F’
containing ®(p) is at most dimension n — k.

On the other hand, /G, acts generically freely on the symplectic manifold N, so that ®(N)
is a convex polytope of dimension n — k, and since (/G acts freely at p, ®(p) lies in the interior

of ®(N). Therefore, the dimension of F is exactly n — k, and its annihilator is g,. O

13



Corollary 3.3 Let M be a compact connected symplectic manifold with an effective multiplicity-
[free action of G and moment polytope A. Then

1. The polytope A is a Delzant polytope.

2. A vector v € g is normal to a facet I' of A if and only if the fized point set of exp(Rv) C ¢

acting on M has a component of codimension 2.

3. Let I be any face, and define Gp := G, for any element p € ®~Y(F). Let Hr C G be a
subgroup such that G = Gp x Hp. (Hp ewxists since G is connected.) Then ®71(F) is a
principal Hp-bundle over F.

Proof - The first assertion is contained in the proof of the lemma above. To prove the second
assertion, note the tangent space to ®~1(F) at p is Vi, so that @~(F) is dimension 2dim F, By
the lemma, the fixed point set of exp(Rv) is the union of sets ®~!(F) such that v is normal to F, and
the assertion follows. To prove the third assertion, note that since Hp acts freely at p € ®~1(F),
Im d®, must be at least dimension dim F’, and so ® restricts to a submersion of ®~!(F) onto F.
Therefore, the fibers are smooth, of dimension 2dim /' — dim F' = dim F' = dim Hg. Because the
fibers of ® over I’ are connected by a lemma of Atiyah [1] and Guillemin and Sternberg [12], Hp

acts transitively and freely on the fibers of ®, and the claim follows. O

3.4 Uniqueness

Let M; and M, be compact, connected symplectic manifolds with effective, multiplicity-free actions
of a torus GG and suppose that ®;(M;) = ®3(Mz) =: A. The purpose of this subsection is to prove
that in this situation M; and M, are equivariantly symplectomorphic.

Let F be a face of A, z a point in F, and for : = 1,2 let p; be a point in @;1(36). By Lemma
3.2, G,, = G)p, = G. By the local normal form theorem of Marle and Guillemin and Sternberg
(see e.g. [28, Proposition 2.5], there exist neighborhoods of p; in M; that are G-equivariantly

symplectomorphic to neighborhoods of the zero section in

G xGp ((a/9r)" & W;)

where W; := (T'(Gp;))* /T (Gp;) are the symplectic slices to the orbits G'p; C M;. In our case, one
checks that W; 2 V) on_trivi, and since G'p is isomorphic to a maximal torus in Sp(W;), the vector
spaces Wy and Wy are isomorphic symplectic representations of Gp. It follows that there exists
neighborhoods, U; of p; in M; and an equivariant symplectomorphism U; = U,. Since M; and M,
are multiplicity-free, the sets U; are of the form @;1(‘/), for some neighborhood V of z in A.

The construction of a global equivariant symplectomorphism follows from a Cech cohomology

argument,* which is a modification of one given by Haefliger and Salem [17] for actions of tori

*This argument is joint work with E. Lerman and S. Tolman
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on orbifolds. Let {V;} be a good cover of A such that for each j there exists an equivariant
symplectomorphism ¢; : @71 (V;) — ®5'(V;). Consider the sheaf

Diff (w, ®, (7)

which assigns to any V' C A the group of G-equivariant symplectomorphisms of ®~1(V) which

preserve the moment map ®. For each 7 and j, define
vij = ¢i ey
The collection {1;;} defines a cocycle
Y € CHA, Diff(w, ®, G)).

It suffices to show that 1) is the boundary of some element {r;} € ~C°(A, Diff(w, M/G, G)). Indeed,

the collection of maps ¢;7; satisfy
PiTi = P57
on (I>1_1(VZ' N'V;), and therefore define a global equivariant symplectomorphism M; — M.

To show that 9 is cohomologically trivial, let C'Z be the sheaf which assigns to each open subset

V C A the G-invariant smooth functions on ®~1(V). There is a morphism of sheaves
Ccg — Diff(w, @, G)

given by assigning to some f € Cg (V) the time one exponential of the corresponding Hamiltonian
vector field. Let R be the constant sheaf which assigns to each open set V a copy of the real
numbers R. Let £ be the constant sheaf which assigns to each open subset of A the abelian group

L = kerexp : g — . There is a morphism of sheaves
LR —CF
given by assigning to some ({,r) € L & R the G-invariant function r + (®,[).

Lemma 3.4 Let (M,w) be a compact connected symplectic manifold with a multiplicity-free, ef-
fective action of a torus G with moment map ® : M — g*. Then the sequence of sheaves
0—->LPBR—C¥ —Diff(w,®,G) — 0 is exact.

Proof - First, we show that the third arrow is surjective. For any =z € A, let V be a contractible
neighborhood of » € A, and let U = ®~!(V). We can assume that V is small enough so that
U is an invariant tubular neighborhood of the orbit ®~!(z). Let ¢ : U — U be an equivariant
symplectomorphism, which preserves the moment map. Since A = M/G, ¢ acts trivially on the
set of orbits M/G. A lemma of Haefliger, Salem, and Schwarz [17, Theorem 3.1] implies that there
exists a smooth invariant map 6 : M — G such that ¢(p) = 6(p)p. Since V is simply connected,
lifts to a map 6 : M — g. Define X € Vect(U) by

T #
X, = O(p)p .
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Since @ is G-invariant, X is equal to #(p)# on the G-orbit through p. Therefore, the time one
exponential of X is ¢. It remains to show that X is Hamiltonian. Recall the following facts about
(U),d).

the basic subcomplex (9.

(1) If ¢ is an equivariant diffeomorphism of U that induces the identity on U/G, then ¢ acts

trivially on Qpggic-

(2) If U is a tubular neighborhood of an orbit, then H} . (U) = 0.

basic

(1) is proved by looking at the top-dimensional stratum of the orbit-type decomposition. (2) follows
since U is equivariantly contractible to the orbit, on which any basic form vanishes.

To show that X is Hamiltonian, let ¥ € g. By definition of the moment map
w(X,Y#*) = X(®,Y) =0.

Since X and w are G-invariant, txw is also G-invariant, and so 1 yw is basic. Because d of any basic

form is also basic, £Lyw = dixw is basic as well. Since ¢ = exp, X is symplectic,

1y .

0 = /(J%(exth)wdt
1

= /(exth)*,CXw dt

0
1

= Lxw dt (by (1))
0

= Lxw.

By (2), 1xw = df for some G-invariant function f defined on U.

Exactness at £ @ R follows from the assumption that G acts effectively. It remains to show
exactness at Cg’. Let V C A be a connected open set, and let ({,r) be any element of L & R. The
Hamiltonian vector field of f; = r+ (®,!) is the vector field I#, which has time one exponential the
identity map. Conversely, suppose that f € C(®~!(V)) has Hamiltonian vector field X, and the
time one exponential of X is the identity. Since X;® = 0, X is tangent to the orbits of . Since
Xy is G-invariant, on any orbit Gp of &, X; must equal Y#, for some Y € g. We can therefore
define a map 6 : A — g by requiring that 8(z)¥* = X; on ®~!(z). (The map 6 is not uniquely
defined on faces of A.) Since G acts generically freely on the set ®~!(int A), the image of @ lies
generically in L, and since L is discrete, 8 is generically constant, equal to some fixed element [ € L.
It follows that X; = Xy, on ®~!(int A), and by continuity on M. The one-forms df and df; are
therefore equal, and the difference f — f; is a constant r € R. O

Consider the long exact sequence of Cech cohomology groups associated to the short exact
sequence above. Because of the existence of invariant partitions of unity, C& is a fine sheaf, and
therefore “H'(A, Diff(w, G, ®@)) = “HFY(A, L) for all i > 0. Since A is contractible, the latter
groups are zero. It follows that [¢/] € “H'(A, Diff(w, ®, ) is zero, as required. O
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Finally we note for future reference the following lemma.®

Lemma 3.5 Let G be a torus, let M be a compact manifold with an action of G, and suppose
that the fized point set Mg is discrete. Let wy and wy be G-invariant symplectic forms on M, and
suppose that ®1 and ®y are moment maps for the action of G on (M, wy) and (M,w;) respectively.

If q)1|MG = ¢2|MG, then [wl] = [wg].

Proof - Let ¢ : Mg — M denote the inclusion of M¢ in M. By [2, page 23] the map * : HX (M) —
H}(Mg) in equivariant cohomology is injective. Let ; and &, be the equivariant extensions of
wy and wy given by ®; and ®5. The assumption guarantees that i*[w;] = ¢*[w3] which implies that

[W1] = [w2] and hence [wy] = [ws]. O

4 Consequences of transversality

Since Im d®, is the annihilator g) of g, (see [12]) the transversality condition

Im d®, +t" =g". (12)
is equivalent to
o+t =g"
or
g, NtT = {0}. (13)

By the equivariance of @, the subalgebra g, is contained in gg(,), so if ge(,) = t then (13) is
automatic.
We now prove Lemma 2.2, which has already been used several times. For each x € t*, let K,

be the semisimple part of the stabilizer, G, of z, and &, its Lie algebra.

Proof of Lemma 2.2 - By definition, K, acts locally freely at p € ®~!(z) if and only if ¢, Ng, = {0}.
Suppose that K, acts locally freely at p. Since g, Nt+ C ¢, NtL and g, C g, we have

gpﬂtJ‘ = (gpﬂgx)ﬂtj‘
= (gp,Net) Nttt ={0}

as required.

On the other hand, suppose M is transversal and X € ¢, Ng,. We must show that X = 0. We
claim that for some k € K, the vector Ad(k)X lies in t%. It follows that X € gg, N+, which if
X # 0 violates (13). An invariant inner product gives an identification of the orbit KX with the

coadjoint orbit K, X™* C €. The orbit K, X* has a Hamiltonian action of the maximal torus, T}, of

5] would like to thank the referee for pointing out the right form of this lemma.
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K, whose moment map, 7, is the projection onto t%. It suffices to show that #=1(0) is non-empty.

This is a consequence of Kostant convexity: If W, is the Weyl group of T, C K, the vector

! > wX* (14)

lies in 7(K,X™*) by convexity. Since (14) is Weyl invariant, and K, is semisimple, (14) is the zero

vector. O

By the transversality assumption, ®~!(t*) is a smooth submanifold, but in general ®~1(¢) is
not symplectic. Guillemin observed that Lemma 2.2 produces local models for ®~!(¢*) where it
is not a symplectic submanifold. Let ¢ be a Weyl wall, that is, a connected component of the
orbit-type decomposition of t} , and define GG, = G, for any = € . By the cross-section theorem of
Guillemin and Sternberg [16, Theorem 26.2], there exists a neighborhood, U, of ®~!(¢) in ®~!(g})
that is symplectic. Let K, be the semi-simple part of G, with Lie algebra t,. Let P denote the
projection

P:g, —t.
Then Po® is a moment map for the action of K, on U. By definition, ®~!(¢) is an open subset of

(Po®)7'(0) = 27" (5),

where 3, is the Lie algebra of the center Z, of G,. Since K, acts locally freely on ®~1(co), ®71(0)
is a coisotropic submanifold, and by the equivariant coisotropic embedding theorem (see [16, page
315]) there exists an equivariant symplectomorphism 1 of a neighborhood of ®~!(s) in U with a
neighborhood of ®~1 () in

o (o) x €. (15)

The Hamiltonian structure on (15) is given as follows. Let
a € QY e o),t,)

be a GG,-invariant connection form for the action of K,. That is, if X € ¢,, then a(X#) = X. Let
w, be the pullback of w to ®~!(¢). Then the symplectic form on &~ (o) x £ is

we + d{a, )

where m denotes the projection ®71(¢) x £ onto ¢5. The action of G, is given by g(p, k) =
(gp, Ad*(¢)k), and the moment map for the action of K, is the projection (p, k) — k. Denote by ¢
the inclusion of ®~1(¢*) in M, and by j the inclusion of 71 (o) x 5 in ®71(o) x €:. Restricting ¢
to @~1(t*), we have:

Lemma 4.1 (Guillemin) Let (M,w) be a compact Hamiltonian G-space with moment map & :
M — g* such that @ is transversal to t*. Then for any Weyl wall o, there exists near a T'-equivariant
diffeomorphism 1 of a neighborhood of ®~1(c) in ®~1(t*) with a neighborhood of ®~1(a) x {0} in
Do) x & such that Y. (i*w) = j*(w, + d{a, 7).

That is, we have a local model for ®~'(t*) despite the fact that i*w is degenerate at ®~'(o).
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4.1 Consequences of transversal and multiplicity-free

The main result of this section is

Proposition 4.2 Let M be a compact, connected, transversal, multiplicity-free G-space containing

a dense subset on which G acts locally freely. Then the moment polytope of M is reflective.

We begin by giving an alternative formulation of the definition of a reflective polytope in the

case that the elements of V' (z) are rational vectors.

Lemma 4.3 Let A C £} be a convexr polytope, x € A, and suppose that V(x) C t consists of
rational vectors in minimal form. Then A is reflective at z if and only if (1) the set V(z)U -V (z)
is invariant under W, and (2) all open facets of A meeting x are contained in int £ . Furthermore,

A is reflective if and only if A is reflective at vertices.

Proof - Assume that A is reflective at z. If v € V(2) is in minimal form, then since W leaves L
invariant, wv is also in minimal form. Therefore ¢(wv) € V(z) for some constant ¢ € R if and only
if fwv € V(z). The proof of the last assertion is left to the reader. O

Proof of Proposition 4.2 - We have to show that any open facet F' of A is interior, that is, lies in
the open chamber int t}. For any simple root a, the hyperplane ker o is supporting, so I’ N ker «
is either empty or F. Therefore, I’ is contained in some Weyl wall, . Since K, acts locally freely
on ®~1(s), by the Marsden-Weinstein-Meyer theorem, Y, := ®~1(¢)/K, is Hamiltonian Z,-space

with moment image A N o, which has at worst orbifold singularities. Since any orbit is isotropic,

1
dimAneo < §ding. (16)
But we know that
dimY, = dimM — (dimg* —dimo) — dim K, (17)
= (dim 4rank)(G) — dim G + dim 7, — dim K, (18)
= 2dim Z, + rank K, — dim K. (19)

Since K, is semisimple, dim K, > 3 rank K, so
1
dimAnNne < 3 dimY, < dim Z, — rank K, = n — 2codim o (20)

which at most n — 2, if ¢ # int t}. This observation is due to R. Souza [29]. Therefore, o cannot
contain F'.

To prove that V() is rational and V (z)U—V (z) is W,-invariant we need the following extension
of Delzant’s Lemma 3.2, noted in [8]. For any Hamiltonian G-space M with moment map ® : M —
g*, we denote by Y the inverse image Y, := ®~!(int t}), which is a connected Hamiltonian T-space
(see e.g. [25].)
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Lemma 4.4 (Delzant) Let M be a compact connected multiplicity-free Hamiltonian G-space con-
taining a dense subset on which G acts locally freely. Let ® : M — g* denote the moment map, A
the moment polytope, S C T the principal isotropy subgroup of T acting on Y1, and ) the quotient
Q =T/S. Since S is discrete, the map T — @Q induces an identification of t and q. If F is a face
of A lying in int 7, and p € O~ (F), then the isotropy subgroup @, is connected with Lie algebra
qp equal to F°, and A is Delzant at ®(p) with respect to the lattice kerexp : q — Q.

Proof - The proof goes exactly as in the abelian case, with M replaced by Y., until we come to
the Morse theoretic lemma of Atiyah and Guillemin and Sternberg, which requires compactness.
Let (®,v;) have a local minimum at a point p € Y, and let U be a neighborhood of p in Y} so
that (®,v;) restricted to U takes its minimum at p. Since 7 is abelian we can assume that U
is T-invariant. Suppose that (®,v;) does not have a global minimum at p. Then there exists a
sequence x,, of points in A approaching ®(p), with (z, — ®(p),v;) < 0. Let ¢, € ®~!(z,). By
compactness of M, we can assume that g, approaches a point ¢ € M. By continuity ®(¢) = .
Since ¢, ¢ U, the point ¢ does not lie in U. But U N ®~!(z) is closed, and therefore U N ®~1(x)
is both closed and open in ®~1(x), which implies that ®~!(z) is not connected, contradicting a
theorem of Kirwan [20]. O

Now let = be a point of A contained in o, F' a facet of A meeting z, v the normal vector to F,
and p € ®~1(F). Since F is interior, by Lemma 4.4

Qp = exp(Rv).

Let (¢,t) = ¥ (p) be the image of pin ®~1(o) x 5. By the equivariance of 1,

Qq = exp(Rv).

Suppose that [w] lies in the Weyl group W, of T, in K,, and let w € K, be a representative of [w].
The stabilizer Q),,, of wgq equals

Quqg = exp(R wv).
We can assume that ¢ is small enough so that (wq,t) lies in the domain of ¥»~1. Let p’ € U be
defined by

p =47 (w, ).
Then p € ®~!(int ;) and

Qp = exp(R wv)
so that by Lemma 4.4, ®(p’) lies in a facet, F’, with normal vector twu.

It remains to check that F' meets z. Let {p,,s € [0,1)} be a path of points in M with pg = p
such that ®(p,) € F and ®(ps) — z. Define (gs,t5) = 1(ps). Because t; — 0, ®(g;) — 2. By
compactness we can assume that ¢; — ¢; for some ¢; € ®~!(z). Therefore wg, — wqq, and if we
define p, = v~ (wgs,ts), then ®(p,) — ®(wq) = z. By Lemma 4.4, since G, is constant, the
points ®~1(pl) all lie in F.
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5 Consequences of reflectivity

In this section we show that reflectivity leads to a number of restrictions on the polytope, including

a restriction discovered by Guillemin [9] which is (4) in the proposition below.

Proposition 5.1 Let A C t} be a reflective polytope of maximal dimension, ¥ a point in A, o the

Weyl wall containing x, and r(o) the set of simple roots perpendicular to o.
(1) Let r € W, be a simple reflection and v € V (x) such that rv #v. Then rv € =V (z).
(2) If o« € r(0) and v € V() then (o, v) > 0.
(3) Any v € V() is perpendicular to all but at most one element of r(o).
(4) The elements of r(o) are orthogonal. Consequently, &, is a product of su(2)’s.
Proof of (1) - Let A = (v, 2) so that (v,y) > A for all y € A. By assumption, rv € £V (). Suppose

that rv € +V (). Then

(rv,z) = (v,re) = (v,2) = A

so (rv,y) > A for any y € A. If r is the simple reflection corresponding to o € r(o), then

(rv,y) = (v — 2((3: Z)) a, y) > A (21)

If (ayv) > 0, let y lie in the facet /' with normal vector v, so that (v,y) = A. Since by
assumption [ is interior, (e, y) > 0 which implies (rv,y) < A — a contradiction.

On the other hand, if (a,v) < 0, then (rv,y) = X only if (v,y) = A and («,y) = 0, which
implies, for instance, that the facet with normal vector rv is contained in ker o and therefore is not

interior.

Proof of (2) - If (a, v) # 0 then rv # v and therefore by (1) rv € =V (2). Since (—rv,z) = —(v,2) =

—\, we have
(a,v)

re= (ol

for all y € A. Suppose that (a,v) < 0. The inequalities (v,y) > A and (a,y) > 0 imply that
(—rv,y) < —=A. Therefore, (—rv,y) = A for all y € A, which is impossible since A is of maximal

oe—v,y) > A

dimension.

Proof of (3) and (4) - Let ay, a9 € r(0) and let 1y € W, be the reflection corresponding to a.
There must exist a vector v € V(z) such that (v, aq) # 0. If not, then

(x —tag,v) = (z,v)

for all v € V(z), so for t > 0 small,  — tay € A, which is impossible since (z — tay,a1) <0 and A

is contained in tj_.
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By (1), —riv € V(2), and by definition
(041, U)
(0417 041)

by (2). Since ay and ag are simple and distinct, (o, az) < 0, and by (2) (aq,v) and (ag,v) are at

(riv,ag) = (2 a; — v, ) >0

least 0. Therefore (rjv, az), (0q,aq), and (v, ). must all be zero. O

Proposition 5.1 (4) implies that if M is a Hamiltonian G-space satisfying the assumptions of
Proposition 4.2, then its moment polytope A intersects only those walls ¢ such that the Lie algebra
t, is a product of su(2)’s. This was first proved by Guillemin [9] by a different method. We will
give another proof, if M is torsion-free, in Corollary 6.5.

The following corollary gives the form of the set V' (z) for any point z € A.

Corollary 5.2 Let A be a reflective polytope of mazximal dimension, and let o be a Weyl wall
meeting A. Then

(1) For each o; € r(0) there exists a vector §; € 3, such that (a; £ 3;)/2 are normal vectors to
facets Fy of A and the intersection Fy N F_ equals A Nkera;. If A is simple, then (3; is

unique.

(2) For any x € o, the elements of V(z) not of the form o; £ f3;, for some a; € r(o) and §; € 3.,

lie in 3.

Proof - By the proof of (3) and (4) of Proposition 5.1, there exists v € V' (z) such that (o, v) # 0.
By rescaling, we can assume that
v = (a; + 3;)/2
for some f3; € t such that (3;, a;) = 0. By Proposition 5.1, (3), if ¢ # j then
0= (aj,v) = (a, (@i + i) /2).
which by (4), equals («a;, 5;/2). Hence, 3; € 3,. This also shows that any v € V(z) such that
(v, ;) # 0 must be of the form (a; + 5;)/2, for some «a; € r(o),5; € 3,. If v is not of this form,
then (a;,v) =0, for all j, that is, v € 3,.
Suppose that v = (a; + §;)/2 and let r be the reflection corresponding to a;. By 5.1 (1)

—rv=(0; — f3)/2 € V(z).
Let A = (v, z) so that (—rv,z) = —\. Note that
Fents = {ye Ay, (a; £ 5:)/2) = £}
= {ycAlly,ai) =0 and (y,5:/2) = A}
which is contained in ker ;. On the other hand, if y € A N kera;, then
(y, £5:/2) = £,

so that (y,3;/2) = A and y € F, N F_. If A is simple, then since span(o; & 3;,c; = 31) =
span(ag, f;, 41), B; must be unique. O
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6 The Delzant condition

For each Weyl wall o C t}, let (i, be its isotropy subgroup, and K, = (G, G,) its semisimple
part. We first define (see Lemma 2.2)

Definition 6.1 A compact connected transversal Hamiltonian G-space is torsion-free if and only
if
(a) G acts freely on a dense set,

(b) K, acts freely on ®~1(o) for all Weyl walls o.

(c¢) K, is simply connected.
The purpose of this section is to prove

Proposition 6.2 Let M be a compact connected symplectic manifold with a transversal multiplicity-
[free action of G which is free on a dense subset. Let A be the moment polytope of the action, and
suppose that K, is simply connected for all Weyl walls o such that ANo # (). Then M is torsion-free
if and only if A is Delzant.

Remark 6.3 In particular A is simple. There is a stronger result, proved in [30]: A is simple
if M is compact, connected, transversal, and multiplicity-free. If M is not transversal, A is not

necessarily simple.

Proof - First, assume M is torsion-free, so that K, acts freely on ®~1(c) for all walls o. Consider
the Hamiltonian action of Z, on Y,. Let S, be the principal isotropy subgroup, that is, the kernel
of the action 7, — Diff(Y,), and let T, denote the maximal torus of K,.

Lemma 6.4 There exists an isomorphism v : S, — T, and an action p : T, — Diff (®71(c))
commuting with the action of K, such that S, acts by po-y.

Proof - Since Z, is abelian, its orbits in Y, are isotropic submanifolds. A generic orbit is isomorphic
to Qy := Z,/5,, and therefore

dim@, < %(dim Ys)
< dimZ, —dim T,
by (20). (Equality holds if and only if dim K, = 3dim7,.) Hence,
dim S, > dim 7}. (22)

Let ¢ € @ (o) be any point, and let K,q denote the fiber of ®~!(c) containing ¢. Since S, acts

trivially on the base Y,, K,q is invariant under the action of S,. Since the action of S, commutes
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with that of T,, S, acts on the quotient (K,q)/T,. Because the Euler characteristic of (K,q)/T,
(which is the order of W,) is non-zero, the action of S, has a fixed point [p] € (K,q)/T,. Let
p € K,q be a representative of [p], that is, [p] = T,p. The action of S, on K,q = K,p is equal
to the action on T,p, extended to K,p by requiring K,-equivariance. Define a map v : S, — T,
by sp = v(s)p. Since S, commutes with T,, the map 7 is a homomorphism. To show that ~
is an isomorphism, note that if K,p is a generic fiber, then S, acts freely on K,p. Indeed, by
the Guillemin local model, since S, acts generically freely on ®~1(t*), S, acts generically freely
on ®!(s). In fact, by choosing an S,-invariant connection on ®~!(o), the fibers of ®~!(o) are
(S, x K,)-diffeomorphic, so S, acts freely on every fiber. Therefore, v is an injection. By (22), v
is an isomorphism.
Let A denote the action of S, on ®~!(o) given by

for s € S, and ¢ € ®~!(7). A computation shows that T,p is the fixed point set of A on K, p. Since
the fibers of ®7!(o) are (K, x S,)-diffeomorphic, the fixed point set of A is a principal T,-bundle

A C o).

Therefore
o)~ K, x7, A. (23)

We define the right action p of T, on ®~!(o) by extending the action of 7,, on A by K,-equivariance.
By construction, S, acts by po~y. O

Corollary 6.5 (1) dim K, =3dim7,.
(2) dimY, = 2dim Q,.

Since K, is by assumption simply-connected, (1) implies that K, must be a product of SU(2)’s.
See proposition 5.1, (4). (2) says that Y, is multiplicity-free under the (effective) action of Q.. In
summary, for all walls o, ®71(0) is a principal K,-bundle over the multiplicity-free space Y.

Suppose that # € A is contained in a Weyl wall . We wish to show that V(z) is a lattice
sub-basis for L C t.

Lemma 6.6 Let v be any vector in V(z). If a; € r(0) is a simple root such that (v, ;) # 0, then

v=oqa; £dy e,

Proof - By Corollary 5.2 there exists § € 3, such that v = (a; + 5)/2. Let p lie in the fixed point
set of exp(Rv) acting on ®~!(o). For some k € K,, we have kp € A. Let

v = Ad(k)v = (Ad(k)e; + 5;)/2
so that kp is fixed by exp(Rv’) and

v" = (Ad(k)a; + dv(6:)) /2.
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Since the action A is trivial on A, the point kp is also fixed by exp(Rv”), and since v” € ¢, and K,
acts freely, the vector v” must vanish. Since dvy(3;) € t, we have that k € N(T,) and since ¢, is a
product of su(2)’s this implies that Ad(k)a; = £y, as required. O

Define 3; := dy~'a;, Vz(z) := V(X) N3, and
Vi(z) == {(a; £8;)/2 | i=1,...,codim(c)}.

so that by Lemma 6.6 V(z) = Vg (z) U Vz(z). We claim that Vi () is a basis for the lattice
LN (t; + 5,). Since each fiber of ®~!(o) is isomorphic to SU(2)%, and T, (resp. S,) acts by the
left (resp. right) action of U(1)*

k k
exp(z tio; + Z s;3;) =1d
=1 7=1
if and only if ¢;,s; € Z/2 and t; + s; € Z for all 7, which proves the claim.

Lemma 6.7 The Lie algebra g, contains Vz(z).

Proof - Let u € Vz(z) be a normal vector to a facet F' of A, and let p; € F be a sequence of
points such that ®(p;) — @. By compactness, we can assume that p; — ¢, where ¢ € ®~'(z). By
Delzant’s lemma,

gp, = Ru

and therefore by continuity

exp(tu)q = ¢ for all t € R.
Since M is multiplicity-free, p = gq for some g € G, and since u € 3,, Ad(g)u = u € g,. O

Let L’ denote the lattice
L' :=ker exp:q, = Q,

and let 7 : 3, — ¢, denote the projection of 3, onto ¢,. We think of ¢ sitting inside 37 as the
subspace annihilating s,, so that ¢& contains ANo. Let V,(2) C ¢, denote the normal vectors to
facets of ANo at z.

Lemma 6.8 The projection w gives an isomorphism between Vz(x) and V,(z). Furthermore, V;(z)

is a lattice sub-basis of L' C q,.

Proof - Let v € Vz(z) be the normal vector to a face F' of A meeting z. Then by Lemma 4.4,
®~1(F) is contained in a codimension 2 component, C', of the fixed point set of exp(Rv) acting
on Y,. Since v € j,, C is a K,-bundle over Q(C), where Q : ®~1(c) — Y, is the projection.
Furthermore, Q(C) is contained in the fixed point set, (Y,),, of exp(Rv) acting on Y;. If (Y;), is
codimension 0, then v € s,, which is a contradiction since S, acts freely on ®~!(c). Therefore,

Q(C) is a codimension 2 component of (Y,),. Delzant’s Lemma 3.2, and Corollary 3.3 apply to the
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action of @, on Y, even though Y, is not compact. (The proof is the same as that of Lemma 4.4.)
Therefore, 7(v) € V(). If elements v, w € Vz(z) have the same projection m(v) = 7(w), then by
Lemma 6.7, v — w € s, Ng,. Since S, acts freely, v — w = 0. It remains to show that Vz(z) is
mapped onto V, (z). Let F' be any facet of AN o. We can write F' = I’ N ANo where I is a facet
of A. If F' has normal vector v lying in Vi (), then F” contains ANeo,so FFNANo=AnNo.
Therefore, v € Vz(z). O

Now suppose that v € L Nspan(V (z)) and that v = ug + u, with uy € t, and u. € 3,. Since
exp(u,) equals exp(ug)™!,
exp(u,) €T, NZ, CS,.

By Lemma 6.8 there exist a unique element v’ € spang (Vz(z)) such that v, — v’ € s,, and ' can
be written uniquely as a linear combination of elements of Vz(z), with integer coefficients. By the

first part of the proof, we can write
u—u =up+ (u, —u') €t, + 5,

uniquely as a linear combination with integer coefficients of elements of Vi (), which shows that
V(z) is a lattice sub-basis.

Let A be Delzant, and suppose that there exists some g € K, and some point p € ®~!(o) such
that gp = p. We claim that ¢ = Id. Since hgh~' fixes hp, for any h € (G,, we can assume that
g € T,. Let v be the map in Lemma 4.1, and let ¢ € int (t,)7 be small enough so that (p,?) lies
in the domain of v. If we define ¢ = ¢(p,t), then by the equivariance of ¢, gg = q. Let ' C A
be the open face containing ®(g), which meets ®(p). By Lemma 4.4, g lies in T, = exp(F°)). By

Corollary 5.2, the normal vectors to facets meeting ®(p) are of the form

(on £51)/2, ..., (o £ Br) /2,01, ... 0 (24)

where 3;,v; € 3, and k = codim o. By Corollary 5.2 the intersection of the facets /4 ; with normal
vectors a; £ f3; is contained in ker a;, so ®(¢) cannot be contained in both /4 ; and F_ ;. Without

loss of generality, the normal vectors to facets meeting ®(q) are
(1 = B1)/2,...; (o = Br) /2,01, .. v
for some k' < k, "’ < [, such that ¥’ + I’ = codim F. The vectors
a1, (a1 = B1) /2, oy (ag = Br) /2,015 01

generate the same lattice as the lattice generated by (24), which since A is Delzant is a lattice

sub-basis. Therefore, the vectors

0417...70%7(041—ﬁl)/27...7(04k/ _ﬁk’)/vih'"vvl’

generate a lattice sub-basis. It follows that the intersection T, N7, = {Id} which implies that
g=1d. O
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7 The orbit-type decomposition of M

In the multiplicity-free case, the quotient M/G is homeomorphic to the moment polytope A,
so it’s natural to look for a relationship between the orbit-type decomposition of M /G and the
decomposition of A into faces.

We define an equivalence relation on the set of faces of A as follows. A facet F with normal
vector vy is called reflected from a facet F} with normal vector vy if the intersection Fp N F} is
non-empty and the vy = wvy, for some w € W which fixes the intersection Fy N Fy. We say that a
face Fg is reflected from a face Fy if any facet containing Fp is reflected from some facet containing
Fy. We say that two faces Fy and F are reflection-equivalent if there exist a sequence of faces
Fy, ..., Fi—y such that F} is reflected from Fjy; for j =0,...,1—1.

Example 7.1 For polytope A = [As, A2] X [A2, A] shown in Figure 2, there are six equivalence
classes. One contains the left facet, the top facet, and the zero dimensional face {(A3, A2)}. The

rest contain a single face.
The purpose of this section is to prove

Theorem 7.2 Let M be a torsion-free, transversal, multiplicity-free, compact, connected Hamil-
tonian G-space with moment map ® : M — g* and moment polytope A. A connected component
of a stratum of the orbit-type decomposition of M is a union of sets ®~L(F) over faces F of A

reflection-equivalent to some fixed face, Fy.

For any = € A, let ViE(z) be the set of vectors in V(z) of the form (a; £ 3;)/2, so that
V() = Vi (#) UV (2). The span of Vi () is then the image of t, under the map

dX\:t, = t, + 5,

t s (¢, dy ().

We extend dA to t by setting dA = 0 on 3,, and prove the following generalization of Delzant’s

Lemma 3.2.

Lemma 7.3 The stabilizer, G, of any point p in ®~1(z) is connected and its Lie algebra, g,, is
K, -conjugate to span(Vz(z) U Vi (2)).

Proof - By Lemma 4.1, the level sets of 7 o ® are equivariantly diffeomorphic, so G, = G, for some
q € Y., and the first claim follows from Lemma 4.4.

To prove the second assertion, suppose that x lies in a Weyl wall . We can assume that p € A.
By definition, A is the fixed point set of the action A, so g, contains span(Vy (z)) = Im dA. By
Lemma 6.7, g, contains Vz(z).
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It remains to show that g, is contained in span(Vy () UVz(x)). Since for any v € g,, the vector
(dA)v lies in spanV; () it suffices to show that v — (dA)v lies in span(Vz(z)). Note that v — (dA)v
lies in g, N 35. Indeed, let v = v, 4+ v, with vy € t, and v, € 3,. Then

v— (dXN)v = (vg + vy) — (v — (dy)vr) = v, — (dy)vg.

Therefore, it suffices to show that g,Mj, is contained in span(Vz(z)). Since g, contains span(Vz(z)),
it suffices to show that the dimension of g,Nj, is at most that of span(Vz(z)). Let 7 be the quotient
map 7 :j, — ¢,. Since p € A,

gp N5, = {0},
so that 7 restricted to g, N3, is an injection. By Corollary 6.8, 7 is also injective on span(Vz(z)), so
it suffices to show that the dimension of 7(g, N3,) is at most that of 7(span(Vz(z)) = span(V,(z)).
If Q: ® (o) = Y, is the projection, then

m(gp N30) C (¢5)q(p) = span(Vo(z))

by Lemma 3.2 applied to the action of (), on Y,. O

Proof of Theorem 7.2 - Let Fy and Iy be faces of A, and let z and y be points in Fy and Fy,
respectively. It suffices to consider the case that Fy is contained in I, so that V(z) D V(y), and to
show that Fy is reflected from Fy if and only if ®~!(Fp) and ®~1(F}) have the same orbit-type. Let
o be the Weyl wall containing Fy. The faces Iy and Fy are reflected if and only if for any v € V (z),
the vector wv lies in V (y) for some w € W,. That is, V(z) = W,V (y), which holds if and only if
Vz(z) C Vz(y) and for some choice of Vi (), the difference Vi (z) — Vi (y) lies in Vz(y). That is,

Vi (@) UVz(z) = Vi (y) UVz(y).

By Lemma 7.3 Fy is reflected from Fy if and only if the sets ®~1(F5) and ®~1(F;) have the same
orbit-type. O

Example 7.4 Let M be the 10-dimensional coadjoint orbit of G5 through the point z pictured
below, so that M = G5/(SU(2) x U(1)). We show that the orbit-type decomposition of the action
of SU(3) C G'3 on M has three components. The moment polytope A can be computed using, for
instance, a formula of Guillemin and Prato [11], and is pictured as the shaded region in the figure
below on the right. A local model for M in a neighborhood of z shows that SU(3) acts generically
freely. By 1.4, since A is reflective and simple, M is transversal. Since A is Delzant, by Proposition
6.2, M is torsion-free. By Theorem 7.2, the orbit-type decomposition of A consists of only three
strata: {}, 0A —{z}, and int A. These facts can be verified using the embedding of Gz in SO(7).

8 Construction I

The purpose of this section is to show how the technique of symplectic cutting using components

of the moment map (used in Lerman’s version of the construction of multiplicity-free torus actions)
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Figure 7: The point = € Lie(G3)*, and the moment polytope A C su(3)*.

generalizes to the non-abelian case. Let
Lok *
Q:g" =t

be the quotient map which assigns to each » € g* the unique point in Gz Nt}. The map @ is
continuous, and smooth on gy . Let

d=0Qod.

If v € g, then <(i>, v) is a G-invariant function on M, which is continuous but not necessarily smooth
everywhere. Regardless, we will use the following proposition to show that we can cut with a
component (®,v) of ® as long as the “cut hyperplane” H defined by ( ,v) = X is perpendicular
to any Weyl wall & meeting H N A, or equivalently, v € 3, for any such wall ¢. Recall that if o
is any Weyl wall, then U, C g} is called a cross-section for o if for any point z € U,, G, C G,.
By the Guillemin-Sternberg cross-section theorem, [16, Theorem 26.2] ®~!(U,) is a Hamiltonian

G ,-space.

Proposition 8.1 For any Weyl wall ¢ and vector v € 3,, <(i), v) is smooth on G®~Y(U,). Further-
more, the Hamiltonian vector field X, associated to <(i>, v) is equal to the Hamiltonian vector field
X, associated to (®,v) on ®~HU,).

This implies that the flow of )N(U is equal to the flow of X, on @_I(Ug). Since the flow of )N(U is

G-equivariant, this implies that the flow of X, is periodic, if v is rational, wherever it is defined.

Proof - Suppose that ®(p) € 0. Since v € 3,,

(®,v) = (®,v) on &~1(U,). (25)

Since

GO~ YU,) =G xg, @1 (U,)
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the function (®,v) is smooth on G®~(U,). Since (®,v) is G-invariant, the flow of X, preserves
®~1(U,), and since the flow of X, also preserves ®~1(U,), the two vector fields are the Hamiltonian

vector fields corresponding to the same function (®,v) = (®,v) on ®~1(U,). Hence

X, =X, on o~1(U,),

and the flow of X,, is the flow of X,, on ®~1(U,) extended to G®~'(U,) by requiring G-equivariance.
a

Because symplectic cutting is a local operation, we can (following [24]) define the symplectic cut
of M at X as long as f is smooth in a neighborhood U of f=!(A). Indeed, the symplectic cut Usyis
well-defined, and has a dense subset Us, which is equivariantly symplectomorphic to f~1(\, co)NU.
We define M to be the union of U\ and f_l(oo7 A) C M modulo the identification of Us, with
71X\ 00)NU C M.

Remark 8.2 A G-invariant complex structure on M is not necessarily preserved by the flow of X,.
In particular, a symplectic cut of M using <(i>, v) does not in general inherit a complex structure
from M.

Proposition 8.1 allows us to generalize the construction of multiplicity-free torus actions. We
say that a polytope A; C A is a clean sub-polytope of A if for every facet F' of A meeting Ay,
F Ay is afacet of Ay, Equivalently, V(2) C Vi(z) (up to positive scaling) for all € Ay, where

Vi(z) is the set of normal vectors to facets of Ay meeting z.

Theorem 8.3 Let M be as in Theorem 1.3, and let Ay be Delzant, reflective, and clean subpolytope
of A. Then there exists a connected, compact, transversal, torsion-free, multiplicity-free space My

with moment polytope Ay, obtained from M by symplectic cutting.

Proof - Let vy, ...,vg be the normal vectors to the facets I, ..., Fy of Ay that are not of the form
FNA; where Fis a facet of A. Let Ay, ..., Ay € R be constants such that I; = An{z|(z, v;) = A\;}.
Fix ¢, and let 2 be a point in F; which is contained in a Weyl wall 0. Since A; is a clean sub-
polytope, Vi (z) D (Vi)i(z) and since these two sets are of order 2codim(c), they are equal.
Hence,

v; € Vi(z) = (Vi)i(z) = (Vz)i(2).
That is, v; € 3,. Therefore, the function

fi = <¢7 Ui>

is smooth near f1()\,).

To show that the symplectic cut of M using f = (f1,..., fa) at A = (A1, ..., Aq) is smooth, let
T* be the torus whose Lie algebra is span(vy,...,v). By (7) without loss of generality it suffices
to show that T* acts freely on

N7 000 () 7 (=00 ). (26)



Let p lie in (26) and suppose that = = ®(p). Since T* acts K,-equivariantly, we can assume that
p € A. By Lemma 7.3

gy = span((Vz)(z) U Vi (2)).

Since Ay is Delzant, Vj(z) is a lattice sub-basis, and therefore
(Vi(z) = V(2)UVz(x)U Vi (2) C Vi(x)

is a lattice sub-basis. It follows that

TN G, = {id}. (27)

Symplectic cutting leaves a dense subset unchanged, so that M, is multiplicity-free. To show
that M) is torsion-free and transversal, we must prove that G? NK, = {id}, where G? =G, X Tk
is the stabilizer of G acting on ®J)(z). We can assume that G, C T. Because r(c) U Vi (2)

generates the same lattice as Vi (), and Ay is Delzant
(Vi(z) = V(2)) UVz(x) UV () Ur(o)

is a lattice sub-basis, and so

(T* x G,y N T, = {id}.
Since the fibers of ® are compact and connected, M, is compact and connected also. O

Although this theorem allows us to construct infinitely many families of multiplicity-free,
torsion-free, transversal spaces it is not enough to construct all of them, except in exceptional
cases, e.g., when G is abelian, or equal to U(2), SU(3), or SO(4). For instance, in the case
G = U(2), it’s not hard to see that any reflective polytope is a clean sub-polytope of the polytope
in Figure 2 of the action of U(2) a coadjoint orbit of U(3).

Example 8.4 Let M be the generic coadjoint orbit of U(4) with distinct eigenvalues iA1, i)z, iA3
and iAy, and let G = U(3) be embedded in U(4) by A — diag(1, A). Choose the positive Weyl
chamber to be int €; = {(pu1, 12, p3) € R®|py < pip < ps}. By a generalization of the argument in
Section 2.1, the moment polytope of M is the box A = [A1, Ag] X [Ag, As] X [A3, Aq]. Let f = (&, —e; —
€3+ e3) and A =25+ Ay — ¢, for € > 0 small. The polytopes A and A<y = {z € A|f(z) < A} are
shown in Figure 8. By Theorem 8.3, there exists a space M<, with moment polytope Ac,.

Theorem 8.5 Let A C t} be a reflective Delzant polytope, and o a Weyl wall intersecting A such
that A is contained in a cross-section for o. That is, for any x € A, G, C G,. Then there exists

a transversal, torsion-free, multiplicity-free, compact, connected G-space M with moment polytope

A.
Proof - Let & be any point in A N ¢ and in the notation of Corollary 5.2 let

Vi (z) ={(a1 £ 51)/2,..., (. = Br)/2}.
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Figure 8: The polytopes A and Ac,.

Define a map dy : t, — 3, by (dy)a; = 3;. We claim that dvy induces an injection v : T, — Z,.

Since A is Delzant, there exists a choice of scalars cgt € Ry such that

{cli(oel + 61), .. .,cf(ak + Gk)}

is a basis for L Nspan(Vi(z)). In particular the vectors ¢ (e; £ ;) are in minimal form. Since
¢i(a; — B;) is a lattice element, ¢;(a; + ;) is a lattice element also, because L is invariant under W.

_|_

Therefore ¢ = ¢; . Consider the three-dimensional subalgebra

g; = Ro; + g,

and let G; = exp(g;), which is isomorphic to either SU(2) or SO(3). We claim that the latter
is impossible. Indeed, since the center of SO(3) is trivial, the 1-parameter subgroup exp(Ro;)

intersects exp(Rp;) trivially, so that
exp(c;toei) = exp(c;tﬁi) =Id.

That is, C?:Oei € L, which implies that {C?:(Oq + i)} cannot be a lattice sub-basis. Therefore,
G; = SU(2), and since o; is a minimal lattice element, c;t = 1/2. It follows that {ay,...,ax} and
{1, ...0k} are lattice sub-bases, which proves the claim.
Let S, = v(1,). Since S, is connected, we can find a subgroup @, C 7, such that 7, = S, xQ,.
Define
N=T"(K, xQ,).

Let K, X Q, act on N by left translation, and let S, act by v=1: S, = T, composed with the
right action of T, on N. We claim that the action of K, X Z, on N descends to a transversal,
torsion-free, multiplicity-free action of G, = K, Xx_nz, Z-. Note that the kernel of the action of
K, x S; X Q, is the set

{(9,7(9)",1d), g€ Z(K,)}.

Indeed, an element (g,¢’,¢") € K, x S, X @, which acts trivially must have ¢"” = Id, and g acting
K,-equivariantly. Thus, (g,¢’,¢") acts trivially if and only if g € Z(K,), ¢' = v(g)™!, and ¢" = Id,

which shows that the action descends to an action of G,. Clearly, the action of K, on N is free.
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Since for any Weyl wall 7, K C K,, N is transversal and torsion-free. A dimension count shows
that N is multiplicity-free.

Let ® 5 denote the moment map for the action of G, on N. We claim that the convex polyhedral
set Ag = ®5 Nt is given by

Ag= () wet | (wv)=(z,v)}

’UEVI((Z’)

It suffices to consider the case N = T*SU(2) and G\, = U(2). In this case with respect to the
standard basis for t =2 R?, the unique positive root is @ = (1, —1), and 8 = (1, 1), so that

{3l )} = {(1,0), (0,-1))

and we have to show that the moment “polytope” of T*SU(2) under the action of U(2) defined
above is the lower right quadrant. We identify 7*(SU(2)) with SU(2) X su(2)* by left translation.
The moment map for the left action of SU(2) is ®1,(g,v) = Ad*(g)v so that for any v € u(1)*, we
have

o7t (v) = {(g9,Ad*(9) "' (v)) | g € SU(2)}.

On the other hand, the moment map for the right action is ®r(g,v) = v and so a moment map for
the right action of T}, is

®7(g,v) = m(v)

where 7 : su(2)* — u(1)* is the projection onto the Cartan subalgebra u(1)*. Therefore,
Or(@7 (v) = {7(Ad"(9) 7 (1)) | g € SU2)} = [~v, +v]
and the moment “polytope” is the set
{v(l,-1)+w(1,1) | v>0,|w| < v}

which is the lower right quadrant.

Since Ay contains A cleanly, by symplectic cutting as in the proof of Theorem 8.3, there exists
a Hamiltonian G,-space N with moment polytope A. (Although N is not compact, its moment
map is proper and has connected fibers, and Theorem 8.3 extends to this case without difficulty.
The details are left to the reader.)

The existence of a Hamiltonian G-space M with moment polytope A follows from the following

lemma, and the assumption that A is contained in a cross-section for o:

Lemma 8.6 Let H C G be a connected subgroup containing T' and let (N,w) be a compact Hamil-
tonian H-space with moment polytope A. Then if g, C b for all v € A, there exists a Hamiltonian
G-structure on M = G Xy N with moment polytope A.
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Proof - Identify T*G with G x g« by left-translation, and let w.,, be the canonical symplectic
form on G x g*. Let 7 be the inclusion of G' X h* in G X g*. Then *w.y, is symplectic at points
(g,v) € G x b* such that G, C H. The moment map ®y for the action of H on (G X h*, —w,qy,) is
®r(g,v) = —v. Let N X G X h* be the product with closed two-form wy,.q = 7jw — T5weq,. The
moment map for the action of H on the product is ® = & — ®g. Therefore

&1(0) = {(m, g, B(m)) | m € M, g € G}.

The assumption that g, C b for # € A guarantees that the wy,,q is non-degenerate at @_1(0)7 SO
that the quotient ®~1(0) & G xy M is by the Marsden-Weinstein-Meyer theorem a symplectic
manifold. O

9 TUniqueness

Suppose that My and M; are as in Theorem 1.3 and have the same moment polytope A. We want

to construct an equivariant symplectomorphism o : My =2 M.

9.1 Local equivariant symplectomorphism

First consider the situation when A N ¢ is closed, so that ®;'(0) are compact. By Lemma 6.4
the generic stabilizers (S,); of Z, acting on ®:'(0)/K, are connected. Their Lie algebras are
(s0)i = (AN a)° C 3, s0

(So)1 = (S5)2 =5,

By Corollary 6.5, the actions of Q, := Z,/S, on (Y,); := ®;'(c)/K, are multiplicity-free, and
their moment polytopes are A N o. By Delzant’s theorem there exists an (),-equivariant symplec-
tomorphism ¢ : (Y;)1 2 (Y5)2 =: Y.

The next step is to show that ®;'(c) = &' (c) as K,-principal bundles. Let ¢; € H?(Y,,4t,)
denote the Chern class of the bundles A; in equation (23). By definition, ¢; = [doy;] where «;
is a connection form for the T,-action. It suffices to show that ¢; = ¢*cy. For ¢ € 1, small let
wi(t) Yo — ¢ denote the moment map for the action of Q, on (Y, w, +{(da;, t)), where w, denotes
the symplectic form on Y, induced from w. By Lemma 3.5, it suffices to show that pu;(¢) = pa(¢)
on the fixed point set (Yg)(QU), for all ¢ in a neighborhood U of 0. Since by Lemma 3.2, the image
of the fixed point set 1;(¢)((Ys)(q,)) is the set of vertices of A M a, and since 1y (0) = pa(0), it
suffices to show that the moment polytopes 4 (¢)(Y,) and p(t)(Y,) are equal for all ¢ in U. We
can assume that «; are restrictions of K, -connection forms on (I>Z»_1 () to A;, and that we have local
equivariant symplectomorphisms

Wy (I)»_l(O') X e — @;1(93).

K3

For any t € t, define ¢, : A; = A; x {t} by



Then ®; 01 o, descends to p;. It therefore suffices to show that the sets (®; 0 9 o) (A;) are equal
for + = 1,2 and ¢ small. By definition A; C @;1(0) is the fixed point set of the sub-torus with Lie
algebra span(ay — 51, ..., — (). By Lemma 4.4

(®; 0 1) (A; X int(t,)5) = FNint t},
where F is the intersection of the closed facets with normal vectors a; — 3, . .., ap — 3. Therefore,
pi()(Yo) = FOx= (1)
Hence, the bundles Ay &2 Ay =: A are isomorphic.

Example 9.1 In Example 8.4, let o be the wall given by p; = po, and take 8 = g + pg. Then F
is the facet given by uz = Ay, and F'N7~1(¢) projected onto 3% /s% is constant (resp. non-constant)

when the polytope is A (resp. Ac,.) Therefore, the bundle A is trivial (resp. non-trivial) for M
(resp. Mcy).

It remains to show that the actions 7; : 7" — Diff(A) of 7" on A are the same. Define a map

7 : 1T — Diff(A) by
T(t) = (t)72(t)

fort € T. Since A; and Ay are isomorphic T,-bundles, the map 7 vanishes on T, and for t € T, we
define tp := 1 (p) = 72(p). Since 71 and 7, cover the same action on A/T,, forany p€ A and t € T
there exists an element 6,(t) € T, such that 6,(t)p = 7(¢)p. Since the action 7 commutes with the
action of 75, the map 6, is a homomorphism, and since the set of homomorphisms from 7" to T
is discrete, 6, := 6 does not depend on p. Let df : t — t, denote the differential of 8, and let (g,);
denote the infinitesimal stabilizers of a point p € A with respect to 7;. Then (g,)1 = (Id 4 df)(g,)2-
By Corollary 3.3 (2), for any point 2 € AN o, we have

V(x) = (Id + dO)V (z). (28)

Let 2 be a vertex of A contained in ¢ so that span(V(z)) = t. Suppose that for some v € V(z),
df(v) # 0, so that
(Id + d6)"v = v + ndfv € V()

for all n € Z. Since this is impossible, d§ = 0. Therefore ®;'(c) and ®;'(c) are isomorphic as
G,-spaces with 2-form, w,. We write ®~!(o) := &7 (0) = &' (o).

By (15) there exist local G,-equivariant symplectomorphisms 1; : ®;1(U,) = &~ 1(0) x €.
where U, C g} is a neighborhood of o. Since @;I(Ug) are multiplicity-free G,-spaces, the equation
¢ = ¥y opy defines a G,-equivariant symplectomorphism of @ (G, V) and ®;'(G, V), where V
is some neighborhood of ANe in A. Since GO (V) = G xg, ®;1(V), the map ¢ extends to a map
0 : GO HV) = GO (V) by requiring G-equivariance, and ¢ is easily checked to be symplectic.
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9.2 The non-compact case

In general, AN o is not closed. In this section we use E. Lerman’s symplectic cutting trick to
compactify the sets ®7'(A N ), which reduces this case to the previous one. See [25] for further
details and applications of this technique.

Let « be a simple root, and

Ap ={y € Al(y, @) > ¢},
A_={yeAl(y,a) <}

Lemma 9.2 For e > 0 sufficiently small, Ay are reflective and Delzant.
Proof - Let F be the facet of A, defined by

F={yeAl(y,a) =¢}.

The facets of A are interior, so if € is sufficiently small, the facets of A, are the facets of A, plus
F. In particular, the facets of A, are interior.

To show A is Delzant, let z be a vertex of Ay, and let Vi (z) be the set of normal vectors to
facets of Ay meeting z. Either Vi (2) = V(z) or Vi(2) = V(2) U {a}. If the latter is the case, let
I be the intersection of the closed facets of A containing z. We can assume that ¢ is smaller than
(v, y) for any point y in a closed face of A not meeting ker a. Therefore, I/ meets ker a. Let y be
a vertex of A contained in F” N kera. Then (a4 3)/2 € V(y). Since #V (z) = #V (y) — 1, either
one or both of (a £ )/2 lie in V(z). B y Corollary 5.2, if both lie in V' (z) then 2 € ker a which is
impossible. Suppose without loss of generality that (o + 3)/2 € V(z). Then

Vi) =A(a+ 5)/2,a,vs,...,0,}

and
Vi(y) ={{a+06)/2,(a=5)/2,v3 ... v}

for some vectors vs, ..., v, € t, which shows that V (2) and V (y) generate the same lattice.
It remains to show that V4 () U—V,(2) is Wy-invariant. Because A is reflective, V(z)U—V (z)
is W-invariant, so it suffices to show that « is W, -invariant. Suppose that (o/,2) = 0 for some

simple root ’. Since ker @’ N A is a closed face, by the definition of e,
keraNkera’ NA # ()

and so by Corollary 6.5, or Proposition 5.1 (4), (a, ') = 0. It follows that « is W-invariant. O

The idea now is to chop off A near the boundary of ¢, and to apply the previous subsection to

the resulting symplectic manifold. For some small (o) > 0 define

Aoy ={z € Al(z,0) > €(0) for o ¢ r(0)}.
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By induction using the previous lemma, A,y is reflective and Delzant. By Theorem 8.3 there exist

(9) with moment polytope A ) obtained from M; by symplectic cutting. Let

spaces M;
Aoy ={z € Al(z,0) > €(0),a & r(0)}

which is an open subset of A, and let

MF(CT) — (I)'_I(Ae(cr))-

K3 K3

The sets M;(U) are open subsets of M; which are equivariantly symplectomorphic to dense subsets

of Mf(g). Let ®; . be the moment maps for the actions of G' on Mf(g). By the previous subsection,

there exists a neighborhood V, of A.(¢) N o in A.(0) and an equivariant symplectomorphism
o1 0T (Vo) = 030(Vo).

Let V, = V, N A (s)- The map @, restricts to an equivariant symplectomorphism of the sets

(fi_l(Vg) C M; for + = 1,2. For any point x € AN o, there exists an € > 0 sufficiently small

such that ®~'(z) C é;l(Vg), which completes the proof that My and M are locally equivariantly

symplectomorphic.

9.3 Local to Global

The existence of a global equivariant symplectomorphism follows from a Cech cohomology argu-
ment, as in the abelian case. Let {V;} be a good cover of A such that for each ¢ there exists an

equivariant symplectomorphism ¢; : @71 (V;) — ®5'(V;). As in the abelian case, the maps
bij = @i e;

define a cocycle ¥ in “CY(A, Diff(w, ®1, G)), where Diff (w, ®;, ) is the sheaf which assigns to each
open subset V' C A the group of equivariant symplectomorphisms of i)fl(V) which intertwine the
moment map. To define a global equivariant symplectomorphism M; — M5 it suffices to show that

the cohomology class
[¢] € “H'(A, Diff(w, 1, G))
is trivial.
Let L be the kernel of the map exp : t — T, and £’ be the sheaf which assigns to any open
V' C A the subset of L which is invariant under W, for all 2 € V. More precisely,

LVYy=L0([) ) (29)
zeV

where 3, denotes the Lie algebra of the center Z, of the isotropy subgroup G.

Lemma 9.3 Let M be a compact connected symplectic manifold with a transversal, torsion-free,
multiplicity-free action of G. Then the sequence of sheaves 0 = R & L — C& — Diff (w, ®,G) = 0
15 exact.
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Proof - First, we show that C% surjects onto Diff (w, ®, ). Let 2 € A be any point, and let V C A
be a contractible neighborhood of z. Let ¢ be an element of Diff (w, ®,G)(V), and let ¢ be the
Weyl wall containing z. We can assume that V is small enough so that V is a cross-section for o,
that is, for any point y € V, G, C G,, and that K, acts freely on ®~1(G,V).

We claim that there exists a smooth map 8 : @~'(V) — G such that ¢(p) = 8(p)p for all
pe® (V). Let B=®"Y(G,V)/K,, and let ¢ : B = B denote the diffeomorphism of B induced
by ¢. Since

B/Z, =& (G, V)/G, 2V,

and ¢ preserves ®, ¢ induces the identity on B/Z,. It follows from the Haefliger-Salem-Schwarz
lemma [17, Theorem 3.1] that there exists a smooth map 6z : B — Z, such that

es([p]) = 0z ([p))[p]

for all [p] € B. Replace 8 by its lift to ®~!(G,V). The map which assigns to any p € =G, V)
the point HEI(p)c,o(p) induces identity map on B. Since K, acts freely, for all p € ®~1(G, V),

0" (p)e(p) = Ok (p)p

for a unique O (p) € K,. The assignment p — 0 (p) defines a smooth map
Ok : &~ HG, V) = K,.

We define
0(p) = 0k (p)0z(p),

so that ¢p(p) = 8(p)p for all p € ®~(G,V). The map 8 extends to ®~1(V) = &~ 1(GV) by
requiring that 6(gp) = g6(p)g~'.

The next step is to show that @ lifts to a G-equivariant map 6 : é_l(V) — g. We claim
that the map 65 : V — T defined by 64 (y) = 8(p) for any p € ®~(y) is well-defined. Because
¢ is G-equivariant, and K, acts freely on ®7'(y), 6(p) must lie in Z,, and so @ is constant on
®~!(y) = Gp, which proves the claim. Since V is simply connected, we can lift 65 to t, that is,

there exists a continuous map fa : V — t such that

exp(fa)(y) = 0a(y)

for all y € V. In constructing the lift, we can require that a(z) C 3,. Since any Weyl wall 7
meeting V contains o, and 3, D 3., we have O(7) C 3,. Define 8 : ®=1(V) — t by

The map 6 extends to i)_l(V) by requiring G-equivariance. Since 6 is G-equivariant, we can define
a G-invariant vector field X € Vect(M) by X (p) = 6(p)¥. By the same argument as in the abelian
case, X is the Hamiltonian vector field of some G-invariant function f € C(®~1(V)).
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To show exactness at C&, let V' C A be a connected open subset, and let / of L be invariant
under W, for all z € V. By Proposition 8.1 the function f; = <(i>, l) is G-invariant and smooth, and
the time one exponential of the Hamiltonian vector field associated to f; is the identity. Conversely,
let f € CF(®~Y(V)), and let X; be its Hamiltonian vector field. Suppose that the time one
exponential of X is the identity. Since X;® = 0, X is tangent to the level sets of ®. If Tpis a
generic orbit of 7" in ®~'(V Nint ¢} ), then

for a unique [(p) € L. Since [(p) varies continuously with p, [ must be constant. By continuity,
f = fi. Since f is smooth, [ must be W -invariant for all € V. This is because by the Guillemin

local model ®~1(t*) is locally equivariant symplectomorphic to ®~1(¢) x t: near ®~1(0), and ; =
Reodim o For I € t,, the map (®~1,1') locally has the form

<(i)_17 l/> (p7 t) = |<l/7 t>|7

which is not smooth. On the other hand, if I’ € 3,, then by 8.1, <(i>,l’> is smooth at ®~1(x). It
follows that [ € 3,. The difference f — f; is a constant r € R. O

To show that 1 is cohomologically trivial, it suffices to show that the cohomology groups
VHi(A,ﬁ’) vanish for ¢ > 1. For each simple root a, let £, be sheaf which assigns to an open
subset V' C A the group £L(V) =Z if VNkera # 0, and £,(V) = {0} otherwise. That is, £, is the

push-forward of the constant sheaf Z on A Nker o to A. We define a morphism of sheaves
T L — Lo
as follows. For any open set V. C A and [ € L(V) =L let

[, .
() = %(oz_sz) if VNkera#0
0 otherwise.
We claim that

0L =L =P, L, —0. (30)

is a short exact sequence of sheaves. It suffices to show that the sequence is exact on open sets

V' C A which are cross-sections for some Weyl wall ¢ meeting A. By Section 6, the quotient lattice

LV)LV)=L/(LN3) = D Zai]/2

a;€r(o)

where [a;] denotes the equivalence class of o in L/(L N3,). The claim follows.

The higher cohomology groups of L are zero since A is contractible. The cohomology groups of

L, are isomorphic to the cohomology groups “H'(A N ker a, Z), which are also zero for ¢ > 0. By

the long exact sequence in cohomology, "H'(A, L) = 0 for ¢ > 1, as required.
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10 Construction II

Lemma 10.1 Let M, and M_ be as in theorem 1.3 with moment polytopes Ay and A_, such
that Ag = AL NA_ is a Delzant, reflective, clean sub-polytope of both Ay and A_. Suppose
that the boundaries (Ao, Ax) of Ag in Ay are disjoint. Then there exists a compact, connected,
transversal, torsion-free, multiplicity-free space M with moment polytope A = Ay UA_.

Proof - By Theorem 8.3 there exist spaces M, ¢ and M_ ¢ with moment polytope Ag obtained from

M, and M_ by symplectic cutting. By uniqueness, there exists an equivariant symplectomorphism
[ M_|_70 — M_70.
Let
Up =071 (A; — 9(Ao, A)) and U— = ®ZH(A_ — 9(Ao, A4))

so that Uy are open subset of My. Let
Myo=®7" (Ao — 0(Ag, Ay) — (Ag, AL)).

The map @ restricts to an equivariant symplectomorphism ¢ : M4 o = M_ . The sets My g are
equivariantly symplectomorphic to open subsets of Uy. Let M be the space formed by taking the
disjoint union of U4 and U_ and identifying the sets M4 o using ¢. O

In particular, this gives a very indirect proof that A = Ay UA_ is a convex polytope (which is
not necessarily true if (A NA_, A1) are not disjoint. ) In the figure below we give an example

of this construction. The shaded regions are the polytope Ag.

M

Figure 9: The polytopes AL and A.

Let A be any Delzant reflective polytope. We wish to construct a transversal, torsion-free,

multiplicity-free, compact, connected G-space M, having moment polytope A. Let aq,...,a, be
an ordering of the simple roots. For each k = 0,...,n and subset I C {1,...,k}, let
N < el
Ao lpea|@malse il kL
(z,a) > €/2, otherwise

By construction, A’ is contained in a cross-section for the Weyl wall o, where ¢ is the intersection

of ker a; for + € I. Furthermore, by induction using Lemma 9.2, A} are reflective and Delzant.
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By Theorem 8.5, there exist spaces M} with moment polytopes A}. Let I C {1,...,k} and
I' = TU{k + 1}. If there exist spaces M} and M7, with moment polytopes A];‘H and A];,‘H, then
Lemma 10.1 implies that there exists a space M}“ with moment polytope A’}. By induction, there
exist spaces M}“ with moment polytopes A’} (with the properties listed in Theorem 1.3) for all
k=mn,...,0. The polytope A8 is just A, so we have proved the last part of Theorem 1.3.

Remark 10.2 In this remark we consider the effect of dropping (¢) in the definition of torsion-free
6.1. Let
Lxg=LnNt,, Ls=LNs,, LQ =LNg,

with t,, 55, ¢, as above. Lemma 6.4 implies that (1) the map t, — s, given by o; — [; induces an
isomorphism of Lx and Lg, and since GG acts generically freely we must have (2) Z(K,) = T,N5,.
Conversely, given a convex polytope A C t} satisfying (1) and (2) at each Weyl wall, the same
construction as before produces a transversal multiplicity-free action with moment polytope A.
The uniqueness part of Theorem 1.3, with the Delzant condition replaced by (1) and (2), also
seems likely to be true. For example, it would suffice to prove that the sheaf £ described in (29)

always has trivial cohomology in dimension 2.

A The definition of a multiplicity-free action

The term “multiplicity-free” comes from representation theory. Let V be a finite-dimensional
complex representation of a compact connected Lie group G. We say that V is multiplicity-free if
each irreducible occurs in V' with multiplicity zero or one, or equivalently by Schur’s lemma, if the
algebra Endg (V') of G-equivariant endomorphisms is abelian. Let M be a Hamiltonian G-space
with moment map ® : M — g*, where g is the Lie algebra of GG. In geometric quantization, one
tries to find a representation of (subalgebras of) the Poisson algebra C'*°(M) as operators on a
“quantized space” QQ(M). In analogue with the representation theory, we say (following Guillemin
and Sternberg in [15]) that M is multiplicity-free if the Poisson algebra Cg (M) of G-invariant

smooth functions is an abelian Lie algebra. The purpose of this appendix is to prove

Proposition A.1 (1) Let G be a compact, connected Lie group, and M a compact, connected
Hamiltonian G-space. Then C&F (M) is an abelian Poisson algebra (that is, has a trivial
Poisson structure) if and only if all of the reduced spaces M, = ®~'(a)/G, are points. If

either condition is true, we say M is multiplicity-free.

(2) If in addition G acts locally freely on a dense set then M is multiplicity-free if and only if
dim(M) = dim(G) + rank(G).

First suppose that 7 acts freely on ®~1(a). By the Marsden-Weinstein-Meyer theorem the
reduced space M, is a symplectic manifold, and the restriction map r, : CZF (M) — C*(M,) is
Poisson and surjective. Therefore, if C& (M) is abelian, the algebra C'*°(M,) must be abelian, and

M, must be discrete. By Kirwan’s theorem [20], M, is connected, and therefore a point.
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In general M, is not smooth, and one needs a lemma of Arms, Cushman, and Gotay (see
[28]) which says that for arbitrary a, the algebra C*°(M,) := CZ(M)/1,, where [, is the ideal of
functions vanishing on ®~!(a), is a non-degenerate Poisson algebra. That is, the Poisson bracket
vanishes only on pointwise constant functions on M,. If CZ (M) is abelian, then CgF(M)/I, is
abelian and therefore M, must be a point. On the other hand, if all the reduced spaces are points
then ro({f,¢}) = 0 for all @ € g* so that {f,¢} = 0.

If G acts locally freely (that is, with discrete stabilizer) on a dense subset of M, then for a dense
set of values of a, ®~!(a) is smooth and has codimension dim (G. Therefore, the generic reduced
space is a point if and only if dim M = (dim 4rank)(G). From above, the generic reduced space
is a point if and only if C*°(M,) is abelian for generic a, which by continuity holds if and only if
C& (M) is abelian.
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