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Abstract. We prove that among all Kollár components obtained by plt blow ups of a klt singularity
o ∈ (X,D), there is at most one that is (log-)K-semistable. We achieve this by showing that if
such a Kollár component exists, it uniquely minimizes the normalized volume function introduced
in [Li18] among all divisorial valuations. Conversely, we show that any divisorial minimizer of
the normalized volume function yields a K-semistable Kollár component. We also prove that for
any klt singularity, the infimum of the normalized volume function is always approximated by the
normalized volumes of Kollár components.
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1. Introduction

Throughout this paper, we work over the field C of complex numbers. It has been well
known by people working in higher-dimensional geometry that there is an analogue be-
tween the local objects, Kawamata log terminal (klt) singularities, and their global coun-
terparts, log Fano varieties (cf. e.g. [Sho00, Xu14] etc.). From this comparison, since
the stability theory of Fano varieties has been a central object of study in the last three
decades, it is natural to expect that there is a local stability theory on singularities. The
primary goal of this article is to develop such a theory. In other words, we want to in-
vestigate singularities using tools from the theory of K-stability, a notion first defined
in [Tia97] and later algebraically formulated in [Don02]. This interaction between bira-
tional geometry and K-stability theory has proved to significantly fertilize both subjects
(cf. [Oda12, Oda13, LX14, WX14, LWX19, Fuj18] etc.).

For the stability theory of log Fano varieties, a crucial ingredient is CM weight. Philo-
sophically, the stability of log Fano varieties is equivalent to minimizing CM weight. In
the stability theory of singularities, we fix a singularity (X, o) and look for ‘the most sta-
ble’ valuation v ∈ ValX,o which is centered at o. Thus the first step in establishing a local
stability theory for (X, o) would be to find the right counterpart of CM weight in the local
setting. As a candidate the first named author [Li18] defined the normalized volume func-
tion v̂ol(X,D),o on the space of valuations centered at o. Its derivatives at the canonical
divisorial valuation over a klt cone singularity along certain tangent directions associated
to special test configurations are indeed CM weights. So in some sense, using the local
picture, the normalized volume function carries more information than CM weight.

By the above discussion and inspired by the global theory, we focus on studying
the valuation that minimizes the normalized volume function, which is conjectured to
uniquely exist and ought to be thought of as a ‘(semi)stable’ object. This picture is well
understood in the case of Sasakian geometry where one only considers the valuations
coming from the Reeb vector fields induced by a good torus action (e.g. [MSY08, CS19]).
Here we can naturally compare the stability of the singularity with the stability for the
base. However, this requires the extra cone structure. By investigating the minimizer of
the normalized volume function on all valuations, our plan, as we mentioned, built on
the previous work [Li18, Li17b, LL19], is to establish an intrinsic stability which only
depends on the isomorphism class of the singularity. We recall that it was shown in [Li17b,
LL19] that a Fano manifold X is K-semistable if and only if that among all valuations
over the vertex o of the cone C(X) given by a multiple of −KX, the canonical valuation
obtained by blowing up the vertex o ∈ C(X) minimizes the normalized volume function.
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This gives evidence to justify that at least for these singularities, our study is in the right
direction.

For an arbitrary klt singularity, there is no direct way to associate a global object.
Nevertheless, in differential geometry, when there is a ‘canonical’ metric, the metric tan-
gent cone around the singularity is the stable object in the category of metric spaces. With
a similar philosophy, we expect that the minimizer of the normalized volume function
always gives a degeneration to a K-semistable Fano cone singularity in the Sasakian set-
ting, and conversely any such degeneration should be provided by a minimizer of v̂olX,o.
In the current paper, we work out this picture in the case that the minimizer is diviso-
rial, by implementing the machinery of the minimal model program (MMP) (based on
the foundational results in [BC+10]). So our treatment will be purely algebraic though
it is strongly inspired by analytic results in the study of Kähler–Einstein/Sasaki–Einstein
metrics.

One ingredient we introduce is the volume associated to a birational model and then
we connect it to the normalized volume of a valuation. For studying the divisorial val-
uations, the class of models which play a central role here are the ones obtained in the
construction of a Kollár component (cf. [Xu14]): for an arbitrary n-dimensional klt sin-
gularity (X, o), we can use the minimal model program to construct a birational model
whose exceptional locus is an (n−1)-dimensional log Fano variety. In this paper, we will
systematically develop the tools using Kollár components to understand the normalized
volume function and its minimizers. In fact, Kollár components can be considered as the
local analogue of special degenerations studied in [LX14]. We also observe that in the
set-up of Sasakian geometry, a Reeb vector gives rise to a Kollár component if and only
if it is rational, i.e., it is quasi-regular.

Therefore, to summarize, the aim of this paper is twofold. On the one hand, we aim to
use the construction of Kollár components to get information on the space of valuations,
especially for the minimizers of the normalized volume function. On the other hand, in
the reverse direction, we want to use the stability viewpoint to study the construction of
Kollár components in birational geometry, and search out a more canonical object under
suitable assumptions.

We also expect that for any klt singularity (X, o), even when the minimizer is not
necessarily divisorial, we can still use suitable birational models to degenerate (X, o) to a
K-semistable (possibly irregular) singularity with a torus action of higher rank. However,
that seems to involve a significant amount of new technical issues.

Below, we will give more details.

1.1. Kollár components

Definition 1.1 (Kollár component). Let o ∈ (X,D) be a klt singularity. We say that a
proper birational morphism µ : Y → X provides a Kollár component S if µ is isomorphic
over X \ {o}, and µ−1(o) is an irreducible divisor S such that (Y, S + µ−1

∗ D) is purely
log terminal (plt) and −S is Q-Cartier and ample over X.
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We easily see that the birational model Y is uniquely determined once the divisorial val-
uation S is fixed, and if we denote

(KY + S + µ
−1
∗ D)|S = KS +1S (1)

(see [Kol13, Definition 4.2]), then (S,1S) is a klt log Fano pair.
Given any klt singularity o ∈ (X,D), as the necessary minimal model program type

result is established (see [BC+10]), we know that there always exists a Kollár component
(see [Pro00] or [Xu14, Lemma 1]), but it is often not unique (nevertheless, see the discus-
sion in 7.1.4 for some known special cases of uniqueness). From what we have discussed,
instead of an arbitrary Kollár component, we want to study those which are ‘the most sta-
ble’, and show that they yield canonical objects if they exist. Indeed, we shall prove that if
there is a K-semistable Kollár component, then it gives a unique minimizer of v̂ol(X,D),o
among all Kollár components (actually even among all divisorial valuations).

Compared to the global theory of degeneration of Fano varieties, this fits into the
philosophy that K-stability provides a canonical degeneration (cf. [LWX19, SSY16]) and
it should minimize CM weight among all degenerations.

The following theorem is our main result. See Definition 2.4 for the definition of
v̂ol(X,D),o.

Theorem 1.2. Let o ∈ (X,D) be a klt singularity. A divisorial valuation ordS is a mini-
mizer of v̂ol(X,D),o if and only if the following conditions are satisfied:

(i) S is a Kollár component;
(ii) (S,1S) is K-semistable.

Moreover, such a minimizing divisorial valuation, if it exists, is unique among all diviso-
rial valuations.

We do not know whether, up to rescaling, a valuation as in Theorem 1.2 is a unique
minimizer of v̂ol(X,D),o among all valuations in ValX,o (see [LX18] for further results).

More concretely, we will prove Theorem 1.2 by establishing the following four theo-
rems. We will need different techniques to prove each of them.

First we prove

Theorem A. Let o ∈ (X,D) be an algebraic klt singularity. Let S be a Kollár component
over X. If (S,1S) is (log-)K-semistable, then v̂ol(X,D),o is minimized at the valuation
ordS .

This extends the main theorem in [LL19] from cone singularities to a more general set-
ting. For the proof, we need to degenerate a general klt singularity to a cone singularity
induced by its Kollár components. However, instead of degenerating the valuation, we de-
generate the associated valuative ideals. We will also use a result of [Liu18] which gives
the infimum of normalized volumes using some normalized multiplicities. The latter was
first considered in the work of de Fernex–Ein–Mustaţă [FEM04] and its behavior under
degeneration of singularities can be studied as in [Mus02].

An extra subtlety is that we cannot directly use [LL19] since the result there was
proved for the cone singularity over a Q-Fano variety that specially degenerates to a
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Kähler–Einstein Q-Fano variety. It is conjectured that any K-semistable Q-Fano variety
has such a degeneration. Here we can indeed circumvent this difficulty in two different
ways. First, we will show that it suffices to concentrate on torus equivariant data (see Sec-
tion 4.2) and then use a similar argument to [Li17b] to complete the proof. Alternatively,
we solve the question proposed in [LL19] and hence can use the strategy there to prove
the version we need (see Proposition 5.3).

In Section 7, we use this criterion to find minimizers for various examples of singu-
larities, including quotient singularities, Ak and Ek singularities etc.

Next, we turn to the result on uniqueness.

Theorem B. If o ∈ (X,D) is an algebraic klt singularity and S is a Kollár component
over X such that (S,1S) is K-semistable, then

v̂ol(X,D),o(ordS) < v̂ol(X,D),o(ordS′)

for any other divisorial valuation S′.

This is done by a detailed study of the geometry when equality holds. In the cone singu-
larity case, we investigate when equality holds in [LL19]. It is a strong condition which
enables us to compute the corresponding invariants including nef thresholds and pseudo-
effective thresholds. The argument is partially inspired by [Liu18]. Once this is clear, the
rest follows from an application of Kawamata’s base point free theorem. The general case
can be reduced to the case of cone singularity using a degeneration process which heavily
relies on MMP techniques.

Now we consider the converse direction. For any klt singularity, a minimizer of the
normalized volume function always exists by [Blu18]. The following theorem says that
if a minimizer is divisorial, it always yields a Kollár component. We can indeed prove
slightly more for a general rational rank 1 minimizer.

Theorem C. Given an arbitrary algebraic klt singularity o ∈ (X,D) where X =
Spec(R), let v be a valuation that minimizes v̂ol(X,D),o. Assume the valuation group of v
is isomorphic to Z, i.e., v has rational rank 1, and one of the following two assumptions
holds:

(i) v is a multiple of a divisorial valuation; or
(ii) the graded family of valuative ideals

a• = {ak} where ak = {f ∈ R | v(f ) ≥ k}

is finitely generated, i.e., there exists m ∈ N such that amk = (am)k for any k ∈ N.

Then up to rescaling, v is given by the divisorial valuation induced by a Kollár compo-
nent S.

The above theorem is also independently proved in [Blu18] by a different argument. We
note that a minimizer is conjectured to be quasi-monomial and the associated graded ring
for a minimizer of the normalized volume function is conjectured to be always finitely
generated (cf. [Li18, Conjecture 7.1]). So granted these conjectures, the above result
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should presumably characterize all the cases with minimizers of rational rank 1. After
giving the definition of the volume of a model, the proof uses similar MMP arguments to
define a process decreasing the volumes as in [LX14].

Next we turn to the stability of the minimizer. By using the techniques from toric
degeneration (see [Cal02, AB04, And13]) and the relation between CM weight and nor-
malized volume, we will prove

Theorem D. In the notation of Theorem C, let µ : Y → X be the morphism which ex-
tracts S, and write (KY + S +µ−1

∗ D)|S = KS +1S . Then (S,1S) is a K-semistable log
Fano pair.

1.2. Approximation

In a slightly different direction, we also obtain results which describe the minimizer of
the normalized volume function from the viewpoint of Kollár components. We show that
for a general klt singularity, although the minimizer of its associated normalized volume
function might not be given by one Kollár component, we can always approximate it by
a sequence of such components.

Theorem 1.3. Given an arbitrary algebraic klt singularity o ∈ (X,D) and a mini-
mizer vm of v̂ol(X,D),o, there always exists a sequence {Sj } of Kollár components and
positive numbers cj such that

lim
j→∞

cj · ordSj = v
m in ValX,o and lim

j→∞
v̂ol(ordSj ) = v̂ol(vm).

Here ValX,o consists of all valuations centered at o, and is endowed with the weakest
topology as in [JM12, Section 4.1]. See Remark 2.5 for some discussion.

1.3. Equivariant K-semistability

By relating a Fano variety to the cone over it, we can compare the calculation in [Li17b]
for a cone and in [Fuj19] for its base. Then an interesting by-product of our method is the
following theorem.

Theorem E. Let T ∼= (C∗)r be a torus. Let (V ,1) be a log Fano variety with a T -action.
Then (V ,1) is K-semistable if and only if any T -equivariant special test configuration
(V,1tc)→ A1 of (V ,1) has nonnegative generalized Futaki invariant: Fut(V,1tc) ≥ 0.

When V is smooth and 1 = 0, this follows from the work of [DS16] with an analytic
argument. Our proof is completely algebraic. It again uses the techniques of degenerating
any ideal to an equivariant one and showing that it has a smaller invariant.

The paper is organized in the following way: In Section 2, we give some necessary
background. In Section 3, we introduce one key new tool: the volume of a model. By
combining the normalized volume function on valuations with the local volume defined
in [Ful13], and applying the MMP, we prove Theorem 1.3 and Theorem C. In Section 4,
we prove Theorem A, by connecting it to the infimum of the normalized multiplicities
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lct(X,D; a)n · mult(a) for all m-primary ideals a centered at o. We note that this latter
invariant indeed has also been studied in another context (cf. [FEM04]). In Section 5,
we prove Theorem B. We first prove it for the cone singularity case, with the help of
calculations from [LL19]. Then we use a degeneration argument to reduce the general
case to the case of cone singularities. In Section 6, we prove Theorem D, which verifies
the K-semistability of a minimizing Kollár component. In Section 7, we give some ex-
amples of how to apply our techniques to calculate the minimizer for various classes of
klt singularities.

History. Since [Li18], there have been several papers relating to minimization of the
normalized volume function (see [Li17b, LL19, Liu18, Blu18, LX18, LWX18, BL18]). In
particular, after we posted the first version of our preprint, the existence of the minimizer
was completely settled in [Blu18]. In the revision, we include his result in the exposition.
We also get a complete characterization of K-semistability of Q-Fano varieties using
the normalized volume, improving previous results from [Li17b, LL19]. Another major
improvement in this revision is that we can indeed show in Theorem D that any Kollár
component which minimizes the normalized local volume is K-semistable.

2. Preliminaries

Notation and conventions. We follow the standard notation of [Laz04a, KM98, Kol13].
A log Fano pair (V ,1) is a projective klt pair such that −KV −1 is ample.

For a local ring (R,m) and an m-primary ideal a, we denote by lR(R/a) the length
of R/a.

For a variety •, we sometimes denote the product • × A1 by •A1 .
We will use interchangeably the notations A1 with C, and Gm with C∗.

2.1. K-semistability

In this section, we give the definition of K-semistability of a log Fano pair following
[Tia97, Don02] (see also [Oda13, LX14]).

First we need to define the notion of test configuration.

Definition 2.1. Let (V ,1) be an (n− 1)-dimensional log Fano pair. A (Q-)test configu-
ration of (V ,1) consists of

• a pair (V,1tc) with a Gm-action,
• a Gm-equivariant ample Q-line bundle L→ V ,
• a flat Gm-equivariant map π : V → A1, where Gm acts on A1 by multiplication in the

standard way, (t, a) 7→ ta,

such that for any t 6= 0, the restriction of (V,1tc,L) over t is isomorphic to
(V ,1,−(KV + 1)), and 1tc does not have any vertical component, i.e., components
of 1tc are the closures of components of 1 under the Gm-action.

A test configuration (V,1tc,L) is called special if the central fiber (V0,10) is a log
Fano variety with klt singularities and L ∼Q −(KV +1tc).
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By [LX14], without loss of generality we will always assume that every test configuration
considered is normal. Let (V,1tc,L) be a test configuration of (V ,1). Let (V̄, 1̄, L̄)
→ P1 be the natural compactification of (V,1tc,L) → A1 by adding a trivial fiber
(V ,1,L) over {∞} ∈ P1. We call it a compactified test configuration. Then we can
define the generalized Futaki invariant:

Definition 2.2. With the above notations, for any normal test configuration (V,1tc,L),
we define its generalized Futaki invariant to be

Fut(V,1tc,L) (= Fut(V̄, 1̄, L̄)) =
1

n(−KV −1)n−1 ((n−1)L̄n+nL̄n−1
·KV̄/P1). (2)

In particular, for any special test configuration, we have

Fut(V,1tc,L) =
(−KV̄/P1 − 1̄)

n

n(−KV −1)n−1 . (3)

The above definition of the generalized Futaki invariant using the intersection formula
is well known to be equivalent to the original one using the Riemann–Roch formula (cf.
[Wan12, Oda13, LX14] etc.).

Definition 2.3. A log Fano pair (V ,1) is K-semistable if for any test configuration
(V,1tc,L) of (V ,1), we have

Fut(V,1tc,L) ≥ 0.

2.2. Normalized volume

Let (X, o) be a normal algebraic singularity andD ≥ 0 be a Q-divisor such thatKX+D is
Q-Cartier. Denote by ValX,o the space of real valuations centered at o. For any v ∈ ValX,o,
we can define the volume volX,o(v) following [ELS03] and the log discrepancyA(X,D)(v)
following [JM12, BF+15] (if the context is clear, we will write vol(v) and A(v)). In
particular, if S is a divisor over X, we have

A(X,D)(S) := A(X,D)(ordS) = a(S;X,D)+ 1,

which is the same as the standard log discrepancy.

Definition 2.4. With notation as above, we define the normalized volume, denoted by
v̂ol(X,D),o(v) (or v̂ol(X,D)(v) if o is clear or simply v̂ol(v) if there is no confusion), to be

volX,o(v) · A(X,D)(v)n

if A(X,D)(v) < ∞, and∞ if A(X,D)(v) = ∞. We define the volume of a klt singularity
o ∈ (X,D) to be

vol(o,X,D) = inf
v∈ValX,o

v̂olX,D(v).
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Remark 2.5. 1. The space ValX,o is called the ‘nonarchimedean link’ of o ∈ X in some
literature (see [Thu07, Fan14]). It is well known that in the topological setting the Eu-
clidean link captures a lot of (including all the topological) information about the singu-
larity. We expect that the study of ValX,o will also significantly improve our knowledge
of the singularity.

One can try to investigate the normalized volume function more globally. For instance,
it is interesting to ask, on a fixed model, how the function vol(o,X,D) changes when we
vary o, including the case where o is not a closed point. In particular, we expect that
there is a formula connecting the volume of a (not necessarily closed) point o and the
volume of a general point o′ in the closure {o}. We note that this may give us a way to
treat those valuations with centers containing the fixed point. It is also natural to ask how
vol(o,X,D) changes when we modify the birational models. We hope to explore these
interesting questions in the future.

2. The volume of klt singularities defined here is different from the volume of sin-
gularities defined in [BFF12] (see also [Zha14]). The volume in [BFF12] is defined us-
ing envelopes of log discrepancy b-divisors and vanishes for klt singularities. Intuitively,
while [BFF12] computes the volume of log canonical classes, our definition of volume of
klt singularities is for the anti-log-canonical classes.

In [Li18], it was shown that the space

{v ∈ ValX,o | v(m) = 1, v̂ol(v) ≤ C}

for any constant C > 0 is compact in the weak topology. However, in general the volume
function vol is only upper semicontinuous on ValX,o.

Proposition 2.6. If {vi} is a sequence of valuations such that vi → v in the weak topol-
ogy, then

vol(v) ≥ lim sup
i

vol(vi).

Proof. The valuation v determines a graded sequence of ideals

ak = ak(v) = {f ∈ R | v(f ) ≥ k}.

By [Mus02], we know that for any ε > 0, there exists a sufficiently large k such that

1
kn

mult(ak) < vol(v)+ ε.

Since R is Noetherian, we know that there exist finitely many generators fp (1 ≤ p ≤ j )
of ak = (f1, . . . , fj ). As v(fp) ≥ k, we know that for any δ, there exists sufficiently large
i0 such that for any i ≥ i0, vi(fp) ≥ k − δ. Thus

a
(i)
k−δ = {f ∈ R | vi(f ) ≥ k − ε} ⊃ ak.

Therefore,

vol(vi) ≤
1

(k − δ)n
mult(a(i)k−ε) ≤

1
(k − δ)n

mult(ak) ≤
kn

(k − δ)n
(vol(v)+ ε). ut

We also have the following result.
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Proposition 2.7. Let (X, o) = (Spec(R),m) be a singularity. Let v and v′ be two real
valuations in ValX,o. Assume

vol(v) = vol(v′) > 0 and v(h) ≥ v′(h) for any h ∈ R.

Then v = v′.

Proof. Assume that this is not true. We fix f ∈ R such that

v(f ) = l > v′(f ) = s.

Denote r = l − s > 0. Fix k ∈ R>0. Consider

ak := {h ∈ R | v(h) ≥ k} and bk := {h ∈ R | v
′(h) ≥ k}.

So by our assumption bk ⊂ ak , and we want to estimate

dim(R/bk)− dim(R/ak) = dim(ak/bk).

Fix a positive integer m < k/l and elements g(1)m , . . . , g
(km)
m ∈ bk−ml whose images in

bk−ml/bk−ml+r form a C-linear basis.
We claim that

{fm · g
(j)
m } (1 ≤ m ≤ k/l, 1 ≤ j ≤ km)

are C-linearly independent in ak/bk . Granted this, we know that since vol(v) > 0 we
have

lim sup
k→∞

1
kn

∑
1≤m≤k/l

km = lim sup
k→∞

∑
1≤m≤k/l

1
kn

dim(bk−ml/bk−ml+r) > 0,

which implies vol(v) > vol(v′).
Now we prove the claim.

Step 1: For any 1 ≤ m ≤ k/l, 1 ≤ j ≤ km,

v(fm · g
(j)
m ) = v(fm)+ v(g

(j)
m ) ≥ ml + v′(g

(j)
m ) ≥ ml + k −ml ≥ k.

Thus fm · g(j)m ∈ ak .

Step 2: If {fm · g(j)m } (1 ≤ m ≤ k/l, 1 ≤ j ≤ km) are not C-linearly independent in
ak/bk , then we have ∑

m

hm = b ∈ bk,

where there exist cj ∈ C such that

hm = f
m
·

∑
1≤j≤km

cjg
(j)
m
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and some hm 6= 0. Consider the maximal m such that hm 6= 0. Then

v′(hm) = v
′

(
fm ·

∑
1≤j≤km

cjg
(j)
m

)
= v′(fm)+ v′

( ∑
1≤j≤km

cjg
(j)
m

)
< ms + k −ml + r = k − (m− 1)l + (m− 1)s,

where the inequality follows from∑
1≤j≤km

cjg
(j)
m /∈ bk−ml+r .

However,

v′(hm) = v
′

(
b −

∑
j<m

hj

)
≥ min{v′(b), v′(h1), . . . , .v

′(hm−1)}

= min
1≤j≤m−1

{k, js + k − j l} = k − (m− 1)l + (m− 1)s,

which is a contradiction. ut

Several results in our work depend on a relation between normalized volumes of valua-
tions and normalized multiplicities of primary ideals. The latter quantity was first con-
sidered in the smooth case in [FEM04], and since then it has been studied in many other
works, together with its positive characteristic version (see e.g. [TW04]). Its relevance to
the normalized volume appeared in [Li18, Example 5.1]. In [Liu18] the following more
precise observation was made.

Proposition 2.8 ([Liu18, Section 4.1]). Let (X, o) = (Spec(R),m) and let D ≥ 0 be a
Q-divisor such that o ∈ (X,D) is a klt singularity. Then

inf
v

v̂ol(X,D),o(v) = inf
a

lct(X,D; a)n ·mult(a), (4)

where on the left hand side v runs over all real valuations centered at o, and on the right
hand side a runs over all m-primary ideals. Moreover, the left hand side can be replaced
by infv∈DivX,o v̂ol(X,D),o(v) where DivX,o denotes the space of all divisorial valuations
with center at o.

For the reader’s convenience we provide a sketch of the proof.

Proof of Proposition 2.8. We first use the same argument as in [Li18, Example 5.1] to
prove that the left hand side is greater than or equal to the right hand side. For any real
valuation v, consider the graded family of valuative ideals

ak = ak(v) = {f ∈ R | v(f ) ≥ k}.

Then v(ak) ≥ k and we can estimate

A(X,D)(v)
n
·

mult(ak)
kn

≥

(
A(X,D)(v)

v(ak)

)n
·mult(ak) ≥ lct(X,D; ak)n ·mult(ak).
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Since a• = {ak} is a graded family of m-primary ideals on X,

vol(v) = mult(a•) = lim
k→∞

lR(R/ak)

kn
= lim
k→∞

mult(ak)
kn

(see e.g. [ELS03, Mus02, LM09, Cut12]). As k →∞, the left hand side of the previous
estimate converges to v̂ol(v) and we get one direction.

For the other direction, we follow the argument in [Liu18]. For any m-primary ideal a,
we can choose a divisorial valuation v calculating lct(a). Then v is centered at o. Assume
v(a) = k, or equivalently a ⊆ ak(v). Then al ⊆ ak(v)

l
⊆ akl(v) for any l ∈ Z>0, so we

can estimate

lct(X,D; a)n ·mult(a) =
A(X,D)(v)

n

kn
·mult(a) = A(X,D)(v)n ·

mult(a)ln

(kl)n

= A(X,D)(v)
n
·

mult(al)
(kl)n

≥ A(X,D)(v)
n
·

mult(akl)
(kl)n

.

As l→∞, again the right hand side converges to

A(X,D)(v)
n
·mult(a•(v)) = v̂ol(v).

The last statement follows easily from the above proof. ut

In [Blu18], it is proved that a minimizer always exists.

Theorem 2.9 ([Blu18]). For any klt singularity o ∈ (X,D), v̂ol(X,D)(v) always has a
minimizer vm in ValX,o.

2.3. Properties of Kollár components

The concept of Kollár component is defined in Definition 1.1. They always exist by results
from the MMP (see [Pro00] or [Xu14, Lemma 1]).

In this section, we establish some of their properties using the machinery of the min-
imal model program. The following statement is the local analogue of [LX14, Theorem
1.6], which can be obtained by following the proof of the existence of a Kollár component.
(See e.g. the proof of [Xu14].)

Proposition 2.10. Let o ∈ (X,D) be a klt singularlty. Let µ : Z → X be a model such
that µ is an isomorphism overX \ {o} and (Z,E+µ−1

∗ D) is dlt where E is the divisorial
part of µ−1(o). Then we can choose a model W → Z and run MMP to obtain W 99K Y
such that Y → X gives a Kollár component S that satisfies a(S;Z,E) = −1.

We also have the following straightforward lemma.

Lemma 2.11. If S is a Kollár component as the exceptional divisor of a plt blow up
µ : Y → X, then

vol(ordS) = (−S|S)n−1 and v̂ol(ordS) = (−(KY + S + µ−1
∗ D)|S)

n−1
· A(X,D)(S).
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Proof. For any k ≥ 0 such that kS is Cartier on Y , we have an exact sequence

0→ OY (−(k + 1)S)→ OY (−kS)→ OS(−kS)→ 0.

Because −S is ample over X, we have the vanishing

R1f∗(OY (−(k + 1)S)) = 0,

from which we get

H 0(S,−kS|S) ∼=
H 0(Y,−kS)

H 0(Y,−(k + 1)S)
=

ak(ordS)
ak+1(ordS)

for any such k. Then the result follows easily from the Hirzebruch–Riemann–Roch for-
mula and the asymptotic definition of vol(ordS).

AsKY+S+µ−1
∗ D ∼Q,X A(X,D)(S)·S, the second identity is implied by the first. ut

Remark 2.12. Inspired by the above simple calculation, we can indeed extend the def-
inition of normalized volumes to any model f : Y → (X, o) such that f is isomorphic
over X \ {o}. See Section 3.

Lemma 2.13. Let f : (X′, o′)→ (X, o) be a finite morphism such that f ∗(KX +D) =
KX′ + D

′ for some effective Q-divisors. Assume (X,D) and (X′,D′) are klt. If S is a
Kollár component given by Y → X over o, then Y ′ := Y ×X X′ → X′ induces a Kollár
component S′ over o′ ∈ (X′,D′).

Conversely, if X′ → X is Galois with Galois group G, then any G-invariant Kollár
component S′ over o ∈ (X′,D′) is the pull back of a Kollár component over o ∈ (X,D).

Proof. The first part is standard. Denote by µ′ : Y ′→ X′ the birational morphism and set
S′ = (f−1

Y (S))red where fY : Y ′ → Y is the induced morphism. Then (Y ′, µ′−1
∗ D′ + S′)

is log canonical. If we restrict to T , a component of S′,

(KY ′ + µ
′−1
∗ D′ + S′)|T = KT +1T ,

then (T ,1T ) is klt, which by the Kollár–Shokurov connectedness theorem implies that
T = S′.

For the converse, let

L ∼X′ −m(KY ′ + µ
′−1
∗ D′ + S′)

be a divisor of general position for sufficiently divisible m and H := 1
m
L. Then (Y ′, S′+

µ′−1
∗ D′ + H) is plt. Replacing H by HG := 1

|G|

∑
g∈G g

∗H , we know that (X′,D′ +
µ∗HG) is G-invariant, and there exists a Q-divisor HX ≥ 0 such that

f ∗(KX +D +HX) = KX′ +D
′
+ µ∗HG.

Therefore, (X,D+HX) is plt, and its unique log canonical place is a divisor S which is a
Kollár component over o ∈ (X,D) whose pull back gives the Kollár component S′ over
o′ ∈ (X′,D′). ut

We now prove a change of volume formula for Kollár components under a finite map.
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Lemma 2.14. With the same notation as in Lemma 2.13,

d · v̂ol(X,D)(ordS) = v̂ol(X′,D′)(ordS′),

where d is the degree of X′→ X.

Proof. The pull back of S is S′, which is irreducible by Lemma 2.13. Let the degree of
S′→ S be a and the ramified degree be r . We have the identities

ar = d and rA(X,D)(ordS) = AX′,D′(ordS′)

(see [KM98, 5.20]). By Lemma 2.11, we know that

d · v̂ol(X,D)(ordS) = ar · A(X,D)(ordS) · ((KY + S + µ−1
∗ D)|S)

n−1

= (rA(X,D)(ordS)) ·
(
a · ((KY + S + µ

−1
∗ D)|S)

n−1)
= A(X′,D′)(ordS′) ·

(
((KY ′ + S

′
+ µ′−1

∗ D′)|S′)
n−1)

= v̂ol(X′,D′)(ordS′),

where for the third equality we use the projection formula for intersection numbers. ut

2.4. Deformation to normal cones

Let (X, o) = (Spec(R),m) be an algebraic singularity such that (X,D) is klt for a Q-
divisor D ≥ 0. Let S be a Kollár component and 1 = 1S be the different divisor defined
by the adjunction (KY + S + µ−1

∗ D)|S = KS +1S where Y → X is the extraction of S
(see (1)).

For simplicity denote v0 := ordS . Also denote

R∗ :=

∞⊕
k=0

ak(v0)/ak+1(v0) =

∞⊕
k=0

R∗k (5)

and its d-th truncation

R∗(d) =

∞⊕
k=0

adk(v0)/adk+1(v0) =

∞⊕
k=0

R∗dk for d ∈ N.

Now we give a more geometric description of Spec(R∗) and Spec(R∗(d)) using the
idea of degenerating o ∈ (X,D) to an (orbifold) cone over the Kollár component S. As-
sumeµ : Y → X is the extraction of the Kollár component S of (X, o). ThenµA1 : Y×A1

→ X × A1 has the exceptional divisor S × A1. The divisor S is not necessarily Cartier,
but only Q-Cartier. Thus we can take the index 1 covering Deligne–Mumford stack
π : Y → Y for S. So π is isomorphic over Y \ S and π∗(S) = S is Cartier on Y.
Note that S and Y are coarse moduli spaces of S and Y respectively.

We consider the deformation to the normal cone construction for S ⊂ Y (see [Ful84,
Chapter 5]). More precisely, we consider the blow up φ̃1 : Z→ Y × A1 along S × {0}.
Denote by P the exceptional divisor and by S′A1 the strict transform of S×A1. We note
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that P has a stacky structure along the 0 and∞ section, but a scheme structure at other
places. Then S′A1 ⊂ Z is a Cartier divisor which is proper over A1 and can be contracted
to a normal Deligne–Mumford stack ψ̃1 : Z → W and in this way we get a flat family
W→ A1 such that Wt

∼= X and W0 ∼= C̄ ∪Y0, where Y0 is the birational transform of
Y×{0}. If we denote W◦ :=W\Y0, then the fiber of W◦ over 0 is isomorphic to C which
is an affine orbifold cone over S with polarization given by OY(−S)|S. Moreover, C̄ is
the projective orbifold cone completing C. We will also denote by W , W◦, Z , P the
underlying coarse moduli spaces of W, W◦, Z, P respectively. In particular, we have (see
Figure 1)

Z ×A1 (A1
\ {0}) = Y × (A1

\ {0}), Z ×A1 {0} = P ∪ Y0,

W ×A1 (A1
\ {0}) = X × (A1

\ {0}), W ×A1 {0} = C̄ ∪ Y0,

W◦ ×A1 (A1
\ {0}) = X × (A1

\ {0}), W◦ ×A1 {0} = C.

(6)

Let d be a positive integer such that d · S is Cartier in Y . Then C(d) given by the
cone over OY(−d ·S)|S is a degree d cyclic quotient of C, which is a usual (A1-)cone
over S. We denote by C and C(d) the underlying coarse moduli spaces of C and C(d). We
also denote by S the coarse moduli space of S. The vertex of C is denoted by oC .

For any k such that kS is Cartier, applying the exact sequence

0→ OY (−(k + 1)S)→ OY (−kS)→ OS(−kS)→ 0,

since h1(OY (−(k + 1)S)) = 0 by the Grauert–Riemenschneider vanishing theorem, we
get

H 0(S,O(−kS|S)) ∼= H 0(OY (−kS))/H
0(OY (−(k + 1)S)).

Notice that the right hand side is equal to

µ∗OY (−kS)

µ∗OY (−(k + 1)S)
=

ak(v0)

ak+1(v0)
.

In particular, C(d) = Spec(R∗(d)). Similarly, C = Spec(R∗).
There is also a degree d cyclic quotient morphism h : C̄ → C̄(d), and we know that

h∗(KC̄(d) + C
(d)
1 + C

(d)
2 ) = KC̄ + CD,

where CD is the intersection of C̄ with the birational transform of D × A1, and C(d)1
(resp. C(d)2 ) on C̄(d) is the induced cone over the branched Q-divisor on S of S → S

(resp. µ−1
∗ D|S).

2.5. Filtrations and valuations

Here we recall some facts about Z-graded filtration and its relation to valuations following
[TW89]. A filtration on a ring R is a decreasing sequence F := {Fm

}m∈Z of ideals of R
satisfying the following conditions:

(i) Fm
6= 0 for every m ∈ Z, Fm

= R for m ≤ 0 and
⋂
m≥0 Fm

= (0).
(ii) Fm1 · Fm2 ⊆ Fm1+m2 for all m1, m2 ∈ Z.
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Notice that we can replace Z by any abelian group that is isomorphic to Z. For a given
filtration, we have the Rees algebra and extended Rees algebra:

R := R(F) =
∞⊕
k=0

(FkR)t−k, R′ := R′(F) =
∞⊕

k=−∞

(FkR)t−k, (7)

and the associated graded ring:

grF R = R′/tR′ =
∞⊕
k=0

(FkR/Fk+1R)t−k. (8)

Assuming R′ is finitely generated, X := SpecC[t](R′) can be seen as a C∗-equivariant
flat degeneration of X = Spec(R) into X0 = SpecC(R′/tR′) = SpecC(grF R). Denote
E = Proj(grF R), X̃ = ProjRR. Then the natural map X̃ → X is the filtered blow up
associated with F such that E is the exceptional divisor. Moreover X̃ can be seen as a
flat deformation of a natural filtered blow up on X0. Indeed, following [TW89, 5.15], we
have a filtration F on R′:

FmR′ =
{ ∞∑
k=−∞

(Fmax(k,m)R)t−k
}
.

The objects associated to the corresponding Rees algebra and graded algebra over R′ are

X̃ = ProjR′
( ∞⊕
r=0

(F rR′)T −r
)
, E = ProjC

( ∞⊕
r=0

(F rR′/F r+1R′)T −r
)
.

Moreover, since R′ is finitely generated, there is an embedding X ⊂ Cp for some p ∈ N
given by xi 7→ fi (i = 1, . . . , p) where fi ∈ FkiR are such that t−kifi (i = 1, . . . , p)
and t generate R′. Set deg(xi) = ki and let Ĉp → Cp be the weighted blow up with
weights (k1, . . . , kp).

Then we have the following commutative diagram (see [TW89, Proposition 5.17]):

E −−−−→ E ←−−−− Ey y y
Ĉp ←−−−− X̃ −−−−→ X̃ ←−−−− X̃0y y y y
Cp ←−−−− X −−−−→ X ←−−−− X0

To relate the filtrations to valuations, we need the following well-known fact:

Lemma 2.15 (see [Tei14, p. 484, proof of Corollary 3.4]). If the associated graded ring
of F is an integral domain, then the filtration F is induced by a valuation.

Proof. We define the order function v : R → Z by v(f ) = max{m | f ∈ Fm
}. Then

by the defining properties of filtrations, v(f + g) ≥ min{v(f ), v(g)} and v(fg) ≥
v(f ) + v(g) for any f, g ∈ R. For any f ∈ R, let [f ] denote the image of f ∈ R
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under the quotient map Fv(f )
→ Fv(f )/Fv(f )+1

⊂ grF R. Then [f ] · [g] 6= 0 by the
assumption that grF R is an integral domain. This translates to v(fg) = v(f ) + v(g),
which implies v is indeed a valuation. ut

Actually we can be more precise in a special case that we will deal with later. There is
a natural C∗-action on X0 associated to the natural N-grading such that the quotient is
isomorphic to E. Let J =

⊕
k≥0 Fk+1t−k = tR′ ∩R so that R/J ∼= grF R ∼= R′/tR′.

Now we assume furthermore that E is a normal projective variety. This implies both R
and R′ are normal (see [TW89]). Let P be the unique minimal prime ideal of R over J
that corresponds to the cone over E, and w the valuation of K(t) attached to P. Then
the restriction of w to R is equal to b · ordE . Assume a = w(t). Thus the filtration F is
equivalent to the filtration given by

(tmR′) ∩ R = {f ∈ R | ordE(f ) ≥ ma/b}.

Remark 2.16. There is a general Valuation Theorem concerning the relation between
finitely generated filtrations and valuations proved by Rees [Ree88]. See also [BHJ17].

3. Volume of models

One very useful tool for us to study the minimizers of the normalized local volume is
the concept of a local volume of a model. It is this concept that enables us to apply the
machinery of the minimal model program to construct different models, especially those
yielding Kollár components.

3.1. Local volume of models

In this section, we extend the definition of volume to volumes of birational models in the
‘normalized’ sense. We use the concept of local volumes as in [ELS03, Ful13]. Let us
first recall the definition from [Ful13].

Definition 3.1 (Local volume). Let X be a normal algebraic variety of dimension n ≥ 2
and let o be a point on X. For a fixed proper birational map µ : Y → X and a Cartier
divisor E on Y , we define the local volume of E at o to be

volFo (E) = lim sup
m→∞

h1
o(mE)

mn/n!
where h1

o(mE) := dimH 1
{o}(X,µ∗OY (mE)).

If E is a Q-Cartier divisor, we define its volume to be

volFo (E) :=
volFo (mE)

mn

for sufficiently divisible m.
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Lemma 3.2. Let µ : Y → X be a birational morphism. If E ≥ 0 is an exceptional
Q-divisor such that Supp(E) ⊂ µ−1(o), then

volFo (−E) = lim sup
k→∞

lR(OX/ak)

kn/n!

where k is sufficiently divisible and ak = µ∗(OY (−kE)).

Proof. This follows from [Ful13, Remark 1.1(ii)] (see also [Ful13, Remarks 1.31 and
1.32]). ut

The right hand side of the above display is also the volume vol(a•) defined in [ELS03,
Definition 3.1, Proposition 3.11]. In particular, given a prime divisor E over o with log
discrepancy a, we see that

volFo (−aE) = v̂ol(X,D),o(ordE).

Definition 3.3. Assume that o ∈ (X,D) is a klt singularity, and µ : Y → (X, o) is a
birational morphism such that µ is an isomorphism over X \ {o}. Let E =

∑
i Gi be the

reduced divisor supported on the divisorial part of µ−1(o). Then we define the volume
vol(X,D),o(Y ) of Y (abbreviated as vol(Y ) if (X,D; o) is clear) to be

vol(X,D),o(Y ) := volFo (−KY − E − µ
−1
∗ (D)) = volFo

(∑
i

−aiGi

)
where ai = A(X,D)(Gi) is the log discrepancy of Gi .

We will mainly combine the above definition with the following construction.

Definition 3.4. For a klt pair (X,D) with an ideal a, if c denotes its log canonical thresh-
old lct(X,D; a), then we say that µ : Y → X is a dlt modification of (X,D+ c · a) if the
following conditions are satisfied:

• if we denote the divisorial part of µ∗(a) by O(−
∑
miGi) and write µ∗(KX + D) =

KY +DY , then
DY + c ·

∑
miGi = µ

−1
∗ (D)+ E

where E is the reduced divisor on Ex(µ);
• (Y,DY + c ·

∑
miGi) is dlt.

By the argument in [OX12], it follows from the MMP results in [BC+10] that a dlt modi-
fication of (X,D+ c · a) always exists. More concretely, we can choose general elements
fj ∈ a (1 ≤ j ≤ l) which generate a such that c/l < 1. If we let Dj = (fj = 0), then Y
is the dlt modification of

(
X,D + c · 1

l

∑l
j=1Dj

)
.

Lemma 3.5. We can indeed assume that −KY − µ−1
∗ D − E is nef over X.

Proof. Since (X,D) is klt, we know that

KY + µ
−1
∗ D + E ∼Q,X

∑
aiGi
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with Gi all exceptional and ai = A(X,D)(Gi) > 0. Running a relative MMP of(
Y,µ−1

∗

(
D + c ·

1
l

l∑
j=1

Dj

)
+ E − ε

∑
aiGi

)
over X

with scaling by an ample divisor, we obtain a relative minimal model Y 99K Y ′ of

KY + µ
−1
∗

(
D + c ·

1
l

l∑
j=1

Dj

)
+ E ∼Q,X −c ·

∑
miGi +

∑
i

aiGi = 0.

So we have

KY + µ
−1
∗

(
D + c ·

1
l

l∑
j=1

Dj

)
+ E − ε

∑
aiGi = −ε(KY + µ

−1
∗ D + E),

and hence −KY ′ −µ′
−1
∗ D−E

′ is nef over X where µ′ : Y ′→ X and E′ is the birational
transform of E. Furthermore, since

KY + µ
−1
∗ D + E ∼Q,X −c ·

1
l
µ−1
∗

l∑
j=1

Dj ,

Y ′ also gives a minimal model of the dlt pair(
Y,µ−1

∗ (D + c(1+ ε) ·
1
l

l∑
j=1

Dj )+ E

)
,

which implies (Y ′, µ′−1
∗ D+E

′) is a dlt modification of
(
X,D+c· 1

l

∑l
j=1Dj

)
. Therefore,

we can replace Y by Y ′. ut

If E is irreducible, then vol(X,D),o(Y ) = v̂ol(X,D),o(ordE). We can generalize Lemma
2.11 to the dlt case.

Lemma 3.6. In the setting of Definition 3.3, if −KY − µ−1
∗ D − E is nef over X then

vol(X,D),o(Y ) =
∑
i

ai
(
(−KY − µ

−1
∗ D − E)|Ei

)n−1
.

Proof. Let m be sufficiently divisible such that L := m(KY + µ
−1
∗ D + E) is Cartier.

Denote by F the effective Cartier divisor F :=
∑
i maiGi . Then

0→ OY (−(k + 1)L)→ OY (−kL)→ OF (−kL)→ 0.

Since −L is nef, we know that R1µ∗(OY (−(k + 1)L)) = 0. Thus

volFo (L) = vol(L|F ),

and we conclude the proof by dividing both sides by mn. ut
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Lemma 3.7. Let a be an m-primary ideal. Denote c = lct(X,D; a) and let (Y,E)→ X

be a dlt modification of (X,D + c · a). Then

vol(X,D),o(Y ) ≤ lct(a)n ·mult(a).

Proof. Write KY + µ−1
∗ D + E = µ∗(KX + D) +

∑
i aiGi, where E is the reduced

divisor on Ex(µ). If we denote bymi the vanishing order of µ∗a alongGi , then since c is
the log canonical threshold and every Gi computes the log canonical threshold, we know
that c ·mi = ai . Thus

ak ⊂ µ∗OY

(
−

∑
i

kmiGi

)
=: bk.

It suffices to show that
mult(b•) = volFo

(
−

∑
miGi

)
.

But this follows from Lemma 3.2. ut

Lemma 3.8. With the same assumptions as in Lemma 3.7, there exists a Kollár compo-
nent S such that

v̂ol(X,D),o(ordS) ≤ vol(X,D),o(Y ) ≤ lct(a)n ·mult(a).

Proof. It follows from Proposition 2.10 that we can choose a model W → Y and
run MMP to obtain W 99K Y ′ such that µ′ : Y ′ → X gives a Kollár component S
with a(S;Y,E + µ−1

∗ D) = −1. If we fix a common resolution p : W ′ → Y and
q : W ′ → Y ′, then since −(KY + E + µ−1

∗ D) is nef and A
Y,E+µ−1

∗ D
(S) = 0, we know

−p∗(KY + E + µ
−1
∗ D) + q

∗(KY ′ + S + µ
′−1
∗ D) is q-nef and q-exceptional. By the

negativity lemma, we get

p∗(KY + E + µ
−1
∗ D) ≥ q

∗(KY ′ + S + µ
′−1
∗ D).

Thus

v̂ol(ordS) = vol(−KY ′ − S − µ′−1
∗ D) ≤ vol(−KY − E − µ−1

∗ D) = vol(Y ). ut

3.2. Approximating by Kollár components

We can now start proving our theorems.

Proof of Theorem 1.3. By Proposition 2.8, we know

inf
v

v̂ol(X,D),o(v) = inf
a

lct(a)n ·mult(a).

By the above construction in Lemmas 3.7 and 3.8, for any m-primary ideal a, we know
that there exists a Kollár component S such that

v̂ol(ordS) ≤ lct(a)n ·mult(a).
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Let {ak}k∈8 be the associated graded family of valuation ideals induced by vm where
8 ⊂ R is the value semigroup. For each ak (k ∈ 8), we denote

ck := lct(X,D; ak).

Let µk : Yk → X be a dlt modification of (X,D; ck · ak) and Ek the exceptional divi-
sor of Yk over X. Assume the model we obtain from Lemma 3.8 is Y ′k with the Kollár
component Sk .

We consider the valuation

vk :=
ck · k

A(X,D)(Sk)
ordSk .

Note that A(X,D)(vk) = ck · k is uniformly bounded:

ck · k = lct
(
X,D;

1
k
ak

)
= inf

v′

A(X,D)(v
′)

1
k
v′(ak)

≤ A(X,D)(v
m) <∞.

So by the Izumi type estimate in [Li18, Theorem 1.2], we know that

vk(m)ordo ≤ vk ≤ cA(X,D)(vk) · ordo ≤ c′ · ordo

for some positive constants c, c′ and all k. By [Li18, Theorem 1.1] and the fact that v̂ol(vk)
is bounded from above, we know that vk(m) is bounded from below. In particular, by the
compactness result of [JM12, Proposition 5.9] and Proposition 3.9, there is an infinite
sequence {vki }ki∈8 with ki →∞ which has a limit in ValX,o, denoted by

v′ = lim
i→∞

vki .

Then
A(X,D)(v

′) ≤ lim inf
i→∞

A(X,D)(vki ) = lim inf
i→∞

cki · ki ≤ A(X,D)(v
m)

as A(X,D) is lower semicontinuous (see [JM12, Lemma 5.7]). We claim that for any f ,

v′(f ) ≥ vm(f ).

Assuming this is true, we have vol(v′) ≤ vol(vm), which then implies v̂ol(v′) ≤ v̂ol(vm).
Because vm is a minimizer of v̂ol, by Proposition 2.7 we must have v′ = vm.

To verify the claim, we pick any f ∈ R and let vm(f ) = p. For a fixed kj , choose l
such that

(l − 1)p < kj ≤ lp.

Let k = kj in the previous construction. Then

vm(f ) = p =⇒ vm(f l) = pl

=⇒ f l ∈ apl

=⇒ f l ∈ akj
=⇒ l · ordEi (f ) ≥ mkj ,i for any i

=⇒ l · ordSkj (f ) ≥ A(X,D)(Skj ) ·
1
ckj

=⇒ vkj (f ) ≥ kj/l > p − p/l.
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The fourth arrow is because if f l ∈ akj , then f l vanishes along mkj ,iGkj ,i ; and the fifth
because

KYkj
+ µ−1

kj∗
D + Ekj ∼Q,X ckj ·

∑
mkj ,iGkj ,i,

and the pull back of KYkj + µ
−1
kj∗
D + Ekj is larger than the one from

KY ′kj
+ µ′−1

kj∗
D + Skj ∼Q,X A(X,D)(Skj )Skj .

Thus v′(f ) = lim vkj (f ) ≥ p = v
m(f ). ut

Proposition 3.9. Let o ∈ (X,D) be a klt singularity. Let a and b be positive numbers.
Then the subset Ka,b of ValX,o which consists of all valuations v with

a ≤ v(m) and A(X,D)(v) ≤ b

is sequentially compact.

Proof. Let {vi} be a sequence contained in Ka,b. Let {ai,k} be the associated graded se-
quence of valuative ideals for k ∈ 8i . We can find a countably generated field F ⊂ C
such that R = Spec(RF ) ×F C for some finitely generated F -algebra RF , and D, o are
defined over F . Furthermore, we can assume that for each pair (i, k), ai,k = (ai,k)F ×F C
for some ideal (ai,k)F ⊂ RF . Let XF := Spec(RF ) and let DF be the divisor of D
descending on XF .

Now let (vi)F be the restriction of vi on RF . By our definition,

ai,k = {f ∈ RF | (vi)F (f ) ≥ k},

and (vi)F ∈ (Ka,b)F where (Ka,b)F is defined for all v ∈ ValXF ,o with a ≤ v(mF ) and
AXF ,DF (v) ≤ b. By [HLP14, Theorem 1.1], ValXF ,o has the same topology as a set in
some Euclidean space, thus (Ka,b)F is sequentially compact as it is compact by [JM12,
Proposition 5.9]. Therefore after passing to a subsequence, (vi)F has a limit (v∞)F , which
can be extended to a valuation v∞ := (v∞)F ⊗ C. In fact, v∞ is defined as follows: Any
f ∈ R can be written as

∑m
j=1 fj ⊗F hj with 0 6= fj ∈ R and h1, . . . , hm ∈ C linearly

independent over F . Then

v∞(f ) =
m

min
j=1

(v∞)F (fj ).

We claim vi = (vi |RF ) ⊗F C. In fact, for any f , if vi(f ) = k, then f ∈ ai,k =
(ai,k)F ⊗F C, thus (vi |RF )⊗F C(f ) = k.

To see that for any f , v∞(f ) = lim vi(f ), we note that for some j ,

v∞(f ) = (v∞)F (fj ) = lim
i
(vi |RF )(fj ) ≥ lim sup

i

vi(f ).

For the other direction, if we have a subsequence of i such that limi vi(f ) < v∞(f ), then
after passing to a subsequence again, we can find a j such that

lim
i
vi(f ) = lim

i
vi(fj ) = lim

i
(v∞)F (fj ) ≥ v∞(f ),

a contradiction. ut
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Remark 3.10. A referee pointed out that the sequential compactness of Berkovich space
was studied in [Poi13]. The above result could also be derived from that work.

For a general klt singularity (X, o), the minimum is not always achieved by a Kollár
component (see [Blu18, LX18]). Thus we have to take a limiting process. However, if the
minimizer v is divisorial, then it should always yield a Kollár component. First we have
the following result inspired by [Blu16] (it is also independently obtained in [Blu18]).

Lemma 3.11. If ordE ∈ ValX,o minimizes v̂ol(X,D), then the Rees algebra associated to
ordE is finitely generated.

Proof. If {a•} are the graded valuative ideals associated to ordE , then

v̂ol(ordE) = lim
k→∞

A(X,D)(ordE)n ·
mult(ak)
kn

≥ lim
k→∞

lct(X,D; ak)n ·mult(ak) ≥ v̂ol(ordE)

by Proposition 2.8 and our assumption that ordE is a minimizer of v̂ol(X,D). So we con-
clude that (see [Mus02])

lct(X,D; a•) := lim
k→∞

k · lct(X,D; ak) = A(X,D)(ordE),

which we denote by c. Therefore, we can choose ε so small that the discrepancy
a(E;X,D + (1− ε)c · a•) is in (−1, 0),

On the other hand, we know

lct(X,D; a•) = lim
m→∞

m · lct(X,D; am).

So for sufficiently large m, and all G,

a

(
G;X,D +

1
m
(1− ε)c · am

)
> −1.

We also have a
(
E;X,D + 1

m
(1 − ε)c · am

)
< 0. Then similar to the discussion

in 3.4, we can find a Q-divisor 1 such that
(
X,D + 1

m
(1 − ε)c · 1

)
is klt and

a
(
E;X,D + 1

m
(1 − ε)c · 1

)
< 0. As a consequence we can apply [BC+10] to ob-

tain a model µ : Y → X such that Ex(µ) = E and −E is µ-ample, which implies finite
generation. ut

Proof of Theorem C. By Lemma 3.11, the assumption in (i) that v is a multiple of a
divisorial valuation implies the assumption in (ii), thus we only need to treat (ii).

By the proof of Proposition 2.8,

A(X,D)(v)
n
·

mult(ak)
kn

≥

(
A(X,D)(v)

v(ak)

)n
·mult(ak) ≥ lct(X,D; ak)n ·mult(ak).

By the finite generation assumption, akl = alk for sufficiently divisible k and any l. So
replacing k by kl in the above display and letting l→∞, we find that

v̂ol(X,D),o(v) ≥ lct(X,D; ak)n ·mult(ak) ≥ v̂ol(X,D),o(v).
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Take µ : Y → X to be the dlt modification of (X,D + lct(X,D, ak) · ak) as given in
Lemma 3.5. The above discussion then implies that

lct(X,D; ak)n ·mult(ak) = v̂ol(X,D),o(v) = vol(X,D),o(Y ).

Moreover, it follows from Proposition 2.10 that we can choose a model W → Y and
run MMP to obtain W 99K Y ′ such that µ′ : Y ′ → X gives a Kollár component S with
a(S;Y,µ−1D∗ +E) = −1. We only need to show that if Y ′ and Y are not isomorphic in
codimension 1, then

vol(X,D),o(Y ′) < vol(X,D),o(Y ).

This is the local analog of the argument in [LX14, Proposition 5]. We give the details for
the reader’s convenience.

Let π : Y → Y c be the canonical model of −KY − µ−1
∗ D − E over X, which exists

because

−ε(KY +µ
−1
∗ D +E) ∼Q,X KY +µ

−1
∗

(
D + c ·

1
l

∑
Dj

)
+E − ε

∑
i

A(X,D)(Gi)Gi

is a klt pair for ε sufficiently small. The assumption that Y ′ and Y are not isomorphic in
codimension 1 implies Y c

6= Y .
Choose p : Ŷ → Y and q : Ŷ → Y ′ to be log resolutions of singularities from a

common smooth variety Ŷ , and write

p∗(KY + µ
−1
∗ D + E) = q

∗(KY ′ + µ
′−1
∗ D + S)+G.

By the negativity lemma (cf. [KM98, 3.39]), we conclude that G ≥ 0. Since

KY + µ
−1
∗ D + E ∼Q,X

∑
i

A(X,D)(Gi)Gi

and
KY ′ + µ

′−1
∗ D + S ∼Q,X A(X,D)(S) · S,

we know that
p∗
(∑

i

A(X,D)(Gi)Gi

)
= q∗(A(X,D)(S) · S)+G.

For 0 ≤ λ ≤ 1, let

Lλ = q
∗(A(X,D)(S) · S)+ λG =

∑
i

bi(λ)Fi

where Fi runs over all divisor supports on Ŷo := Ŷ ×X {o}, and −Lλ|Ŷo is nef. Define

f (λ) =
∑
i

bi(λ)(−Lλ|Fi )
n−1.

Then f (λ) is nondecreasing as G ≥ 0. By Lemmas 2.11 and 3.6, we know that

f (1) = vol(X,D),o(Y ) and f (0) = vol(X,D),o(Y ′).
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Since Y 99K Y ′ is not isomorphic in codimension 1, it must contract some componentG1
of E, and the coefficient of G1 in G is

a := A
(Y ′,µ′−1

∗ D+S)
(G1) > 0.

Then

df (λ)

dλ

∣∣∣∣
λ=1
= n ·G · (−p∗(KY + µ

−1
∗ D + E))

n−1

≥ n · aG1 · (−π∗(KY + µ
−1
∗ D + E))

n−1 > 0.

Thus vol(X,D),o(Y ′) = f (0) < f (1) = vol(X,D),o(Y ). ut

With all these discussions, we also obtain the following result, which characterizes the
equality condition in Proposition 2.8 and is a generalization of [FEM04, Theorem 1.4]
(see Remark 3.13) for smooth points. See [Laz04b, 9.6] for more background.

Theorem 3.12. Let (X, o) = (Spec(R),m). Assume (X,D) is a klt singularity for a
Q-divisor D ≥ 0. Then there exists an m-primary ideal a that realizes the minimum of
normalized volume, i.e.

lct(X,D; a)n ·mult(a) = inf
v∈ValX,o

v̂ol(v),

if and only if there exists a Kollár component S that satisfies the following two conditions:

(a) ordS computes both lct(X,D; a) and infv∈ValX,o v̂ol(v).
(b) There exists a positive integer k such that the only associated Rees valuation of ak is

ordS .

Later we will verify Theorem B which says such a minimizing Kollár component S is
unique.

Proof of Theorem 3.12. By the argument in Theorem C, we see that

lct(X,D; a)n ·mult(a)

realizes the minimum of v̂ol(X,D),o if and only if there is a dlt modification µ : Y → X of

(X,D; c · a) where c = lct(X,D; a)

that only extracts a Kollár component S of (X,D) such that ordS is a minimizer of
v̂ol(X,D),o.

Now we fix such an ideal a and Kollár component S. Assume that µ∗a has vanishing
order m along S. Since S is Q-Cartier, we can choose a positive integer k such that mkS
is Cartier. We claim that

µ∗(ak) = OY (−mkS).

Granted this, we find that Y coincides with the normalized blow up X+ → X of ak , i.e.,
S is the only associated Rees valuation for ak .
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To verify the claim, since −mkS is Cartier, we infer that

µ∗(ak) = c ·OY (−mkS) for some ideal c ⊂ OY ,

and we aim to show that c is indeed trivial. If not, we take a normalized blow up
φ : Y+ → Y of c, so φ∗c = OY+(−E) for some effective Cartier divisor E. Since −S is
ample over X, we can choose l so large that

−D := −φ∗(mklS)− E

on Y+ is ample over X.
Since

(µ ◦ φ)∗akl = OY+(−φ
∗(mklS)− lE) ⊂ OY+(−φ

∗(mklS)− E),

we know that

mult(akl) ≥ volFo (−φ
∗(mklS)− E) = volFo (−D)

= mkl(−D|φ∗S)
n−1
+ (−D|E)

n−1

> mkl(mkl(−S)|S)
n−1
= (mkl)n vol(ordS).

Since lct(X,D; a) = 1
m
·A(X,D)(ordS), we can easily see the above inequality contradicts

the assumption that
lct(X,D; a)n ·mult(a) = v̂ol(ordS).

Here the last inequality comes from a calculation similar to (but easier than) the proof of
Theorem C.

For the converse direction, we assume conditions (a)–(b) hold. We assume that
ordS(a) = m and that for some integer k the only associated Rees valuation of ak is
ordS , i.e., the normalized blow up of ak , denoted by µ : X+ → X, has the property that
µ∗(ak) = OX+(−mkS). Then we have

amkl(ordS) = {f ∈ R | ordS(f ) ≥ mkl} = µ∗(µ∗(ak)l) = akl, (9)

where akl is the integral closure of akl . By assumption, lct(X,D; a) = A(X,D)(S)/m.We
claim that

mult(ak) = lim
k→∞

n! · lR(R/akl)

ln
,

which together with (9) implies that

lct(X,D; a)n ·mult(a) = lct(X,D; ak)n ·mult(ak)

=
A(X,D)(S)

n

mn
lim
l→∞

n! · lR(R/aml(ordS))
ln

= v̂ol(ordS) = inf
v

v̂ol(v).
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To verify the claim, if we denote by J (akl) = J (X,D; akl) the multiplier ideal, then

mult(ak) = lim
k→∞

n! · lR(R/J (akl))
ln

by the local Skoda Theorem [Laz04b, 9.6.39]. On the other hand, since (X,D) is klt,

akl ⊆ akl ⊆ J (akl).

Thus

mult(ak) = lim
l→∞

n! · lR(R/a
kl)

ln
≥ lim
l→∞

n! · lR(R/akl)

ln

≥ lim
l→∞

n! · lR(R/J (akl))
ln

= mult(ak).

Thus the inequalities have to be equalities and we are done. ut

Remark 3.13. In the proof, we have indeed shown that if a has the minimal normalized
multiplicity and S is a Kollár component such that ordS(a) = m as in the statement of
the above theorem, then for any k such that mkS is Cartier on Y , the integral closure ak

coincides with the valuative ideal amk of ordS (see identity (9)).

4. K-semistability implies the minimum

4.1. Degeneration to initial ideals

Let (X, o) = (Spec(R),m) be an algebraic singularity such that (X,D) is klt for a Q-
divisor D ≥ 0. Given a Kollár component S, we consider the associated degeneration
W◦/A1 of X where W◦ is the underlying coarse moduli space of W◦ =W \Y0 defined
in Section 2.4. We follow the notation of Section 2.4 and also denote by v0 the valuation
ordS .

Suppose b is an m-primary ideal on X. We will describe explicitly an ideal B on W
such that B⊗OX×C∗ is the pull back of b and B⊗OC is the ideal generated by initial
forms of elements of b, by considering the closure of b× C∗ on W . For this purpose we
consider the extended Rees algebra associated to the Kollár component (see [Eis94, 6.5]):

R′ =
⊕
k∈Z

R′k :=
⊕
k∈Z

akt
−k
⊂ R[t, t−1

]

where ak = ak(ordS). Notice that if k ≤ 0, then ak = R. It is well known that the
following identification holds true (recall that R∗ was defined in (5)):

R′ ⊗C[t] C[t, t−1
] ∼= R[t, t

−1
], R′ ⊗C[t] C[t]/(t) ∼=

∞⊕
k=0

(ak/ak+1)t
−k ∼= R

∗.



2600 Chi Li, Chenyang Xu

Geometrically this exactly means W◦ = Spec(R′) and

W◦ ×A1 (A1
\ {0}) = X × (A1

\ {0}), W◦ ×A1 {0} = C.

Notice that there is a natural Gm-action on W◦ given by the Z-grading.
For any f ∈ R, supposing v0(f ) = k, we define

f̃ = t−kf ∈ akt
−k
⊂ R′,

and denote
in(f ) = [f ] = [f ]ak+1 ∈ ak/ak+1 = R

∗

k

where we use [f ]a to denote the image of f in R/a. Then we define B to be the ideal in
R′ generated by {f̃ | f ∈ b}, and in(b) to be the ideal ofR∗ generated by {in(f ) | f ∈ b}.
The first two items of the following lemma are similar to (but not the same as) [Eis94,
Theorem 15.17] and should be well known to experts. Notice that here we degenerate
both the ambient space and the ideal. A version of the equality (10) was proved in [Li17b,
Proposition 4.3].

Lemma 4.1. (i) With the above notations,

(R′/B)⊗C[t] C[t, t−1
] ∼= (R/b)[t, t−1

], (R′/B)⊗k[t] k[t]/(t) ∼= R∗/in(b).

(ii) The C[t]-algebra R′/B is free and thus flat as a C[t]-module. In particular,

dimC(R/b) = dimC(R
∗/in(b)). (10)

(iii) in(b) is an m0-primary homogeneous ideal, where m0 =
∑
k>0 R

∗

k .

Proof. (i) follows easily from the definition.
Next we prove (ii). Denote by ck = R

∗

k ∩ in(b) the k-th homogeneous piece of in(b).
We fix a basis {in(f (k)i ) | 1 ≤ i ≤ dk} of R∗k/ck . We want to show that

A′ := {[f̃ (k)i ] = [f
(k)
i ]B | 1 ≤ i ≤ dk} ⊂ R′/B

is a C[t]-basis of R′/B.
We first verify that A′ is a linearly independent set. To prove this, we just need to

show that A′ is a C[t, t−1
]-linearly independent subset of (R/b)[t, t−1

]. It is then enough
to show that

A := {[f (k)i ] = [f
(k)
i ]b | 1 ≤ i ≤ dk} ⊂ R/b (11)

is C-linearly independent, which can be verified directly as in [Li17b, Proposition 4.3].
See also [Eis94, Proposition 15.3].

So we just need to show that A′ spans R′/B. Equivalently, we need to show that
for any f ∈ R, [f̃ ] = [f̃ ]B ∈ R′/B is in the C[t]-span of A′. This can be shown
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again with the help of A in (11), that is, it is enough to prove that A spans R/b as a C-
linear space. Indeed, assuming the latter, for any f ∈ R, there exists a linear combination
g =

∑
i,k cikf

(k)
i such that f − g =: h ∈ b. If m = v0(f ), then

f̃ = t−mf =
∑
i,k

cikt
−mf

(k)
i + t

−mh.

Because t−mh ∈ B, the above indeed implies [f̃ ] is in the C[t]-span of A′.
To prove that A indeed C-spans R/b, we first claim that the following set is finite:

{v0(g) | g ∈ R − b}.

Indeed, because b is m-primary, there exists N > 0 such that mN ⊆ b ⊆ m. So R − b ⊆
R −mN . Now the claim follows from the fact that for any f ∈ mN ,

v0(f ) ≤ c · A(v0) ·N

by Izumi’s theorem, where c is a uniform constant not depending on f .
If there is [f ] 6= 0 ∈ R/b that is not in the span of A, then we can choose a maximal

k = v0(f ) for which this happens. There are two cases:

• If in(f ) ∈ R∗k \ ck , then because in(f (k)i ) is a basis of R∗k/ck , there exist tj ∈ C such
that in(f )−

∑dk
j=1 tj in(f (k)j ) = in(g) ∈ ck for some g ∈ b. So we get

v0

(
f −

dk∑
j=1

tjf
(k)
j − g

)
> k.

By maximality of k, [f −
∑dk
j=1 tjf

(k)
j − g] = [f ] −

∑dk
j=1 tj [f

(k)
j ] and hence [f ] is

in the span of A, a contradiction.
• If in(f ) ∈ ck = in(b) ∩ R∗k , then in(f ) = in(g) for some g ∈ b. So v0(f − g) > k

and hence [f − g] is in the span of A by the maximal property of k. But then [f ] =
[f − g] + [g] = [f − g] is in the span of A, a contradiction.

To prove part (iii) of the lemma, we need to show that there exists N ∈ Z>0 such that
mN0 ⊆ in(b) ⊆ m0. Because b is m-primary, there exists N1 ∈ Z>0 such that mN1 ⊆

b ⊆ m. By Izumi’s theorem, there exists l ∈ Z>0 such that alm ⊆ mm for any m ∈ Z>0.
By letting N = lN1, it is easy to see that mN0 ⊆ in(b) ⊆ m0. ut

Lemma 4.2. If b• = {bk} is a graded family of ideals of R, then in(b•) := {in(bk)} is
also a graded family of ideals of R∗.

Proof. We just need to show that

in(bk) · in(bl) ⊆ in(bk+l).

If v0(f ) = k and v0(g) = l, then v0(fg) = k + l, and we have

in(f ) · in(g) = [f ]ak+1 · [g]al+1 = [fg]ak+l+1 = in(f · g). ut
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Lemma 4.3. If b• is a graded family of ideals, then

lct(b•)n ·mult(b•) ≥ lct(in(b•)n) ·mult(in(b•)). (12)

Proof. By the flatness of B and the lower semicontinuity of log canonical thresholds, we
have lct(bk) ≥ lct(in(bk)). Therefore, by (10),

lct(bk)n · lR(R/bk) ≥ lct(in(bk)n) · lR∗(R∗/in(bk)).

Letting k→∞, we get (12). ut

4.2. Equivariant K-semistability and minimizer

In this section, we will take a detour to show that the discussion in Section 4.1 can be
used to study equivariant K-semistability. Here a Q-Fano variety (V ,1) with an action
of an algebraic groupG is calledG-equivariantly K-semistable (resp. Ding semistable) if
for any G-equivariant test configuration, the generalized Futaki (resp. Ding) invariant is
nonnegative. Let T = (C∗)r be a torus. First we improve the two approximating results
to the equivariant case.

Proposition 4.4. Let (X, o) = (Spec(R),m) and D ≥ 0 a Q-divisor such that o ∈
(X,D) is a klt singularity. Assume o ∈ (X,D) admits a T -action. Then

min
v

v̂ol(X,D),o(v) = inf
a

lct(X,D; a)n ·mult(a) = inf
S

v̂ol(X,D),o(ordS) (13)

where on the left hand side v runs over all the valuations centered at o, in the middle
term a runs over all T -equivariant m-primary ideals, and in the right term S runs over
all T -equivariant Kollár components.

Proof. Let a• = {ak} be a graded sequence for an m-primary ideal a. Assume T ∼=
(C∗)r . Fixing a lexicographic order on Zr , we can degenerate the ideal ak to its initial
ideal in(ak).

Lemma 4.3 implies that for b• = {bk} =: {in(ak)},

lct(X,D; b•)n ·mult(b•) ≤ lct(X,D; a•)n ·mult(a•).

Since
lct(X,D; b•)n ·mult(b•) = lim

m
lct(X,D; bm)n ·mult(bm),

the first equality is a corollary of Proposition 2.8.
For the second equality, we just need to show that the construction in Section 3.1

can be established T -equivariantly. This is standard, and relies on two facts: first, we can
always take an equivariant log resolution of (X,D, a) (see [Kol07]); second, as T is a
connected group, for any curve C in a T -variety and any t ∈ T , t · C will always be nu-
merically equivalent to C; as the minimal model program only depends on the numerical
class [C], we know that any MMP sequence is automatically T -equivariant. Therefore,



Stability of valuations and Kollár components 2603

for any T -equivariant m-primary ideal a, we can find a T -equivariant dlt modification
Y → X and then a T -invariant Kollár component S such that

lct(X,D; a)n ·mult(a) ≥ vol(Y ) ≥ v̂ol(ordS). ut

In [Li17b] (see also [LL19]), it was proved that the canonical valuation on the affine cone
minimizing v̂olX implies V is K-semistable. Conversely, if V is K-semistable then the
canonical valuation minimizes v̂olX among all C∗-invariant valuations. The argument ex-
tends easily to the logarithmic case. Proposition 4.4 allows us to extend the minimization
result to all valuations in ValX. ([LL19] proved the same result, but under the assumption
that V degenerates to a Fano with Kähler–Einstein metric.) For the reader’s convenience,
we sketch the argument from [Li17b, LL19].

Theorem 4.5. Let (V ,1) be a projective log Fano variety and o ∈ (X,D) the affine
cone over (V ,1) induced by some ample Cartier divisor L = −r−1(KV +1). Then the
canonical valuation v0 obtained by blowing up the vertex minimizes v̂ol(X,D) on ValX,o if
and only if (V ,1) is log-K-semistable.

Proof. First we assume that (V ,1) is log-K-semistable and prove the volume minimizing
property of ordV . By Proposition 4.4, we only need to prove that for any C∗-invariant
divisorial valuation v over (X, o),

v̂ol(v0) ≤ v̂ol(v).

Let Y → X be the blow up at o with exceptional divisor still denoted by V . Denote
by IV the ideal sheaf of V ⊂ Y and define (see [Li17b, Lemma 4.2])

c1 := c1(IV ) = min {v(φ) | φ ∈ IV (U), U ∩ centerY (U) 6= ∅} .

Let R =
⊕
∞

k=0 Rk =
⊕
∞

k=0H
0(V , kL) be such that X = Spec(R). On R, we define a

graded filtration

FR(t) =
∞⊕
k=0

FktRk with FxRk := {f ∈ Rk | v(f ) ≥ x}.

The volume of FR(t) is defined to be

vol(FR(t)) := lim sup
m→∞

dimC(FmtRm)

mn/n!
.

By [Li17b, (21) and (22)], we get a formula for vol(v):

vol(v) = lim
m→∞

n!

mn
dimC(R/am(v)) =

Ln−1

cn1
−

∫
∞

c1

vol(FR(t))
dt

tn+1

= −

∫
∞

c1

d vol(FR(t))
tn

.
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Then we consider the function

8(λ, s) =
Ln−1

(λc1s + (1− s))n
− n

∫
∞

c1

vol(FR(t))
λs dt

(1− s + λst)n+1

=

∫
∞

c1

−d vol(FR(t))
((1− s)+ λst)n

.

8(λ, s) satisfies the following properties:

1. For any λ ∈ (0,∞), we have

8(λ, 1) = vol(λv) = λ−n vol(v), 8(λ, 0) = vol(v0) = L
n−1.

2. For any λ ∈ (0,∞), 8(λ, s) is continuous and convex with respect to s ∈ [0, 1].
3. The directional derivative of 8(λ, s) at s = 0 is equal to

8s(λ, 0) = nλLn−1
(
λ−1
− c1 −

1
Ln−1

∫
∞

c1

vol(FR(t)) dt
)
.

Let λ∗ = r/A(X,D)(v). Note that A(X,D)(v0) = r . So by item 1, we have

8(λ∗, 1) =
v̂ol(v)
rn

, 8(λ∗, 0) = Ln−1
=

v̂ol(v0)

rn
.

By item 2, we just need to prove 8s(λ∗, 0) ≥ 0. Let v̄ = v|C(V ) be the restriction of v
under the inclusion C(V ) ↪→ C(X). It is known that v̄ = b·ordE where b ≥ 0 by [BHJ17,
proof of Lemma 4.1] and ordE is a divisorial valuation on C(V ). Moreover v is the C∗-
invariant extension of v̄ to C(X) (cf. [BHJ17, Lemma 4.2], [Li17b, Appendix 4.2.1]):

v(f ) = min
{
c1k + v̄(fk)

∣∣∣ f =∑
k

fk ∈ R with fk 6= 0 ∈ Rk
}
. (14)

If φ : Ṽ → V is a model that contains E as a divisor, then v can also be obtained as
a quasi-monomial valuation on the model Ỹ → Y where Ỹ = Y ×V Ṽ (see [Li17b,
Definition 6.12]). Using this description, it is easy to show that

λ−1
∗ − c1 =

A(X,D)(v)

r
− c1 =

A(V ,1)(v̄)

r
=
b · A(V ,1)(E)

r
.

By a change of variables we get∫
∞

c1

vol(FR(t)) dt =
∫
∞

0
vol(Fv̄R(t)) dt

where

Fv̄R(t) =
⊕
k

H 0(V , L⊗k ⊗ akt ) and akt = {f ∈ OV | v̄(f ) ≥ kt}.
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So we get

8s(λ∗, 0) = nλ∗Ln−1
(
A(V ,1)(v̄)−

r

Ln−1

∫
∞

0
vol(Fv̄R(t)) dt

)
= nλ∗L

n−1b

(
A(V ,1)(E)−

r

Ln−1

∫
∞

0
vol(FordER

(t)) dt

)
.

By applying Fujita’s result [Fuj18] (see also [Fuj19, Li17b, LL19]), we get8s(λ∗, 0) ≥ 0.
Conversely, if ordV is volume minimizing, then the above calculation shows that

A(V ,1)(ordE)−
r

Ln−1

∫
∞

0
vol(FordER

(t)) dt (15)

is nonnegative for any divisorial valuation ordE over V . By the valuative criterion for
(log-)K-semistability in [Fuj19, Li17b, LL19], this implies (V ,1) is indeed log-K-semi-
stable. ut

An alternative way to prove the first implication of Theorem 4.5 is using Proposition 5.3
and the arguments of [LL19, Section 4.2]. With all the techniques we have, we can now
prove Theorem E.

Proof of Theorem E. Let (X,D) be the affine cone of L = −r−1(KV +1) over (V ,1)
for r−1 being a sufficiently divisible positive integer. We consider minimizing the nor-
malized local volume at the T -equivariant singularity o which is the vertex. We aim to
show that if (V ,1) is T -equivariantly log-K-semistable then ordV minimizes v̂ol(X,D).
This then implies that (V ,1) is log-K-semistable by Theorem 4.5 .

Following the proof of Proposition 4.4, we assume that T = (C∗)r and fix a lexi-
cographic order on Zr . Then by taking initial ideals, we can always associate a graded
sequence of T -equivariant ideals to a given primary ideal. On the other hand,

inf
a

lct(X,D; a)n ·mult(a) = inf
a•

lct(X,D; a•)n ·mult(a•) = min
v∈ValX,o

v̂ol(v).

So we can find a sequence {ai} of T -equivariant ideals such that

inf
i

lct(ai)n ·mult(ai) = min
v∈ValX,o

v̂ol(v).

Using the equivariant resolution and running an MMP process as in Section 3.2, we can
find a sequence of T -equivariant Kollár components Si such that

inf
i

v̂ol(ordSi ) = min
v∈ValX,o

v̂ol(v).

For any T -equivariant Kollár component Si , we consider v = ordSi ∈ ValX,o. Denote its
induced divisorial valuation on V by b · ordE .

Arguing as in the proof of Theorem 4.5, in order to conclude v̂ol(v∗) ≤ v̂ol(ordSi ),
we want to show that 8s(λ∗, 0) ≥ 0, where

8s(λ∗, 0) = nλ∗Ln−1b

(
A(V ,1)(E)−

r

Ln−1

∫
∞

0
vol(FordER

(t)) dt

)
for the T -equivariant divisorial valuation E over (V ,1).
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Now we use the assumption that (V ,1) is T -equivariantly K-semistable. Follow-
ing the argument in [BBJ15, Fuj19], we deduce that (V ,1) is T -equivariantly Ding-
semistable. Indeed, for any special test configuration, the Futaki invariant is the same as
the Ding invariant. Using the fact that T -equivariant MMP decreases the Ding invariant
by [BBJ15, Fuj19], we find that the Ding invariant for any T -equvariant test configuration
is nonnegative. Applying the argument in [Fuj18] (see [Li17b, Fuj19]), we conclude that
8s(λ∗, 0) ≥ 0 as desired. ut

4.3. Proof of Theorem A

Let (X, o) = (Spec(R),m) be an algebraic singularity such that (X,D) is klt for a Q-
divisorD ≥ 0. Let S be a Kollár component and 1 = 1S the different divisor defined by
the adjunction (KY + S +µ−1

∗ D)|S = KS +1S where µ : Y → X is the extraction of S.
We follow the notation of Sections 2.4 and 4.1. In this section, we will prove Theorem A
which states that if (S,1S) is K-semistable, then ordS minimizes v̂olX over ValX,o.

Lemma 4.6. Let b• be a graded sequence of m0-primary ideals whose reduced support
is oC ∈ C. If (S,1S) is K-semistable, then

lct(b•)n ·mult(b•) ≥ v̂ol(C,CD),oC (ordS).

Proof. Using the result in [JM12], we have

lct(b•)n ·mult(b•) = lim
k→∞

(k · lct(bk))n ·
mult(bk)
kn

= lim
k→∞

lct(bk)n ·mult(bk).

By Proposition 2.8, it suffices to show that v̂ol(C,CD),oC (ordS) is equal to

min
v

v̂ol(C,CD),oC (v)

with v running over valuations centered at oC .
It follows from Theorem 4.5 that if we choose d sufficiently divisible such thatC(d) =

C(S,H) is constructed as the cone over S with an ample Cartier divisor H proportional
to −(KS +1S), then the canonical valuation ordS(d) is a minimizer of v̂ol

(C(d),C
(d)
1 +C

(d)
2 )

.
By Proposition 4.7, this implies the same for C. ut

Proposition 4.7. With the above notations, ordS minimizes v̂ol(C,CD) if and only if ordS(d)
minimizes v̂ol

(C(d),C
(d)
1 +C

(d)
2 )

.

Proof. The degree d cover h : C → C(d) is a fiberwise map with respect to the cone
structures and the Galois group G =: Z/d is naturally a subgroup of C∗. Let E be a
Kollár component over C(d). By Lemma 2.13 we know h∗(E) is a Kollár component
over C, and it follows from Lemma 2.14 (or [Li17b, Lemma 6.9]) that

d · v̂ol(ordE) = v̂ol(h∗E).

So if ordS minimizes v̂ol(C,CD), then the corresponding canonical valuation also mini-
mizes v̂ol

(C(d),C
(d)
1 +C

(d)
2 )

.
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For the converse, let E be a T -invariant Kollár component over C. Since it is G-in-
variant, by Lemma 2.13 we know that it is a pull back of a Kollár component F over C(d).
Assume that the canonical valuation minimizes v̂ol

(C(d),C
(d)
1 +C

(d)
2 )

. Then over C, we see
that v̂ol(ordS) ≤ v̂ol(ordE) for any T -equivariant Kollár component E. Therefore ordS is
a minimizer of v̂ol(C,CD) by Proposition 4.4. ut

Theorem A is a consequence of Theorem 4.5 and the following proposition.

Proposition 4.8. Any Kollár component S over o ∈ (X,D) induces a C∗-equivariant
degeneration to an ‘orbifold’ cone oC ∈ (C,CD) with a Kollár component S0 ∼= S which
is the canonical valuation with respect to the orbifold cone structure, and

v̂ol(X,D),o(ordS) = v̂ol(C,CD),oC (ordS0), vol(o,X,D)) ≥ vol(oC, C,CD).

Proof. We use the same notations as in Section 2.4. In particular, we denote by Z (resp.
W) the coarse moduli space of Z (resp. W). Let φ : Z → XA1 (= X × A1) be the bira-
tional morphism and S′A1 the birational transform of SA1 ⊂ YA1 on Z . Write aS′A1 ∼Q,W
KZ+φ−1

∗ DA1+S′A1 . Restricting over a general fiber and taking the coarse moduli spaces,
we obtain

aS ∼Q,X KY + S + µ
−1
∗ (D),

so a = A(X,D)(S). Similarly, over the central fiber, we get

aS0 ∼Q,C KY0 + S0 + (µ
−1
0 )∗CD,

where µ0 : Y0 → C is the blow up of the vertex oC with exceptional divisor S0 ∼= S. Thus
a = AC,CD (S0).

We also know that

volX,o(ordS) = (−S|S)n−1
= (−S0|S0)

n−1
= volC,oC (ordS0).

Combining all the above, we find that for any ideal b on X, if we let b• = {bk}, then

v̂ol(X,D),o(ordS) = volX,o(ordS) · A(X,D)(S)n = volC,oC (ordS0) · A(C,CD)(S0)
n

≤ lct(in(b•)n) ·mult(in(b•)) ≤ lct(b)n ·mult(b)

where the last two inequalities follow from Lemmas 4.6 and 4.3. Thus we conclude that

v̂ol(X,D),o(ordS) ≤ inf
b

lct(b)n ·mult(b) = inf
v

v̂ol(X,D),o(v)

where the second equality follows from Proposition 2.8. ut

5. Uniqueness

In this section, we will prove Theorem B on the uniqueness of the minimizers among all
Kollár components. There are two steps: first we prove this for cone singularities; then
for a general singularity, we combine the deformation construction with some results
from the minimal model program to essentially reduce the situation to the case of cone
singularities.
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5.1. Case of cone singularity

We first settle the case of cone singularities. It can be proved using Proposition 5.9 and
[Li17b, Theorem 3.4]. Here we give a different proof, which analyzes the geometry in
more detail. A similar argument in the global case appears in [Liu18, proof of Theo-
rem 3], where a characterization of quotients of Pn was given as those achieving the
maximal possible volumes among all K-semistable Q-Fano varieties with only quotient
singularities.

Let (V ,1) be an (n − 1)-dimensional log Fano variety and −(KV + 1) = rH for
some r ∈ Q and an ample Cartier divisor H . We assume r ≤ n. Let X0

:= C(V,H) be
the affine cone over the base V with vertex o and let X be the projective cone and D be
the cone divisor over 1 on X.

Consider a Kollár component S over o ∈ (X,D) with the extraction morphism
µ : Y → X. Let µA1 : YA1 → XA1 be the extraction of SA1 . We carry out the process
of deformation to normal cones as in Section 2.4 with respect to S. Here X is a projec-
tive variety instead of a local singularity, but the construction is exactly the same. We
denote by Z (resp. W) the coarse moduli space of Z (resp. W), so there are morphisms
ψ1 : Z →W , φ1 : Z → YA1 and π : W → XA1 . We denote φ = µA1 ◦ φ1.

Fig. 1. Degeneration associated to a Kollár component.

Denote by P the irreducible exceptional divisor for φ1. We have the following equalities:

1. KYA1 + (µA1)−1
∗ DA1 = µ∗A1(KXA1 +DA1)+ aSA1 with a = A(X,D)(S)− 1;

2. KZ + φ−1
∗ DA1 = φ∗1 (KYA1 + (µA1)−1

∗ DA1)+ P;
3. KZ +φ−1

∗ DA1 = ψ∗1 (KW + (DA1)W )+aS
′

A1 , where (DA1)W := ψ1∗φ
−1
∗ (DA1) and

S′A1 = (φ
−1
1 )∗(SA1).
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The first two equalities imply

KZ + φ
−1
∗ (DA1) = φ

∗

1 (KYA1 + (µA1)
−1
∗ DA1)+ P

= φ∗1µ
∗

A1(KXA1 +DA1)+ aφ
∗

1SA1 + P
= φ∗(KXA1 +DA1)+ aS

′

A1 + (a + 1)P.

So AXA1 ,DA1 (P) = a + 2 = A(X,D)(S)+ 1. This implies

KW + (DA1)W = π
∗(KXA1 +DA1)+ A(X,D)(S)C̄.

Denote by L̂ = OX(V∞) the line bundle over the projective cone X, where V∞ is the
divisor at infinity which is isomorphic to V . Then −KX −D = (1+ r)L̂ and

KW + (DA1)W = −(1+ r)ρ∗L̂+ A(X,D)(S)C̄

where C̄ is the orbifold cone over C and ρ : W → X the composite of π : W → XA1

with the projection XA1 → X.
As in [LL19], we define the cone angle parameter β = r

n
and let δ = r n+1

n
. Then

−(KX +D + (1− β)V∞) ∼Q (1+ r)L̂−
(

1−
r

n

)
L̂ = r

n+ 1
n

L̂ = δL̂. (16)

Denote by V∞ the birational transform of (V∞)A1 on W . We also get

KW + (DA1)W + (1− β)V∞ = π∗(KXA1 +DA1 + (1− β)(V∞)A1)+ A(X,D)(S)C̄

= −δρ∗L̂+ A(X,D)(S)C̄. (17)

The above construction works for any Kollár component. From now on we assume
that (V ,1) is K-semistable and S minimizes the normalized volume, i.e.

v̂ol(ordS) = v̂ol(ordV0) = r
n(H n−1) (18)

where V0 denotes the exceptional divisor obtained by blowing up the vertex of the cone,
and we aim to show S = V0. We note that by Theorem 4.5, v̂ol(ordV0) is the minimal
normalized volume. Then we have

vol(ordS) =
v̂ol(ordS)
A(X,D)(S)n

=
rn(H n−1)

A(X,D)(S)n
.

In Section 4.2, we have used the filtration induced by a valuation (see also [BHJ17,
Fuj18]). Here we use the same construction but for sections on the projective cone instead
of the base.
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Definition 5.2 (Filtration by valuation). For a fixed a valuation v ∈ ValX,o, let R̂m =
H 0(X,mL̂). Define FxR̂m := Fx

v R̂m ⊂ R̂m to be a decreasing filtration (with respect
to x) given by

FxR̂m = H
0(X,mL̂⊗ ax) where ax = {f ∈ OX | v(f ) ≥ x}.

On
⊕
∞

m=0 R̂m, we define FR̂(t) := FvR̂(t) =
⊕

Fkt R̂k . Then the volume is defined
to be

vol(FR̂(t)) := lim sup
m→∞

dimC(Fmt R̂m)

mn/n!
.

The following proposition answers the question in [LL19, Section 6].

Proposition 5.3. With the above notation, if the base (V ,1) is log-K-semistable, then
(X,D + (1− β)V∞) is log-K-semistable. As a consequence,

A(X,D)(S)−
δ

L̂n

∫
∞

0
vol(FordS R̂

(x)) dx ≥ 0.

Proof. It is enough to verify that the generalized Futaki invariant is nonnegative for any
compactified special test configuration π : (X ,D+(1−β)V)→ P1 of (X,D+(1−β)V∞)
over P1 (see Section 2.1), where V is the closure of V∞ × (P1

\ {0}). Let 1∞ (= 1) =

V∞ ∩ D and let 1tc be the closure of 1∞ × (P1
\ {0}). Then µ : (V,1tc) → P1 is a

compactified test configuration of (V ,1). As (1+ r)V∞ ∼Q −(KX +D), we know that
there exists k ∈ Q such that

(1+ r)V ∼Q −KX −D + π∗OP1(k),

KV +1
tc
= (KX +D + V)|V = −rV|V + µ∗OP1(k).

The adjunction formula holds because X is smooth along the codimension 2 points over 0
and so there is no different divisor. Since β = r

n
and δ = r 1+n

n
, we have

−(KX /P1 +D + (1− β)V) ∼Q δ · V + π∗OP1(−2− k).

Then the generalized Futaki invariant of (X ,D + (1− β)V)/P1 is

Fut(X ) = −
1

(n+ 1)(δL̂)n
(−KX /P1 −D − (1− β)V)n+1

= −
1

L̂n
π∗OP1(−2− k) · Vn −

δ

(n+ 1)L̂n
Vn+1.

On the other hand, the generalized Futaki invariant of (V,1tc)/P1 is

Fut(V) = −
1

nrn−1H n−1 ((−KV/P1 −1
tc)|V )

n

= −
1

nrn−1H n−1 (rV|V − µ
∗OP1(k)+ µ

∗KP1)
n

= −
1

rn−1H n−1 r
n−1µ∗OP1(−2− k) · (V|V )n−1

−
r

nH n−1 (V|V )
n

= −
1

H n−1π
∗OP1(−2− k) · Vn −

r

nH n−1V
n+1.
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Because H n−1
=
∫
[V ]
H n−1

=
∫
[X]
L̂n = L̂n, we have

Fut(V) = Fut(X ).

Finally, recall that log-K-semistability is equivalent to log-Ding-semistability (see e.g.
[Fuj19]). Then the second statement is obtained by applying [LL19, Proposition 4.5] to
(X,D + (1− β)V∞) and L̂ = − 1

δ
(KX +D + (1− β)V∞). ut

The following key calculations are proved in [LL19, proof of Proposition 4.5].

Proposition 5.4 ([LL19]). Suppose (V ,1) is log-K-semistable. If S is a Kollár compo-
nent realizing the minimum of v̂ol over (X, o), then the graded filtration induced by S
satisfies the following two conditions:

(i) The following identity holds:

A(X,D)(S)−
δ

L̂n

∫
∞

0
vol(FR̂(x)) dx = 0.

(ii) Denote τ := n

√
L̂n/vol(ordS). Then

vol(FR̂(x)) = volY (µ∗L̂− xS) = L̂n − vol(ordS)xn for any x ∈ [0, τ ].

Lemma 5.5. We have τ = A(X,D)(S)/r .

Proof. Combining (i) and (ii) in Proposition 5.4, we find that

A(X,D)(S)−
r(1+ n)

n · L̂n

∫ τ

0
(L̂n − vol(ordS)xn) dx = A(X,D)(S)− r · τ = 0. ut

Arguing as in [Fuj18] (see also [Liu18]), we deduce

Lemma 5.6. τ is the nef threshold of µ∗L̂ with respect to the divisor S, i.e.

τ = sup{x | µ∗L̂− xS is ample}.

Proof. When the point is smooth, this follows from [Fuj18, Theorem 2.3(2)]. Exactly the
same argument can be used to treat the current case. ut

Theorem 5.7. If S is a Kollár component that minimizes the normalized volume, then S
is the canonical component V0.

We first show the following statements.

Lemma 5.8. (i) ρ∗L̂ − τ C̄ is semiample, and contracts Y to S∞ (∼= S) ⊂ C̄ as the
divisor at infinity of the orbifold projective cone C̄ = C̄(S,−S|S).

(ii) A(X,D)(S) = r and there is a special test configuration X of (X,D+ (1−β)V∞; L̂)
whose central fiberX0 is (C̄, CD+(1−β)S∞; L̂0) where CD is the intersection of C̄
with (D × A1)W . Moreover, (C̄, CD + (1− β)S∞; L̂0) ∼= (X,D + (1− β)V∞; L̂).
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Proof. The proof of (i) is along the lines of [Liu18, proof of Lemma 33]. First we observe
the following restrictions of ρ∗L̂− xC̄:

• (ρ∗L̂− xC̄)|Xt = L̂, t 6= 0. Recall that Xt ∼= X for t ∈ C∗.
• (ρ∗L̂− xC̄)|Y0 = µ

∗L̂− xS.
• (ρ∗L̂− xC̄)|C̄ = −xC̄|C̄ = xY0|C̄ = xS∞ = xOC̄(1).

So by Lemma 5.6, it is easy to see that ρ∗L̂− xC̄ is ample when x ∈ (0, τ ). To show that
ρ∗L̂− τ C̄ is semiample, we use (17) to calculate

m(ρ∗L̂− xC̄)−KW − (DA1)W = m(ρ
∗L̂− xC̄)+ (1+ r)ρ∗L̂− A(X,D)(S)C̄

= (m+ 1+ r)
(
ρ∗L̂−

mx + A(X,D)(S)

m+ 1+ r
C̄

)
.

Notice that
mx + A(X,D)(S)

m+ 1+ r
< τ =

A(X,D)(S)

r

if and only if

x <

(
1+

1
m

)
A(X,D)(S)

r
.

Since this is satisfied for

x = τ = A(X,D)(S)/r for any m > 0,

the semiampleness of ρ∗L̂− τ C̄ holds by the base-point-free theorem [KM98, Theorem
3.13]. Next we claim that

H 0(Y,m(µ∗L̂− τS)) ∼= H
0(S,−mτS) (19)

for any m sufficiently divisible. To see this, we consider the exact sequence

0→ OY (m(µ
∗L̂− τS)− S)→ OY (m(µ

∗L̂− τS))→ OY (m(µ
∗L̂− τS))⊗OS → 0,

(20)

and its associated long exact sequence of cohomology groups. By the above discussion,
and since

m(µ∗L̂− τS)− S −KY = m

(
µ∗L̂−

A(X,D)(S)

r
S

)
+ (1+ r)µ∗L̂− A(X,D)(S)S

is ample, it follows from the Kawamata–Viehweg vanishing theorem that

H 1(Y,m(µ∗L̂− τS)⊗O(−S)) = 0 for any m ≥ 0.

We also have

H 0(Y,m(µ∗L̂− τS)⊗O(−S)) = 0 for any m ≥ 0,

as τ is also the pseudo-effective threshold. Thus we know |m(ρ∗L̂ − τ C̄)| contracts the
fiber W ×A1 {0} to C̄ for sufficiently divisiblem. This finishes the proof of (i). We denote



Stability of valuations and Kollár components 2613

by θ : W → X the induced morphism and there is an ample line bundle L̂ on X such that
θ∗L̂ = ρ∗L̂− τ C̄.

Next we prove (ii). Let (DA1)X be the push forward of (DA1)W on X . Then −KX −
(DA1)X and (1+ r)L̂ coincide outsideX0, and they must be relatively linearly equivalent
on the whole X because X0 is irreducible. In particular, they are linearly equivalent when
restricted to X0.

Since
(KY + µ

−1
∗ D + S)|S = KS +1S ∼Q A(X,D)(S) · S|S,

we know that

−KX − (DA1)X |X0 = −KC̄ − CD ∼Q (1+ A(X,D)(S))S∞.

Similarly, we have L̂|X0 ∼Q τS with τ = A(X,D)(S)/r . Therefore,

1+ A(X,D)(S) = (1+ r)
A(X,D)(S)

r
,

which implies A(X,D)(S) = r and τ = 1.
The degree of V∞ under L̂ is

L̂|n−1
X0
· V∞ = L̂

n−1
· V∞ = L̂

n,

while the degree of S is

L̂|n−1
X0
· S = τ−1L̂|nX0

= L̂n = L̂n0 .

The restriction θ |V∞ : V∞→ S is finite since

(ρ∗L̂− τ C̄)|V∞ = L̂|V∞

is ample. And the degree is 1 by the above calculation on degrees, which implies this
is an isomorphism. We claim that Y is indeed the P1-bundle over V∞ induced by blow-
ing up the vertex of X, S is a section, and the morphism θ is just contracting the P1-
bundle. Granted this, we then indeed have an isomorphism from (X,D+ (1− β)V∞; L̂)
to (C̄, CD + (1− β)S∞; L̂0).

To see the claim, let l be a curve contracted by θ ; we want to show that it is the
birational transform of a ruling line of X. To see this, since (ρ∗(L̂)− C̄) · l = 0, we know
that ρ∗(L̂) · l = 1. So the image ρ∗l of l in X is a line, and it passes through the vertex.
Therefore, it is a ruling of the cone. ut

By the above proof, let V be the birational transform of (V∞)A1 on X , and H the extension
of HA1 \ {0} on X . Then

X = ProjV
( ∞⊕
k=0

Sk
)

where Sk =
k⊕
i=0

(H 0(V, iH) · uk−i).

From this we easily see that S and V give the same component over the vertex.
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5.2. The general case

In this section, we prove Theorem B in the general case. We first show that the cone case
we proved in Section 5.1 can be generalized to the case of an orbifold cone. Let T = C∗.

Proposition 5.9. Let o ∈ (X,D) be a klt T -singularity. Assume that a minimizer v of
v̂ol(X,D),o is given by a rescaling of ordS for a Kollár component S. Then v is T -invariant.

Proof. Let a be an ideal whose normalized blow up gives the model of extracting the
Kollár component S (see the proof of Theorem 3.12). Denote the degeneration of a• :=
{ap} induced by the T -action by b• := {in(ap)} (which in general is not necessarily equal
to but only contains in(a)p) by a sequence {B•} of flat families of ideals over A1.

Because ordS is a minimizer of v̂ol = v̂ol(X,D),o, we have

mult(a) · lct(X,D; a)n = v̂ol(ordS) ≤ mult(b•) · lct(X,D; b•)n.

But mult(a) = mult(b•), and lct(X,D, a) ≥ lct(X,D, b•) by the lower semicontinuity
of log canonical thresholds. So we know that

lct(X,D, a) = lct(X,D, b•) = lim
k→∞

lct
(
X,D,

1
k
bk

)
=: c.

Since S computes the log canonical threshold of a, we have A(S;X,D + c · a) = 0. As
a consequence, we can choose ε sufficiently small, and k sufficiently large, such that the
log discrepancy satisfies

A

(
S;X,D +

c − ε

k
ak
)
< 1 and

(
X,D +

c − ε

k
bk

)
is klt.

This implies that
(
XA1 ,DA1+

c−ε
k
Bk

)
is klt and A

(
SY ;XA1 ,DA1+

c−ε
k
Bk

)
< 1, where

SY is the divisor birational to S × A1. Thus by [BC+10] we can construct a model µY :
Y → XA1 extracting only the irreducible divisor SY , which gives S over the generic fiber.
Furthermore, we can assume −SY is ample over XA1 .

Let Y → X and Y0 → X be models given by a general fiber and the special fiber of
Y → XA1 over A1, thus vol(Y ) = vol(Y0), which is the minimal normalized volume. In
particular, by the proof of Theorem C, the special fiber S0 of SY over 0 is irreducible and
yields a T -equivariant minimizer. By Theorem E (we note its proof does not need any part
of the argument for uniqueness) both (S,1S) and (S0,1S0) are K-semistable log Fano
pairs. Take the degeneration X ofX to the orbifold cone (C,DC) (over (S,1S)) over A1.
A priori, X is not known to be T -equivariant.

On the other hand, arguing as above (for more details see the proof of Theorem B
below), we know that S0 degenerates to a C∗-equivariant minimizer of (C,DC), i.e.,
there is a C∗-equivariant model µ′ : Y ′ → X over C with an exceptional divisor SY ′ ,
whose general fiber yields the Kollár component of S0 over X, and the special fiber is
a C∗-equivariant model Y ′0 over (C,DC) whose volume vol(Y ′0) = v̂olX,D(ordS0) is the
minimal normalized volume over (C,DC). Thus Y ′0 → (C,DC) yields an equivariant
Kollár component F . Since any C∗-equivariant Kollár component can be obtained by
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descent from an orbifold cone C0 to the C∗-cone C(d)0 for a sufficiently divisible d, by
Theorem 5.7, it follows that F is the canonical component of (C,DC). Then we take the
degeneration

X := Spec
(⊕
m∈Z

µ′∗OY ′(−mSY ′)
)
· tm→ A1 of X .

X is a (C∗)2-family over A2 with central fiber X0 admitting a (C∗)2-action. From the
above argument, we know that along {0} ×C, the degeneration of (C,DC) to (C,DC) is
indeed trivial. This implies that the graded ring induced by ordS is the same as the graded
ring induced by ordS0 , thus S = S0. ut

Proposition 5.10. In the notation of Section 2.4, S is the unique minimizer among
all Kollár components for v̂ol(C,CD) if and only if the same holds for C(d) on
v̂ol

(C(d),C
(d)
1 +C

(d)
2 )

.

Proof. By Proposition 5.9, any minimizing Kollár component E of v̂ol(C,CD) is T -invari-
ant. Therefore it is G = Z/dZ-invariant. So E is the pull back of a Kollár component on
C(d) by Lemma 2.13, which can only be the canonical component obtained by blowing
up the vertex by our assumption and Lemma 2.14. ut

Proof of Theorem B. By Theorem 5.7 and Proposition 5.10, for the coarse moduli space
of an orbifold cone over a K-semistable log Fano pair, the only Kollár component which
minimizes the normalized volume function is the canonical component.

Now we consider the case of a general klt singularity o ∈ (X,D). Because (S,1S)
is K-semistable, by Theorem A, ordS minimizes v̂ol(X,D),o. Let us assume that there is
another divisor F over (X, o) such that

v̂ol(X,D),o(ordF ) = v̂ol(X,D),o(ordS).

Then by Theorem C, F is indeed a Kollár component.
As in Section 2.4, let π : W → X × A1 be the flat family which degenerates X to

W0 = Y0 ∪ C̄, where Y0 ∼= Y extracts S over X and C̄ is the coarse moduli space of the
orbifold cone over S = C̄ ∩ Y0. Then as in the proof Proposition 5.9, let a be an ideal
whose normalized blow up gives the model of extracting the Kollár component F (see the
proof of Theorem 3.12). Denote the degeneration of {a•} := {ap} by b• := {in(ap)}.

Denote by S0 the induced Kollár component over (C,CD, o) (see Proposition 4.8).
We then have

mult(a) · lct(X,D, a)n = v̂olX(ordF ) = v̂olC̄(ordS0) ≤ mult(b•) · lct(C̄, C̄D, b•)n,

where the last inequality is from the assumption that S0 ∼= S is K-semistable and Theo-
rem A. On the other hand, we have mult(a) = mult(b•) and lct(X,D, a) ≥ lct(C̄, C̄D, b•)
(see the proof of Lemma 4.3). So we know that

lct(X,D, a) = lct(C̄, C̄D, b•) = lim
k→∞

lct
(
C̄, C̄D,

1
k
bk

)
,



2616 Chi Li, Chenyang Xu

which we denote by c. In particular, we can choose ε sufficiently small, and k sufficiently
large, such that the log discrepancy satisfies

A(F ;X,D + (c − ε)a) < δ for sufficiently small δ > 0

and
(
C,CD+ (c−ε)

1
k
bk
)

is klt. Thus similar to the proof of Proposition 5.9, by [BC+10]
we can construct a model ψ ′1 : Z

′
→W extracting only the irreducible divisor FZ ′ which

gives F over the generic fiber. Furthermore, we can assume −FZ ′ is ample over W .
We claim that the special fiber Z′0 → W0 is a normal model which also only ex-

tracts a Kollár component over C̄. In fact, let ν : (Z′0)
n
→ Z′0 be the normalization and

ρ : (Z′0)
n
→ W0 be the composite morphism. Locally over the vertex v of C̄, we have

ν∗((KZ ′ + Z
′

0 + FZ ′ + (φ
′−1)∗DA1)|Z′0

) =: K(Z′0)
n +G+ ρ−1

∗ CD

≥ K(Z′0)
n + Ex(ρ)+ ρ−1

∗ CD (21)

by [Kol13, Proposition 4.5]. Denote the pull back of F0 on (Z′0)
n by F̃0. Then

v̂ol(C,CD),oC (ordS0) = v̂ol(X,D),o(ordF )

=
(
−(KZ ′ + FZ ′ + (φ

′−1)∗DA1)|F
)n−1

=
(
−ν∗((KZ ′ + FZ ′ + (φ

′−1)∗DA1)|Z′0
)|
F̃0

)n−1

≥
(
−ν∗((KZ ′ + FZ ′ + (φ

′−1)∗DA1)|Z′0
)|
(F̃0)red=Ex(ρ)

)n−1

≥ vol(C,CD),oC ((Z
′

0)
n) (by Definition 3.3 and (21)).

Hence the volume of the model (Z′0)
n is equal to the minimum of the normalized vol-

ume v̂ol(C,CD),oC . It follows from the argument in the proof of Theorem C that F̃0 is
reduced and yields a Kollár component over oC . This implies that ν is isomorphic along
the generic point of F̃0, and thus Z′0 is regular along the generic point of F0. Since Z′0 is
Cohen–Macaulay, we conclude that Z′0 is normal by Serre’s criterion. By the proof in the
cone case (Theorem 5.7), F0 has to be the same as the canonical component S0.

Then by the same argument as in the last paragraph of the proof of Proposition 5.9,
we conclude that ordF = ordS . ut

6. Minimizing Kollár component is K-semistable

In this section, we aim to prove that a Kollár component is minimizing only if it is K-
semistable. The method used in the proof is motivated by the one in the study of toric
degenerations (see e.g. [Cal02, Section 3.2], [AB04, Proposition 2.2] and [And13, Propo-
sition 3]). In particular the argument allows us to reduce two-step degenerations to a
one-step degeneration.

Proof of Theorem D. Let (X,D, o) be a klt singularity with X = Spec(R). Assume that
S is a Kollár component that minimizes v̂ol(X,D),o and appears as the exceptional divisor
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in a plt blow up µ : Y → X. Let1S be the divisor on S satisfyingKY +(µ−1)∗D+S|S =

KS + 1S . By Theorems 4.5 and 4.7, to show that (S,1S) is K-semistable, it suffices to
show that the canonical component is a minimizer of v̂ol(C,CD), where (C,CD) is the
degeneration associated to S (see the degeneration construction in Sections 2.4 and 5.1).

By Proposition 4.4, we only need to show that

v̂ol(C,CD)(ordS0) ≤ v̂ol(C,CD)(ordF )

for any C∗-invariant Kollár component F over the vertex oC ∈ (C,CD). Let (C, E) be
the associated special degeneration which degenerates (C,CD) to a pair (C0, E0) where
C0 is an orbifold cone over (F,1F ) (see Section 2.4). Then we have a Z≥0×Z≥0-valued
order function, which yields a rank 2 valuation, defined on R:

w : R → Z≥0 × Z≥0, f 7→ (ordS(f ), ordF (in(f ))). (22)

We give Z≥0×Z≥0 the following lexicographic order: (m1, u1) < (m2, u2) if and only if
m1 < m2, or m1 = m2 and u1 < u2. If we denote by 0 the valuative monoid and denote
the associated graded ring by

grw R =
⊕

(m,u)∈0

R≥(m,u)/R>(m,u),

then it is easy to see that C0 = SpecC(grw R). We will also denote

R∗ =
⊕
m∈N

R≥m/R>m =
⊕
m∈N

R∗m.

Then Spec(R∗) = C and grw R = grordF R
∗. Moreover, we define the extended Rees ring

of R∗ with respect to the filtration associated to ordF (see Section 4.1):

A′ :=
⊕
k∈Z

Ak :=

⊕
k∈Z

bkt
−k
⊂ R∗[t, t−1

]

where bk = {f ∈ R∗ | ordF (f ) ≥ k}. Then the flat family C → A1 is given by
SpecC[t](A′). In particular,

A′ ⊗C[t] C[t, t−1
] ∼= R

∗
[t, t−1

], A′ ⊗C[t] C[t]/(t) ∼= grw R = grordF R
∗.

Pick a set of homogeneous generators f̄1, . . . , f̄p for grw R with deg(f̄i) = (mi, ui).
Lift them to generators f1, . . . , fp for R∗ such that fi ∈ R∗mi . Set P = C[x1, . . . , xp] and
give P the grading by deg(xi) = (mi, ui) so that the surjective map

ρ0 : P → grw R given by xi 7→ fi

is a map of graded rings. Let ḡ1, . . . , ḡq ∈ P be a set of homogeneous generators of
Ker(ρ0) and assume deg(ḡj ) = (nj , vj ).

Since ḡj (f̄1, . . . , f̄p) = 0 ∈ grwR, it follows that

ḡj (f1, . . . , fp) ∈ (Rnj )>vj for each j.
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By the flatness of A′ over C[t], there exist liftings gj ∈ ḡj + (Pnj )>vj of the relation ḡj
such that

gj (f1, . . . , fp) = 0 for 1 ≤ j ≤ q.

So the gj ’s form a Gröbner basis of J with respect to the order function ordF , where
J is the kernel of the surjection P → R∗. In other words, if we let K = (ḡ1, . . . , ḡq)

denote the kernel of P → grwR, then K is the initial ideal of J with respect to the order
determined by ordF . As a consequence,

A′ = P [τ ]/(g̃1, . . . , g̃q) where g̃j = τ
vj gj (τ

−u1x1, . . . , τ
−upxp).

Now we lift f1, . . . , fp further to generators F1, . . . , Fp of R. Then

gj (F1, . . . , Fp) ∈ R>nj .

Let R′ be the extended Rees algebra associated to ordS on R (see Section 4.1). By the
flatness of R′ over C[t], there exist Gj ∈ gj + P>nj such that

Gj (F1, . . . , Fp) = 0.

Let I be the kernel of P → R. Then the Gj ’s form a Gröbner basis with respect to the
valuation ordS and the associated initial ideal is J . As a consequence,

R′ = P [ζ ]/(G̃1, . . . , G̃q) where G̃j = ζ
njGj (ζ

−m1x1, . . . , ζ
−mpxp).

In summary, we have a (C∗)2-action on Cp generated by two one-parameter sub-
groups λ0(t) = t

m and λ′(t) = tu where m,u ∈ Np; λ0 degenerates (X,D) to (C,CD),
and λ′ degenerates (C,CD) further to (C0, E0).

Lemma 6.1. For 0 < ε � 1 and ε ∈ Q, there is a family ( parametrized by ε) of
subgroups λε : C∗→ (C∗)2 such that λε(t) degenerates X to C0 as t → 0.

Proof. Let (n′j , v
′

j ) be a degree of any homogeneous component of Gj − ḡj and consider
the difference (n′j , v

′

j )− (nj , vj ). Note that (n′j , v
′

j ) > (nj , vj ). Denote by B ⊂ Z×Z the
finite set consisting of such differences (n′j , v

′

j ) − (nj , vj ), together with 0 and the two
generators of N× N. Let M be a positive integer that is larger than all absolute values of
coordinates of pairs B and let ε be so small that 1 > Mε. After tensoring with Q, we can
define

πε = e
∗

0 + εe
∗

1 : Q
2
→ Q

where e∗0 and e∗1 denote the first and second projections on the product Z2
= Z× Z.

For ε > 0 suficiently small, we define λε : C∗ → GL(p,C) to be the one-parameter
subgroup corresponding to the prime integral vector Nε · πε in Q>0 · πε :

λε(t) · z = (t
Nε(m1+εu1)z1, . . . , t

Nε(mp+εup)zp) for any (z1, . . . , zp) ∈ Cp.

Note that in this setting, π0 corresponds to ordS .
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Now to see that λε degenerates X to C0, note that for any monomial xp with bidegree
(m, u) = (p ·m,p · u), its degree under λε is given by Nε · πε(m, u). Then from our
construction, we have

πε(n
′

j , v
′

j ) > πε(nj , vj )

where (n′j , v
′

j ) is the degree of any homogeneous part of Gj − ḡj such that (n′j , v
′

j ) >

(nj , vj ). Thus the initial term of Gj with respect to the weight function πε is exactly ḡj .
ut

Fix any λε : C∗ → (C∗)2 for 0 < ε � 1 as above. Then C∗ acts on C0 via λε and
C0 \ {oC0} is a C∗-Seifert bundle (see [Kol04]) where oC0 is the vertex of C0. We claim
that the quotient (C0 \ {oC0})/λε (which we will simply denote by C0/λε) yields a Kollár
component Sε over (C0, E0). Furthermore, it induces Kollár components over (C,CD)
and (X,D) which are both isomorphic to Sε and such that the associated degenerations
degenerate (C,CD) and (X,D) to (C0, E0). By abuse of notation we will also denote
those Kollár components over (C,CD) and (X,D) by Sε .

Assuming this claim is true, we have

v̂ol(X,D)(ordSε ) = v̂ol(C0,E0)(ordSε ) = v̂ol(C,CD)(ordSε ).

In the rational coweight coneNQ ∼= Q2, the one-parameter subgroup λ0(t), which degen-
erates (X,D) to (C,CD), corresponds to the coweight vector (1, 0) and the one-parameter
subgroup λ′(t), which degenerates (C,CD) to (C0, E0), corresponds to the coweight vec-
tor (0, 1). By construction, πε corresponds to the coweight (1, ε) and induces the one-
parameter subgroup λε : C∗→ GL(p,C) which preserves (C0, E0).

Consider the valuation wtλt ∈ ValC0,oC0
induced by the coweight vector of the form

(1, t) ∈ NR for t ∈ [0,∞). It is just the valuation associated to the Reeb vector field on
C0 that generates λt (see [LX18]). Define f (t) = v̂ol(C0,E0)(wtλt ). Then f (t) is a smooth
convex function on [0,∞) (see [MSY08, C.2] and [LX18, Proposition 2.21]), and

f (ε) = v̂ol(C0,E0)(ordSε ) = v̂ol(X,D)(ordSε )

≥ v̂ol(X,D)(ordS) = v̂ol(C0,E0)(ordS0) = f (0).

The inequality is because ordS is assumed to be a minimizer of v̂ol(X,D),o. By convexity,
this implies that f (t) is an increasing function of t . Recall that the coweight (0, 1) =
limt→∞ t

−1(1, t) corresponds to the Kollár component F0 which is the degeneration of F
over C0. By the rescaling invariance of v̂ol, we have limt→∞ f (t) = v̂ol(C0,E0)(ordF0)

(cf. Remark 4.8 or [LX18, proof of Theorem 3.5]). So indeed

v̂ol(C,CD)(ordF ) = v̂ol(C0,E0)(ordF0) ≥ v̂ol(C0,E0)(ordS0) = v̂ol(C,CD)(ordS0).

It remains to verify the claim on Sε . For that we define a filtration by

FNR = SpanC
{
F
a1
1 . . . F

ap
p

∣∣∣ πε( p∑
i=1

ai(mi, ui)
)
≥ N

}
= {g ∈ R | there exists G ∈ P such that G|X = g and degπε (G) ≥ N}.
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Then {FNR} is the filtration induced by the weighted blow up Ĉp → Cp. The associ-
ated graded ring of {FNR} is isomorphic to grw R with the grading given by the weight
function πε ◦ w. Because grw R is a normal integral domain, by Lemma 2.15 the above
filtration is induced by a valuation wε on R, which is a divisorial valuation. Indeed, de-
note by X̂ the strict transform of X under the weighted blow up (i.e., filtered blow up)
Ĉp → Cp. Then, by the discussion in Section 2.5, the exceptional divisor X̂ → X is
isomorphic to Sε = C0/λε := (C0 \ {oC0})/C∗ and wε = c · ordSε for some c > 0. By
Proposition 6.2,

(Sε,1ε) = (C0, E0)/λε := (C0 \ {oC0}, E0 \ {oC0})/C
∗

is indeed a klt log Fano pair and a Kollár component over o ∈ (X,D). ut

Proposition 6.2. With the above notation, for any 0 < ε � 1 with ε ∈ Q+, let (Sε,1ε)
= (C0, E0)/λε . Then Sε is a Kollár component over o ∈ (X,D) and oC ∈ (C,CD).

Proof. For 0 < ε � 1 with ε ∈ Q+, λε is associated to a C∗-action. We have a log
orbifold C∗-bundle π : (C◦0 , E

◦

0) := (C0\{oC0}, E0\{oC0})→ (Sε,1ε). The Chern class
of this orbifold C∗-bundle, denoted by c1(C

◦

0/Sε), is contained in Pic(Sε) and is ample.
One can extract Sε over C0 to get a birational morphism µ : Yε → C0 with exceptional
divisor isomorphic to Sε . (We note that this is an example of the Dolgachev–Pinkham–
Demazure construction, see e.g. [Kol04].)

Because C0 has a Q-Gorenstein klt singularity at oC0 , by [Kol04, 40–42] we know
that c1(C

◦

0/Sε) = −r
−1(KSε + 1ε) for r ∈ Q>0 and (Sε,1ε) has klt singularities. So

(Sε,1ε) is a Kollár component over v ∈ (C0, E0).
To transfer this to (X, o), we notice that by our construction the graded ring grwε R is

isomorphic to
grwtλε

C[C0] = grwtλε
(grw R) (∼= grw R).

The exceptional divisor of the filtered blow up over X associated to wε is isomorphic to
that associated to wtλε over C0, which is Proj(grwtλε

(grw R)) and isomorphic to (Sε,1ε).
Since (Sε,1ε) is klt, by the inversion of adjunction we know that the filtered blow up is
indeed a plt blow up and hence Sε is a Kollár component over (X,D, o).

The same argument also applies to (C,CD). ut

7. Examples

In this section, we find the minimizer for some examples of klt singularities (X, o) =
(Spec(R),m). We note that by Proposition 2.8 and Theorem 3.12, this also explicitly
yields the sharp lower bound of normalized multiplicities, i.e.,

inf
a

lct(X, a)n ·mult(a)

for all m-primary ideals a and gives the equality condition, which generalizes the results
in [FEM04] on a smooth point.
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Example 7.1. Below, we explicitly compute the minimizer for quotient, Ak , Ek and
weakly exceptional singularities.

1. Let (X, o) = (Cn, 0)/G be an n-dimensional quotient singularity. Let E ∼= Pn−1 be
the exceptional divisor over Cn obtained by blowing up 0. Denote by S the valuation over
(X, o) which is the quotient of E by G. Applying Lemma 2.13 to the pull back of Kollár
components on X, we find that

v̂olX,o(ordS) ≤ v̂olX,o(ordF )

for any Kollár component F over (X, o). So ordS minimizes v̂olX,o with

vol(o,X) = v̂olX,o(ordS) = nn/|G|.

For n = 2, this is proved in [LL19, Example 4.9].

2. Consider the n-dimensional Ak−1 singularity:

X = Ank−1 := {z
2
1 + · · · + z

2
n + z

k
n+1 = 0}.

We consider cases when k > 2(n−1)
n−2 (for other cases, see [LL19, Example 4.7]). We want

to show that the valuation corresponding to the weight w∗ = (n − 1, . . . , n − 1, n − 2)
is a minimizer among all valuations in v̂ol(X,D),o. In [Li18, Example 2.8], it is computed
to be a minimizer among all valuations obtained by weighted blow ups on the ambient
space Cn+1.

We notice that under the weighted blow up corresponding to w∗, we have a birational
morphism Y → X with exceptional divisor S isomorphic to the weighted hypersurface

S := {Z2
1 + · · · + Z

2
n = 0} ⊂ P(n− 1, . . . , n− 1, n− 2) =: Pw∗ .

Because Pw∗ ∼= P(1, . . . , 1, n − 2), it is easy to see that S is isomorphic to C̄(Q,−KQ)
whereQ = Qn−2

= {Z2
1+· · ·+Z

2
n = 0} ⊂ Pn−1 (notice thatK−1

Q = (n−2)H ). On the
other hand, because Pw∗ is not well-formed, we have codimension 1 orbifold locus along
the infinity divisorQ∞ ⊂ S with isotropy group Z/(n−1)Z. So the corresponding Kollár
component is the log Fano pair

(
S,
(
1− 1

n−1

)
Q∞

)
. BecauseQ∞ has KE, by [LL19] there

is a conical KE on the pair
(
S,
(
1− 1

n−1

)
Q∞

)
. So by Theorems A and B, ordS is indeed a

global minimizer of v̂ol that is the unique minimizer among all Kollár components. Notice
that for any higher order klt perturbation of these singularities, w∗ is also a minimizer.

3. We can also use Theorem A to verify that the valuations in [Li18, Example 2.8]
for Ek (k = 6, 7, 8) are indeed minimizers of v̂ol(X,D),o, which are unique among Kollár
components. To avoid repetition, we will only do this for E7 singularities. The arguments
for the other two cases are similar. So consider the (n+ 1)-dimensional E7 singularity

Xn+1
= {z2

1 + z
2
2 + · · · + z

2
n + z

3
n+1zn+2 + z

3
n+2 = 0} ⊂ Cn+2.

(a) If n + 1 = 2, then X2 is a quotient singularity C2/E7 and so we get the unique
polystable component by [LL19, Example 4.9] and example 1 above.
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(b) If n + 1 = 3, then X3
= {z2

1 + z
2
2 + z

3
3z4 + z

3
4 = 0} ⊂ C4 ∼= {w1w2 +

w3
3w4 + w

3
4 = 0} ⊂ C4 by the change of variables. This singularity has a (C∗)2-action

and is an example of T -variety of complexity 1. By the recent work in [CS19, Theorem
7.1(II)], X3 indeed has a Ricci flat cone Kähler metric associated to the canonical C∗-
action associated to w∗. So by [LL19, Theorem 1.7], the unique K-polystable Kollár
component is given by the orbifold X3/〈w∗〉.

(c) If n+1= 4, then under the weighted blow up corresponding tow∗= (9, 9, 9, 5, 6),
we have a birational morphism X̂ → X with exceptional divisor E isomorphic to the
weighted hypersurface

E = {z2
1 + z

2
2 + z

2
3 + z

3
5 = 0} ⊂ P(9, 9, 9, 5, 6) = P(w∗).

Since P(w∗) is not well-formed, we have

E ∼= {z
2
1 + z

2
2 + z

2
3 + z

3
5 = 0} ⊂ P(3, 3, 3, 5, 2) = P′

with orbifold locus of isotropy group Z/3Z along

V = {z2
1 + z

2
2 + z

2
3 + z

3
5 = 0} ⊂ P(3, 3, 3, 2).

Alternatively, E is a weighted projective cone over the weighted hypersurface. It is
easy to see that as an orbifold, (V ,1) ∼= (P2, (1−1/3)Q) whereQ = {z2

1+z
2
2+z

2
3 = 0}

⊂ P2. By [LS14], there exists an orbifold Kähler–Einstein metric on (V ,1). Notice that
−(KV +1) = 3L− 4

3L =
5
3L where L is the hyperplane bundle of P2. Denoting by H

the hyperplane bundle of P′, we have H |V = L/3. If V is considered as a divisor on E,
then

V |V = ({z4 = 0} ∩ E) = 5H |V = 5
3L.

So −(KV + 1) = V |V . Then by [LL19, Theorem 1.7], there exists an orbifold Kähler–
Einstein metric on E because the cone angle at infinity is β = 1/3. Thus the unique
log-K-semistable (actually log-K-polystable) Kollár component is given by the pair
(E, (1− 1/3)V ).

(d) If n + 1 = 5, then under the weighted blow up corresponding to w∗ =

(3, 3, 3, 3, 2, 2), we have a birational morphism X̂ → X with exceptional divisor E
isomorphic to the weighted hypersurface

E = {z2
1 + z

2
2 + z

2
3 + z

2
4 + z

3
6 = 0} ⊂ P(3, 3, 3, 3, 2, 2) =: P(w∗).

This is a weighted projective cone over the weighted hypersurface

V = {z2
1 + z

2
2 + z

2
3 + z

2
4 + z

3
6 = 0} ⊂ P(3, 3, 3, 3, 2).

As orbifolds, (V ,1) = (P3, (1 − 1/3)Q). By [LS14, Li17a], (V ,1) is log-K-
semistable and degenerates to a conical Kähler–Einstein pair. So by [LL19], we know
that (E, (1− β)V∞) is log-K-semistable. To determine β, we notice that

−(KV +1) = 4L− 4
3L =

8
3L = 4 · 2

3L = 4 · V∞|V .
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So β = 1 and we conclude that the unique (strictly) K-semistable Kollár component is
indeed the Q-Fano variety E.

(e) If n + 1 ≥ 6, then under the weighted blow up corresponding to w∗ =

(n−1, . . . , n−1, n−2, n−2), we have a birational morphism X̂→ X with exceptional
divisor E isomorphic to the weighted hypersurface

E = {z2
1 + · · · + z

2
n = 0} ⊂ P(n− 1, . . . , n− 1, n− 2, n− 2) =: P(w∗).

This is the weighted projective cone over

V = {z2
1 + · · · + z

2
n = 0} ⊂ P(n− 1, . . . , n− 1, n− 2).

By the discussion in the above Ank−1 singularity case, we know that as an orbifold,
(V ,1) =

(
C̄(Q,−KQ),

(
1 − 1

n−1

)
Q∞

)
, which has an orbifold Kähler–Einstein met-

ric. Notice that

−(KV +1) = (n(n− 1)+ n− 2)H |V − 2(n− 1)H |V = n(n− 2)H |V .

By [LL19, Theorem 1.7], the Q-Fano variety E indeed has an orbifold Kähler–Einstein
metric (β = n/n = 1 at infinity) and hence by Theorem A is the unique K-semistable
(actually K-polystable) Kollár component.

We remark that in the case of Dk+1 singularities, since the valuations computed in
[Li18, Example 2.8] could be irrational, the result in this paper does not directly tell
whether it is a minimizer in ValX,o. This irregular situation is studied in [LX18] (see also
[LL19, Section 6]).

4. A notion of weakly exceptional singularity is introduced in [Pro00]. As the name
suggests, this is a weaker notion than the exceptional singularity introduced in [Sho00],
which forms a special class of singularities in the theory of local complements. In our
language, a singularity (X, o) is weakly exceptional if it has a unique Kollár component S.
We know that if a singularity is weakly exceptional, then the log α-invariant for the log
Fano (S,1S) is at least 1 (see [Pro00, Theorem 4.3] and [CS14]). In particular, (S,1S) is
K-semistable (see [OS14, Theorem 1.4] or [Ber13, Theorem 3.12]). And by Theorems A
and B, ordS is the unique minimizer of v̂ol(S) among all Kollár components. See [CS14]
for examples of weakly exceptional singularities.

Finally, we point out that there are examples of minimizers from Sasaki–Einstein met-
rics; see [LL19, LX18] for details. The articles [LX18, LWX18] also apply minimization
of normalized volumes to Donaldson–Sun’s conjecture about metric tangent cones on
Gromov–Hausdorff limits of Kähler–Einstein Fano manifolds.
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[LM09] Lazarsfeld, R., Mustaţă, M.: Convex bodies associated to linear series. Ann. Sci. École
Norm. Sup. 42, 783–835 (2009) Zbl 1182.14004 MR 2571958

[Li11] Li, C.: Remarks on logarithmic K-stability. Comm. Contemp. Math. 17, art. 1450020,
17 pp. (2015) Zbl 1312.32013 MR 3313212

[Li17a] Li, C.: Yau–Tian–Donaldson correspondence for K-semistable Fano manifolds.
J. Reine Angew. Math. 733, 55–85 (2017) Zbl 1388.53076 MR 3731324

[Li17b] Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166, 3147–
3218 (2017) Zbl 1409.14008 MR 3715806

[Li18] Li, C.: Minimizing normalized volumes of valuations. Math. Z. 289, 491–513 (2018)
Zbl 1423.14025 MR 3803800

[LL19] Li, C., Liu, Y.: Kähler–Einstein metrics and volume minimization. Adv. Math. 341,
440–492 (2019) Zbl 1404.32044 MR 3872852

[LS14] Li, C., Sun, S.: Conical Kähler–Einstein metrics revisited. Comm. Math. Phys. 331,
927–973 (2014) Zbl 1296.32008 MR 3248054

[LWX18] Li, C., Wang, X., Xu, C.: Algebraicity of the metric tangent cones and equivariant
K-stability. arXiv:1805.03393 (2018)

[LWX19] Li, C., Wang, X., Xu, C.: On the proper moduli spaces of smoothable Kähler–Einstein
Fano varieties. Duke Math. J. 168, 1387–459 (2019) Zbl 07080115 MR 3959862

[LX14] Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. of
Math. (2) 180, 197–232 (2014) Zbl 1301.14026 MR 3194814

[LX18] Li, C., Xu, C.: Stability of valuations: higher rational rank. Peking Math. J. 1, 1–79
(2018) Zbl 1423.14262 MR 4059992

[Liu18] Liu, Y.: The volume of singular Kähler–Einstein Fano varieties. Compos. Math. 154,
1131–1158 (2018) Zbl 1397.14052 MR 3797604

[MSY08] Martelli, D., Sparks, J., Yau, S.-T.: Sasaki–Einstein manifolds and volume minimisa-
tion. Comm. Math. Phys. 280, 611–673 (2008) Zbl 1161.53029 MR 2399609
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