Greatest lower bounds on Ricci curvature for toric Fano manifolds

Chi Li

Fine Hall, Washington Road, Princeton, NJ 08544-1000, USA
Received 23 June 2010; accepted 22 December 2010
Available online 11 January 2011
Communicated by Gang Tian

Abstract

In this short note, based on the work of Wang and Zhu (2004) [8], we determine the greatest lower bounds on Ricci curvature for all toric Fano manifolds. © 2011 Elsevier Inc. All rights reserved.

Keywords: Toric Fano manifold; Ricci curvature

1. Introduction

On Fano manifolds X, i.e. K_{X}^{-1} is ample, the Kähler-Einstein equation

$$
\operatorname{Ric}(\omega)=\omega
$$

is equivalent to the complex Monge-Ampère equation:

$$
\begin{equation*}
(\omega+\partial \bar{\partial} \phi)^{n}=e^{h_{\omega}-\phi} \omega \tag{*}
\end{equation*}
$$

where ω is a fixed Kähler metric in $c_{1}(X)$, and h_{ω} is the normalized Ricci potential:

$$
\begin{equation*}
\operatorname{Ric}(\omega)-\omega=\partial \bar{\partial} h_{\omega}, \quad \int_{X} e^{h_{\omega}} \omega^{n}=\int_{X} \omega^{n} \tag{1}
\end{equation*}
$$

[^0]In order to solve this equation, the continuity method is used. So we consider a family of equations with parameter t :

$$
\begin{equation*}
\left(\omega+\partial \bar{\partial} \phi_{t}\right)^{n}=e^{h_{\omega}-t \phi} \omega^{n} \tag{*}
\end{equation*}
$$

Define $S_{t}=\left\{t:(*)_{t}\right.$ is solvable $\}$. It was known that the set S_{t} is open. To solve $(*)$, the crucial thing is to obtain the closedness of this set. So we need some a priori estimates. By Yau's C^{2} and Calabi's higher order estimates (see [9,7]), we only need uniform C^{0}-estimates for solutions ϕ_{t} of $(*)_{t}$. In general one cannot solve $(*)$, and so cannot get the C^{0}-estimates, due to the well-known obstruction of Futaki invariant [2].

It was first showed by Tian [6] that we may not be able to solve $(*)_{t}$ on certain Fano manifold for t sufficiently close to 1 . Equivalently, for such a Fano manifold, there is some $t_{0}<1$, such that there is no Kähler metric ω in $c_{1}(X)$ which can have $\operatorname{Ric}(\omega) \geqslant t_{0} \omega$. It is now made more precise.

Define

$$
R(X)=\sup \left\{t:(*)_{t} \text { is solvable }\right\}
$$

Recently, Székelyhidi proved
Proposition 1. (See [4].)

$$
R(X)=\sup \left\{t: \exists \text { a Kähler metric } \omega \in c_{1}(X) \text { such that Ric }(\omega)>t \omega\right\}
$$

In particular, $R(X)$ is independent of $\omega \in c_{1}(X)$.
Let $B l_{p_{1}, \ldots, p_{k}} \mathbb{P}^{n}$ denote the manifold obtained by blowing up \mathbb{P}^{n} at points p_{1}, \ldots, p_{k}. Székelyhidi showed in [4] that $R\left(B l_{p} \mathbb{P}^{2}\right)=\frac{6}{7}$ and $\frac{1}{2} \leqslant R\left(B l_{p, q} \mathbb{P}^{2}\right) \leqslant \frac{21}{25}$.

Let $\Lambda \simeq \mathbb{Z}^{n}$ be a lattice in $\mathbb{R}^{n}=\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$. A toric Fano manifold X_{\triangle} is determined by a reflexive lattice polytope Δ (for details on toric manifolds, see [3]). For example, $B l_{p} \mathbb{P}^{2}$ is a toric Fano manifold and is determined by the following polytope.

In this short note, we determine $R\left(X_{\Delta}\right)$ for every toric Fano manifold X_{Δ} in terms of the geometry of polytope \triangle.

Any such polytope Δ contains the origin $O \in \mathbb{R}^{n}$. We denote the barycenter of Δ by P_{c}. If $P_{c} \neq O$, the ray $P_{c}+\mathbb{R}_{\geqslant 0} \cdot \overrightarrow{P_{c} O}$ intersects the boundary $\partial \triangle$ at point Q. Our main result is

Theorem 1. If $P_{c} \neq O$,

$$
R\left(X_{\triangle}\right)=\frac{|\overline{O Q}|}{\left|\overline{P_{c} Q}\right|}
$$

Here $|\overline{O Q}|,\left|\overline{P_{c} Q}\right|$ are lengths of line segments $\overline{O Q}$ and $\overline{P_{c} Q}$. If $P_{c}=O$, then there is Kähler Einstein metric on X_{\triangle} and $R\left(X_{\triangle}\right)=1$.

Remark 1. Note for the toric Fano manifold, P_{c} is just Futaki invariant (see [8]). So the second statement follows from Wang and Zhu [8]. We will repeat the proof in the next section.

Our method is based on Wang-Zhu's [8] theory for proving the existence of Kähler-Ricci solitons on toric Fano manifolds. In view of the analysis in [8], if $R\left(X_{\Delta}\right)<1$, then as $t \rightarrow$ $R\left(X_{\Delta}\right)$, the blow-up happens exactly because the minimal points of a family of proper convex functions go to infinity, or, equivalently, the images of minimal points under the momentum map of a fixed metric tend to the boundary of the toric polytope. The key identity relation in Section 2, (11) and some uniform a priori estimates enable us to read out $R\left(X_{\Delta}\right)$ in terms of geometry of \triangle.

This note is inspired by the Székelyhidi's paper [4] and Donaldson's survey [1]. The author thanks Professor Gang Tian for constant encouragement.

2. Consequence of Wang-Zhu's theory

First we recall the set-up of Wang and Zhu [8]. For a reflexive lattice polytope Δ in $\mathbb{R}^{n}=$ $\Lambda \otimes_{\mathbb{Z}} \mathbb{R}$, we have a Fano toric manifold $\left(\mathbb{C}^{*}\right)^{n} \subset X_{\triangle}$ with a $\left(\mathbb{C}^{*}\right)^{n}$ action. Let $\left\{z_{i}\right\}$ be the standard coordinates of the dense orbit $\left(\mathbb{C}^{*}\right)^{n}$, and $x_{i}=\log \left|z_{i}\right|^{2}$. Let $\left\{p_{\alpha}\right\}_{\alpha=1, \ldots, N}$ be the lattice points contained in Δ. We take the fixed Kähler metric ω to be given by the potential (on $\left(\mathbb{C}^{*}\right)^{n}$)

$$
\begin{equation*}
\tilde{u}_{0}=\log \left(\sum_{\alpha=1}^{N} e^{\left\langle p_{\alpha}, x\right\rangle}\right)+C \tag{2}
\end{equation*}
$$

C is some constant determined by normalization condition:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-\tilde{u}_{0}} d x=\operatorname{Vol}(\Delta)=\frac{1}{n!} \int_{X_{\Delta}} \omega^{n}=\frac{c_{1}\left(X_{\Delta}\right)^{n}}{n!} \tag{3}
\end{equation*}
$$

By standard toric geometry, each lattice point p_{α} contained in Δ determines, up to a constant, a $\left(\mathbb{C}^{*}\right)^{n}$-equivariant section s_{α} in $H^{0}\left(X, K_{X}^{-1}\right)$. We can embed X_{Δ} into $P\left(H^{0}\left(X, K_{X}^{-1}\right)^{*}\right)$ using these sections. Let \tilde{s}_{0} be the section corresponding to the origin $0 \in \Delta$, then its Fubini-Study norm is

$$
\left|\tilde{s}_{0}\right|_{F S}^{2}=\frac{\left|\tilde{s}_{0}\right|^{2}}{\sum_{\alpha=1}^{N}\left|s_{\alpha}\right|^{2}}=\left(\sum_{\alpha=1}^{N} \prod_{i=1}^{n}\left|z_{i}\right|^{2 p_{\alpha, i}}\right)^{-1}=\left(\sum_{\alpha=1}^{N} e^{\left\langle p_{\alpha}, x\right\rangle}\right)^{-1}=e^{C} e^{-\tilde{u}_{0}}
$$

So the Kähler metric $\omega=\frac{\sqrt{-1}}{2 \pi} \partial \bar{\partial} \tilde{u}_{0}$ is the pull back of Fubini-Study metric.

On the other hand, $\operatorname{Ric}(\omega)$ is the curvature of Hermitian line bundle K_{M}^{-1} with Hermitian metric determined by the volume form ω^{n}. Note that on the open dense orbit $\left(\mathbb{C}^{*}\right)^{n}$, we can take $\tilde{s}_{0}=z_{1} \frac{\partial}{\partial z_{1}} \wedge \cdots \wedge z_{n} \frac{\partial}{\partial z_{n}}$. Since $\frac{\partial}{\partial \log z_{i}}=\frac{1}{2}\left(\frac{\partial}{\partial \log \left|z_{i}\right|}-\sqrt{-1} \frac{\partial}{\partial \theta_{i}}\right)=\frac{\partial}{\partial \log \left|z_{i}\right|^{2}}=\frac{\partial}{\partial x_{i}}$ when acting on any $\left(S^{1}\right)^{n}$ invariant function on $\left(\mathbb{C}^{*}\right)^{n}$, we have

$$
\begin{aligned}
\left|\tilde{s}_{0}\right|_{\omega^{n}}^{2} & =\left|z_{1} \frac{\partial}{\partial z_{1}} \wedge \cdots \wedge z_{n} \frac{\partial}{\partial z_{n}}\right|_{\omega^{n}}^{2}=\operatorname{det}\left(\frac{\partial^{2} \tilde{u}_{0}}{\partial \log z_{i} \overline{\partial \log z_{j}}}\right) \\
& =\operatorname{det}\left(\frac{\partial^{2} \tilde{u}_{0}}{\partial \log \left|z_{i}\right|^{2} \partial \log \left|z_{j}\right|^{2}}\right)=\operatorname{det}\left(\tilde{u}_{0, i j}\right)
\end{aligned}
$$

It's easy to see from definition of $h_{\omega}(1)$ and normalization condition (3) that

$$
e^{h_{\omega}}=e^{-C} \frac{\left|\tilde{s}_{0}\right|_{F S}^{2}}{\left|\tilde{s}_{0}\right|_{\omega^{n}}^{2}}=e^{-\tilde{u}_{0}} \operatorname{det}\left(\tilde{u}_{0, i j}\right)^{-1}
$$

Then using the torus symmetry, $(*)_{t}$ can be translated into real Monge-Ampère equation [8] on \mathbb{R}^{n} :

$$
\begin{equation*}
\operatorname{det}\left(u_{i j}\right)=e^{-(1-t) \tilde{u}_{0}-t u}=e^{-w_{t}} \tag{**}
\end{equation*}
$$

Here and in the following we denote

$$
w_{t}=(1-t) \tilde{u}_{0}+t u
$$

The solution u_{t} of $(* *)_{t}$ is related to Kähler potential ϕ_{t} in $(*)_{t}$ by the identity:

$$
\begin{equation*}
u=\tilde{u}_{0}+\phi_{t} \tag{4}
\end{equation*}
$$

where ϕ_{t} is viewed as a function of $x_{i}=\log \left|z_{i}\right|^{2}$ by torus symmetry.
Every strictly convex function f appearing in $(* *)_{t}\left(f=\tilde{u}_{0}, u, w_{t}=(1-t) \tilde{u}_{0}+t u_{t}\right)$ must satisfy $D f\left(\mathbb{R}^{n}\right)=\Delta^{\circ}\left(\Delta^{\circ}\right.$ means the interior of $\left.\Delta\right)$. Since 0 is (the unique lattice point) contained in $\Delta^{\circ}=D f\left(\mathbb{R}^{n}\right)$, the strictly convex function f is proper.

Wang-Zhu's [8] method for solving $(* *)_{t}$ consists of two steps. The first step is to show some uniform a priori estimates for w_{t}. For $t<R\left(X_{\Delta}\right)$, the proper convex function w_{t} obtains its minimum value at a unique point $x_{t} \in \mathbb{R}^{n}$. Let

$$
m_{t}=\inf \left\{w_{t}(x): x \in \mathbb{R}^{n}\right\}=w_{t}\left(x_{t}\right)
$$

Proposition 2. (See [8], see also [1].)

1. There exists a constant C, independent of $t<R\left(X_{\Delta}\right)$, such that

$$
\left|m_{t}\right|<C
$$

2. There exist $\kappa>0$ and a constant C, both independent of $t<R\left(X_{\triangle}\right)$, such that

$$
\begin{equation*}
w_{t} \geqslant \kappa\left|x-x_{t}\right|-C \tag{5}
\end{equation*}
$$

For the reader's convenience, we record the proof here.
Proof. Let $A=\left\{x \in \mathbb{R}^{n} ; m_{t} \leqslant w(x) \leqslant m_{t}+1\right\}$. A is a convex set. By a well-known lemma due to Fritz John, there are a unique ellipsoid E of minimum volume among all the ellipsoids containing A, and a constant α_{n} depending only on dimension, such that

$$
\alpha_{n} E \subset A \subset E
$$

$\alpha_{n} E$ means the α_{n}-dilation of E with respect to its center. Let T be an affine transformation with $\operatorname{det}(T)=1$, which leaves $x^{\prime}=$ the center of E invariant, such that $T(E)=B\left(x^{\prime}, R\right)$, where $B\left(x^{\prime}, R\right)$ is the Euclidean ball of radius R. Then

$$
B\left(x^{\prime}, \alpha_{n} R\right) \subset T(A) \subset B\left(x^{\prime}, R\right)
$$

We first need to bound R in terms of m_{t}. Since $D^{2} w=t D^{2} u+(1-t) D^{2} \tilde{u}_{0} \geqslant t D^{2} u$, by $(* *)_{t}$, we see that

$$
\operatorname{det}\left(w_{i j}\right) \geqslant t^{n} e^{-w}
$$

Restrict to the subset A, it's easy to get

$$
\operatorname{det}\left(w_{i j}\right) \geqslant C_{1} e^{-m_{t}}
$$

Let $\tilde{w}(x)=w\left(T^{-1} x\right)$, since $\operatorname{det}(T)=1, \tilde{w}$ satisfies the same inequality

$$
\operatorname{det}\left(\tilde{w}_{i j}\right) \geqslant C_{1} e^{-m_{t}}
$$

in $T(A)$.
Construct an auxiliary function

$$
v(x)=C_{1}^{\frac{1}{n}} e^{-\frac{m_{t}}{n}} \frac{1}{2}\left(\left|x-x^{\prime}\right|^{2}-\left(\alpha_{n} R\right)^{2}\right)+m_{t}+1
$$

Then in $B\left(x^{\prime}, \alpha_{n} R\right)$,

$$
\operatorname{det}\left(v_{i j}\right)=C_{1} e^{-m_{t}} \leqslant \operatorname{det}\left(\tilde{w}_{i j}\right)
$$

On the boundary $\partial B\left(x^{\prime}, \alpha_{n} R\right), v(x)=m_{t}+1 \geqslant \tilde{w}$. By the Comparison Principle for MongeAmpère operator, we have

$$
\tilde{w}(x) \leqslant v(x) \quad \text { in } B\left(x^{\prime}, \alpha_{n} R\right)
$$

In particular

$$
m_{t} \leqslant \tilde{w}\left(x^{\prime}\right) \leqslant v\left(x^{\prime}\right)=C_{1}^{\frac{1}{n}} e^{-\frac{m_{t}}{n}} \frac{1}{2}\left(-\frac{R^{2}}{n^{2}}\right)+m_{t}+1
$$

So we get the bound for R :

$$
R \leqslant C_{2} e^{\frac{m_{t}}{2 n}}
$$

So we get the upper bound for the volume of A :

$$
\operatorname{Vol}(A)=\operatorname{Vol}(T(A)) \leqslant C R^{n} \leqslant C e^{\frac{m_{t}}{2}}
$$

By the convexity of w, it's easy to see that $\left\{x ; w(x) \leqslant m_{t}+s\right\} \subset s \cdot\left\{x ; w(x) \leqslant m_{t}+1\right\}=s \cdot A$, where $s \cdot A$ is the s-dilation of A with respect to point x_{t}. So

$$
\begin{equation*}
\operatorname{Vol}\left(\left\{x ; w(x) \leqslant m_{t}+s\right\}\right) \leqslant s^{n} \operatorname{Vol}(A) \leqslant C s^{n} e^{\frac{m_{t}}{2}} \tag{6}
\end{equation*}
$$

The lower bound for volume of sublevel sets is easier to get. Indeed, since $|D w(x)| \leqslant L$, where $L=\max _{y \in \Delta}|y|$, we have $B\left(x_{t}, s \cdot L^{-1}\right) \subset\left\{x ; w(x) \leqslant m_{t}+s\right\}$. So

$$
\begin{equation*}
\operatorname{Vol}\left(\left\{x ; w(x) \leqslant m_{t}+s\right\}\right) \geqslant C s^{n} \tag{7}
\end{equation*}
$$

Now we can derive the estimate for m_{t}. First note the identity:

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} e^{-w} d x=\int_{\mathbb{R}^{n}} \operatorname{det}\left(u_{i j}\right) d x=\int_{\Delta} d \sigma=\operatorname{Vol}(\triangle) \tag{8}
\end{equation*}
$$

Second, we use the co-area formula

$$
\begin{align*}
\int_{\mathbb{R}^{n}} e^{-w} d x & =\int_{\mathbb{R}^{n}} \int_{w}^{+\infty} e^{-s} d s d x=\int_{-\infty}^{+\infty} e^{-s} d s \int_{\mathbb{R}^{n}} 1_{\{w \leqslant s\}} d x \\
& =\int_{m_{t}}^{+\infty} e^{-s} \operatorname{Vol}(\{w \leqslant s\}) d s \\
& =e^{-m_{t}} \int_{0}^{+\infty} e^{-s} \operatorname{Vol}\left(\left\{w \leqslant m_{t}+s\right\}\right) d s \tag{9}
\end{align*}
$$

Using the bound for the volume of sublevel sets (6) and (7) in (9), and comparing with (8), it's easy to get the bound for $\left|m_{t}\right|$.

Now we prove the estimate (5) following the argument of [1]. We have seen $B\left(x_{t}, L^{-1}\right) \subset$ $\left\{w \leqslant m_{t}+1\right\}$, and $\operatorname{Vol}\left(\left\{w \leqslant m_{t}+1\right\}\right) \leqslant C$ by (6) and uniform bound for m_{t}. Then we must have $\left\{w \leqslant m_{t}+1\right\} \subset B\left(x_{t}, R(C, L)\right)$ for some uniformly bounded radius $R(C, L)$. Otherwise, the convex set $\left\{w \leqslant m_{t}+1\right\}$ would contain a convex subset of arbitrarily large volume. By the
convexity of w, we have $w(x) \geqslant \frac{1}{R(C, L)}\left|x-x_{t}\right|+m_{t}-1$. Since m_{t} is uniformly bounded, the estimate (5) follows.

The second step is trying to bound $\left|x_{t}\right|$. In Wang-Zhu's [8] paper, they proved the existence of Kähler-Ricci soliton on toric Fano manifold by solving the real Monge-Ampère equation corresponding to Kähler-Ricci soliton equation. But now we only consider the Kähler-Einstein equation, which in general can't be solved because there is the obstruction of Futaki invariant.

Proposition 3. (See [8].) The uniform bound of $\left|x_{t}\right|$ for any $0 \leqslant t \leqslant t_{0}$, is equivalent to that we can solve $(* *)_{t}$, or equivalently solve $(*)_{t}$, for t up to t_{0}. More precisely (by the discussion in introduction), this condition is equivalent to the uniform C^{0}-estimates for the solution ϕ_{t} in $(*)_{t}$ for $t \in\left[0, t_{0}\right]$.

Again we sketch the proof here.

Proof. If we can solve $(* *)_{t}$ (or equivalently $\left.(*)_{t}\right)$ for $0 \leqslant t \leqslant t_{0}$, then $\left\{w(t)=(1-t) \tilde{u}_{0}+\right.$ $\left.t u ; 0 \leqslant t \leqslant t_{0}\right\}$ is a smooth family of proper convex functions on \mathbb{R}^{n}. By implicit function theorem, the minimal point x_{t} depends smoothly on t. So $\left\{x_{t}\right\}$ are uniformly bounded in a compact set.

Conversely, assume $\left|x_{t}\right|$ is bounded. First note that $\phi_{t}=u-\tilde{u}_{0}=\frac{1}{t}\left(w_{t}(x)-\tilde{u}_{0}\right)$.
As in Wang and Zhu [8], we consider the enveloping function:

$$
v(x)=\max _{p_{\alpha} \in \Lambda \cap \Delta}\left\langle p_{\alpha}, x\right\rangle
$$

Then $0 \leqslant \tilde{u}_{0}(x)-v(x) \leqslant C$, and $D w(\xi) \cdot x \leqslant v(x)$ for all $\xi, x \in \mathbb{R}^{n}$. We can assume $t \geqslant \delta>0$. Then using uniform boundedness of $\left|x_{t}\right|$

$$
\begin{aligned}
\phi_{t}(x) & =\frac{1}{t}\left(w_{t}(x)-\tilde{u}_{0}\right)=\frac{1}{t}\left[\left(w_{t}(x)-w_{t}\left(x_{t}\right)\right)-v(x)+\left(v(x)-\tilde{u}_{0}(x)\right)+w_{t}\left(x_{t}\right)\right] \\
& \leqslant \delta^{-1}\left(D w_{t}(\xi) \cdot x-v(x)-D w_{t}(\xi) \cdot x_{t}\right)+C \leqslant C^{\prime}
\end{aligned}
$$

Thus we get the estimate for $\sup _{t} \phi_{t}$. Then one can get the bound for $\inf _{t} \phi_{t}$ using the Harnack inequality in the theory of Monge-Ampère equations. For details see [8, Lemma 3.5] (see also [5]).

By the above proposition, we have

Lemma 2. If $R\left(X_{\Delta}\right)<1$, then there exists a subsequence $\left\{x_{t_{i}}\right\}$ of $\left\{x_{t}\right\}$, such that

$$
\lim _{t_{i} \rightarrow R\left(X_{\Delta}\right)}\left|x_{t_{i}}\right|=+\infty
$$

The observation now is that

Lemma 3. If $R\left(X_{\Delta}\right)<1$, then there exist a subsequence of $\left\{x_{t_{i}}\right\}$ which we still denote by $\left\{x_{t_{i}}\right\}$, and $y_{\infty} \in \partial \triangle$, such that

$$
\begin{equation*}
\lim _{t_{i} \rightarrow R\left(X_{\Delta}\right)} D \tilde{u}_{0}\left(x_{t_{i}}\right)=y_{\infty} \tag{10}
\end{equation*}
$$

This follows easily from the properness of \tilde{u}_{0} and compactness of Δ.
We now use the key relation (see [8, Lemma 3.3], and also [1, p. 29])

$$
0=\int_{\mathbb{R}^{n}} D w(x) e^{-w} d x=\int_{\mathbb{R}^{n}}\left((1-t) D \tilde{u}_{0}+t D u\right) e^{-w} d x
$$

Since

$$
\int_{\mathbb{R}^{n}} D u e^{-w} d x=\int_{\mathbb{R}^{n}} D u \operatorname{det}\left(u_{i j}\right) d x=\int_{\Delta} y d \sigma=\operatorname{Vol}(\triangle) P_{c}
$$

where P_{c} is the barycenter of Δ, so

$$
\begin{equation*}
\frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}} D \tilde{u}_{0} e^{-w} d x=-\frac{t}{1-t} P_{c} \tag{11}
\end{equation*}
$$

The idea to determine $R\left(X_{\Delta}\right)$ is as follows. First by strictly linear growth of w_{t} obtained in Proposition 2(2), the left-hand side of (11) is roughly $D \tilde{u}_{0}\left(x_{t}\right)$. By properness of \tilde{u}_{0}, as long as this is bounded away from the boundary of the polytope, we can control the point x_{t}. So as t goes to $R\left(X_{\Delta}\right)$, since x_{t} goes to infinity in \mathbb{R}^{n}, the left-hand side goes to a point on $\partial \Delta$, which is roughly y_{∞}. We will prove a precise statement in the next section by using the defining function of Δ. Some similar argument was given in the survey [1, p. 30].

3. Proof of Theorem 1

We now assume the reflexive polytope Δ is defined by inequalities:

$$
\begin{equation*}
\lambda_{r}(y) \geqslant-1, \quad r=1, \ldots, K \tag{12}
\end{equation*}
$$

$\lambda_{r}(y)=\left\langle v_{r}, y\right\rangle$ are fixed linear functions. We also identify the minimal face of Δ where y_{∞} lies:

$$
\begin{array}{ll}
\lambda_{r}\left(y_{\infty}\right)=-1, & r=1, \ldots, K_{0} \\
\lambda_{r}\left(y_{\infty}\right)>-1, & r=K_{0}+1, \ldots, K \tag{13}
\end{array}
$$

Clearly, Theorem 1 follows from
Proposition 4. If $P_{c} \neq O$,

$$
-\frac{R\left(X_{\Delta}\right)}{1-R\left(X_{\Delta}\right)} P_{c} \in \partial \triangle
$$

Precisely,

$$
\begin{equation*}
\lambda_{r}\left(-\frac{R\left(X_{\Delta}\right)}{1-R\left(X_{\triangle}\right)} P_{c}\right) \geqslant-1 \tag{14}
\end{equation*}
$$

Equality holds if and only if $r=1, \ldots, K_{0}$. So $-\frac{R\left(X_{\Delta}\right)}{1-R\left(X_{\Delta}\right)} P_{c}$ and y_{∞} lie on the same faces (13).
Proof. By (11) and defining function of Δ, we have

$$
\begin{align*}
\lambda_{r}\left(-\frac{t}{1-t} P_{c}\right)+1 & =\frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}} \lambda_{r}\left(D \tilde{u}_{0}\right) e^{-w} d x+1 \\
& =\frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}}\left(\lambda_{r}\left(D \tilde{u}_{0}\right)+1\right) e^{-w} d x \tag{15}
\end{align*}
$$

The inequality (14) follows from (15) by letting $t \rightarrow R\left(X_{\Delta}\right)$. To prove the second statement, by (15) we need to show

$$
\lim _{t_{i} \rightarrow R\left(X_{\Delta}\right)} \frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}} \lambda_{r}\left(D \tilde{u}_{0}\right) e^{-w_{t_{i}}} d x+1 \begin{cases}=0, & r=1, \ldots, K_{0} \tag{16}\\ >0, & r=K_{0}+1, \ldots, N\end{cases}
$$

For any $\epsilon>0$, by the uniform estimate (5) and fixed volume (8), and since $D \tilde{u}_{0}\left(\mathbb{R}^{n}\right)=\Delta^{\circ}$ is a bounded set, there exists R_{ϵ}, independent of $t \in\left[0, R\left(X_{\Delta}\right)\right)$, such that

$$
\begin{equation*}
\frac{1}{\operatorname{Vol}(\Delta)} \int_{\mathbb{R}^{n} \backslash B_{R_{\epsilon}}\left(x_{t}\right)} \lambda_{r}\left(D \tilde{u}_{0}\right) e^{-w_{t}} d x<\epsilon \quad \text { and } \quad \frac{1}{\operatorname{Vol}(\Delta)} \int_{\mathbb{R}^{n} \backslash B_{R_{\epsilon}}\left(x_{t}\right)} e^{-w_{t}} d x<\epsilon \tag{17}
\end{equation*}
$$

Now (16) follows from the following claim.

Claim 1. Let $R>0$, there exists a constant $C>0$, which only depends on the polytope Δ, such that for all $\delta x \in B_{R}(0) \subset \mathbb{R}^{n}$,

$$
\begin{equation*}
e^{-C R}\left(\lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}\right)\right)+1\right) \leqslant \lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}+\delta x\right)\right)+1 \leqslant e^{C R}\left(\lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}\right)\right)+1\right) \tag{18}
\end{equation*}
$$

Assuming the claim, we can prove two cases of (16). First by (10) and (13), we have

$$
\lim _{t_{i} \rightarrow R\left(X_{\Delta}\right)} \lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}\right)\right)+1=\lambda_{r}\left(y_{\infty}\right)+1= \begin{cases}0, & r=1, \ldots, K_{0} \tag{19}\\ a_{r}>0, & r=K_{0}+1, \ldots, N\end{cases}
$$

1. $r=1, \ldots, K_{0} . \forall \epsilon>0$, first choose R_{ϵ} as in (17). By (18) and (19), there exists $\rho_{\epsilon}>0$, such that if $\left|t_{i}-R\left(X_{\Delta}\right)\right|<\rho_{\epsilon}$, then for all $\delta x \in B_{R_{\epsilon}}(0) \subset \mathbb{R}^{n}$,

$$
0 \leqslant \lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}+\delta x\right)\right)+1<e^{C R_{\epsilon}}\left(\lambda_{r}\left(D \tilde{u}_{0}\right)\left(x_{t_{i}}\right)+1\right)<\epsilon
$$

in other words, $\lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}+\delta x\right)\right)+1 \rightarrow 0$ uniformly for $\delta x \in B_{R_{\epsilon}}(0)$, as $t_{i} \rightarrow R\left(X_{\Delta}\right)$. So when $\left|t_{i}-R\left(X_{\Delta}\right)\right|<\rho_{\epsilon}$,

$$
\begin{aligned}
\frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}} \lambda_{r}\left(D \tilde{u}_{0}\right) e^{-w} d x+1= & \frac{1}{\operatorname{Vol}(\Delta)} \int_{\mathbb{R}^{n} \backslash B_{R_{\epsilon}}\left(x_{t_{i}}\right)} \lambda_{r}\left(D \tilde{u}_{0}\right) e^{-w} d x \\
& +\frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n} \backslash B_{R_{\epsilon}}\left(x_{t_{i}}\right)} e^{-w} d x \\
& +\frac{1}{\operatorname{Vol}(\triangle)} \int_{B_{R_{\epsilon}}\left(x_{t_{i}}\right)}\left(\lambda_{r}\left(D \tilde{u}_{0}\right)+1\right) e^{-w} d x \\
\leqslant & 2 \epsilon+\epsilon \frac{1}{\operatorname{Vol}(\triangle)} \int_{B_{R_{\epsilon}}\left(x_{t_{i}}\right)} e^{-w} d x \leqslant 3 \epsilon
\end{aligned}
$$

The first case in (16) follows by letting $\epsilon \rightarrow 0$.
2. $r=K_{0}+1, \ldots, N$. We fix $\epsilon=\frac{1}{2}$ and $R_{\frac{1}{2}}$ in (17). By (18) and (19), there exists $\rho>0$, such that if $\left|t_{i}-R\left(X_{\triangle}\right)\right|<\rho$, then for all $\delta x \in B_{R_{\frac{1}{2}}}(0) \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
& \lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}+\delta x\right)\right)+1>e^{-C R_{\frac{1}{2}}}\left(\lambda_{r}\left(D \tilde{u}_{0}\left(x_{t_{i}}\right)\right)+1\right)>e^{-C R_{\frac{1}{2}}} \frac{a_{r}}{2}>0 \\
& \frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}} \lambda_{r}\left(D \tilde{u}_{0}\right) e^{-w} d x+1 \geqslant \frac{1}{\operatorname{Vol}(\triangle)} \int_{B_{R_{\frac{1}{2}}}\left(x_{t_{i}}\right)}\left(\lambda_{r}\left(D \tilde{u}_{0}\right)+1\right) e^{-w} d x \\
& \geqslant e^{-C R_{\frac{1}{2}} \frac{a_{r}}{2}} \frac{1}{\operatorname{Vol}(\triangle)} \int_{B_{R_{\frac{1}{2}}}\left(x_{t_{i}}\right)} e^{-w} d x \\
& \geqslant e^{-C R_{\frac{1}{2}}} \frac{a_{r}}{2} \frac{1}{2}>0
\end{aligned}
$$

Now we prove the claim. We can rewrite (18) using the special form of $\tilde{u}_{0}(2)$:

$$
D \tilde{u}_{0}(x)=\sum_{\alpha} \frac{e^{\left\langle p_{\alpha}, x\right\rangle}}{\sum_{\beta} e^{\left\langle p_{\beta}, x\right\rangle}} p_{\alpha}=\sum_{\alpha} c_{\alpha}(x) p_{\alpha}
$$

Here the coefficients c_{α} satisfy

$$
0 \leqslant c_{\alpha}(x)=\frac{e^{\left\langle p_{\alpha}, x\right\rangle}}{\sum_{\beta} e^{\left\langle p_{\beta}, x\right\rangle}}, \quad \sum_{\alpha=1}^{N} c_{\alpha}(x)=1
$$

$$
\lambda_{r}\left(D \tilde{u}_{0}(x)\right)+1=\sum_{\alpha} c_{\alpha}(x)\left(\lambda_{r}\left(p_{\alpha}\right)+1\right)=\sum_{\left\{\alpha: \lambda_{r}\left(p_{\alpha}\right)+1>0\right\}} c_{\alpha}(x)\left(\lambda_{r}\left(p_{\alpha}\right)+1\right)
$$

Since $\lambda_{r}\left(p_{\alpha}\right)+1 \geqslant 0$ is a fixed value, to prove the claim, we only need to show the same estimate for $c_{\alpha}(x)$.

But now

$$
\begin{aligned}
c_{\alpha}\left(x_{t_{i}}+\delta x\right) & =\frac{e^{\left\langle p_{\alpha}, x_{t_{i}}\right\rangle} e^{\left\langle p_{\alpha}, \delta x\right\rangle}}{\sum_{\beta} e^{\left\langle p_{\beta}, x_{t_{i}}\right\rangle} e^{\left\langle p_{\beta}, \delta x\right\rangle}} \leqslant e^{\left|p_{\alpha}\right| R} \cdot e^{\max _{\beta}\left|p_{\beta}\right| \cdot R} \frac{e^{\left\langle p_{\alpha}, x_{t_{i}}\right\rangle}}{\sum_{\beta} e^{\left\langle p_{\beta}, x_{t_{i}}\right\rangle}} \\
& \leqslant e^{C R} \frac{e^{\left\langle p_{\alpha}, x_{t_{i}}\right\rangle}}{\sum_{\beta} e^{\left\langle p_{\beta}, x_{t_{i}}\right\rangle}}=e^{C R} c_{\alpha}\left(x_{t_{i}}\right)
\end{aligned}
$$

And similarly

$$
c_{\alpha}\left(x_{t_{i}}+\delta x\right) \geqslant e^{-C R} c_{\alpha}\left(x_{t_{i}}\right)
$$

So the claim holds and the proof is completed.

4. Example

Example 1. $X_{\Delta}=B l_{p} \mathbb{P}^{2}$. See the figure in the Introduction. $P_{c}=\frac{1}{4}\left(\frac{1}{3},-\frac{2}{3}\right),-6 P_{c} \in \partial \Delta$, so $R\left(X_{\Delta}\right)=\frac{6}{7}$.

Example 2. $X_{\Delta}=B l_{p, q} \mathbb{P}^{2}, P_{c}=\frac{2}{7}\left(-\frac{1}{3},-\frac{1}{3}\right),-\frac{21}{4} P_{c} \in \partial \Delta$, so $R\left(X_{\Delta}\right)=\frac{21}{25}$.

References

[1] S.K. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, arXiv:0803.0985.
[2] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (3) (1983) 437-443.
[3] T. Oda, Convex Bodies and Algebraic Geometry-An Introduction to the Theory of Toric Varieties, Springer-Verlag, 1988.
[4] G. Székelyhidi, Greatest lower bounds on the Ricci curvature of Fano manifolds, arXiv:0903.5504.
[5] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $c_{1}(M)>0$, Invent. Math. 89 (1987) 225-246.
[6] G. Tian, On stability of the tangent bundles of Fano varieties, Internat. J. Math. 3 (3) (1992) 401-413.
[7] G. Tian, Canonical Metrics on Kähler Manifolds, Birkhäuser, 1999.
[8] X.J. Wang, X.H. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math. 188 (2004) 87-103.
[9] S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math. 31 (1978) 339-441.

[^0]: E-mail address: chil@math.princeton.edu.
 0001-8708/\$ - see front matter © 2011 Elsevier Inc. All rights reserved.
 doi:10.1016/j.aim.2010.12.023

