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Abstract

In this short note, based on the work of Wang and Zhu (2004) [8], we determine the greatest lower bounds
on Ricci curvature for all toric Fano manifolds.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

On Fano manifolds X, i.e. K−1
X is ample, the Kähler–Einstein equation

Ric(ω) = ω

is equivalent to the complex Monge–Ampère equation:

(ω + ∂∂̄φ)n = ehω−φω (∗)

where ω is a fixed Kähler metric in c1(X), and hω is the normalized Ricci potential:

Ric(ω) − ω = ∂∂̄hω,

∫
X

ehωωn =
∫
X

ωn (1)
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In order to solve this equation, the continuity method is used. So we consider a family of equa-
tions with parameter t :

(ω + ∂∂̄φt )
n = ehω−tφωn (∗)t

Define St = {t : (∗)t is solvable}. It was known that the set St is open. To solve (∗), the crucial
thing is to obtain the closedness of this set. So we need some a priori estimates. By Yau’s C2 and
Calabi’s higher order estimates (see [9,7]), we only need uniform C0-estimates for solutions φt of
(∗)t . In general one cannot solve (∗), and so cannot get the C0-estimates, due to the well-known
obstruction of Futaki invariant [2].

It was first showed by Tian [6] that we may not be able to solve (∗)t on certain Fano manifold
for t sufficiently close to 1. Equivalently, for such a Fano manifold, there is some t0 < 1, such
that there is no Kähler metric ω in c1(X) which can have Ric(ω) � t0ω. It is now made more
precise.

Define

R(X) = sup
{
t : (∗)t is solvable

}
Recently, Székelyhidi proved

Proposition 1. (See [4].)

R(X) = sup
{
t : ∃ a Kähler metric ω ∈ c1(X) such that Ric(ω) > tω

}
In particular, R(X) is independent of ω ∈ c1(X).
Let Blp1,...,pk

P
n denote the manifold obtained by blowing up P

n at points p1, . . . , pk . Széke-
lyhidi showed in [4] that R(BlpP

2) = 6
7 and 1

2 � R(Blp,qP
2) � 21

25 .
Let Λ � Z

n be a lattice in R
n = Λ ⊗Z R. A toric Fano manifold X� is determined by a

reflexive lattice polytope � (for details on toric manifolds, see [3]). For example, BlpP
2 is a

toric Fano manifold and is determined by the following polytope.

�
�
�

�
�

�
�

�
�
�
�

�

�

�

Q

O Pc

In this short note, we determine R(X�) for every toric Fano manifold X� in terms of the
geometry of polytope �.

Any such polytope � contains the origin O ∈ R
n. We denote the barycenter of � by Pc. If

Pc �= O , the ray Pc + R�0 · −−−→
PcO intersects the boundary ∂� at point Q. Our main result is
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Theorem 1. If Pc �= O ,

R(X�) = |OQ|
|PcQ|

Here |OQ|, |PcQ| are lengths of line segments OQ and PcQ. If Pc = O , then there is Kähler–
Einstein metric on X� and R(X�) = 1.

Remark 1. Note for the toric Fano manifold, Pc is just Futaki invariant (see [8]). So the second
statement follows from Wang and Zhu [8]. We will repeat the proof in the next section.

Our method is based on Wang–Zhu’s [8] theory for proving the existence of Kähler–Ricci
solitons on toric Fano manifolds. In view of the analysis in [8], if R(X�) < 1, then as t →
R(X�), the blow-up happens exactly because the minimal points of a family of proper convex
functions go to infinity, or, equivalently, the images of minimal points under the momentum map
of a fixed metric tend to the boundary of the toric polytope. The key identity relation in Section 2,
(11) and some uniform a priori estimates enable us to read out R(X�) in terms of geometry of �.

This note is inspired by the Székelyhidi’s paper [4] and Donaldson’s survey [1]. The author
thanks Professor Gang Tian for constant encouragement.

2. Consequence of Wang–Zhu’s theory

First we recall the set-up of Wang and Zhu [8]. For a reflexive lattice polytope � in R
n =

Λ⊗Z R, we have a Fano toric manifold (C∗)n ⊂ X� with a (C∗)n action. Let {zi} be the standard
coordinates of the dense orbit (C∗)n, and xi = log |zi |2. Let {pα}α=1,...,N be the lattice points
contained in �. We take the fixed Kähler metric ω to be given by the potential (on (C∗)n)

ũ0 = log

(
N∑

α=1

e〈pα,x〉
)

+ C (2)

C is some constant determined by normalization condition:

∫
Rn

e−ũ0 dx = Vol(�) = 1

n!
∫

X�

ωn = c1(X�)n

n! (3)

By standard toric geometry, each lattice point pα contained in � determines, up to a constant,
a (C∗)n-equivariant section sα in H 0(X,K−1

X ). We can embed X� into P(H 0(X,K−1
X )∗) using

these sections. Let s̃0 be the section corresponding to the origin 0 ∈ �, then its Fubini–Study
norm is

|s̃0|2FS = |s̃0|2∑N
α=1 |sα|2 =

(
N∑

α=1

n∏
i=1

|zi |2pα,i

)−1

=
(

N∑
α=1

e〈pα,x〉
)−1

= eCe−ũ0

So the Kähler metric ω =
√−1∂∂̄ũ0 is the pull back of Fubini–Study metric.
2π
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On the other hand, Ric(ω) is the curvature of Hermitian line bundle K−1
M with Hermitian

metric determined by the volume form ωn. Note that on the open dense orbit (C∗)n, we can take
s̃0 = z1

∂
∂z1

∧ · · · ∧ zn
∂

∂zn
. Since ∂

∂ log zi
= 1

2 ( ∂
∂ log |zi | − √−1 ∂

∂θi
) = ∂

∂ log |zi |2 = ∂
∂xi

when acting on

any (S1)n invariant function on (C∗)n, we have

|s̃0|2ωn =
∣∣∣∣z1

∂

∂z1
∧ · · · ∧ zn

∂

∂zn

∣∣∣∣
2

ωn

= det

(
∂2ũ0

∂ log zi∂ log zj

)

= det

(
∂2ũ0

∂ log |zi |2∂ log |zj |2
)

= det(ũ0,ij )

It’s easy to see from definition of hω (1) and normalization condition (3) that

ehω = e−C |s̃0|2FS

|s̃0|2ωn

= e−ũ0 det(ũ0,ij )
−1

Then using the torus symmetry, (∗)t can be translated into real Monge–Ampère equation [8]
on R

n:

det(uij ) = e−(1−t)ũ0−tu = e−wt (∗∗)t

Here and in the following we denote

wt = (1 − t)ũ0 + tu

The solution ut of (∗∗)t is related to Kähler potential φt in (∗)t by the identity:

u = ũ0 + φt (4)

where φt is viewed as a function of xi = log |zi |2 by torus symmetry.
Every strictly convex function f appearing in (∗∗)t (f = ũ0, u, wt = (1 − t)ũ0 + tut ) must

satisfy Df (Rn) = �◦ (�◦ means the interior of �). Since 0 is (the unique lattice point) contained
in �◦ = Df (Rn), the strictly convex function f is proper.

Wang–Zhu’s [8] method for solving (∗∗)t consists of two steps. The first step is to show some
uniform a priori estimates for wt . For t < R(X�), the proper convex function wt obtains its
minimum value at a unique point xt ∈ R

n. Let

mt = inf
{
wt(x): x ∈ R

n
} = wt(xt )

Proposition 2. (See [8], see also [1].)

1. There exists a constant C, independent of t < R(X�), such that

|mt | < C
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2. There exist κ > 0 and a constant C, both independent of t < R(X�), such that

wt � κ|x − xt | − C (5)

For the reader’s convenience, we record the proof here.

Proof. Let A = {x ∈ R
n; mt � w(x) � mt + 1}. A is a convex set. By a well-known lemma

due to Fritz John, there are a unique ellipsoid E of minimum volume among all the ellipsoids
containing A, and a constant αn depending only on dimension, such that

αnE ⊂ A ⊂ E

αnE means the αn-dilation of E with respect to its center. Let T be an affine transformation
with det(T ) = 1, which leaves x′ = the center of E invariant, such that T (E) = B(x′,R), where
B(x′,R) is the Euclidean ball of radius R. Then

B
(
x′, αnR

) ⊂ T (A) ⊂ B
(
x′,R

)
We first need to bound R in terms of mt . Since D2w = tD2u + (1 − t)D2ũ0 � tD2u, by (∗∗)t ,
we see that

det(wij ) � tne−w

Restrict to the subset A, it’s easy to get

det(wij ) � C1e
−mt

Let w̃(x) = w(T −1x), since det(T ) = 1, w̃ satisfies the same inequality

det(w̃ij ) � C1e
−mt

in T (A).
Construct an auxiliary function

v(x) = C
1
n

1 e− mt
n

1

2

(∣∣x − x′∣∣2 − (αnR)2) + mt + 1

Then in B(x′, αnR),

det(vij ) = C1e
−mt � det(w̃ij )

On the boundary ∂B(x′, αnR), v(x) = mt + 1 � w̃. By the Comparison Principle for Monge–
Ampère operator, we have

w̃(x) � v(x) in B
(
x′, αnR

)
In particular



4926 C. Li / Advances in Mathematics 226 (2011) 4921–4932
mt � w̃
(
x′) � v

(
x′) = C

1
n

1 e− mt
n

1

2

(
−R2

n2

)
+ mt + 1

So we get the bound for R:

R � C2e
mt
2n

So we get the upper bound for the volume of A:

Vol(A) = Vol
(
T (A)

)
� CRn � Ce

mt
2

By the convexity of w, it’s easy to see that {x; w(x) � mt + s} ⊂ s · {x; w(x) � mt + 1} = s ·A,
where s · A is the s-dilation of A with respect to point xt . So

Vol
({

x; w(x) � mt + s
})

� snVol(A) � Csne
mt
2 (6)

The lower bound for volume of sublevel sets is easier to get. Indeed, since |Dw(x)| � L, where
L = maxy∈� |y|, we have B(xt , s · L−1) ⊂ {x; w(x) � mt + s}. So

Vol
({

x; w(x) � mt + s
})

� Csn (7)

Now we can derive the estimate for mt . First note the identity:

∫
Rn

e−w dx =
∫
Rn

det(uij ) dx =
∫
�

dσ = Vol(�) (8)

Second, we use the co-area formula

∫
Rn

e−w dx =
∫
Rn

+∞∫
w

e−s ds dx =
+∞∫

−∞
e−s ds

∫
Rn

1{w�s} dx

=
+∞∫
mt

e−s Vol
({w � s})ds

= e−mt

+∞∫
0

e−s Vol
({w � mt + s})ds (9)

Using the bound for the volume of sublevel sets (6) and (7) in (9), and comparing with (8), it’s
easy to get the bound for |mt |.

Now we prove the estimate (5) following the argument of [1]. We have seen B(xt ,L
−1) ⊂

{w � mt + 1}, and Vol({w � mt + 1}) � C by (6) and uniform bound for mt . Then we must
have {w � mt + 1} ⊂ B(xt ,R(C,L)) for some uniformly bounded radius R(C,L). Otherwise,
the convex set {w � mt + 1} would contain a convex subset of arbitrarily large volume. By the
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convexity of w, we have w(x) � 1
R(C,L)

|x − xt | + mt − 1. Since mt is uniformly bounded, the
estimate (5) follows. �

The second step is trying to bound |xt |. In Wang–Zhu’s [8] paper, they proved the existence
of Kähler–Ricci soliton on toric Fano manifold by solving the real Monge–Ampère equation
corresponding to Kähler–Ricci soliton equation. But now we only consider the Kähler–Einstein
equation, which in general can’t be solved because there is the obstruction of Futaki invariant.

Proposition 3. (See [8].) The uniform bound of |xt | for any 0 � t � t0, is equivalent to that we
can solve (∗∗)t , or equivalently solve (∗)t , for t up to t0. More precisely (by the discussion in
introduction), this condition is equivalent to the uniform C0-estimates for the solution φt in (∗)t
for t ∈ [0, t0].

Again we sketch the proof here.

Proof. If we can solve (∗∗)t (or equivalently (∗)t ) for 0 � t � t0, then {w(t) = (1 − t)ũ0 +
tu; 0 � t � t0} is a smooth family of proper convex functions on R

n. By implicit function theo-
rem, the minimal point xt depends smoothly on t . So {xt } are uniformly bounded in a compact
set.

Conversely, assume |xt | is bounded. First note that φt = u − ũ0 = 1
t
(wt (x) − ũ0).

As in Wang and Zhu [8], we consider the enveloping function:

v(x) = max
pα∈Λ∩�〈pα,x〉

Then 0 � ũ0(x) − v(x) � C, and Dw(ξ) · x � v(x) for all ξ, x ∈ R
n. We can assume t � δ > 0.

Then using uniform boundedness of |xt |

φt (x) = 1

t

(
wt(x) − ũ0

) = 1

t

[(
wt(x) − wt(xt )

) − v(x) + (
v(x) − ũ0(x)

) + wt(xt )
]

� δ−1(Dwt(ξ) · x − v(x) − Dwt(ξ) · xt

) + C � C′

Thus we get the estimate for supt φt . Then one can get the bound for inft φt using the Harnack
inequality in the theory of Monge–Ampère equations. For details see [8, Lemma 3.5] (see also
[5]). �

By the above proposition, we have

Lemma 2. If R(X�) < 1, then there exists a subsequence {xti } of {xt }, such that

lim
ti→R(X�)

|xti | = +∞

The observation now is that
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Lemma 3. If R(X�) < 1, then there exist a subsequence of {xti } which we still denote by {xti },
and y∞ ∈ ∂�, such that

lim
ti→R(X�)

Dũ0(xti ) = y∞ (10)

This follows easily from the properness of ũ0 and compactness of �.
We now use the key relation (see [8, Lemma 3.3], and also [1, p. 29])

0 =
∫
Rn

Dw(x)e−w dx =
∫
Rn

(
(1 − t)Dũ0 + tDu

)
e−w dx

Since ∫
Rn

Due−w dx =
∫
Rn

Dudet(uij ) dx =
∫
�

y dσ = Vol(�)Pc

where Pc is the barycenter of �, so

1

Vol(�)

∫
Rn

Dũ0e
−w dx = − t

1 − t
Pc (11)

The idea to determine R(X�) is as follows. First by strictly linear growth of wt obtained in
Proposition 2(2), the left-hand side of (11) is roughly Dũ0(xt ). By properness of ũ0, as long as
this is bounded away from the boundary of the polytope, we can control the point xt . So as t

goes to R(X�), since xt goes to infinity in R
n, the left-hand side goes to a point on ∂�, which is

roughly y∞. We will prove a precise statement in the next section by using the defining function
of �. Some similar argument was given in the survey [1, p. 30].

3. Proof of Theorem 1

We now assume the reflexive polytope � is defined by inequalities:

λr(y) � −1, r = 1, . . . ,K (12)

λr(y) = 〈vr , y〉 are fixed linear functions. We also identify the minimal face of � where y∞ lies:

λr(y∞) = −1, r = 1, . . . ,K0

λr(y∞) > −1, r = K0 + 1, . . . ,K (13)

Clearly, Theorem 1 follows from

Proposition 4. If Pc �= O ,

− R(X�)
Pc ∈ ∂�
1 − R(X�)
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Precisely,

λr

(
− R(X�)

1 − R(X�)
Pc

)
� −1 (14)

Equality holds if and only if r = 1, . . . ,K0. So − R(X�)

1−R(X�)
Pc and y∞ lie on the same faces (13).

Proof. By (11) and defining function of �, we have

λr

(
− t

1 − t
Pc

)
+ 1 = 1

Vol(�)

∫
Rn

λr(Dũ0)e
−w dx + 1

= 1

Vol(�)

∫
Rn

(
λr(Dũ0) + 1

)
e−w dx (15)

The inequality (14) follows from (15) by letting t → R(X�). To prove the second statement, by
(15) we need to show

lim
ti→R(X�)

1

Vol(�)

∫
Rn

λr(Dũ0)e
−wti dx + 1

{= 0, r = 1, . . . ,K0
> 0, r = K0 + 1, . . . ,N

(16)

For any ε > 0, by the uniform estimate (5) and fixed volume (8), and since Dũ0(R
n) = �◦ is a

bounded set, there exists Rε , independent of t ∈ [0,R(X�)), such that

1

Vol(�)

∫
Rn\BRε (xt )

λr (Dũ0)e
−wt dx < ε and

1

Vol(�)

∫
Rn\BRε (xt )

e−wt dx < ε (17)

Now (16) follows from the following claim.

Claim 1. Let R > 0, there exists a constant C > 0, which only depends on the polytope �, such
that for all δx ∈ BR(0) ⊂ R

n,

e−CR
(
λr

(
Dũ0(xti )

) + 1
)
� λr

(
Dũ0(xti + δx)

) + 1 � eCR
(
λr

(
Dũ0(xti )

) + 1
)

(18)

Assuming the claim, we can prove two cases of (16). First by (10) and (13), we have

lim
ti→R(X�)

λr

(
Dũ0(xti )

) + 1 = λr(y∞) + 1 =
{

0, r = 1, . . . ,K0
ar > 0, r = K0 + 1, . . . ,N

(19)

1. r = 1, . . . ,K0. ∀ε > 0, first choose Rε as in (17). By (18) and (19), there exists ρε > 0, such
that if |ti − R(X�)| < ρε , then for all δx ∈ BRε (0) ⊂ R

n,

0 � λr

(
Dũ0(xt + δx)

) + 1 < eCRε
(
λr(Dũ0)(xt ) + 1

)
< ε
i i
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in other words, λr(Dũ0(xti + δx)) + 1 → 0 uniformly for δx ∈ BRε (0), as ti → R(X�). So
when |ti − R(X�)| < ρε ,

1

Vol(�)

∫
Rn

λr(Dũ0)e
−w dx + 1 = 1

Vol(�)

∫
Rn\BRε (xti

)

λr (Dũ0)e
−w dx

+ 1

Vol(�)

∫
Rn\BRε (xti

)

e−w dx

+ 1

Vol(�)

∫
BRε (xti

)

(
λr(Dũ0) + 1

)
e−w dx

� 2ε + ε
1

Vol(�)

∫
BRε (xti

)

e−w dx � 3ε

The first case in (16) follows by letting ε → 0.
2. r = K0 + 1, . . . ,N . We fix ε = 1

2 and R 1
2

in (17). By (18) and (19), there exists ρ > 0, such

that if |ti − R(X�)| < ρ, then for all δx ∈ BR 1
2
(0) ⊂ R

n,

λr

(
Dũ0(xti + δx)

) + 1 > e
−CR 1

2
(
λr

(
Dũ0(xti )

) + 1
)
> e

−CR 1
2
ar

2
> 0

1

Vol(�)

∫
Rn

λr(Dũ0)e
−w dx + 1 � 1

Vol(�)

∫
BR 1

2

(xti
)

(
λr(Dũ0) + 1

)
e−w dx

� e
−CR 1

2
ar

2

1

Vol(�)

∫
BR 1

2

(xti
)

e−w dx

� e
−CR 1

2
ar

2

1

2
> 0

Now we prove the claim. We can rewrite (18) using the special form of ũ0 (2):

Dũ0(x) =
∑
α

e〈pα,x〉∑
β e〈pβ,x〉 pα =

∑
α

cα(x)pα

Here the coefficients cα satisfy

0 � cα(x) = e〈pα,x〉∑
β e〈pβ,x〉 ,

N∑
α=1

cα(x) = 1

So
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λr

(
Dũ0(x)

) + 1 =
∑
α

cα(x)
(
λr(pα) + 1

) =
∑

{α: λr (pα)+1>0}
cα(x)

(
λr(pα) + 1

)

Since λr(pα)+1 � 0 is a fixed value, to prove the claim, we only need to show the same estimate
for cα(x).

But now

cα(xti + δx) = e〈pα,xti
〉e〈pα,δx〉∑

β e〈pβ,xti
〉e〈pβ,δx〉 � e|pα |R · emaxβ |pβ |·R e〈pα,xti

〉∑
β e〈pβ,xti

〉

� eCR e〈pα,xti
〉∑

β e〈pβ,xti
〉 = eCRcα(xti )

And similarly

cα(xti + δx) � e−CRcα(xti )

So the claim holds and the proof is completed. �
4. Example

Example 1. X� = BlpP
2. See the figure in the Introduction. Pc = 1

4 ( 1
3 ,− 2

3 ), −6Pc ∈ ∂�, so
R(X�) = 6

7 .

Example 2. X� = Blp,qP2, Pc = 2
7 (− 1

3 ,− 1
3 ), − 21

4 Pc ∈ ∂�, so R(X�) = 21
25 .

�
�

�
��

��
�

�

Pc

− 21
4 Pc
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