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Abstract
LetX be a complex manifold, and let S ,!X be an embedding of a complex subman-
ifold. Assuming that the embedding is .k � 1/-linearizable or .k � 1/-comfortably
embedded, we construct via the deformation to the normal cone a diffeomorphism F

from a small neighborhood of the zero section in the normal bundle NS to a small
neighborhood of S in X such that F is in a precise sense holomorphic up to the
.k � 1/th order. Using this F , we obtain optimal estimates on asymptotic rates for
asymptotically conical (AC) Calabi–Yau (CY) metrics constructed by Tian and Yau.
Furthermore, when S is an ample divisor satisfying an appropriate cohomological
condition, we relate the order of comfortable embedding to the weight of the defor-
mation of the normal isolated cone singularity arising from the deformation to the
normal cone. We also give an example showing that the condition of comfortable
embedding depends on the splitting liftings. We then prove an analytic compacti-
fication result for the deformation of the complex structure on an affine cone that
decays to any positive order at infinity. This can be seen as an analytic counterpart
of Pinkham’s result on deformations of cone singularities with negative weights.
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1. Introduction and main results
Our original motivation for this paper was to understand the optimal convergence
rate of asymptotically conical (AC) Calabi–Yau (CY) Kähler metrics on noncompact
Kähler manifolds. However, this led us to the study of embeddings of complex sub-
manifolds and deformations of isolated normal singularities. We start the discussion
with the embedding problem.

Let S be a complex submanifold of an ambient complex manifold X . The com-
parison between neighborhoods of S inside X with neighborhoods of S inside the
normal bundle NS is a classical subject in complex geometry (see, e.g., [6], [7], [14],
[16] for details). It is clear that, although in general NS has a different holomorphic
structure than that of any neighborhood of S inside X , NS can be viewed as a first-
order approximation of a small neighborhood of S . More precisely, we will denote by
S.k/ the ringed analytic space .S;OX=I

kC1
S /, which is called the kth infinitesimal

neighborhood of S inside X . Recall the following definition.

Definition 1.1
The submanifold S is k-linearizable inside X if its kth infinitesimal neighborhood
S.k/ in X is isomorphic to its kth infinitesimal neighborhood SN .k/ in NS . Here we
identify S with the zero section S0 of NS DWN .

Our first preliminary result is that there is a diffeomorphism from a neighborhood
of S �X to a neighborhood of S0 �NS that is in some sense the most holomorphic
one. Although the existence of such a diffeomorphism may be known to experts after
the celebrated work of Grauert [14] (cf. [3], [11], [18], [33]), here we would like to
give an almost explicit construction using the work of Abate, Bracci, and Tovena in
[1] together with the deformation to the normal cone construction. Let Qg0 be a smooth
Riemannian metric on a neighborhoodW0 of S0 inside NS . Denote by k � k Qg0 the C 0-
norms of tensors on W0 with respect to Qg0, and denote by Qr the distance function to
S0 with respect to Qg0.

PROPOSITION 1.2
Assume that S is a smooth submanifold of X . If S ,!X is .k � 1/-linearizable, then
there exist a small neighborhood W0 of S0 ,! NS and a diffeomorphism F WW0!

F.W0/�W , where W is a small neighborhood of S � X , such that for any j � 0,
there exists a constant Cj > 0 and F satisfies��rj

Qg0
.F �J � J0/

��
Qg0
� Cj Qr

k�j on W0: (1.1)

Our next result deals with a special situation that arises in Tian and Yau’s con-
struction in [32] of an asymptotically conical (AC) Calabi–Yau (CY) metric on the
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complement of some divisor inside a Fano manifold. To state the result, we need to
use the notion of conical metrics on affine cones. In this paper, by an affine cone
C.D;L/ we will mean the normal affine variety obtained by contracting the zero sec-
tion of a negative line bundle L�1 over a smooth projective manifold D. We will also
consider the compactified cone NC.D;L/D C.D;L/ [D1 obtained by adding the
divisor D1 at infinity. These varieties can be expressed using pure algebras (x has
degree 1 in the second graded ring):

C WD C.D;L/D Spec
1M
mD0

H 0.D;mL/;

NC WD NC.D;L/D Proj
1M
mD0

� mM
rD0

H 0.D;Lr/ � xm�r
�
:

Now let h be a Hermitian metric on the negative line bundle L�1!D with negative
Chern curvature. Since C D C.D;L/ is obtained from L�1 by contracting the zero
section, h can be considered as a nonnegative function on the cone C . For any ı > 0,
there is a complete Kähler cone metric on C.D;L/ whose Kähler form on the regular
part C n ¹oº is given by

!
.ı/
0 WD

p
�1@N@hı : (1.2)

It is easy to verify that the associated Kähler metric tensor g.ı/0 is indeed a Riemannian
cone metric (see Section 5.1).

In the following proposition, we need to use the notion of comfortable embed-
ding, which is a property that appeared in the study of embeddings of complex sub-
manifolds in [14]. It refines the notion of linearizability in Definition 1.1 and was
explicitly introduced in [1]. We refer to Definition A.4 for its definition.

PROPOSITION 1.3
Let X be an n-dimensional projective manifold, and let D be a smooth divisor such
that ND is ample over D. Let !0 D !

.ı/
0 be a cone metric on C.D;ND/ as defined in

(1.2). Assume that the embeddingD ,!X is .k� 1/-comfortable. Then there exists a
diffeomorphism away from compact sets FK W C.D;ND/nBR.o/! .XnD/nK such
that ��rj!0.F �KJ � J0/��!0 � r�kı �j for any j � 0; (1.3)

where J (resp., J0) denotes the complex structure on X nD (resp., C.D;ND/ n ¹oº).

Note that the norm used in (1.1) is with respect to Qg0, while the norm used in
(1.3) is with respect to the cone metric !0 (or g0) (see Section 5.1 for the compari-
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son between these two Kähler metrics). This difference corresponds to the difference
between the linearizable and comfortable embeddings.

The next corollary follows from Proposition 1.3 combined with the regularity the-
ory developed by Conlon and Hein in [10] (see (5.9)). In many cases, Proposition 1.3
improves the regularity in [11] (see also [12, Remark 1.2]).

COROLLARY 1.4
With the same notation as in Proposition 1.3, let X be an n-dimensional Fano mani-
fold, and assume that �KX D ˛D with ˛ > 1. Denote ı D ˛�1

n
. Suppose that D has

a Kähler–Einstein metric and that D is .k � 1/-comfortably embedded into X . Then
the metric !TY constructed by Tian and Yau (see Section 5.2) satisfies��rj!0.F �K!TY �!0/

��
!0
� r�min¹2;k

ı
º�j for any j � 0:

If, moreover, we assume that the Kähler class is contained in the compactly supported
cohomology H 2

c .XnD/, then we get��rj!0.F �K!TY �!0/
��
!0
� r�min¹2n;k

ı
º�j for any j � 0:

The special number ıD ˛�1
n

in the above corollary is the exponent in the Calabi
ansatz for Kähler–Ricci flat cone metrics (see (5.7) in Section 5.1).

Under appropriate assumptions, our next result relates the order of embedding of
D!X to the order and the weight of a deformation of C.D;ND/. To construct the
deformation that we like to use, let X be a projective manifold of dimension greater
than 2, and let D be a smooth ample divisor on X . Let X denote the flat family that
is obtained by first blowing up D � ¹0º inside X � C and then blowing down the
strict transform of X � ¹0º. Let D be the strict transform of D � C. It is easy to
see that D ŠD �C. Assume that the central fiber X0 coincides with NC.D;ND/ so
that Xı DX nD is a flat deformation Xı! C of C.D;ND/. We remark that this
assumption is always satisfied when X is Fano and �KX D ˛D with ˛ > 1.

Denote by m.X;D/ the maximum positive integer m such that the embedding
D ,!X is .m� 1/-comfortably embedded. Let Ord.Xı/ denote the order of defor-
mation (see Definition 2.11), and let w.Xı/ be the weight of the reduced Kodaira–
Spencer class KSred

Xı (see Definition 2.12).

THEOREM 1.5
In the setting of the above paragraph, we have the identities

m.X;D/DOrd.Xı/D�w.Xı/: (1.4)
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Notice that the integer m.X;D/ in the above theorem was considered in [1,
Remark 4.6]. If dimD � 2 andD is ample, then, by Remark A.7,m.X;D/ is also the
maximal order of linearizability. In other words,D �X is .m.X;D/�1/-linearizable
but not m.X;D/-linearizable. When dimD D 1, we expect the conclusion of Theo-
rem 1.5 to also be true. In fact, a parallel analytic result will be shown in Theorem 1.6
without the restriction on dimension. On the other hand, we will calculate the exam-
ple of diagonal embedding P1 ,! P1 � P1 explicitly to see some new phenomena
about the embedding of submanifolds in Proposition 4.9. In particular, this example
shows that the condition of comfortable embedding depends on the choice of splitting
liftings, and thus answers a question by Abate, Bracci, and Tovena negatively.

Combining Theorem 1.5 with Proposition 1.3, we can give algebraic interpreta-
tions of ad hoc calculations in [10] on the asymptotic rates of holomorphic volume
forms. See the examples in Section 5.2.

Finally, we ask if any deformation of complex structures on C that decays at
infinity comes from this construction. We have a good understanding of the algebraic
version of this problem thanks to the work of Pinkham. His results in particular imply
that any (formal) deformation of C with negative weight can be extended to a (for-
mal) deformation of NC (see Theorem A.14). For the application to the study of AC
Kähler metrics, we prove an analytic compactification result, which can be seen as the
analytic counterpart of Pinkham’s result. Note that a similar compactification result
in the asymptotically cylindrical Calabi–Yau case has recently appeared in [18]. See
Remark 6.2 for some comparison.

To state this result in a general form, let h be a Hermitian metric on any negative
line bundle L�1!D with negative Chern curvature, and use the notation !0 WD !

.ı/
0

in (1.2). Let U� denote a neighborhood of the infinity end of C.D;L/. Equivalently,
U� is a punctured neighborhood of the embedding D D D1 ,! C.D;L/. Denote
by J0 the standard complex structure on C.D;L/, and denote by U � D U� [D the
compactification of U� in C.D;L/.

THEOREM 1.6
Assume that J is a complex structure on U� D U�nD such that there exists � > 0 such
that ��rkg0.J � J0/��!0 � r���k ; for any k � 0:

Then the complex analytic structure on U� extends to a complex analytic structure
on U � . Moreover, if we denote by m D dı�e the minimal integer which is greater
than or equal to ı�, then in the compactification .U �; J / the divisor D is .m � 1/-
comfortably embedded.
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This can be seen as a converse to the first part of Proposition 1.3 and implies that
the estimate in Proposition 1.3 is sharp.

Remark 1.7
Because our proof uses only local information near the divisor, the argument in the
proof should apply in the more general orbifold case. In fact, Conlon and Hein [12]
recently used the compactification obtained in Theorem 1.6 to prove that any asymp-
totically conical Calabi–Yau metric with quasiregular metric tangent cone at infinity
comes from Tian and Yau’s construction.

We end this Introduction with the organization of this paper. A more detailed
summary of materials will be given at the beginning of each section. In Section 2, we
recall the standard Kodaira–Spencer theory of infinitesimal deformations and general-
ize it to a higher-order setting. We also explain how the (higher-order) abstract defor-
mations and embedded deformations are related via Schlessinger’s exact sequence.
In Section 3, we relate the order of embedding to the order of deformation of neigh-
borhoods of complex submanifolds. This is achieved by writing down explicitly a
reduced Kodaira–Spencer class and relating it to obstructions to extension of embed-
dings (in Proposition 3.3). In Section 4, we treat the case when the submanifold is
an ample divisor and prove Theorem 1.5. In Section 5, we apply the result in Sec-
tion 4 to estimate the asymptotic rates of complex structures on asymptotic conical
Kähler manifolds in order to prove Proposition 1.3. In Section 6, we adapt Newlander
and Nirenberg’s work to prove an analytic compactification result for asymptotically
conical complex manifolds. In the Appendix, we collect some background results,
including Abate, Bracci, and Tovena’s work on embedding of submanifolds, and the-
ory of infinitesimal deformations of normal affine varieties with isolated singularities.

2. Preliminaries on deformation theory
Our primary object of interest will be a normal affine variety Z with an isolated sin-
gularity o. We would like to explain what it means for a deformation of Z to be
trivial up to a certain order and to classify the next order of deformations in terms of
a Kodaira–Spencer class in T1Z . This is done in Section 2.3, following Artin and Sch-
lessinger relying on manipulations with defining equations. We will show that these
concepts are “identical” to certain analogous concepts in the deformation theory of the
complex manifold ZnK , where K is a small pseudoconvex neighborhood of o. We
will define such concepts in Section 2.2 following essentially Kodaira–Spencer. The
desired identification is proved in Proposition 2.15. For this purpose we will intro-
duce a notation of “p-trivial embeddings,” which connects the two primary concepts
to each other. We will be working in the category of analytic varieties.
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2.1. Infinitesimal deformations via coordinate changes and embedded deformations
In this subsection, we recall how to get the first-order Kodaira–Spencer class for an
analytic family by using the variation of holomorphic coordinate changes (see [22])
and its relation to embedded deformations. Suppose that Y! B is an analytic family
of complex manifolds over the unit disk BD ¹z 2CI jzj< 1º.

Definition 2.1
An atlas covering Y0 is a collection of coordinate charts ¹U˛;ˆ˛ D .z˛; t /º˛2A such
that
(1) for each ˛ 2 A, U˛ � Y is biholomorphic to polydisk BnC1, and Y0 �S

˛ U˛ , that is, Y0 D
S
˛.U˛ \Y0/;

(2) there is a biholomorphic map ˆ˛ D .z˛; t / WU˛ ! ˆ˛.U˛/ � Cn � C such
that t is the coordinate on B; in particular, U˛ WD Y0 \U˛ D ¹t D 0º.

Remark 2.2
(1) Since we only care about the behavior near the central fiber Y0, the base B

is not very important. For example, we will frequently shrink B to become
B� D ¹t 2CI jt j< �º for any 0 < �� 1 in the following discussion.

(2) Since we can always shrink U˛ , the assumption that U˛ is biholomorphic to
polydisk BnC1 is just for the simplicity of the argument.

We first recall two ways to get the first-order Kodaira–Spencer class for a holo-
morphic family of complex manifolds by using the variation of holomorphic coordi-
nate changes.
(1) (Čech cohomology) Suppose that the coordinate changes are given by

zi˛ D F
i
˛ˇ .zˇ ; t /; t jU˛ D t jUˇ : (2.1)

Then we can deduce that

F i˛ˇ
�
Fˇ� .z� ; t /; t

�
D F i˛� .z� ; t /

H)

nX
jD1

@F i
˛ˇ
.zˇ ; t /

@z
j

ˇ

@F
j

ˇ�
.z� ; t /

@t
C
@F i
˛ˇ
.zˇ ; t /

@t

ˇ̌̌
tD0
D
@F i˛� .z� ; t /

@t

ˇ̌̌
tD0
:

So if we denote

�ˇ� D

nX
iD1

@F i
ˇ�
.z� ; t /

@t

ˇ̌̌
tD0

@

@zi
ˇ

D

nX
iD1

@zi
ˇ
.z� ; t /

@t

ˇ̌̌
tD0

@

@zi
ˇ

; (2.2)

then it satisfies the cocycle condition �ˇ� D �˛� � �˛ˇ so that ¹�˛ˇ º 2
LH 1.¹U˛º;‚Y0/, where U˛ DU˛ \ Y0 and ‚Y0 is the tangent sheaf on Y0.



1404 CHI LI

The class defined by � D ¹�˛ˇ º in H 1.Y0;‚Y0/ is the classical Kodaira–
Spencer class associated to the analytic family Y! B.

(2) (Dolbeault cohomology) It is well known that the above � can be represented
by using Dolbeault cohomology. For this purpose take ¹�˛º to be a partition
of unity for the covering ¹U˛º and define

�˛ D

nX
iD1

X
�

��
@F i˛� .z� ; t /

@t

ˇ̌̌
tD0

@

@zi˛
:

It is easy to verify that �˛ˇ D �˛ � �ˇ , so that N@�˛ D N@�ˇ is a globally
defined ‚Y0 -valued closed .0; 1/-form and it represents a cohomology class,

still denoted by � , in H .0;1/
N@

.Y0;‚Y0/. On the other hand, � measures the
first-order variation of the complex structure. We can follow the method in
Kodaira’s book [22, Section 2.3] to define a differentiable vector field V. First
notice that by the chain rule

� @
@t

�
ˇ
D

nX
iD1

@F i
˛ˇ
.zˇ ; t /

@t

@

@zi˛
C
� @
@t

�
˛
;

@

@z
j

ˇ

D

nX
iD1

@F i
˛ˇ
.zˇ ; t /

@z
j

ˇ

@

@zi˛
:

We can define a differentiable vector field locally on U˛ for fixed ˛ by

VD
X
ˇ

�ˇ

� @
@t

�
ˇ

D
X
ˇ

�ˇ

nX
iD1

@F i
˛ˇ
.zˇ ; t /

@t

@

@zi˛
C
� @
@t

�
˛

D

nX
iD1

�X
ˇ

�ˇ
@F i
˛ˇ
.zˇ ; t /

@t

� @

@zi˛
C
� @
@t

�
˛
:

Then V is a globally defined vector field in a neighborhood of Y0. Let �.t/ be
the flow associated with V which exists for sufficiently small t . We have the
identity

d

dt

�
�.t/�J

�
D .LVJ /.@ Nzj / d Nz

j D N@V:

Notice that N@VjtD0 D N@�˛ D � 2H
.0;1/
N@

.Y0;‚Y0/ŠH
1.Y0;‚Y0/.
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Assume that a holomorphic family of complex manifolds Y! B is embedded into
CN � B. Then the Kodaira–Spencer class can also be obtained by using the rela-
tion between embedded deformations and abstract deformations. In the following
discussion we assume that Y D Y0 is smooth. First there is an exact sequence of
sheaves

0! IY =I
2
Y !�1

CN
jY !�1Y ! 0;

where �1 denotes the cotangent sheaf. The dual of this sequence is given by

0!‚Y !‚CN jY !NY ! 0;

where NY DNY jCN is the normal sheaf of Y as a complex submanifold of CN . Then
there is a long exact sequence

0!H 0.Y;‚Y /

!H 0.Y;‚CN /!H 0.Y;NY /
ıY
!H 1.Y;‚Y /!H 1.Y;‚CN jY /: (2.3)

Choose an atlas covering Y0, denoted by ¹U˛; .z
i
˛; t /º, such that the embedding

U˛!CN �B is given by holomorphic functions

wb Dwb˛.z
i
˛; t /; 1� b �N:

Note that we will use ¹wbIb D 1; : : : ;N º to denote the coordinates of CN and use
wb˛ (i.e., depending on ˛) to denote wb as functions of the coordinates ¹zi˛; tº. Then
there is a locally defined section v˛ 2H 0.U˛;‚CN jU˛ / given by

v˛ D

NX
bD1

@wb˛
@t

ˇ̌̌
tD0

@

@wb
:

Let Œv˛	 2H 0.U˛;NY jU˛ / denote the induced local section under the natural projec-
tion ‚CN jY0!NY0 .

LEMMA 2.3
The local section ¹Œv˛	º can be glued together to become a global section v in
H 0.Y;NY /. Moreover, ıY .v/D � , where ıY is the connecting morphism in (2.3) and
� is the classical Kodaira–Spencer class defined in (2.2).

Proof
Notice that we have the relation

wb Dwbˇ .zˇ ; t /Dw
b
ˇ

�
ziˇ .z

j
˛ ; t /; t

�
Dwb˛.z

j
˛ ; t /:
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Taking derivatives on both sides with respect to t at t D 0, we get

NX
bD1

@wb˛
@t

ˇ̌̌
tD0

@

@wb
D

NX
bD1

nX
iD1

@wb
ˇ

@zi
ˇ

@zi
ˇ

@t

ˇ̌̌
tD0

@

@wb
C

NX
bD1

@wb
ˇ

@t

ˇ̌̌
tD0

@

@wb
:

Denote by 
Y W Y ! CN the induced embedding. Then the above equality is equiva-
lent to

v˛ � vˇ D

NX
bD1

� nX
iD1

@zi
ˇ
.z˛; t /

@t

ˇ̌̌
tD0

@wb

@zi
ˇ

� @

@wb
D .
Y /�.�ˇ˛/;

where we used the identity (2.2). Since �ˇ˛ 2‚Y0.U˛ \Uˇ /, we get Œv˛	D Œvˇ 	. By
the definition of the connecting morphism ıY in (2.3), we indeed have ıY .v/D � .

2.2. p-trivial atlas and p-trivial embeddings
We can generalize the above discussion to higher-order deformations. Let us introduce
a condition that will be important in the following discussion.

Definition 2.4
Assume that there is an atlas U D ¹U˛;ˆ˛ D .z˛; t /º covering Y0 with coordi-
nate change functions zi˛ D F

i
˛ˇ
.zˇ ; t / on U˛ \Uˇ . We say that U is p-trivial if

F i
˛ˇ
.zˇ ; t /�F

i
˛ˇ
.zˇ ; 0/ vanishes up to order p at t D 0:

@l.F i
˛ˇ
.zˇ ; t /�F

i
˛ˇ
.zˇ ; 0//

@t l

ˇ̌̌
tD0
D 0; for 0� l � p:

Notice that, since the l D 0 case is automatically true, this p-trivial condition is equiv-
alent to

@lF i
˛ˇ
.zˇ ; t /

@t l

ˇ̌̌
tD0
D 0; for 1� l � p: (2.4)

If this is the case, then we define the .p C 1/-order Kodaira–Spencer (Čech) class,
denoted by �pC1.U/ or simply by �pC1 if the atlas is clear, as the (Čech) cohomology
defined by the cocycle

.�pC1/˛ˇ D
1

.pC 1/Š

nX
iD1

@pC1F i
˛ˇ
.zˇ ; t /

@tpC1

ˇ̌̌
tD0

@

@zi˛

2 H 0.U˛ \Uˇ \Y0;‚Y0/: (2.5)



RATES AND COMPACTIFICATIONS OF AC KÄHLER METRICS 1407

LEMMA 2.5
(1) We have that �pC1 WD �pC1.U/ is well defined, that is, �pC1 D ¹.�pC1/˛ˇ º

satisfies the cocycle condition .�pC1/ˇ� D .�pC1/˛� � .�pC1/˛ˇ .
(2) If we have another p-trivial atlas QU D ¹ QU˛; Q̂ ˛ D . Qz˛; t /º, then Q�pC1 D

�pC1. QU/ defines the same Čech cohomology class as �pC1.
(3) Assume that there exists a .p � 1/-trivial atlas covering Y0 and �p D 0 2

H 1.Y0;‚Y0/. Then for any relatively compact open subset K � Y such that
K0 D �

�1.0/ \K is a relatively compact open set of Y0 D �
�1.0/, there

exists a p-trivial atlas covering K0.

Proof
Using the cocycle condition of ¹F˛ˇ º and the vanishing condition (2.4), we can take
higher-order derivatives with respect to t to get

F i˛ˇ
�
Fˇ� .z� ; t /; t

�
D F i˛� .z� ; t /

H)

nX
jD1

@F i
˛ˇ
.zˇ ; t /

@z
j

ˇ

@F
j

ˇ�
.z� ; t /

@t
C
@F i
˛ˇ
.zˇ ; t /

@t
D
@F i˛� .z� ; t /

@t

H)

nX
jD1

@F i
˛ˇ
.zˇ ; t /

@z
j

ˇ

@pC1F
j

ˇ�
.z� ; t /

@tpC1
CO.t/C

@pC1F i
˛ˇ
.zˇ ; t /

@tpC1
D
@pC1F i˛� .z� ; t /

@tpC1
:

From this it is clear that �pC1 D ¹.�pC1/ˇ˛º satisfies the cocycle condition.
To prove the second item, we first choose a common refinement of U and QU

and assume that we have the same collection of open sets: U˛ D QU˛ for ˛ 2 A.
Suppose that the coordinate function QU˛ is denoted by Q̂ ˛ D . Qz˛; t /. We then have
the following relation on the composition of coordinate functions:

z˛ D z˛. Qz˛; t /D z˛
�
Qz˛. Qzˇ ; t /; t

�
D z˛

�
Qz˛
�
Qzˇ .zˇ ; t /; t

�
; t
�
D z˛.zˇ ; t /:

Taking derivatives on both sides with respect to t we get

@zi˛.zˇ ; t /

@t
D

nX
jD1

@zi˛. Qz˛; t /

@ Qz
j
˛

� nX
kD1

@ Qz
j
˛. Qzˇ ; t /

@ Qzk
ˇ

@ Qzk
ˇ
.zˇ ; t /

@t
C
@ Qz
j
˛. Qzˇ ; t /

@t

�

C
@zi˛. Qz˛; t /

@t
: (2.6)

Note that we used the Einstein summation rule. On the other hand, we have

Qzˇ D Qzˇ
�
zˇ . Qzˇ ; t /; t

�
H)

nX
jD1

@ Qzk
ˇ
.zˇ ; t /

@z
j

ˇ

@z
j

ˇ
. Qzˇ ; t /

@t
C
@ Qzk
ˇ
.zˇ ; t /

@t
D 0: (2.7)
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Combining (2.6)–(2.7) and using the chain rule, we get
nX
iD1

@zi˛.zˇ ; t /

@t

@

@zi˛
�

nX
jD1

@ Qz
j
˛. Qzˇ ; t /

@t

@

@ Qz
j
˛

D

nX
iD1

@zi˛. Qz˛; t /

@t

@

@zi˛
�

nX
jD1

@z
j

ˇ
. Qzˇ ; t /

@t

@

@z
j

ˇ

: (2.8)

At t D 0, this shows that �1 � Q�1 is indeed a coboundary. For p-trivial atlases U and
QU, we can take higher-order Lie derivatives .L@t /

pC1 on both sides of (2.8) at t D 0
to get

@pC1zi˛.zˇ ; t /

@tpC1

ˇ̌̌
tD0

@

@zi˛
�
@pC1 Qz

j
˛ . Qzˇ ; t /

@tpC1

ˇ̌̌
tD0

@

@ Qz
j
˛

D

nX
iD1

@pC1zi˛. Qz˛; t /

@t

ˇ̌̌
tD0

@

@zi˛
�
@pC1z

j

ˇ
. Qzˇ ; t /

@tpC1

ˇ̌̌
tD0

@

@z
j

ˇ

: (2.9)

So, using the definition in (2.5), �pC1 � Q�pC1 is indeed a coboundary.
Finally, we prove the third item. Assume that UD ¹U˛;ˆ˛ D .z˛; t /º˛2A is a

.p � 1/-trivial atlas. Then by the definition of �p and the assumption, we have

�p D
1

pŠ

nX
iD1

@pzi˛.zˇ ; t /

@tp

ˇ̌̌
tD0

@

@zi˛
D

nX
iD1

ci˛
@

@zi˛
� ciˇ

@

@zi
ˇ

: (2.10)

Define the new coordinates Qzi˛ D z
i
˛ C t

pci˛ which are genuine coordinate charts on
an open neighborhood of K0 inside Y, since K � Y and K0 � Y0 are relatively
compact open subsets:

Qzi˛ D z
i
˛.zˇ ; t /C t

pci˛ D z
i
˛. Qz

j

ˇ
� tpc

j

ˇ
; t /C tpci˛ D Qz

i
˛. Qzˇ ; t /:

Taking the p-order derivative with respect to t on both sides, we get

1

pŠ

@p Qzi˛. Qzˇ ; t /

@tp

ˇ̌̌
tD0
D�

nX
jD1

@zi˛

@z
j

ˇ

� c
j

ˇ

ˇ̌̌
tD0
C
1

pŠ

@pzi˛.zˇ ; t /

@tp

ˇ̌̌
tD0
C ci˛:

Notice that @

@Qzi˛
D @

@zi˛
at t D 0, so we get by (2.10) that

1

pŠ

nX
iD1

@p Qzi˛
@tp

ˇ̌̌
tD0

@

@ Qzi˛
D �

nX
jD1

c
j

ˇ

@

@z
j

ˇ

C

nX
iD1

ci˛
@

@zi˛
C
1

pŠ

nX
iD1

@pzi˛.zˇ ; t /

@tp

ˇ̌̌
tD0

@

@zi˛

D 0:

So the new atlas ¹U˛; Q̂ D . Qz˛; t /º is a p-trivial atlas covering K0.
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To make a connection with embedded deformations, we introduce the following
definition.

Definition 2.6
Let Y! B be a holomorphic family of complex manifolds that can be embedded into
CN � B. We say that an embedding 
Y W Y!CN � B is p-trivial (along Y0 DW Y ) if
there exists an atlas UD ¹U˛;ˆ˛ D .z

i
˛; t /º˛2A covering Y0 such that, for each ˛ 2

A, if the embedding U˛!CN � B is represented by the functions wb Dwb˛.z˛; t /,
then the following vanishing conditions are satisfied:

@lwb˛.z˛; t /

@t l

ˇ̌̌
tD0
D 0; 1� l � p: (2.11)

In this case, we say that U is an atlas adapted for the p-trivial embedding, or simply
a p-adapted atlas.

To state the next result, we introduce additional notation. Let � W Y ! B be a
holomorphic family of complex manifolds over the unit disk. For any 0 < � < 1 and
any subset K 	 Y, denote B� D ¹t 2 BI jt j< �º and

Y� D Y �B B� D �
�1.B�/; K� D �

�1.B�/\K: (2.12)

LEMMA 2.7
With the above notation, if there exists a p-trivial embedding Y� ,! CN � B� for
some 0 < �� 1, then there exists a p-trivial atlas covering Y0.

Conversely, assume that there exists a p-trivial atlas covering Y0. Then for any
relatively compact open subset K � Y, there is a p-trivial embedding K� ,! CN �

B� for 0 < � � 1. More precisely, given an embedding Y ! CN � B and a rel-
atively compact open set K � Y, there exist 0 < � � 1, a neighborhood W� of
K� inside CN � B, and a biholomorphism ˆ of the form ˆ.w; t/ D .‰t .w/; t/,
‰0 D Id, from W� onto its image in CN � B such that ˆjK� is a p-trivial embed-
ding.

Proof
Assume that there is a p-trivial embedding with p-adapted atlas ¹U˛;ˆ˛ D

.zi˛; t /º˛2A. We prove that the p-adapted atlas is a p-trivial atlas defined in Def-
inition 2.4. In other words, we want to show that

@l.z˛.zˇ ; t /� z˛.zˇ ; 0//

@t l

ˇ̌̌
tD0
D 0; for 0� l � p:

We prove this by induction. The case of l D 0 is automatically true. Assume that this
is proved for the .l � 1/th-order derivative for some 1 � l � p. Then we take the
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l th-order derivative on both sides of (with respect to t at t D 0),

wb Dwb˛.z˛; t /Dw
b
˛

�
z˛.zˇ ; t /; t

�
Dwbˇ .zˇ ; t /;

and we use the .l � 1/-trivial atlas and the l -adapted property to get

0D
@lwb

ˇ
.zˇ ; t /

@t l

ˇ̌̌
tD0

D

nX
iD1

@wb˛.z˛; t /

@zi˛

@lzi˛.zˇ ; t /

@t l

ˇ̌̌
tD0
C
@lwb˛.z˛; t /

@t l

ˇ̌̌
tD0

D

nX
iD1

@wb˛.z˛; t /

@zi˛

@lzi˛.zˇ ; t /

@t l

ˇ̌̌
tD0
:

Because the N � n matrix

Mbi D
@wb˛.z˛; t /

@zi˛

has rank n and zero kernel, we get @
lzi˛.zˇ ;t/

@t l
jtD0 D 0. So the atlas is l -trivial. This

completes the induction argument and shows that the p-adapted atlas is indeed p-
trivial.

Conversely, we choose a p-trivial atlas UD ¹U˛;ˆ˛ D .z˛; t /º˛2A covering Y0
and an embedding which, for each ˛ 2A, is represented by wb Dwb˛.z˛; t /. Then we
have the relation

wb Dwbˇ .zˇ ; t /Dw
b
ˇ

�
zˇ .z˛; t /; t

�
Dwb˛.z˛; t /:

Taking the derivative on both sides at t D 0 and using the p-trivial condition of the
atlas, we get

@lwb˛

@t l

ˇ̌̌
tD0
D

nX
iD1

@wb
ˇ

@zi
ˇ

@lzi
ˇ
.z˛; t /

@t l

ˇ̌̌
tD0
C
@lwb

ˇ

@t l

ˇ̌̌
tD0
D
@lwb

ˇ

@t l

ˇ̌̌
tD0
; 1� l � p:

So we see that for each 1� l � p, there is a globally defined vector field

v.l/ D

NX
bD1

@lwb
ˇ

@t l

ˇ̌̌
tD0

@

@wb
2H 0.Y;‚CN jY /:

We claim that the given embedding can be modified to become a p-trivial embedding
on any relatively compact open subset. We do this by induction as follows. Assume
that we already get an .l � 1/-trivial embedding for some 1 � l � p. Let � .l/.w; s/
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be the flow generated by an extension of holomorphic vector field �v.l/=lŠ to CN .
Note that � .l/.w; s/ exists on a relatively compact open subset for jsj sufficiently
small.

Set ˆ.w; t/ D .� .l/.w; t l/; t/ DW .‰t .w/; t/. Then ˆ is a biholomorphism
defined on a relatively compact open neighborhood W� of K� when � is suffi-
ciently small. Define a new embedding Q
W� WD ˆ ı 
Y jW� . Then there is a new
representation Qwb D Qwb.w˛.z˛; t /; t/ D Qwb˛.z˛; t /. We can then take the derivative
with respect to t by using the .l � 1/-trivial condition to see that Q
Y is indeed an
l-trivial embedding:

NX
bD1

@l Qwb.z˛; t /

@t l

ˇ̌̌
tD0

@

@wb

D

NX
bD1

NX
cD1

@ Qwb

@wc
@lwc.z˛; t /

@t l

ˇ̌̌
tD0

@

@wb
C

NX
bD1

@l Qwb.w; t/

@t l

ˇ̌̌
tD0

@

@wb

D

NX
cD1

@lwc˛.z˛; t /

@t l

ˇ̌̌
tD0

@

@wc
� v.l/ D 0:

The first statement of following lemma generalizes Lemma 2.3.

LEMMA 2.8
(1) If there is a p-trivial embedding 
Y W Y ! CN � B with p-adapted atlas

¹U˛;ˆ˛ D .z˛; t /º, then we can define a global section vpC1 WD

vpC1.
Y ;ˆ˛/ 2H
0.Y0;NY0/ such that

vpC1.U˛/D
1

.pC 1/Š

h NX
bD1

@pC1wb˛.z˛; t /

@tpC1

ˇ̌̌
tD0

@

@wb

i
2 H 0.U˛ \Y0;NY0/; (2.13)

where we used the natural morphism ‚CN jY0 ! NY0 (remember that
.wb/N

bD1
denotes the standard coordinates on CN ). Furthermore, ıY .vpC1/D

�pC1 where ıY is the connecting morphism ıY W H
0.Y0;NY0/ !

H 1.Y0;‚Y0/ introduced in (2.3) and �pC1 is the reduced Kodaira–Spencer
cocycle associated to the p-adapted atlas.

(2) Assume that there is another p-adapted atlas ¹ QU˛; Q̂ ˛ D . Qzi˛; t /º for the
same embedding 
Y . If we denote QvpC1 D vpC1.
Y ; Q̂ ˛/, then ıY .vpC1 �
QvpC1/D 0.
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Proof
By the proof of Lemma 2.7, a p-adapted atlas is p-trivial. So we can use the p-trivial
condition to take the .p C 1/th-order derivative with respect to t at t D 0 on both
sides of the identity

wb Dwbˇ .zˇ ; t /Dw
b
ˇ

�
ziˇ .z

j
˛ ; t /; t

�
Dwb˛.z˛; t /

to get

@pC1wb˛.z˛; t /

@tpC1
D

nX
iD1

@wb
ˇ

@zi
ˇ

@pC1zi
ˇ

@tpC1
C
@pC1wb.zˇ ; t /

@tpC1
: (2.14)

If we define

v˛ D
1

.pC 1/Š

NX
bD1

@pC1wb.z˛; t /

@tpC1
@

@wb

ˇ̌̌
tD0
;

then v˛ � vˇ D 
Y �.�pC1/ˇ˛ . So ¹Œv˛	º˛2A can be glued to become a global section
vp 2H

0.Y;NY / using the fact that NY D‚CN =‚Y .
For the second item, we use (2.14) to get the following identities:

ı.vpC1 � QvpC1/.U˛ \Uˇ /D 
Y �
�
.�pC1/ˇ˛

�
� 
Y �

�
. Q�pC1/ˇ˛

�
D 
Y �

�
.�pC1/ˇ˛ � . Q�pC1/ˇ˛

�
:

By Lemma 2.5(2), more specifically identity (2.8), we know that �pC1 � Q�pC1 D 0 2
H 1.Y;‚Y /. So the proof is complete.

LEMMA 2.9
Assume that there exists a .p� 1/-trivial embedding 
Y W Y!CN �B with vp.
Y/D

0 2 H 0.Y0;NY0/ (see Lemma 2.8 for the definition of vp). Then for any relatively
compact open subset K � Y, there is a p-trivial embedding K� ,! CN � B� for
0 < �� 1.

Proof
We need to prove that there exists an atlas satisfying the condition (2.11). By assump-
tion, there is an atlas UD ¹U˛;ˆ˛ D .z˛; t /º˛2A covering Y0 such that the follow-
ing condition is satisfied: for each ˛ 2A, if the embedding 
Y jU˛ WU˛ ! CN � B

is represented by the function wb D wb˛.z˛; t /, then we have @lwb˛.z˛ ;t/

@t l
jtD0 D 0

(b D 1; : : : ;N and 1� l � p � 1), and (see (2.13))

1

pŠ

NX
bD1

@pwb˛.z˛; t /

@tp

ˇ̌̌
tD0

@

@wb
2‚Y0.U˛ \Y0/: (2.15)
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So we get functions d i˛.z˛/ satisfying

NX
bD1

@pwb˛.z˛; t /

@tp

ˇ̌̌
tD0

@

@wb
D

nX
iD1

d i˛
@

@zi˛

D

nX
iD1

d i˛
@wb˛.z˛; 0/

@zi˛

@

@wb
2‚Y0.U˛ \Y0/: (2.16)

Define the new functions Qzi˛ D z
i
˛Cd

i
˛
tp

pŠ
which are coordinates on K� for 0 < �� 1.

Taking the derivative all the way up to order p on both sides of

wb Dwb˛.z˛; t /Dw
b
˛

�
z˛. Qz˛; t /; t

�
D Qwb˛. Qz˛; t /

at t D 0, we get

@pwb. Qz˛; t /

@tp

ˇ̌̌
tD0
D

nX
iD1

@wb˛.z˛; 0/

@zi˛

@pzi˛. Qz˛; t /

@tp
C
@pwb˛.z˛; t /

@tp

ˇ̌̌
tD0

D�

nX
iD1

d i˛
@wb˛.z˛; 0/

@zi˛
C
@pwb˛.z˛; t /

@tp

ˇ̌̌
tD0
D 0:

So we see that the atlas ¹U˛; . Qz˛; t /º is indeed a p-adapted atlas.

LEMMA 2.10
Let � W Y! B be a holomorphic family of complex manifolds embedded into CN �C.
Let K � Y be a relatively compact open set such that there exist a bounded open set
W �CN �C and H1; : : : ;Hd 2O.W/ satisfying

K D
®
.w; t/ 2W WH1.w; t/D � � � DHd .w; t/D 0

¯
: (2.17)

Then for all p � 1, the following are equivalent (see (2.12) for notation):
(1) There exists 0 < �� 1 such that there exists a p-trivial atlas on K� .
(2) There exist 0 < � � 1 and a biholomorphism ˆ of the form ˆ.w; t/ D

.‰t .w/; t/, ‰0 D Id, from W� onto its image in CN �C such that ˆjK� is a
p-trivial embedding.

(3) There exist 0 < � � 1 and a biholomorphism ˆ of the form ˆ.w; t/ D

.‰t .w; t/; t/, ‰0 D Id, from W� onto its image in CN �C such that

ˆ.K�/D
®
.w; t/ 2ˆ.W�/ W F1.w; t/D � � � D Fd .w; t/D 0

¯
for some holomorphic functions F1; : : : ;Fd with Fm.w; t/ D Fm.w; 0/ C

tpC1Gm.w; t/.
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Proof
The equivalence of (1) and (2) has been proved in Lemma 2.7. We now prove that
(2) implies (3). So assume that ˆjK� is a p-trivial embedding with a p-adapted atlas
¹U˛; .z˛; t /º. Set Fm DHm ıˆ�1. Then the ideal sheaf of ˆ.K�/ is generated by
¹F1.w; t/; : : : ;Fd .w; t/º. We will prove by induction that there exists a sequence of
open sets W DW .0/ 
W .1/ 
 � � � 
W .pC1/ and holomorphic functions F .l/m .w; t/

on W .l/ such that
(i) Y \W .l/ is generated by F .l/m .w; t/;
(ii) there exist holomorphic functions Gm;l.w; t/ on W .l/ such that

F .l/m .w; t/D F .l/m .w; 0/C t lGm;l.w; t/: (2.18)

For l D 1, let W .1/ D W , let F .1/m .w; t/ D Fm.w; t/, and let Gm;1.w; t/ D
1
t
.Fm.w; t/ � Fm.w; 0//. Then assume that the statement is true for 1 � l � p.

We have the identity

F .l/m
�
w1˛.z˛; t /; : : : ;w

N
˛ .z˛; t /; t

�
� 0: (2.19)

Taking the derivative with respect to t l times and using the identities (2.11) and
(2.19) we get

Gm;l
�
w˛.z˛; t /; t

�ˇ̌
tD0
D 0: (2.20)

Because the ideal sheaf of K0 \W .l/ is generated by ¹F .l/1 .w; 0/; : : : ;F
.l/

d
.w; 0/º,

there exists hm;l;r.w/ such that

Gm;l.w; 0/D

dX
mD1

F .l/r .w; 0/hm;l;r.w/: (2.21)

Now define

F .lC1/m .w; t/D F .l/m .w; t/� t l
dX
rD1

F .l/r .w; t/hm;r;l.w/

D F .l/m .w; 0/C t lGm;l.w; t/� t
l

dX
rD1

F .l/r .w; t/hm;r;l.w/:

We then have

@lF .lC1/.w; t/

@t l

ˇ̌̌
tD0
D 0:

So we know that F .lC1/
m;l

.w; t/ has the expansion
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F .lC1/m .w; t/D F .lC1/m .w; 0/C t lC1Gm;lC1.w; t/ (2.22)

over an open subset W .lC1/ of W .l/. Note that ¹F .lC1/r º generates the same ideal as
the ¹F .l/r º. Indeed ¹F .lC1/r º is obtained by multiplying a holomorphic matrix of the
form Idd�d CO.t l/ to ¹F .l/r º. Because l � 1, this matrix has a holomorphic inverse
for jt j � 1. So it is easy to see that F .lC1/m satisfies the wanted properties.

Conversely, we assume that (3) holds, and we consider the biholomorphism ˆ

of (3). Choose an arbitrary atlas UD ¹U˛;ˆ˛ D .z˛; t /º covering K� . We want to
use induction to prove that there exists an l -adapted atlas for the embedding ˆjK�
for 1� l � p. Assume that this has been proved for l � 1. This is trivially true when
l D 1. Then note that

.Fr C t
pC1Gr/

�
wb.z˛; t /

�
D 0; for 1� r � d: (2.23)

Taking the l th-order derivative on both sides of (2.23) and using the .l � 1/-adapted

property @jwb˛
@tj
jtD0 D 0 for 1� j � l � 1, we get

NX
bD1

@Fr

@wb
@lwb˛

@t l

ˇ̌̌
tD0
D 0; for 1� r � d:

Since ¹Frº are defining functions of K0, this means that the vector fieldPN
bD1

@lwb˛
@t l

@

@wb
jtD0 is tangent to K0. So there exists ci˛ D c

i
˛.z˛/ such that

NX
bD1

@lwb˛

@t l
@

@wb

ˇ̌̌
tD0
D

nX
iD1

ci˛
@

@zi˛
D

NX
bD1

nX
iD1

ci˛
@wb˛
@zi˛

@

@wb

ˇ̌̌
tD0
: (2.24)

Now define a new coordinate function

Qzi˛ D z
i
˛ C

t l

lŠ
ci˛.z˛/:

Then we get a new representation of the embedding on U˛ :

Qwb Dwb.z˛; t /Dw
b
�
z˛. Qz˛; t /; t

�
:

Taking l th-order derivatives on both sides, by (2.24) we get

@l Qwb

@t l

ˇ̌̌
tD0
D�

nX
iD1

@wb˛
@zi˛

ci˛ C
@lwb˛

@t l

ˇ̌̌
tD0
D 0:

So by induction, we indeed get a p-adapted atlas on K� for 0 < �� 1.
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2.3. Higher-order deformation of a normal isolated singularity via higher-order
deformation of a regular part

Let Z � CN be an affine algebraic variety with exactly one singularity o 2 Z, and
we can assume that this singularity is the origin 0 2CN . Assume that there is a holo-
morphic family of complex analytic varieties Z! B which is a deformation of the
analytic germ .Z0; o/D .Z;o/. For any k � 0, this induces a deformation over the
analytic space B.k/D .B;OB=I

kC1
0 /, where I0 D .t/ is the ideal sheaf of the point

0 2 B. Indeed, we have the flat morphism Z.k/ WDZ�B B.k/! B.k/.

Definition 2.11
The order of the deformation .Z; .Z0; o//! .B; 0/ is defined to be the natural number

Ord
��

Z; .Z0; o/
�
=.B; 0/

�
Dmax

®
kC 1IZ.k/! B.k/ is trivial

¯
:

If the pointed base .B; 0/ and the point o 2Z are clear, we shall just write Ord.Z/ for
Ord..Z; .Z0; o//=.B; 0//.

It is well known that higher-order deformation theory in the algebraic category
(see [4], [17, Theorem 10.1]) can also be developed in the analytic category (cf.
[15, Proposition 1.29]). Given a deformation of certain order, the space of possible
deformations to the next order is a principal homogeneous space under T1Z , that
is, an affine space without preferred origin. More precisely, suppose that there is a
flat family Z.k/! B.k/ and an extension to Z�.k C 1/! B.k C 1/ of Z.k/ with
Z�.k/DZ�.kC 1/�B.kC1/ B.k/DZ.k/. Then the set of .kC 1/th-order deforma-
tions that extend the kth-order deformation Z.k/! B.k/ can be identified with T1Z .
In the special case at hand, there is a preferred origin given by the trivial deformation
and this allows us to define a reduced Kodaira–Spencer class.

Definition 2.12
Suppose that there is a flat family Z! B of complex analytic varieties with .Z0; o/D
.Z;o/. Assume that Z.k/! B.k/ is trivial for a fixed k � 0. If the trivial deformation
Z�.k C 1/ WD Z � B.k C 1/ is used as the basepoint so that Z�.k/ D Z � B.k/

coincides with Z.k/, then the corresponding class representing Z.k C 1/ in T1Z is
defined to be the .kC 1/th-order Kodaira–Spencer class of Z! B and is denoted by
KS.kC1/

Z
. If p C 1D Ord.Z/, then we define the reduced Kodaira–Spencer class as

KSred
Z DKS.pC1/

Z
.

LEMMA 2.13
With the same notation as above, if Ord.Z/� pC1, then there exist a small neighbor-
hood W of o 2 CN �C and a biholomorphism ˆ of the form ˆ.w; t/D .‰t .w/; t/,
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‰0 D Id, from W onto its image in CN � C such that the ideal sheaf of ˆ.Z/
in ˆ.W/ is generated by F1.w; t/; : : : ;Fd .w; t/ satisfying Fm.w; t/D Fm.w; 0/C
tpC1Gm.w; t/ on W with Gm.w; t/ analytic in W .

Proof
By assumption, there exists an isomorphism of quotients of power series rings

� WC¹w1; : : : ;wN ; tºº=
�
F1.w; t/; : : : ;Fd .w; t/; t

pC1
�

!C¹ Ow1; : : : ; OwN ; tº=
�
f1. Ow/; : : : ; fd . Ow/; t

pC1
�
;

where F1.w; t/; : : : ;Fd .w; t/ are defining equations of the germ .Z; .o; 0//� .CN �

C; .o; 0//. We will change the embedding of .Z; .o; 0// several times during the proof
but will continue to use Fm.w; t/ to denote the defining equations of .Z; .o; 0// in
each step.

Assume that � is represented by functions wb D Bb. Ow1; : : : ; OwN ; t /. Then we
have

Fr
�
Bb. Ow; t/; t

�
D

dX
lD1

fl. Ow/hr;l. Ow; t/C t
pC1ur . Ow; t/; r D 1; : : : ; d; (2.25)

where hr;l and ur are holomorphic near o 2CN �C. We can assume that Bb. Ow1; : : : ;
OwN ; 0/ D Owb and Fr .Bb. Ow;0/; 0/ D Fr. Ow;0/ DW fr . O!/ so that hr;l. Ow;0/ D ırl .

Multiplying (2.25) by the inverse matrix .hr;l/�1 (which exists for jt j sufficiently
small) and replacing Fr , we can assume that hr;l. Ow; t/ D ırl so that the following
identities hold:

Fr
�
Bb. Ow; t/; t

�
D fr . Ow/C t

pC1ur. Ow; t/: (2.26)

We will prove by induction that there exist a small open neighborhood W of .o; 0/ 2
CN �C and a biholomorphism ˆ of the form ˆ.w; t/D .‰t .w/; t/, ‰0 D Id, from
W onto its image CN �C such that ˆ.Z\W/ is defined by equations Fr .w; t/D 0,
where the following hold for any 0� l � p:

@l.Fr .w; t/� fr .w//

@t l

ˇ̌̌
tD0
D 0 and

@l.Bb. O!; t/� Ow/

@t l

ˇ̌̌
tD0
D 0: (2.27)

This clearly implies the statement of the lemma.
The identity (2.27) holds for l D 0. Assume (2.27) for l �1. Taking the derivative

for both sides of (2.26) with respect to t l times and evaluating at t D 0, we get

NX
bD1

@Fr.w; 0/

@wb
@lBb. Ow; t/

@t l
C
@lFr .w; t/

@t l

ˇ̌̌
tD0
D 0: (2.28)
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Note that

v WD

NX
bD1

vb
@

@wb

ˇ̌̌
Z0
D�

NX
bD1

@lBb. Ow; t/

@t l

ˇ̌̌
tD0

@

@wb
2H 0.Z0;‚CN jZ0/ (2.29)

is a globally defined vector field on Z0. Let �.w; s/ be the one-parameter subgroup
generated by a holomorphic extension of v. Then �.w; s/ exists for jsj sufficiently
small on an open neighborhood of o 2Z0 �CN � ¹0º. Set

QwD Qw.w; t/D �.w; t l=lŠ/;

QFr . Qw; t/D Fr
�
w. Qw; t/; t

�
;

QB. Ow; t/D Qw
�
w. Ow; t/; t

�
:

(2.30)

In particular, @
l Qwb.w;t/

@t l
jtD0 D v

b D � @
lwb. Qw;t/

@t l
jtD0 for b D 1; : : : ;N . Then we get,

since l � 1,

@l

@t l

�
QFr . Qw; t/�Fr . Qw;0/

�ˇ̌̌
tD0

D
@l

@t l
Fr
�
w. Qw; t/; t

�ˇ̌̌
tD0

D

NX
bD1

@Fr.w; 0/

@wb
@lwb. Qw; t/

@t l
C
@lFr .w; t/

@t l

ˇ̌̌
tD0

D

NX
bD1

@Fr.w; 0/

@wb
@lBb. Ow; t/

@t l
C
@lFr .w; t/

@t l

ˇ̌̌
tD0
D 0 .by (2.28)/:

Moreover, we have the vanishing

@l

@t l
QBb. Ow; t/

ˇ̌̌
tD0
� Ow D

@l

@t l
Qwb
�
B. Ow; t/; t

�ˇ̌̌
tD0

D

NX
cD1

@ Qwb.w; 0/

@wc
@l

@t l
Bc. Ow; t/C

@l

@t l
Qwb.w; t/

ˇ̌̌
tD0

D
@lBb. Ow; t/

@t l

ˇ̌̌
tD0
�
@lBb. Ow; t/

@t l

ˇ̌̌
tD0
D 0:

So the induction argument completes.

If Ord.Z/ � p C 1, then by Lemma 2.13, after changing the embedding of Z,
there exists a small open neighborhood W of .o; 0/ 2 CN � C such that IZ.W/ is
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generated by ¹Fi .w; t/D Fi .w; 0/C tpC1Gi .w; t/º. In particular IZ0.W \ Z0/ is
generated by ¹f1; : : : ; fd º where fi .w/ WD Fi .w; 0/ for i D 1; : : : ; d . Set gi .w/ D
Gi .w; 0/. The flatness condition of Z ! B implies that ¹giº (and hence ¹Giº)
determines a well-defined morphism (see [15, Proposition II.1.25] and [4, Sec-
tion 6])

Ng W IZ!OCN =IZ ;

dX
rD1

frhr 7!

dX
rD1

grhr : (2.31)

We have Ng 2 HomO
CN
.IZ ;OCN =IZ/D HomOZ .IZ=I

2
Z ;OZ/DH

0.Z;NZ/. So if
Ord.Z/� pC 1, then there is a well-defined class

� Z. Ng/ 2 T1Z ; (2.32)

where  Z WH 0.Z;NZ/! T1Z was defined by Schlessinger (see (A.5)). This class is

exactly the Kodaira–Spencer class KS.pC1/
Z

of Definition 2.12. Notice that here we
are working in the analytic category as in [31] and [15].

From now on assume that Z has a normal isolated singularity at o, and denote
U DZ n ¹oº. Schlessinger showed in [31] that the (infinitesimal) embeddable defor-
mations can be determined by deformations of U and that T1Z is a subspace of
H 0.U;‚U / (see Proposition A.10 and (A.7)). More precisely, there are two exact
sequences:

H 0.U;‚CN jU /!H 0.U;NU /
 U
! T1Z! 0;

0! T1Z
�U
�!H 1.U;‚U /!H 1.U;‚CN jU /:

(2.33)

Fix an embedding o 2Z ,! CN , and let ¹wiºNiD1 be the standard coordinates of CN

with wi .o/D 0. Choose a smooth, strictly plurisubharmonic function ' on CN such
that the following conditions are satisfied:
(1) 'jU > 0 is a strict plurisubharmonic function on U DZno;
(2) for any � > 0 and c > 0, the subset ¹p 2 U I � < '.p/ < cº is relatively com-

pact in U ;
(3) for c > 0, the subset Kc WD ¹p 2 U I'.p/ � cº satisfies that @K is compact

and strongly pseudoconvex.
Now assume that .Z;o/ is the germ of the vertex of an affine cone Z D C.D;L/ and
that Z is a C�-equivariant deformation of Z. We can then assume that the embedding
of Z into CN �C is C�-equivariant and that the morphisms in the sequences (2.33)
are C�-equivariant. Moreover, we can choose ' to be an S1-invariant function so that
the compact set Kc becomes S1-invariant. Fix 0 < c1� c2 <C1.
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LEMMA 2.14
With the same notation as in the above paragraph, set F D ‚U or NU . Then for
i � 1, the natural morphism R WH i .ZnKc1 ;F /!H i ..ZnKc1/\

VKc2 ;F / induced
by the inclusion is an isomorphism.

Proof
Since we are working with Čech cohomology, we first construct coverings by S1-
invariant Stein open sets in the following way. Let � W Z n ¹oº !D be the natural
projection realizing Z n ¹oº as a C�-bundle over D. Choose a Stein covering ¹UD˛ º
of D, and set U˛ D ��1.UD˛ / \ .ZnKc1/. Similarly, we get an S1-invariant Stein

covering ¹U 0˛º of .ZnKc1/\ VKc2 .
We first argue that R is injective. Represent the cohomology classes by Čech

cocycles with respect to the above S1-invariant Stein coverings. If Œ�	D Œ¹�˛1���˛i º	 2

H i .ZnKc1 ;F / satisfies R.Œ�	/D 0 2H i ..ZnKc1/ \
VKc2 ;‚Z/, then � D ı.
/ is a

coboundary where 
D ¹
˛1˛2���˛i�1º is a cochain (over .ZnKc1/\ VKc2 ).
By using the result in [20, Proposition 3.4], we can decompose each compo-

nent of 
 into weight pieces. More precisely, we can write 
D
P
k 
k , where 
k D

¹.
k/˛1���˛i�1º has weight k under the S1-action. Note that F is associated to a C�-
equivariant vector bundle over ��1.UD˛ /. So each .
k/˛1���˛i�1 is represented by
holomorphic functions over U 0˛1 \� � �\U

0
˛i�1

with respect to a C�-equivariant trivial-
ization of F . Since homogeneous holomorphic functions on an annulus in C uniquely
extend to holomorphic functions on C�, it is easy to see that 
 extends uniquely to a
holomorphic cochain of F with respect to the covering ¹U˛º such that � D ı.
/ also
holds on Z nKc1 . So � is also a coboundary over Z nKc1 and hence represents zero
in H i .Z nKc1 ;F /.

By using exactly the same argument, which again depends on the weight decom-
position (using [20, Proposition 3.4]) and the holomorphicity of cochains, we also
prove that each cocycle over .Z nKc1/\ VKc2 extends to a cocycle over Z nKc1 . So
the surjectivity of the morphism R is also true.

With the same notation as in the above discussion, set Y WD .ZnKc1/ \ VKc2
and Y 0 WD ZnKc1 . By [2, Théorème 15], for any locally free sheaf F (whose depth
is always n), the natural restriction morphism H 0.U;F /!H 0.Y 0;F jY 0/ is an iso-
morphism andH 1.U;F /!H 1.Y 0;F jY 0/ is injective (since n� 2). Combining this
with the above lemma, we get that the restriction morphism �0 W H

0.U;F jY /!

H 0.Y;F jY / is an isomorphism and �1 WH 1.U;F /!H 1.Y;F jY / is injective.
Now we have the following commutative diagram:
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H 0.U;NU /
�0

Š

ıU

 U

H 0.Y;NY /

ıY

T1Z
�U

H 1.U;‚U /
�1

H 1.Y;‚Y /

(2.34)

Note that  U and �U are defined via Schlessinger’s result in Proposition A.10 and
that ıU and ıY are connecting morphisms as in (2.3) (see also (A.9)).

PROPOSITION 2.15
With the above notation, let Y! B be the holomorphic family of complex manifolds
that is induced by Z! B. The following conditions are equivalent:
(1) Ord.Z/� pC 1 and hence there is a well-defined KS.pC1/

Z
2 T1Z .

(2) There is a p-trivial embedding of Y and hence there is a well-defined vpC1 2

H 0.Y;NY /.
(3) There is a p-trivial atlas covering Y0 and hence there is a well-defined �pC1 2

H 1.Y;‚Y /.
If one of the above conditions holds true, then we have the following identities:

ıY .vpC1/D �pC1 D �1 ı �U .KS.pC1/
Z

/ and

KS.pC1/
Z

D U ı�
�1
0 .vpC1/:

(2.35)

Proof
Notice that the equivalence of (2) and (3) was already proved in Lemma 2.7. So we
only need to prove the equivalence of (1) and (2).

Assume that Ord.Z/� pC 1. Then by Lemma 2.13, after changing the embed-
ding of Z, we can choose an open neighborhood W of .o; 0/ 2 CN � C such
that IZ.W/ is generated by ¹F1.w; t/D F1.w; 0/C tpC1G1.w; t/; : : : ;Fd .w; t/D
Fd .w; 0/C t

pC1Gd .w; t/º. By Lemma 2.10, condition (2) holds, that is, we get a
p-trivial embedding and a p-adapted atlas.

Now we verify the identities in (2.35) by using this p-adapted atlas. Set fr.w/D
Fr .w; 0/ and gr.w/ D Gr.w; 0/. Taking .p C 1/th derivatives with respect to t on
both sides of the equation

.fr C t
pC1Gr/

�
wb.z˛; t /

�
D 0;

we get

NX
bD1

@fr

@wb
1

.pC 1/Š

@pC1wb

@tpC1

ˇ̌̌
tD0
C gr D 0:
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Comparing with the definition of vpC1 in (2.13) and the definition of Ng in (2.31),
this says that � NgjY D vpC1 2 H

0.Y;NY /. It is clear that vpC1 D ��0. NgjU / so
that � NgjU D ��10 .vpC1/ since �0 is an isomorphism. On the other hand, we have

� U . NgjU /DKS.pC1/
Z

. So we get

 U ı�
�1
0 .vpC1/DKS.pC1/

Z
:

The identity ıY .vpC1/ D �pC1 was proved in Lemma 2.8. The other identity is a
consequence now:

�1 ı �U .KS.pC1/
Z

/D �1 ı �U ı U ı�
�1
0 .vpC1/

D �1 ı ıU ı�
�1
0 .vpC1/D ıY .vpC1/D �pC1:

We are left to prove that (2) implies (1). Now assume that (2) holds but, on
the contrary, Ord.Z=B/ D l C 1 with l < p. Then by using the defining functions
¹Fr .w; 0/C t

lC1Gr.w; t/º from Lemma 2.13, we have  U . Ng/ D �KS.lC1/
Z

¤ 0 2

T1Z . So ıU . Ng/D �U ı U . Ng/¤ 0 2H 1.U;‚U / since �U is injective. By the discus-
sion before Proposition 2.15, �1 is injective. So �1 ı ıU . Ng/¤ 0. Hence

�lC1 D ıY .vlC1/D��1 ı ıU . Ng/¤ 0:

On the other hand, we assumed that there is a p-trivial embedding Q
Y with p > l .
So by choosing a p-adapted atlas, the corresponding class QvlC1 WD vlC1.Q
Y/ D 0.
So ıY .QvlC1/ D 0. By Lemma 2.8(1) and Lemma 2.5(2), ıY .vlC1/ D ıY .QvlC1/ 2
H 1.Y;‚Y /. So we get a contradiction.

3. Embeddings of submanifolds and deformations
In Section 3.1, we will construct the “most holomorphic” diffeomorphism between
a neighborhood of a complex submanifold to a neighborhood of the zero section of
its normal bundle. In particular, this allows us to get Proposition 1.2. We do this
by first using the “deformation to normal cone” to construct a “holomorphic fam-
ily of neighborhoods” as the deformation of a neighborhood of the zero section of
the normal bundle. We also construct a .k � 2/-trivial (resp., .k � 1/-trivial) atlas on
this family under the assumption that the embedding is .k � 1/-linearizable (resp.,
.k � 1/-comfortable). Then we use a method similar to that used in Section 2.1 to
get the wanted diffeomorphism. Our main goal in this section is a technical Proposi-
tion 3.3 which relates the reduced Kodaira–Spencer class of the “holomorphic family
of neighborhoods” to the obstructions to splitting embedding and comfortable embed-
ding.
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3.1. Construction of comparison diffeomorphism and .k � 1/-trivial atlas
As mentioned above, the construction of diffeomorphism F in Propositions 1.2 and
1.3 uses a construction in algebraic geometry called deformation to the normal cone
(see [13, Chapter 5]). This is a way to degenerate a neighborhood of S ,! X to a
neighborhood of S ,! NS . The construction is simply to blow up the submanifold
S �¹0º �X �C which gives a total family QX D BlS�¹0º.X �C/ with the projection
� W QX! C. The central fiber QX0 D BlSX [E is the union of two components. The
exceptional divisor E D P.NS ˚C/ is the projective compactification of the normal
bundle NS of S � X . In this way, we can view S ,! X as an analytic deformation
of S0 ,! NS . More precisely, we will construct an analytic family W as an open
neighborhood of S Š S �C ,! QX. In other words, W is considered as a deformation
of a neighborhood of S!X .

The main result of this subsection is the following proposition, which contains the
statement of Proposition 1.2. For the construction in its proof, we refer to Section A.1
in the Appendix for preliminary results from [1] that will enable us to read out the
precise order of holomorphicity of the diffeomorphism constructed.

PROPOSITION 3.1
Assume that S is a smooth submanifold of X . If S ,!X is .k � 1/-linearizable, then
the following statements are true.
(1) There is a holomorphic family of complex manifolds W such that W0 is a

neighborhood of S0 ,!NS and W1 DWW is a small neighborhood of S �X ,
and there is a .k � 2/-trivial atlas covering W0.

(2) There is a diffeomorphism F WW0! F.W0/�W where W DW1 such that
for any j � 0, there exists a constant Cj such that F satisfies��rj

Qg0
.F �J � J0/

��
Qg0
� Cj Qr

k�j on W0: (3.1)

If S ,! X is furthermore .k � 1/-comfortable, then the above properties can be
improved as follows.
(3) There is a .k � 1/-trivial atlas covering W0.
(4) There is a local decomposition of ˆ WD F �J � J0 into four types of compo-

nents (see (3.9))

ˆDˆhv Cˆ
v
hCˆ

v
v Cˆ

h
h

such that, for any j � 0, the following estimates hold over W0 for a uniform
constant Cj :

kr
j

Qg0
ˆvhk Q!0 � Cj Qr

kC1�j ; kr
j

Qg0
ˆvvk Q!0 � Cj Qr

kC1�j ;

kr
j

Qg0
ˆhhk Q!0 � Cj Qr

k�j ; kr
j

Qg0
ˆhvk Q!0 � Cj Qr

k�j :
(3.2)
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The improved estimates (3.2) will be used to prove Proposition 1.3 in Section 5.

Proof
Assume that the embedding S ,!X is .k � 1/-linearizable. By Theorem A.9 in Sec-
tion A.1, we can find coordinate charts ¹V˛; .z˛/º of X near the submanifold S such
that S \V˛ D ¹z1˛ D � � � D z

m
˛ D 0º and the transition functions on V˛ \Vˇ are given

by ´
zr
ˇ
D
Pm
sD1.aˇ˛/

r
s .z
00
˛/z

s
˛ CR

r
k

for r D 1; : : : ;m;

z
p

ˇ
D �

p

ˇ˛
.z00˛/CR

p

k
for pDmC 1; : : : ; n;

(3.3)

where we have denoted by z00 D .zmC1˛ ; : : : ; zn˛/ the tangent variables, which can also
serve as coordinates on S . Here Rr

k
;R

p

k
2 IkS . We also consider coordinate charts

¹V˛ �C; .z˛; t /º on X �C so that S � ¹0º D ¹z1˛ D � � � D z
m
˛ D t D 0º.

Consider the blowup � W QX WD BlS�¹0º.X � C/! X � C with the exceptional
divisorE D P.NS˚C/. HereE is the projective compactification of the normal bun-
dle NS ! S and S0 sits inside NS � E � QX0 � QX as the zero section of NS ! S .
The subset ��1.V˛ �C/� QX is defined as the following subvariety of V˛ �C�Pm:®�

zr˛; z
p
˛ ; t; ŒZ

r
˛; T 	

�
I .zr˛; z

p
˛ / 2 V˛; t 2C; z

r
˛Z

s
˛ � z

s
˛Z

r
˛ D 0;

zr˛ � T � t �Z
r
˛ D 0I for r; s D 1; : : : ;mIpDmC 1; : : : ; n

¯
;

where ŒZr˛; T 	 are homogenous coordinates on Pm. Near S0, the coordinate T ¤ 0,
and so we can define new coordinate charts ¹w˛; tº such that the map � is given by

z1˛ D tw
1
˛; : : : ; z

m
˛ D tw

m
˛ I zmC1˛ DwmC1˛ ; : : : ; zn˛ Dw

n
˛ I t D t:

Without loss of generality, we can assume that V˛ D ¹z˛I jz˛j < �º for sufficiently
small � > 0. Then if we denote the polydisk on the total space

U˛ D
®
.t;w˛/I jt j< 2; jw˛j< �

¯
;

then �.U˛/� V˛ �C, and when t ¤ 0 satisfies jt j< 2,

�.U˛/\Xt Š
®
z˛I jz

r
˛j< 2�t; jz

p
˛ j< �I for r D 1; : : : ;mIpDmC 1; : : : ; n

¯
:

Denote by S the strict transform of S �C on QX. Let �1 be the composition QX!X �

C!C. For any a > 0 2R, denote Sjt j<a D �
�1.¹t I jt j< aº/. Then the collection of

open sets ¹U˛º is a covering of Sjt j<1 inside the total space QX, and on U˛ the ideal
sheaf IS is generated by w1˛; : : : ;w

m
˛ . Denote U D

S
˛ U˛ . We can find a small

neighborhood W of Sjt j<1 � QX such that W �� U. Denote w0˛ D .w
1
˛; : : : ;w

m
˛ /,

w00˛ D .w
mC1
˛ ; : : : ;wn˛/, and define
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QRrk.t Iw
0
˛;w

00
˛/D t

�kRrk.tw
0
˛;w

00
˛/;

QR
p

k
.t Iw0˛;w

00
˛/D t

�kR
p

k
.tw0˛;w

00
˛/:

Then QRr
k
2 Ik

S
, QRp

k
2 Ik

S
. Note that ¹U˛ \Wt ;w˛º˛ form an atlas covering Wt WD

��1.Xt /\W for jt j< 1. The transition function on .U˛\Wt /\ .Uˇ \Wt / is given
by ´

wr
ˇ
D
Pm
sD1.aˇ˛/

r
s .w
00
˛/w

s
˛ C t

k�1 QRr
k

for r D 1; : : : ;m;

w
p

ˇ
D �

p

ˇ˛
.w00˛/C t

k QR
p

k
for pDmC 1; : : : ; n:

(3.4)

So we get a .k � 2/-trivial atlas covering W0 in the sense of Definition 2.4. Next we
can construct the diffeomorphism that we want. Choose a partition of unity ¹�˛; Q�º
subordinate to the covering ¹U˛; QXnWº. In particular, Supp.�˛/ �U˛ , Supp. Q�/ \
W D ;. As in Section 2, define the differentiable vector field in the small neighbor-
hood W of Sjt j<1 � QX:

VD
X
˛

�˛

� @
@t

�
˛

D

nX
iD1

�X
˛

�˛
@f i
ˇ˛
.w˛; t /

@t

� @

@wi
ˇ

C
� @
@t

�
ˇ

D

mX
rD1

X
˛

�˛@t .t
k�1 QRrk/

@

@wr
ˇ

C

nX
pDmC1

X
˛

�˛@t .t
k QR

p

k
/
@

@w
p

ˇ

C
� @
@t

�
ˇ
:

Let ¹�.s/I s 2 .��; �/º be the one-parameter subgroup generated by Re.V/,
which exists when � is sufficiently small. Then we get a map �.s/ W W \ QX0 !

U\ QXs which gives a diffeomorphism to its image.
Note that the vector field V is tangent to S so that �.s/ preserves S . Denote by

J the complex structure on the total space QX of the blowup. Denote

ˆ.s/D �.s/�J � J:

Then we can calculate

P̂ .s/D
d

ds

�
�.s/�J

�
DLRe.V/J D N@VC N@V

D

mX
rD1

X
˛

�
@t .t

k�1 QRrk/
�
.N@�˛/˝

@

@wr
ˇ

C

nX
pDmC1

X
˛

�
@t .t

k QR
p

k
/
�
.N@�˛/˝

@

@w
p

ˇ

ˇ̌̌
tDs

C complex conjugates:
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Assume that Q!0 is a smooth Kähler metric on the open set W . Because both QRr
k
; QR

p

k
2

Ik
S

, we get

j P̂ j Q!0 � Cs
max¹0;k�2ºjw0jk :

So we can integrate to get

ˇ̌
ˆ.s/

ˇ̌
Q!0
D
ˇ̌
�.s/�J � J

ˇ̌
Q!0
D
ˇ̌̌Z s

0

�.s/�.LVJ/ ds
ˇ̌̌
Q!0
� Csk�1jw0jk : (3.5)

If Qr is the distance function to S0 with respect to Qg0, then Qr is comparable to the
norm jw0j. So the above estimate proves the inequality (1.1) for j D 0. The higher-
order estimates of ˆ can be proved in the same way by taking the higher-order Lie
derivative of V.

Next we show that if S ,!X is .k� 1/-comfortable, the estimates of some com-
ponents of ˆ can be improved. In this case, by Theorem A.8, we can choose the
coordinate charts such that the following holds:´

zr
ˇ
D
Pm
sD1.aˇ˛/

r
s .z
00
˛/z

s
˛ CR

r
kC1

for r D 1; : : : ;m;

z
p

ˇ
D �

p

ˇ˛
.z00˛/CR

p

k
for pDmC 1; : : : ; n;

(3.6)

where Rr
kC1
2 IkC1S , Rp

k
2 IkS . Similarly as before, denote QRr

kC1
.t Iw0˛;w

00
˛/ D

t�.kC1/Rr
kC1

.tw0˛;w
00
˛/ and QRp

k
.t Iw0˛;w

00
˛/D t

�kR
p

k
.tw0˛;w

00
˛/. Then QRr

kC1
2 IkC1

S

and QRp
k
2 Ik

S
. On the total space of the deformation to the normal cone, we have´

wr
ˇ
D
Pm
sD1.aˇ˛/

r
s .w
00
˛/w

s
˛ C t

k QRr
kC1

for r D 1; : : : ;m;

w
p

ˇ
D �

p

ˇ˛
.w00˛/C t

k QR
p

k
for pDmC 1; : : : ; n:

(3.7)

Notice that this is a .k � 1/-trivial atlas covering W0 in the sense of Definition 2.4.
Similarly as before, the differentiable vector field V (see Section 2) becomes

VD

nX
iD1

�X
˛

�˛
@f i
ˇ˛
.w˛; t /

@t

� @

@wi
ˇ

C
� @
@t

�
ˇ

D

mX
rD1

X
˛

�˛
�
@t .t

k QRrkC1/
�
˝

@

@wr
ˇ

C

nX
pDmC1

X
˛

�˛
�
@t .t

k QR
p

k
/
�
˝

@

@w
p

ˇ

C
� @
@t

�
ˇ
: (3.8)

Use the same notation �.s/, J, ˆ.s/, and P̂ .s/, as before. We have
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P̂ .s/D
d

ds

�
�.s/�J

�
DLRe.V/J D N@VC N@V

D

mX
rD1

X
˛

�
@t .t

k QRrkC1/
�
.N@�˛/˝

@

@wr
ˇ

C

nX
pDmC1

X
˛

�
@t .t

k QR
p

k
/
�
.N@�˛/˝

@

@w
p

ˇ

ˇ̌̌
tDs

C complex conjugates:

We assume the index v 2 ¹1; : : : ;m; 1; : : : ;mº, h 2 ¹mC 1; : : : ; n;mC 1; : : : ; nº, and
we decompose ˆ into four types of components:

ˆ D ˆhv Cˆ
v
hCˆ

v
v Cˆ

h
h

WD �hv dw
v ˝ @wh C �

v
h dw

h˝ @wv

C �vv dw
v ˝ @wv C �

h
h dw

h˝ @wh : (3.9)

Again we assume that Q!0 is a smooth Kähler metric on W .
Since QRr

kC1
2 IkC1

S
, QRp

k
2 Ik

S
, it is easy to see that

j P�vh j � Cs
k�1jw0jkC1; j P�vv j � Cs

k�1jw0jkC1;

j P�hh j � Cs
k�1jw0jk; j P�hv j � Cs

k�1jw0jk :

Integrating these, we get

jˆvhj Q!0 � Cs
kjw0jkC1; jˆvvj Q!0 � Cs

kjw0jkC1;

jˆhhj Q!0 � Cs
kjw0jk ; jˆhv j Q!0 � Cs

kjw0jk :
(3.10)

When jsj < � with � sufficiently small, since Qr is comparable to jw0j, we get the
estimates that improve the estimates in (3.2) for j D 0. The higher-order estimates
can be proved similarly by taking higher-order Lie derivatives of J with respect
to V.

3.2. Order of embedding via deformation to the normal cone
Let S be a smooth submanifold of a complex manifold X . We will denote by �S W
NS ! S the normal bundle of S inside X and by ‚NS the tangent sheaf on the
total space of NS . The natural C�-action on NS induces C�-actions on various coho-
mology groups. Since we will use various Čech cohomology groups frequently, we
choose a Stein covering ¹ OU˛º of NS by first choosing a Stein covering ¹U˛º of S
and then defining OUS D ��1S .U˛/. In particular, OU˛ is invariant under the natural
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C�-action. On each OU˛ , choose a coordinate system w˛ D ¹w
0
˛;w

00
˛º D ¹w

r
˛;w

p
˛ jr D

1; : : : ;mIp D mC 1; : : : ; nº such that wr˛ are fiber variables and wp˛ are base vari-
ables. Then the C�-action is given by

t � ¹w0˛;w
00
˛º D ¹t

�1w0˛;w
00
˛º:

The transition function on OU˛ \ OUˇ is of the form´
wr
ˇ
D
Pm
sD1.aˇ˛/

r
s .w
00
˛/w

s
˛ for r D 1; : : : ;m;

w
p

ˇ
D �

p

ˇ˛
.w00˛/ for pDmC 1; : : : ; n:

(3.11)

Let V be a Čech cohomology space H i .X;F /, where X is an analytic space with a
C�-action and F is the coherent sheaf associated to a C�-equivariant vector bundle
F ! X . The space of cocycles of F with respect to a C�-invariant Stein covering
has a continuous S1-action. By the result from [20, Proposition 3.4], this space can
be written as the closure of the algebraic direct sum of eigenspaces. This induces a
weight decomposition of the cohomology space VDH i .X;F /. We will denote by
V.�k/ the subspace of elements of weight �k.

LEMMA 3.2
For k � 0, we have the commutative diagram of exact sequences

H1.NS ;‚NS ˝ I
kC1
S /.�k/

ŠRk

N
0
k

H1.NS ;‚NS ˝ IkS /.�k/

T
0
k

ŠIk

H1.S;‚S ˝ IkS=I
kC1
S /

H1.S;NS ˝ I
kC1
S =I

kC2
S /

Nk

H1.NS ;‚NS /.�k/

Tk

H1.S;‚S ˝ IkS=I
kC1
S /

(3.12)

where the morphisms are given as follows:
(1) Ik , N0

k
are induced by inclusion of sheaves;

(2) T0
k

, Rk will be defined in the proof, and Rk is an isomorphism;
(3) Nk D Ik ıN

0
k
ıR�1

k
and Tk D T0

k
ı I�1

k
are defined by using the commuta-

tivity of the diagram.

Note that in the above diagram the sheaf IkS=I
kC1
S is a sheaf supported on S .

The Kodaira–Spencer class �k of the atlas constructed in the proof of Proposition 3.1
lives in H 1.NS ;‚NS /.�k/ and the bottom exact sequence will serve to compare �k
to Abate, Bracci, and Tovena’s obstruction in Proposition 3.3.
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Proof
We first notice that T0

k
is well defined as the composition of maps

H 1.NS ;‚NS ˝ IkS /!H 1.S;‚NS jS ˝ IkS=I
kC1
S /!H 1.S;‚S ˝ IkS=I

kC1
S /:

In the last map, we used the holomorphic splitting‚NS jS D‚S ˚NS . Similarly, Rk

is well defined as the composition of maps

H 1.NS ;‚NS ˝ IkC1S /!H 1.S;‚NS jS ˝ IkC1S =IkC2S /

!H 1.S;NS ˝ IkC1S =IkC2S /:

Let us first show that the first row of the sequence is exact. Assume that �k 2
H 1.NS ;‚NS ˝ IkS /.�k/. Let �k be represented by a cocycle ¹�˛ˇ º with respect to a
C�-invariant covering of NS . Then by [20], we can write �˛ˇ as a convergent series
�˛ˇ D

P
` �˛ˇ;`, where �˛ˇ;` has weight `. Because ı commutes with the C�-action,

we know that �˛ˇ;` is also a cocycle. Because �k D Œ¹�˛ˇ º	 has weight �k and the
weight decomposition of cohomology is induced by the weight decomposition on the
space of cocycles, we know that Œ¹�˛ˇ;`º	D 0 if `¤ k. So we can assume that �k is
represented by a weight .�k/ cocycle

.�k/ˇ˛ D

mX
rD1

brˇ˛.w/
@

@wr
ˇ

C

nX
pDmC1

c
p

ˇ˛
.w/

@

@w
p

ˇ

;

where br
ˇ˛
; c
p

ˇ˛
2 IkS . Since @

@wr
ˇ

(resp., @

@w
p

ˇ

) has weight 1 (resp., 0), we know that

br
ˇ˛

(resp., cp
ˇ˛

) is homogeneous of degree .kC 1/ (resp., k) in w0 D ¹wr
ˇ
º. Then

�
T
0
k.�k/

�
ˇ˛
D

nX
pDmC1

�
c
p

ˇ˛
.w/

�
kC1

@

@w
p

ˇ

:

If T0
k
.�k/D 0, then we can write

nX
pDmC1

�
c
p

ˇ˛
.w/

�
kC1

@

@w
p

ˇ

D

nX
pDmC1

Œd
p

ˇ
	kC1

@

@w
p

ˇ

�

nX
pDmC1

Œdq˛ 	kC1
@

@w
q
˛

over OU˛ \ OUˇ :

We can assume that dp
ˇ

and dq
ˇ

are homogeneous of degree k. Then it is easy to see

that cp
ˇ˛
D d

p

ˇ
� d

q
˛
@w
p

ˇ

@w
q
˛

. So if we define
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. Q�k/ˇ˛ D .�k/ˇ˛ �

nX
pDmC1

d
p

ˇ

@

@w
p

ˇ

C

nX
qDmC1

dq˛
@

@w
q
˛

;

then it is easy to see that . Q�k/ˇ˛ 2 H 0. OU˛ \ OUˇ ;‚NS ˝ IkC1S /.�k/ and we have
�k DN0

k
. Q�k/.

To show that Rk is an isomorphism, we will construct its inverse. Assume that
h 2H 1.S;NS ˝ IkC1S =IkC2S /; we can represent it as a cocycle

hˇ˛ D

mX
rD1

Œbrˇ˛	kC2
@

@wr
ˇ

: (3.13)

We can assume that br
ˇ˛

is homogeneous of degree kC1 inw0
ˇ
D ¹wr

ˇ
º. Then because

of homogeneity, the cocycle condition of ¹hˇ˛º becomes

mX
rD1

�
brˇ˛.wˇ /

@

@wr
ˇ

C br˛�
@

@wr˛
C br�ˇ

@

@wr�

�
D 0: (3.14)

So if we define

h
0
ˇ˛ WDR

�1
k .hˇ˛/D

mX
rD1

brˇ˛
@

@wr
ˇ

2H 0. OU˛ \ OUˇ ;‚NS ˝ IkC1S /.�k/;

where @
@wr
ˇ

and so on are considered as tangent vectors along the fibers of NS ! S ,

then by (3.14) ¹h0
ˇ˛
º satisfies the cocycle condition and hence represents a cohomol-

ogy class in H 1.NS ;‚NS ˝ IkC1S / of weight �k. Now we can define Nk . Choose
h 2H 1.S;NS ˝ IkC1S =IkC2S / represented by the cocycle as in (3.13) such that bp

ˇ˛

is homogeneous of degree kC 1 in w0
ˇ
D ¹wr

ˇ
º. Then we define

Nk.hˇ˛/D Ik ıN
0
k ıR

�1
k .hˇ˛/D

mX
rD1

brˇ˛
@

@wr
ˇ

2H 0. OU˛ \ OUˇ ;‚NS /.�k/:

Using a similar homogeneity argument, one can also construct an inverse of Ik
showing that it is an isomorphism. Indeed, for any � 2H 1.NS ;‚NS / of weight .�k/,
we can choose a C�-equivariant Čech cocycle ¹�ˇ˛º of weight .�k/ representing � .
On OU˛ \ OUˇ , we can write

�ˇ˛ D

mX
rD1

arˇ˛.w˛/
@

@wr
ˇ

C

nX
pDmC1

b
p

ˇ˛
.w˛/

@

@w
p

ˇ

:

Since @
@wr
ˇ

(resp., @

@w
p

ˇ

) has weight 1 (resp., 0), we see that ar˛.w˛/ (resp., bp˛ ) is

homogeneous of degree .kC1/ (resp., k) in wr˛ . In particular, ar
ˇ˛
2 IkC1D and bp

ˇ˛
2
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IkD . So �ˇ˛ 2H 0. OU˛ \ OUˇ ;‚NS ˝ IkS / and ¹�ˇ˛º represents a cohomology class in
H 1.NS ;‚NS ˝ IkS / of weight .�k/.

Our main result in this subsection is the following technical proposition which,
under appropriate assumptions, reinterprets the obstructions to splitting and comfort-
able embeddings via the deformation to normal cone construction.

PROPOSITION 3.3
Assume that S is a .k � 1/-comfortably embedded submanifold of X for some k � 1,
and let .�k�1;�k�1/ be a .k � 1/-comfortable pair. Then for the holomorphic fam-
ily of complex manifolds W from Proposition 3.1, the associated k-order Kodaira–
Spencer class �k 2H 1.W0;‚W0/ extends uniquely to a class in H 1.NS ;‚NS /. This
extension lies in the .�k/-weight space and will still be denoted by �k . Moreover, �k
satisfies the following properties under the exact sequence from Lemma 3.2:
(1) Tk.�k/ D g

�k�1
k

2 H 1.S;‚S ˝ IkS=I
kC1
S / is the obstruction to k-splitting

relative to �k�1. As a consequence, if S is not k-splitting relative to �k�1,
then �k 2H 1.NS ;‚NS /.�k/ is nonzero.

(2) If S is k-splitting relative to �k�1 (i.e., we have a kth-order lifting �k such
that �k;k�1 ı �k D �k�1), then �k D Nk.h

�k
k
/, where h

�k
k
2 H 1.S;NS ˝

IkC1S =IkC2S / is the obstruction to k-comfortable embedding with respect
to �k .

Proof
Suppose that the embedding S ,!X is .k � 1/-comfortably embedded. As shown in
(3.7), we can choose a .k�1/-comfortable atlas adapted to .�k�1; �k�1/ such that we
get an induced atlas on the blowup with coordinate changes given by´

wr
ˇ
D
Pm
sD1.aˇ˛/

r
s .w
00
˛/w

s
˛ C t

k QRr
kC1

for r D 1; : : : ;m;

w
p

ˇ
D �

p

ˇ˛
.w00˛/C t

k QR
p

k
for pDmC 1; : : : ; n:

(3.15)

We can substitute the transition function in (3.15) into (2.5) above to get

.�k/ˇ˛ D
1

kŠ

nX
iD1

@kf i
ˇ˛
.w˛; t /

@tk

ˇ̌̌
tD0

@

@wi
ˇ

D

mX
rD1

QRrkC1.0Iw˛/
@

@wr
ˇ

C

nX
pDmC1

QR
p

k
.0Iw˛/

@

@w
p

ˇ

; (3.16)

where in the last expression, w˛ and wˇ are related by the following relation on QX0

near S0 Š S :
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wr
ˇ
D
Pm
sD1.aˇ˛/

r
s .w
00
˛/w

s
˛ for r D 1; : : : ;m;

w
p

ˇ
D �

p

ˇ˛
.w00˛/ for pDmC 1; : : : ; n;

(3.17)

which is nothing but the transition function on NS . Recall that QRr
kC1

.t Iw0˛;w
00
˛/ D

t�.kC1/RkC1.tw
0
˛;w

00
˛/ and QR

p

k
.t Iw0˛;w

00
˛/ D t�kR

p

k
.tw0˛;w

00
˛/. So QRr

kC1
.0Iw˛/

(resp., QRp
k
.0Iw˛/) is nothing but the .k C 1/th-order (resp., kth-order) leading term

of Rr
kC1

.w˛/ (resp., Rp
k
.w˛/) in its Taylor expansion with respect to w0˛ .

Since w0˛ are global coordinates on the whole OU˛ � NS , we see that .�k/ˇ˛
is actually defined over OU˛ \ OUˇ � NS . This shows the statement that �k 2
H 1.W0;‚W0/ extends uniquely to a class in H 1.NS ;‚NS / which will still be
denoted by �k .

So if we denote by �S W NS ! S the natural projection of the normal bundle to
its base, and by OU˛ D ��1S .U˛ \ QX0\S0/ the C�-invariant open set on NS , then we
have

.�k/ˇ˛ 2H
0. OU˛ \ OUˇ ;‚NS ˝ IkS /:

So we get a Čech cohomology class:

� 0k WD
®
.�k/ˇ˛

¯
2 LH 1.NS ;‚NS ˝ IkS /:

From (3.16) and the homogeneity of QRr
kC1

, QRp
k

inw0˛ , we see that � 0
k

has weight .�k/
under the natural C�-action on NS . When we restrict to S0 D S � NS and mod out
by IkC1S0

, we get

.gk/ˇ˛ WD .�k/ˇ˛jS0

D

mX
rD1

�
QRrkC1.0Iw

0
˛;w

00
˛/
�
.k/

@

@wr
ˇ

C

nX
pDmC1

�
QR
p

k
.0Iw0˛;w

00
˛/
�
.k/

@

@w
p

ˇ

D

nX
pDmC1

�
QR
p

k
.0Iw0˛;w

00
˛/
�
.k/

@

@w
p

ˇ

; (3.18)

which form a cocycle®
.gk/ˇ˛

¯
2 LH 1

�
¹U˛º;‚NS jS0 ˝ IkS0=I

kC1
S0

�
D LH 1

�
¹U˛º;NS0 ˝ IkS0=I

kC1
S0

�
˚ LH 1

�
¹U˛º;‚S0 ˝ IkS0=I

kC1
S0

�
:

In the last equality, we used the holomorphic splitting‚NS jS0 D‚S0˚NS0 . Because
we assumed that S is .k � 1/-comfortably embedded, the component in the first
summand is 0 as seen in (3.18). So using the notation in Lemma 3.2, we can write
gk D Tk.�k/. By Proposition A.2, we see that gk D ¹.gk/ˇ˛º is the obstruction to
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the existence of �k satisfying �k;k�1 ı �k D �k�1. In other words, g�k�1
k
WD gk is the

obstruction to k-splitting relative to �k�1. So we get the first part of Proposition 3.3.
Now if we assume that the obstruction to k-splitting vanishes (i.e., that the

above g
�k�1
k

vanishes), then by Theorem A.9 the transition functions in (3.15) can be
improved to´

wr
ˇ
D
Pm
sD1.aˇ˛/

r
s .w
00
˛/w

s
˛ C t

k QRr
kC1

for r D 1; : : : ;m;

w
p

ˇ
D �

p

ˇ˛
.w00˛/C t

kC1 QR
p

kC1
for pDmC 1; : : : ; n:

(3.19)

Substituting this into (3.16), .�k/ˇ˛ now becomes

.�k/ˇ˛ D
1

kŠ

nX
iD1

@kf i
ˇ˛
.w˛; t /

@tk

ˇ̌̌
tD0

@

@wi
ˇ

D

mX
rD1

QRrkC1.0Iw˛/
@

@wr
ˇ

: (3.20)

So we see that in this case .�k/ˇ˛ 2 H 0. OU˛ \ OUˇ ;‚NS ˝ IkC1S /. Again we get a
weight .�k/ Čech cohomology class

� 00k WD
®
.�k/ˇ˛

¯
2 LH 1

�
¹ OU˛º;‚NS ˝ IkC1S

�
.�k/;

which satisfies N0
k
.� 00
k
/D �k . When we restrict to S0 and mod out by IkC2S0

, we get

.hk/ˇ˛ WD .�k/ˇ˛jS0

D

mX
rD1

�
QRrkC1.0Iw

0
˛;w

00
˛/
�
.kC1/

@

@wr
ˇ

2 H 0. OU˛ \ OUˇ \ S0;NS0 ˝ IkC1S0
=IkC2S0

/: (3.21)

Comparing with (A.3), we see that hk WD ¹.hk/ˇ˛º is nothing but the obstruction h
�k
k

to k-comfortable embedding with respect to the k-splitting �k . By Lemma 3.2, we
can write � 00

k
DR�1

k
.hk/.

4. Special case: S DD is an ample divisor
One of the main goals of this section is to prove Theorem 1.5. The proof is essentially
based on the construction in Section 3.1 and Proposition 3.3. Roughly speaking, under
the assumption that D! X is .m � 1/-comfortable, we get an .m � 1/-trivial atlas
by the construction in Section 3.1 and hence a reduced Kodaira–Spencer class defined
as a class in H 1.U;‚U /. Then Proposition 3.3 is also used to show that this reduced
Kodaira–Spencer class is nontrivial if the embedding D! X is not m-comfortable
(and n� 3). Finally, by Proposition 2.15, the reduced Kodaira–Spencer class near the
“infinity” divisor via coordinate changes coincides with the reduced Kodaira–Spencer
class for the deformation of the cone defined in Definition 2.12. This allows us to
complete the proof.
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Figure 1. � W QX �!X.

4.1. Degeneration to the projective cone
From now on, we assume that S D D is a smooth ample divisor in X . Then we
can further modify the deformation to the normal cone construction. Recall from the
above section that QX D BlD�¹0º.X �C/ and that QX0 D .BlDX/[E DX[E , where
E D P.ND ˚C/. Denote by L WDLD the holomorphic line bundle associated to the
divisor D. Since D is an ample divisor, one can verify that the line bundle QL D
��1L�E is �2-relatively semiample, where �1 is the composition QX!X �C!X

and �2 is the composition QX ! X � C! C. Moreover, the strict transform of X
under the blowup becomes exceptional and can be blown down so that we get X

under the morphism associated to QL. Then the canonical morphism � WX ! C D

Spec.CŒt 	/ gives a flat family of projective varieties, satisfying that Xt ŠX for t ¤ 0
and X0 is obtained fromE by contracting the infinity sectionD1 (see Figure 1 for an
illustration). The central fiber X0 thus obtained is very close to being the projective
cone C.D;L/. One delicate point here is that X0 may not be normal.

LEMMA 4.1
The central fiber X0 coincides with NC.D;L/ if the restriction map  m W H 0.X;

mL/!H 0.D;mLjD/ is surjective for any m� 1.

Proof
We first describe the above construction of X in the algebraic category (see [13,
Chapter 5]). Let ID denote the ideal sheaf of D as a subvariety of X . Then QX is the
blowup of the ideal sheaf ID C .t/ on X �C:

QX D ProjX�C
�C1M
kD0

�
ID C .t/

�k�
:

Moreover X D ProjCŒt�R, where R is the following finitely generated graded algebra
over CŒt 	:
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RD

C1M
kD0

H 0
�
C; .�2/�.k QL/

�
D

C1M
kD0

H 0. QX; k QL/D

C1M
kD0

Rk; (4.1)

where QLD ��1L�E . The graded pieces Rk can be calculated in the same way as in
[29, Section 4]:

Rk DH
0
�
QX;k.��1L�E/

�
DH 0

�
X �C;Lk ˝

�
ID C .t/

�k�
D

k�1M
jD0

tjH 0.X;Lk ˝ I
k�j
D /˚ tkCŒt 	H 0.X;Lk/

D

k�1M
jD0

tjH 0.X;Lj /˚ tkCŒt 	H 0.X;Lk/: (4.2)

In the last identity, we used ID DOX .�D/ŠL
�1. The central fiber is thus equal to

X0 D Proj
C

�
R=.t/R

�
D Proj

C

�C1M
kD0

Rk=.t/Rk

�
: (4.3)

From (4.2), we see directly that

Rk=.t/Rk DC˚

kM
jD1

tj
H 0.X;Lj /

H 0.X;Lj�1/
D

kM
jD0

tjH 0.X;Lj /jD: (4.4)

Here H 0.X;Lj /jD denotes the image of the restriction map H 0.X;Lr /!H 0.D;

Lj jD/ for any j � 0. To see the last identity, we consider the exact sequence of ideal
sheaves

0�!Lj�1 DLj ˝O.�D/�!Lj �!Lj jD �! 0; (4.5)

and the corresponding long exact sequence

0�!H 0.X;Lj�1/�!H 0.X;Lj /�!H 0.D;Lj jD/�!H 1.X;Lj�1/: (4.6)

So indeed H 0.X;Lj /=H 0.X;Lj�1/DH 0.X;Lj /jD for j � 1.
On the other hand, we have

NC.D;L/D Proj
1M
kD0

� kM
jD0

H 0.D;Lj jD/ � t
k�j

�
:

Combining this with (4.3) and (4.4), we see that X0 Š NC.D;L/ if H 0.X;Lj /jD D

H 0.D;Lj jD/ for any j � 1 (the j D 0 case is automatic).
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For example, let X be any Riemann surface of genus at least 1, and let D D ¹pº
be any point. Then D is ample. In this special case, the central fiber X0 is a singular
curve whose normalization is P1. Here the map  0 D Id WH 0.X;OX /!H 0.p;Op/.
But  1 D 0 WH 0.X;Lp/D C!H 0.¹pº;Lpj¹pº/D C because  1 factors through

the inverse of isomorphism H 0.X;OX /DC
�s¹pº
�!H 0.X;Lp/ by the assumption that

g.X/� 1. In particular,  1 is not surjective.

Remark 4.2
The above lemma was communicated to me by H.-J. Hein. One referee provided an
even more explicit example to me: if X is an elliptic curve and p is a Weierstrass
point, then by using the Weierstrass form, one can verify that the total space has a
singularity of type QE8.

On the other hand, from the exact sequence

0!H 0
�
X; .m� 1/LD

�
!H 0.X;mLD/!H 0.D;mLjD/

!H 1
�
X; .m� 1/L

�
! � � � ;

we see that  m is surjective if H 1.X; .m� 1/L/D 0 for all m� 1. In particular, this
is satisfied in the Tian–Yau setting. Indeed, if X is Fano andm� 1, thenH 1.X; .m�

1/L/DH 1.X;�nX˝OX .�KXC .m�1/L//D 0 by the Kodaira–Nakano vanishing
theorem.

4.2. Proof of Theorem 1.5
From now on, we assume that we are in the situation that the above central fiber
X0, that is, the strict transform of the exceptional divisor of the blowup, is normal
and hence coincides with NC.D;L/ DW NC . Let D be the strict transform of D � C,
and let Xı D X n D . Because D is a relatively ample divisor over C, we know
that Xı is a flat family of affine varieties. In particular, we can define OrdXı as
in Definition 2.11. Notice that Xı0 D C.D;L/DW C and we can define the reduced
Kodaira–Spencer class KSred

Xı 2 T1C . Since there is a natural C�-action on T1C , we
can talk about the weight of KSred

Xı 2 T1C and denote it by w.Xı/ (see Section A.2.2).
With this notation and combining the calculations from the previous subsection, we
can derive the following.

PROPOSITION 4.3
Let X! B be the flat family constructed in the above section, and assume that X0 D
NC.D;ND/. LetD ,!X be .k�1/-comfortably embedded, and let .�k�1;�k�1/ be a
.k�1/-comfortable pair. IfD is not k-splitting relative to �k�1, then Ord.Xı/D k D
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�w.Xı/. In particular, if D is .k � 1/-comfortably embedded and not k-splitting,
then Ord.Xı/D k D�w.Xı/.

Proof
Let .�k�1;�k�1/ be a .k� 1/-comfortable pair. Then by the proof of Proposition 3.3,
we have a .k�1/-trivial atlas covering W0. Without loss of generality, we can assume
that W0 D NC n K where K is a strongly pseudoconvex neighborhood of the ver-
tex o 2 NC . Then we also have a .k � 1/-trivial atlas covering W0 nD D C nK . In
particular, this atlas covers the annulus Y D .C nKc1/ \ VKc2 . By Proposition 2.15,
we get Ord.Xı/ � k. Moreover from Proposition 3.3, we get a cohomology class
�k 2H

1.L;‚L/with weight�k, which is represented by a cocycle ¹.�k/ˇ˛º. Propo-
sition 2.15 yields that

.�1 ı �U /.KS.k/
Xı
/D �kjY ;

where Y again denotes the annulus and �1, �U are from the diagram (2.34). But
�kjY D �1.�kjU /. So thanks to the injectivity of both �U and �1, we may reduce to
proving that the class #k WD �kjU 2H 1.U;‚U / is not zero.

By Proposition 3.3, we know that Tk.�k/D gk is the obstruction to k-splitting
relative to �k�1. So if the embedding is not k-splitting with respect to �k�1, then �k
is nonzero. Now the claim follows from Lemma 4.6.

COROLLARY 4.4
Assume that dimD D n � 1 � 2. If D is .k � 1/-comfortably embedded and not k-
comfortably embedded, then the following holds.
(1) Ord.Xı/D k D�w.Xı/; that is, Theorem 1.5 is true.
(2) For any l < k and any .l � 1/th-order lifting �l�1 W OD ! OX=I

l
D ,

there exists a .k � 1/th-order lifting �k�1 W OD ! OX=I
k
D such that

�k�1:l�1.�k�1/ D �l�1, where �k�1;l�1 W OX=IkD ! OX=I
l
D is the natu-

ral map.

Proof
We first recall Remark A.7. If dimD � 2 and D is ample, then H 1.D;ND ˝ IkC1D =

IkC2D /DH 1.D;L�kD /D 0 for any k � 1 by the Kodaira-Nakano vanishing theorem.
So there is no obstruction to k-comfortably embedded relative to any kth-order lifting.
As a consequence, k-comfortable is equivalent to k-splitting for any k � 0, and is also
equivalent to k-linearizable for all k � 0.

By the assumption, we know that .X;D/ is .k � 1/-splitting but not k-splitting,
and hence there exists a comfortable pair .�k�1;�k�1/ such that there is no kth-order
lifting relative to �k�1. So the first statement holds by Proposition 4.3.
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Suppose that for some l < k, there exists an .l � 1/th-order lifting �l�1 that
cannot be lifted to a .k � 1/-order lifting. By choosing the maximal l and using
Remark A.7, we can assume that there is a comfortable pair .�l�1;�l�1/ such that
�l�1 cannot be lifted to an l th-order lifting. By Proposition 4.3, we get w.X;D/D
�l >�k, which contradicts Corollary 4.4(1).

Remark 4.5
We will see in Proposition 4.9 that Corollary 4.4(2) is not necessarily true if nD 2.

LEMMA 4.6
For k � 1, the natural restriction map induces an isomorphism H 1.L;‚L/.�k/

Š
!

H 1.U;‚U /.�k/.

Proof
This is already clear by the homogeneity argument as in the proof of Lemma 3.2.
Indeed, we just need to construct an inverse of the natural morphism. Let �k 2
H 1.U;‚U /.�k/. Then by the same argument as in the proof of Lemma 3.2, we can
assume that �k is represented by a weight .�k/ cocycle

.�k/ˇ˛ D

mX
rD1

brˇ˛.w/
@

@wr
ˇ

C

nX
pDmC1

c
p

ˇ˛
.w/

@

@w
p

ˇ

:

Since @
@wr
ˇ

(resp., @

@w
p

ˇ

) has weight 1 (resp., 0), we know that br
ˇ˛

(resp., cp
ˇ˛

) is

homogeneous of degree .k C 1/ (resp., k) in w0 D ¹wr
ˇ
º. Because k � 1, �k can

be extended to become a cocycle H 1.L;‚L/.�k/. This defines the inverse of the
restriction morphism.

Remark 4.7
We sketch a slightly more conceptual proof by using the Dolbeault cohomology. On
the total space L, we have the exact sequence

0! ��LL!‚L! ��L‚D! 0: (4.7)

By restricting this exact sequence to U D LnD, we have a similar exact sequence
on U . So we get a commutative diagram of long exact sequences:

H0.L;	�
L
‚D/ H1.L;	�

L
L/ H1.L;‚L/ H1.L;	�

L
‚D/ H2.L;	�

L
L/

H0.U;	�U‚D/ H1.U;	�UL/ H1.U;‚L/ H1.L;	�U‚D/ H2.U;	�U /

(4.8)
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For any k � 0, we have the weight-.�k/ pieces of the cohomology groups under the
natural C�-action:

Hp.L;��LL/.�k/DH
p.D;L�k/;

Hp.L;��L‚D/.�k/DH
p.D;‚D ˝L

�k/I

Hp.U;��UL/.�k/DH
p.D;L�k/;

Hp.U;��U‚D/.�k/DH
p.D;‚D ˝L

�k/:

If we were to work in the algebraic category, the weight decomposition is directly
obtained by using a projection formula as in [4, Section 11]. Since we are working in
the analytic category, we need to be more careful as we now explain. Since the argu-
ments to get the decompositions are the same, we just explain the first identity. Using
the isomorphism between Dolbeault cohomology and sheaf cohomology, any coho-
mology class ˛ 2Hp.L;��LL/ is represented by a N@-closed ��LL-valued .0;p/-form
denoted by 
. For any point p 2 D, we first choose local holomorphic coordinates
¹zi ; �º, where the ¹ziº’s are holomorphic coordinates on D and � is a linear coordi-
nate along the fiber associated to a local trivializing holomorphic section s. By using
the Fourier expansion along the circle j�j D constant and extending to the whole U ,
one can show that 
 can be expressed as a convergent sum:


 D
X

m2N0;jI jDp

�
A0m;I

�
z; j�j2

�
�mCA0Nm;I

�
z; j�j2

�
N�m
�
s d NzI

C N@
� X
m2N0;jJ jDp�1

�
B 0m;J

�
z; j�j2

�
�m�1CB 0Nm;J

�
z; j�j2

�
N�mC1

�
s d NzJ

�
DW 
0C N@�:

Furthermore, by using the fact that N@
0 D 0, one can see that A0m;I .z; j�j
2/ and

A0Nm;I .z; j�j
2/j�j2m are constants in � . In particular, by smoothness, A0Nm;I D 0 for all

m 2N0. So we see that 
 is N@-cohomologous to a .0;p/-form of the form


0 D
X
m2N0

X
jI jDp

A0m;I .z/�
ms d NzI DW

X
m


m:

C� acts on 
0 by t ı 
0 D
P
m t

m�1
0m. Using the N@-closedness of 
0, it is easy to
see that each component 
0m is N@-closed. We have that 
0 is of weight �k if and
only if 
0 D 
0

kC1
D
P
jI jDpA

0
kC1;I

�kC1s d NzI which represents a cohomology class

˛ 2Hp.D;L�k/. We can now extract the weight .�k/-part from (4.8) to get exact
sequences:



1440 CHI LI

H0.D;‚D ˝L
�k/ H1.D;L�k/

Nk

H1.L;‚L/.�k/

Tk

H1.D;‚D ˝L
�k/ H2.D;L�k/

H0.D;‚D ˝L
�k/ H1.D;L�k/

N
ı
k

H1.U;‚U /.�k/

T
ı
k

H1.D;‚D ˝L
�k/ H2.D;L�k/

(4.9)

The statement then follows from the five lemma.

Remark 4.8
If we rewrite the statement of Proposition 3.3 by using the isomorphism of Lemma 4.6,
then we get the exact sequence

H 1.D;L�k/
Nı
k
�!H 1.U;‚U /.�k/

Tı
k
�!H 1.D;‚D ˝L

�k/ (4.10)

such that (1) Tı
k
.#.k//D gk is the obstruction to k-splitting, and (2) if Tı

k
.#.k//D 0,

then there is a kth-order lifting �k and #.k/ DNı
k
.h.k//, where h.k/ is the obstruction

to k-comfortably embedding with respect to �k .

4.3. 2-dimensional examples and a remark on comfortable embedding
As mentioned in the Introduction and recalled in Section A.1 of the Appendix, Abate,
Bracci, and Tovena in [1] gave a detailed study of various conditions of embedding:
k-linearizable, k-splitting, and k-comfortable embedding. In order to talk about k-
comfortable embedding, we need to assume k-splitting (see Definition A.4). Under
this assumption, we can study whether the embedding is comfortable with respect to
any kth-order lifting. In [1, Remark 3.4], the authors asked whether k-comfortable
embedding with respect to one kth-order lifting implies k-comfortable embedding
with respect to any other kth-order lifting. Here we give a simple example showing
that the answer to this question is in general negative.

PROPOSITION 4.9
For the diagonal embedding D D�.P1/ ,! X D P1 � P1, the following conditions
hold.
(i) It is k-splitting for any k � 1.
(ii) The set of all first-order liftings is parameterized by C. So we can denote by

�a1 the first-order lifting corresponding to any a 2C.
(iii) There exists a second-order lifting �2 satisfying �2;1 ı �2 D �a1 if and only if

aD 0.
(iv) The embedding is 1-comfortable with respect to �a1 if and only if aD�1=2.
(v) The embedding is 1-linearizable but not 2-linearizable.
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Remark 4.10
This diagonal embedding is 2-splitting and 1-comfortable, but the embedding is only
1-linearizable. This does not contradict Theorem A.9, since the 1-comfortable embed-
ding is with respect to ��1=21 which cannot be lifted to a second-order lifting.

Proof of Proposition 4.9
Because there is a projection morphism onto the first factor p1 W X D P1 � P1 !

P1, we see that there is a natural kth-order lifting �k W OD ! OX=I
kC1
D given by

�1;k ı p
�
1 ı�

�, where p�1 WOD!OX is the pullback and �1;k WOX !OX=I
kC1
D

is the natural quotient map. So the embedding is k-splitting for any k � 1. Since
any embedding is 0-comfortable, we know that the embedding is 1-linearizable by
Theorem A.9. So we get (i) and the first half of (v).

We will quickly show that the embedding is not comfortable with respect to the
natural first-order lifting �1. We first construct an atlas near D. Choose the open
covering of P1 � P1,

VD ¹Ui �Uj I1� i; j � 2º;

with (we denote P1 DC[ ¹1º with j1j DC1)

U1 D
®
z 2 P1I jzj< 2

¯
; U2 D

®
z 2 P1I jzj> 1=2

¯
:

Then S D�.P1/ is covered by two open sets ¹Vi WDUi �Ui I i D 1; 2º. We define the
new coordinate functions by

V1 D
®
.z; z0/ 2 P1 � P1I jzj< 2; jz0j< 2

¯
! C2;

.z; z0/ 7! .y1 D z � z
0; z1 D z/;

V2 D
®
.z; z0/ 2 P1 � P1I jzj> 1=2; jz0j> 1=2

¯
! C2;

.z; z0/ 7! .y2 D z
�1 � z0�1; z2 D z

�1/:

So we have D\Vi D ¹yi D 0º. If V 0 is a small neighborhood of S D�.P1/, then on
the intersection V1 \ V2 \ V 0, the transition functions are given by

y2 D�
y1

z1.z1 � y1/
D�

y1

z21
�
y21
z31
CR3; z2 D z

�1
1 : (4.11)

In the above expansion, we assume that y1 is sufficiently small, and we denote by R3
a term belonging to I3D . It is immediate to see that this atlas is adapted to the natural
first-order lifting �1 where we have

�1.z1/D Œz1	2 on V1 \ V
0; �1.z2/D Œz2	2 on V2 \ V

0:
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The obstruction to 1-comfortable embedding is given by

.h
�1
1 /21 D�

Œy21 	3

z31

@

@y2
2H 0.U1 \U2;ND ˝ I2D=I

3
D/: (4.12)

Here we consider @
@y2

and @
@y1

as local generators of ND , so that we have @
@y2
D

�z21
@
@y1

on U1 \ U2. We claim that h�11 represents a nonzero cohomology class in

H 1.D;ND ˝ I2D=I
3
D/ŠH

1.P1;OP1.�2//DC. Otherwise, we can write

�
Œy21 	3

z31

@

@y2
D aŒy21 	3

@

@y1
� bŒy22 	3

@

@y2
on U1 \U2;

where aD a.z1/ is analytic in z1 and b D b.z�11 / is analytic in z2 D z�11 . Using the
change of coordinates, we arrive at an equation

�
1

z1
D a.z1/�

b.z�11 /

z21
;

which obviously has no solutions by looking at the Laurent expansion. So we get that
D ,!X is not 1-comfortably embedded with respect to �1.

Let us find all possible first-order liftings, that is, homomorphisms of sheaves of
rings � WOD DOX=ID!OX=I

2
D with �1;0 ı �D Id. On U1, we can write �.z1/D

Œz1 C a.z1/y1	2 with a.z1/ analytic in z1 and �.z2/ D Œz2 C b.z2/y2	2 with b.z2/
analytic in z2 D z�11 . Since � is a homomorphism of sheaves of rings, we must have

1D �.z1z2/

D
�
z1z2C a.z1/z1y1C b.z2/z2y2

�
2

D 1C a.z1/z1Œy1	2C b.z2/z2Œy2	2 over U1 \U2:

Since we have Œy2	2 D�Œy1	2z�21 by (4.11), we get .a.z1/� b.z2//z1Œy1	2 D 0. So
we must have that a.z1/D b.z2/D a D constant. Thus we get (ii). We will denote
the corresponding first-order lifting by �a1 .

Now for any fixed first-order lifting �a, it is easy to find an atlas adapted to it. We
simply need to make a coordinate change:

Oz1 D z1C ay1; Oy1 D y1 on V1I

Oz2 D z2C ay2; Oy2 D y2 on V2:
(4.13)

We can calculate the new transition function

Oy2 D�
Oy1

Oz21
� .2aC 1/

Oy21
Oz31
CR3; Oz2 D Oz

�1
1 � .a

2C a/
Oy21
Oz31
CR3; (4.14)
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where R3 denotes terms in I3D . So we see that the obstruction to 1-comfortable
embedding with respect to �a1 is equal to .2aC 1/h�11 (see (4.12)). From the above
we have seen that H 1.D;ND˝I2D=I

3
D/ŠC is generated by h

�1
1 . So the embedding

is comfortable with respect to �a1 if and only if aD�1=2. So we get (iii).
Furthermore, we can calculate the obstruction to existence of second-order lifting

�a2 such that �2;1 ı �a2 D �
a
1 :

.g
�a
1

2 /21 D�a
2 Œy

2
1 	3

z31

@

@z2
2H 0.U1 \U2;‚D ˝ I2D=I

3
D/:

By similar reasoning as before, we can see that H 1.D;‚D ˝ I2D=I
3
D/ D H

1.P1;

‚P1 ˝OP1.�4//Š C is generated by the cohomology g
�a
1

2 if and only if a ¤ 0. So
we get (iv).

If the embedding is 2-linearizable, then it is 2-splitting and 1-comfortable with
respect to the induced 1-splitting (see Theorem A.9). But from (ii)–(iv), we see that
no such kind of 1-splitting exists. So we get the second half of (v).

Remark 4.11
By (4.13), it is clear that the special value aD�1=2 corresponds to the (most) “sym-
metric” coordinate atlas

V1 3 .z; z
0/ 7!

�
z � z0;

1

2
.zC z0/

�
D . Oy1; Oz1/;

V2 3 .z; z
0/ 7!

�
z�1 � z0�1;

1

2
.z�1C z0�1/

�
D . Oy2; Oz2/;

for which (see (4.14)) the transition functions are given by

Oy2 D�
Oy1

Oz21 �
1
4
Oy21
D�

Oy1

Oz21
�
1

4

Oy31
Oz41
CR5; Oz2 D

Oz1

Oz21 �
1
4
Oy21
D
1

Oz1
C
1

4

Oy21
Oz31
CR4:

So this is indeed a 1-comfortable atlas (see Theorem A.8).

Remark 4.12
By Theorem A.3, 1-comfortable embedding is equivalent to the splitting of the exact
sequence

0! I2D=I
3
D! ID=I

3
D! ID=I

2
D! 0: (4.15)

This is an a priori sequence of sheaves of OX=I
2
D-modules. I2D=I

3
D and ID=I

2
D are

natural OD-modules. ID=I
3
D becomes an OD-module depending on the first-order

lifting (ring homomorphism) �a1 W OD ! OX=I
2
D . Proposition 4.9(iv) is equivalent

to saying that (4.15) splits as an exact sequence of OD-modules thus obtained if and



1444 CHI LI

only if a D �1=2. This can also be verified directly using the expressions �a1.z1/D
Œz1C ay1	2 on V1 and �a1.z2/D Œz2C ay2	2 on V2.

Remark 4.13
If we denote by wi the fiber variables of ND satisfying w2 D �z�21 w1, then using

the notation in Lemma 3.2, we have �a1 DN1.h
�a
1

1 /D 0 and T2.‘
�1=2
2 /D g

�
�1=2
1

2 ¤ 0,
where

.�a1 /21 D�.2aC 1/
w21
z31

@

@w2

D .2aC 1/
�1
2
w2

@

@z2
�
1

2
w1

@

@z1

�
2H 0. OU1 \ OU2;‚ND /.�1/

and

.�
�1=2
2 /21 D�

1

4

w21
z31

@

@z2
2H 0. OU1 \ OU2;‚ND /.�2/:

Notice that the central fiber of X from the contracted deformation to the nor-
mal cone is NC.P1;OP1.2//Š P.1; 1; 2/. So by Proposition 4.3, we get the following
corollary (see Example 5.2).

COROLLARY 4.14
The contracted deformation to the normal cone associated with .P1 � P1;�.P1//

degenerates P1 � P1 to P.1; 1; 2/. The weight of this deformation is �2.

Similarly, we can deal with the case D2 D ¹Z20 CZ
2
1 CZ

2
2 D 0º ,! X2 D P2.

For this, we notice that there is a two-fold branched covering:

p2 W P
1 � P1 �! P2;�

ŒX0;X1	; ŒY0; Y1	
�
7!

�
X0Y0CX1Y1;

p
�1.X0Y0 �X1Y1/;

p
�1.X0Y1CX1Y0/

�
:

The branch locus is exactly �.P1/ with p2.�.P1//DD2. Using this covering struc-
ture, it is easy to obtain two open sets ¹V1; V2º covering D2:

V1 D .U1 �U1/=Z
2! C2;

.z; z0/ 7!
�
y1 D

1

4
.z � z0/2; z1 D

1

2
.zC z0/

�
;

V2 D .U2 �U2/=Z
2! C2;

.z; z0/ 7!
�
y2 D

1

4
.z�1 � z0�1/2; z2 D

1

2
.z�1C z0�1/

�
:
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The transition function over V1 \ V2 is given by

y2 D
y1

.z21 � y1/
2
D
y1

z41
C
2y21
z61
CR3; z2 D

z1

z21 � y1
D
1

z1
C
y1

z31
CR2:

So this atlas is a 0-comfortable one. The associated �1 2H 1.D2;ND2/.�1/ is repre-
sented by

.�1/21 D
2w21
z61

@

@w2
C
w1

z31

@

@z2
2H 0. OU1 \ OU2;‚ND2 /;

where the wi ’s are fiber variables of ND2 Š OP1.4/ satisfying w2 D z�41 w1. So we
have

.g1/21 D
�
T1.�1/

�
21
D
Œw1	2

z31

@

@z2
2H 0.U1 \U2;‚D2 ˝ ID2=I

2
D2
/:

In the Čech cohomology LH 1.¹U1;U2º;‚D2 ˝ ID2=I
2
D2
/, any coboundary can be

represented by

a.z1/Œw1	2
@

@z1
� b.z2/Œw2	2

@

@z2
D
��a.z1/

z21
�
b.z�11 /

z41

�
Œw1	2

@

@z2
:

Since a.z1/ (resp., b.z�11 /) is analytic in z1 (resp., z�11 ), the term in the bracket of
the right-hand side cannot contain any z�31 -term. So we see that H 1.D2;‚D2 ˝

ID2=I
2
D2
/ Š H 1.P1;OP1.�2// Š C is generated by g1 ¤ 0. Because g1 is the

obstruction to 1-splitting (see Proposition A.2), we obtain that the embedding is not
even 1-splitting and hence not 1-linearizable. In this case, X0 D NC.P

1;OP1.4// Š

P.1; 1; 4/. So by Proposition 4.3, we obtain the following result.

PROPOSITION 4.15
We have that D2 D ¹Z20 C Z

2
1 C Z

2
2 D 0º ,! P2 is 0-linearizable. The contracted

deformation to normal cone associated to .P2;D2/ degenerates P2 to P.1; 1; 4/. The
deformation weight w.X;D/ is equal to �1.

5. Applications to AC Kähler metrics
In the first subsection, we explicitly compute the data of rotationally symmetric Käh-
ler cone metrics on the affine cone. We also compare the norms with respect to a
smooth metric (living on the projective cone) and norms with respect to the cone met-
ric near the infinity divisor. This allows us to get the estimate in Proposition 1.3. In
the second subsection, we combine this estimate with Conlon and Hein’s estimates in
(5.9) to get Corollary 1.4. We then calculate several examples to illustrate our results.
In particular, we can indeed recover numerical quantities in examples of [10].
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5.1. Proof of Proposition 1.3
First we review the Kähler cone metric on C.D;L/ given by the special Calabi ansatz
!0 D

p
�1@N@hı . Then !0 is a Riemannian cone metric on C.D;L/:

gD dr2C r2gY ;

where Y is the associated circle bundle over D. To see this, we consider the coordi-
nate chart on P.L�1 ˚C/. Away from the infinity section D1, we have the coordi-
nate chart given by .z; Œ�˛e˛; 1	/D .z; Œe˛; ��1˛ 	/D .z; Œe˛; �˛	/. Let hD je˛j2hj�˛j

2 D

a˛�.z/j�˛j
2 D .a˛C.z/j�˛j

2/�1. For simplicity, we will denote � D �˛ , � D �˛ , aD
a˛� D a

�1
˛C. Then we can calculate

!0 D
p
�1@N@hı D ıhı!D C ı

2hı
r� ^r�

j�j2

D ıhı!D C ı
2hı
r� ^r�

j�j2
; (5.1)

where !D D
p
�1@N@ logh is a smooth Kähler metric onD, and we have used vertical

and horizontal frames:

dzi ;r� D d� C �a�1@a
dual
() rzi D

@

@zi
� a�1

@a

@zi
�
@

@�
;
@

@�
:

Under the ¹z; �º coordinate, we have similarly

dzi ;r� D d� � �a�1@aD���2r�

dual
() rzi D

@

@zi
C a�1

@a

@zi
�
@

@�
;

@

@�
D��2

@

@�
:

To write the metric into a metric cone, we write � D Q�ei
 . Then

r� D d� C �a�1@aD ei
 .d Q�C i Q�d� C Q�a�1@a/D ei

�
d Q�C i Q�.d� � ia�1@a/

�
:

So if we let r D hı=2 D .a.z/j�j2/ı=2 and r� D d� � Ja�1 da, then it is easy to
verify that the corresponding metric tensor is given by

g!0 D dr
2C r2.ıg!D C ı

2r� ˝r�/:

Note that r� is nothing but the connection form on the unit S1-bundle in L�1. Now
we compare the norm of tensors on U DLnD with respect to two metrics !0 and Q!0,
where Q!0 is any smooth Kähler metric on a neighborhood of D in L. For example,
we can take
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Q!0 D �
�
L!D C �

p
�1@N@

�
aC.z/j�j

2
�

for small � > 0. Suppose that ˆ is a tensor of type .p D phC pv; q D qhC qv/, that
is,

ˆ 2 .T �h X/
˝ph ˝ .T �v X/

˝pv ˝ .ThX/
˝qh ˝ .TvX/

˝qv :

Then, by noticing that hı=2 � j�j�ı , we have

jˆj!0
jˆj Q!0

� j�jıphC.ıC1/pv�ıqh�.ıC1/qv : (5.2)

In particular, we get the following lemma.

LEMMA 5.1
If ˆ is tensor of type .1; 1/, then

jˆhv j!0 � jˆ
h
v j Q!0 j�j; jˆvhj!0 � jˆ

v
hj Q!0 j�j

�1;

jˆvvj!0 � jˆ
v
vj Q!0 ; jˆhhj!0 D jˆ

h
hj Q!0 :

As a consequence, under the assumption that the embedding D ,!X is .k � 1/-
comfortable, we combine Lemma 5.1 with estimates (3.10) to get

jˆj!0 � C0j�j
k � C0r

�k
ı : (5.3)

Next we compare the Christoffel symbols of the two metrics, which will be useful
for converting the estimate of covariant derivatives with respect to !0 to that with
respect to Q!0. See (6.2) and (6.3). To simplify the calculation, we can choose the
coordinate ¹zi˛º on D and holomorphic frame such that

gD
i Nj
.0/D !D.@zi˛

; @
z
j
˛
/.0/D ıij ; .@zk˛

gD
i Nj
/.0/D 0I

.@zi˛
a/.0/D 0; .@zi˛

@
z
j
˛
a/.0/D 0:

Denote by index 0 the coordinate corresponding to � D �˛ . Then the components of
the metric tensor associated with !0 are given by

gi Nj D ıa
ı j�j�2ııij ; g0 N0 D ı

2aı j�j�2.ıC1/; g0 Nj D gj N0 D 0:

So it is easy to calculate that

jdzi˛j!0 D ı
�1=2a�ı=2j�jı �

1

j�j�ı
; jd�j!0 D ı

�1a�ı=2j�j.ıC1/ �
j�j

j�j�ı
;

�kij D �
0
ij D �

0
i0 D �

i
00 D 0; �

j
i0 D�

ı

�
ıij ; �000 D�

ıC 1

�
:
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In other words,

r@zi˛
D�

ı

�
d� ˝ @zi˛

; r@� D�
ıC 1

�
dzi˛ ˝ @zi˛

�
ıC 1

�
d� ˝ @� ;

r dzi˛ D�
ı

�
.d� ˝ dzi˛ C dz

i
˛ ˝ d�/; rd� D�

ıC 1

�
d� ˝ d�:

So we see that

jr!0@zi˛
j!0 � C �

j@zi˛
j!0

j�j�ı
�
j@zi˛
j!0

r
;

jr!0@� j!0 � C j�j
�1 �

j@� j!0

j�j�ı
�
j@� j!0
r

;

(5.4)

jr!0 dz
i
˛j!0 � C j�j

2ı �
jdzi˛j!0
j�j�ı

�
jdzi˛j!0
r

;

jr!0 d�j!0 � C j�j
1C2ı �

jd�j!0
j�j�ı

�
jd�j!0
r

:

(5.5)

The above estimates imply that each time we take a covariant derivative with respect
to !0, we get an extra decay factor j�jı � r�1. So by induction which starts from
(5.3), we get the wanted estimate in Proposition 1.3:

jrj!0ˆj!0 � Cj j�j
kCjı � Cj r

�k
ı
�j for any j � 0: (5.6)

5.2. Asymptotic rates of Tian and Yau’s Ricci-flat metrics
In this subsection, we explain how to get Corollary 1.4. First we recall the Calabi–
Yau cone metric on C WD C.D;L/ in the case in which K�1D D �L for �> 0 and D
has a Kähler–Einstein metric !D D !KE

D such that Ric.!KE
D /D � � !KE

D . In this case,
note that the Hermitian metric h satisfies

p
�1@N@ loghD !KE

D . To find the Calabi–Yau
cone metric, it is straightforward to calculate that

Ric.!0/D�
p
�1@N@ log!n0 D .�nıC�/�

�
L!

KE
D ;

where nD dimDC 1. So we get the exponent for the Calabi–Yau cone metric:

�KD D �ND H) ıD
�

dimDC 1
: (5.7)

Now assume that X is a Fano manifold of dimension n and that D is a smooth divi-
sor such that �KX � ˛D with Q 3 ˛ > 1. By the adjunction formula, we get that
�KD D�KX jD� ŒD	D .˛�1/ŒD	D .1�˛

�1/K�1X is still ample, and soD is also
a Fano manifold. Assuming that D has a Kähler–Einstein metric, Tian and Yau [32]
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constructed an asymptotically conical (AC) Calabi–Yau Kähler metric !TY on XnD
whose metric tangent cone at infinity is the conical Calabi–Yau metric on C.D;ND/
discussed above with the exponent ı D ˛�1

n
. See also [5]. More precisely, there is a

diffeomorphism �K W C.D;ND/nBR.o/! .XnD/nK such that��rj!0���K.!TY/�!0
���
C0
� Cr���j for j � 0: (5.8)

Here K is a compact set in the noncompact manifold M WD XnD and BR.o/ is the
ball of radius R around the vertex o of the metric cone.

A natural problem is to determine the optimal order (i.e., the number � in (5.8))
of such an AC Calabi–Yau metric. This issue was studied in detail by Cheeger and
Tian in [8] and by Conlon and Hein in [10] and [11]. In [10] Conlon and Hein studied
the estimates on solutions to the corresponding complex Monge–Ampère equation for
Calabi–Yau metrics. If we denote by k its Kähler class represented by !TY, then their
estimate of the optimal rate is as follows (see [10] and [12, Remark 1.2]):

�max �

´
min.2n;�1/ if k 2H 2

c .M/;

min.2;�1/ if k 2H 2.M/:
(5.9)

Here �1 is any number satisfying the following condition: there exists a diffeomor-
phism FK W C.D;ND/nBR.o/!MnK such that��rj!0.F �K���0/��!0 � Cr��1�j for any j � 0; (5.10)

where � (resp., �0) is the multivalued meromorphic volume form on X (resp.,
C.D;ND/) that is nonvanishing holomorphic on M DXnD (resp., C.D;ND/) and
has pole of order ˛ along D. Conlon and Hein [10] also showed that the condition
(5.10) is equivalent to the following condition:��rj!0.F �KJ � J0/��!0 � Cr��1�j for any j � 0; (5.11)

where J (resp., J0) is the complex structure on M (resp., C.D;ND/). So we see
that �1 essentially measures the difference between the complex structure of MnK
and C.D;ND/nBR.o/. Equivalently, we are indeed comparing the complex structure
on the (punctured) neighborhood of D inside X and the complex structure of the
(punctured) neighborhood of D inside ND .

Now assuming that D is .k � 1/-comfortably embedded, the diffeomorphism
from Proposition 1.3 (constructed in Section 3.1) satisfies (5.11) with �1 D k

ı
. By the

above discussion, we indeed get Corollary 1.4 by using the estimates of Conlon and
Hein.
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Example 5.2
(1) .X;D/ Š .P1 � P1;�.P1//. In this case, !TY coincides with the Eguchi–

Hanson metric. We have ˛ D 2, n D 2, ı D .˛ � 1/=n D 1=2. By Proposi-
tion 4.9, D is 1-comfortably embedded (and 1-linearizable) so that k D 2. So
�D k

ı
D 4.

(2) .X;D/ Š .P2; ¹Z20 C Z21 C Z22 D 0º/ Š .P1 � P1;�.P1//=Z2. In this
case, !TY is the Eguchi–Hanson metric=Z2. We have ˛ D 3

2
, n D 2, ı D

.˛ � 1/=n D 1=4. By Proposition 4.15, D is 0-comfortably embedded (and
0-linearizable) so that k D 1. So �D k

ı
D 4.

Example 5.3
We consider Pinkham’s construction of sweeping out the cone (see [27, p. 46]).
Assume that Dn�1 � PN�1 is a smooth complete intersection

D D

m\
iD1

®
Fi .Z1; : : : ;ZN /D 0

¯
� PN�1;

where m D N � n and Fi .Z1; : : : ;ZN / is a (generic) homogeneous polynomial of
degree di > 0. Denote the affine cone over D in CN and projective cone over D
inside PN by

C.D;H/D

m\
iD1

®
Fi .z1; : : : ; zN /D 0

¯
�CN ;

C .D;H/D

m\
iD1

®
Fi .Z1; : : : ;ZN /

¯
� PN :

Notice that since we have assumed that D is a complete intersection, it is then known
that D is projectively normal in PN�1 which implies that its projective cone inside
PN is normal and hence coincides with its normalization NC.D;H/.

Now assume that Gi .Z0;Z1; : : : ;ZN / is a generic homogeneous polynomial of
degree ei with ei < di for each i D 1; : : : ;m. In particular, Gi .1; z1; : : : ; zN / is a
polynomial of degree ei . We construct a degeneration

X D

m\
iD1

®
Fi .Z1; : : : ;ZN /C .tZ0/

di�degGiGi .tZ0;Z1; : : : ;ZN /D 0
¯

� PN �C: (5.12)

By the “generic” assumption, X DX1 is smooth. This degenerates the variety X D
X1 � PN to C.D;H/. In fact, X is a degeneration of X1 generated by the one-
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parameter subgroup of projective transformations

ŒZ0;Z1; : : : ;ZN 	! Œt�1Z0;Z1; : : : ;ZN 	:

Away from ¹Z0 D 0º, we have the deformation of C.D;H/:

Xı D

m\
iD1

®
Fi .z1; : : : ; zN /C t

di�degGiGi .t; z1; : : : ; zN /D 0
¯
�CN �C: (5.13)

From Digression 5.4, the degeneration X coincides with the family obtained by first
blowing up D � ¹0º inside X � C and then blowing down the strict transform of
X � ¹0º as in the Introduction. Now using the representation of X in (5.12), we see
that X can be obtained by applying the above construction to the case X D X1,
Y 0 D NC.X;H/� NC.PN ;H/D PNC1, and D D ¹Z0 D 0º \X . The coincidence of
NC.D;H/ with the central fiber from the contracted deformation to the normal cone

can also be verified directly by using Lemma 4.1 and the projective normality of D.
By the adjunction formula, we know that �KX1 D .N C 1 �

Pm
iD1 di /H and

�KD D .N �
Pm
iD1 di /H . Consider the hyperplane sectionD DD1 DX1\¹Z0 D

0º �X1. Then if we assume that
Pm
iD1 di �N � 1, we are in Tian and Yau’s setting

above with ˛ WDN C 1�
Pm
iD1 di � 2.

By Section A.2, T1C can be calculated as a quotient ring. As in Example A.11,
consider the class

ŒG 	 WD
hX
i

Gi .1; z1; : : : ; zn/
i
2

mM
iD1

T1C
�
�.di � ei /

�
;

where Œ�	 denotes the quotient morphism (see (A.11))

H 0.U;NU /! T1C D
H 0.U;NU /

H 0.U;‚CN jU /
D

C1M
jD�1

Lm
iD1H

0.D; .di C j /H/

Jac.H 0.D; .j C 1/H/˚N /
:

Notice the right-hand side is actually finite-dimensional (see [4], [31]). Now if we
assume that ŒG 	 in T1C is nonzero, then the reduced Kodaira–Spencer class KSred

Xı is
the maximal weight piece of ŒG 	 and the weight of deformation w.Xı/ of KSred

Xı=B is
equal to the weight of ŒG 	.

Without loss of generality, we can assume that e1 > e2 > � � � > em so that
minmiD1¹di � eiº D d1� e1. Then in general, w WDw.Xı/��.d1� e1/ which could
be a strict inequality (see example item (3) of ordinary double point below). The
equality holds if ŒG1	¤ 0 2 T1C .�.d1 � e1//. If we assume furthermore that n � 3,
then by Theorem 1.5, we know that the divisorD is .jwj � 1/-comfortably embedded
into X (but not jwj-comfortably embedded into X ).
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So by the above calculation, we see that the asymptotic rate of holomorphic form
is given by

�D
jwj

ı
D
njwj

˛ � 1
:

If, furthermore, ei � di � 2, then

�D
jwj

ı
D
njwj

˛ � 1
D
n �minmiD1¹di � eiº

N �
Pm
iD1 di

:

In this way, we can indeed give an algebraic interpretation of the corresponding cal-
culations in [10].
(1) (See [10, Example 1]). This is the smoothing of the cubic cone:

C D
°
z 2C4I

4X
iD1

z3i D 0
±

�M D
°
z 2C4I

4X
iD1

z3i D
X
i;j

aij zizj C
X
k

akzk C �
±
;

where aij , ai , � are small (generic) constants. We have

T1C D
CŒz1; : : : ; z4	

hz21 ; : : : ; z
2
4i
D

1M
�D�3

T1C .�/:

With the earlier notation, G.Z0; : : : ;Z4/D
P
i;j aijZiZj C

P
k akZkZ0 C

�Z20 with

ŒG 	D
hX
ij

aij zizj C
X
k

akzk C �
i
2 T1C .�1/CT1C .�2/CT1C .�3/:

Note that we assume that aij , ak are generic if they are not zero. So we get

KSred
Xı w.Xı/ �

aij D ak D 0 Œ
P
i;j aij zizj 	 �3

3�3
4�3
D 9

aij D 0; ak ¤ 0 Œ
P
k akzk	 �2 3�2

4�3
D 6

aij ¤ 0 Œ�	 �1 3�1
4�3
D 3

(2) (See [10, Example 2]). This is the smoothing of the complete intersection:
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C D
°
z 2C5If1 D

5X
iD1

z2i D 0;f2 D

5X
iD1


iz
2
i D 0

±
�M D

®
z 2C5If1.z/D f2.z/D �

¯
:

Here 
i are distinct complex numbers. We have

T1C D
CŒz1; : : : ; z5	

˚2

Im
�
z1 ::: z5

1z1 ::: 
5z5

� D T1C .�2/:

Because the images of G D .��;��/ are not zero inside T1C , we have � D
3�2

5�2�2
D 6.

(3) (See [10, Example 3]). This is the smoothing of the ordinary double point:

C D
°
z 2CnC1I

nC1X
iD1

z2i D 0
±

�M D
°
z 2CnC1I

nC1X
iD1

z2i D

nC1X
iD1

aizi C �
±
;

T1C D
CŒz1; : : : ; znC1	

hz1; : : : ; znC1i
D T1C .�2/:

As a result, we get G.Z0; : : : ;ZnC1/ D
PnC1
iD1 aiZi C �Z0. Therefore, we

have that ŒG.1; z1; : : : ; zn/	D Œ
PnC1
iD1 aizi C �	D Œ�	 is of weight �2. So we

have � D n�2
nC1�2

D 2n
n�1

. Note that if n D 2, then D ,! X is isomorphic to
�.P1/ ,! P1�P1, where� W P1! P1�P1 is the diagonal embedding which
was studied in Section 4.3. The identification is easily constructed:�
P1 � P1;�.P1/

�
�! .X;D/

D
�
¹Z20 CZ

2
1 CZ

2
2 CZ

2
3 D 0º; ¹Z0 D 0º \X

�
;�

ŒX0;X1	; ŒY0; Y1	
�
7!

�
X0Y1 �X1Y0;

p
�1.X0Y1CX1Y0/;

.X0Y0CX1Y1/;
p
�1.X0Y0 �X1Y1/

�
:

Digression 5.4
Here we recall an equivalent description of the deformation to the normal cone by
using MacPherson’s graph construction. Let sD denote the canonical holomorphic
section of LDLD with D D ¹sD D 0º. We can identify X with the graph of sD as a
subvariety of Y D P.L˚C/: X1 D ¹.p; ŒsD.p/; 1	/Ip 2Xº. We then use the natural
C�-action on Y to get a family of subvarieties of Y : Xt D ¹p; Œt

�1sD.p/; 1	Ip 2Xº.
For t ¤ 0, Xt Š X . As t ! 0, Xt converges to a subscheme QX0 of Y which is
nothing but the union of X with E . Alternatively, there is a rational map

‰ WX �C ��� P.L˚C/; .p; t/ 7!
�
p;
�
t�1s.p/; 1

��
D
�
p;
�
s.p/; t

��
:
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Figure 2. (Color online) Deformation to the normal cone: graph construction.

Notice that the indeterminacy locus of ‰ is exactly D � ¹0º D ¹s D 0º � ¹0º. So
QX D BlS�¹0º.X � C/ is the graph �‰ of ‰, that is, the closure of the graph of ‰ W
.X �C/ n .D � ¹0º/! P.L˚C/.

Figure 2 is an illustration of deformation to the normal cone using the graph
construction (S D D). Notice that the two pairs of opposite sides of the boundary
in the figure are glued according to the direction of arrows and the total space QX
should be taken as the disjoint union of Xt in the figure. (See also [13, Remark 5.1.1,
Section 5.1].) To get X from QX, we can use the similar construction, just by replacing
Y D P.L˚ C/ by the projective cone NC.X;L/DW Y 0 which is obtained from Y by
contracting the infinity divisor X1.

Remark 5.5
As pointed out by the referee, for the above examples of complete intersections the
result of Theorem 1.5 may not be surprising since we have explicit expressions:

X1 D

m\
iD1

®
Fi .Z1; : : : ;ZN /CZ

di�ei
0 Gi .Z0;Z1; : : : ;ZN /D 0

¯
� PN :

Noting that jwj DminmiD1¹di � eiº, it is immediate that

OX1=I
jwj
D ŠOX0=I

jwj
D

using the fact that ID.U¹Zi¤0º\X1/D .h
Z0
Zi
iCIX1/=IX1 . In other words, .X1;D/ is

.jwj�1/-linearizable. Then by Remark A.7, when n� 3, we know thatD is .jwj�1/-
comfortably embedded. So we get m.X;D/� jwj. Note however that the conclusion
in Theorem 1.5 is stronger, saying that this is an equality for the more general case
without using such explicit defining equations.
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6. Analytic compactification
In this section, we will prove Theorem 1.6. We will first sketch a proof following the
strategy of the classical work of Newlander and Nirenberg in [24] that is modified
to adapt to the setting of weighted spaces. Then we will write down the detailed
estimates by imitating the corresponding estimates in [24].

6.1. Reduction of Theorem 1.6 to Proposition 6.1
We refer to Section 5.1 for background. Denote U DLnD. Denote the standard com-
plex structure on U by J0. Assume that we have a complex structure J on some
neighborhood U� of D. Denote ˆ D J � J0. We assume that the index v 2 ¹1; 1º
associates to the fiber variable � D z1˛ and that h 2 ¹2; : : : ; n; 2; : : : ; nº associates to
the base variables ¹z2˛; : : : ; z

n
˛º. By abuse of notation, we decomposeˆ into four types

of components:

ˆD ˆhv Cˆ
v
hCˆ

v
v Cˆ

h
h

D �hv dz
v ˝ @zh C �

v
h dz

h˝ @zv C �
v
v dz

v ˝ @zv C �
h
h dz

h˝ @zh : (6.1)

We assume that ˆ satisfies jrjˆj!0 � C jr j
���j � j�jı.�Cj /. We first need to trans-

form this estimate to the corresponding estimate with respect to Q!0. For this, since we
know that the basic tensors satisfy (5.4) and (5.5), we can equivalently assume that ˆ
satisfiesˇ̌

.@
j1
zv@

j2
zh
ˆ/˝ .dzv/˝j1 ˝ .dzh/˝j2

ˇ̌
!0
� C jr j���j D C j�jı.�Cj /: (6.2)

Recall the norm in Section 5.1:

jdzvj!0 � C j�j
ıC1; jdzhj!0 � C j�j

ı

H) j.dzv/˝j1 ˝ dzh/˝j2 j!0 � j�j
j1.ıC1/Cj2ı D j�jıjCj1 :

Also, we have

jdzv ˝ @zh j!0 � C j�j; jdzh˝ @zv j!0 � C j�j
�1;

jdzv ˝ @zv j!0 � C; jdzh˝ @zh j!0 � C:

By these inequalities, it is easy to see that

j@
j1
zv@

j2
zh
�hv j� j�j�ı�1�j1 ; j@

j1
zv@

j2
zh
�vh j� j�j�ıC1�j1 ;

j@
j1
zv@

j2
zh
�vv j� j�j�ı�j1 ; j@

j1
zv@

j2
zh
�hh j� j�j�ı�j1 :

(6.3)
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PROPOSITION 6.1
Fix 
 2R>0 nN. Let J0 denote the standard complex structure on B��Bn�1. Assume
that J is an integrable almost complex structure on B� � Bn�1 and that the tensor
ˆD J � J0 is decomposed into four types of components:

ˆD J � J0

D ˆhv Cˆ
v
hCˆ

v
v Cˆ

h
h

D �hv dz
v ˝ @zh C �

v
h dz

h˝ @zv C �
v
v dz

v ˝ @zv C �
h
h dz

h˝ @zh ; (6.4)

where the index v 2 ¹1; 1º is associated to the first variable z1, and h 2 ¹2; : : : ; n;
2; : : : ; nº is associated to the variables ¹z2; : : : ; znº. Assume that there exists a con-
stant C such that for any j1 C j2 � 2nC 1 and all .z1; z2; : : : ; zn/ 2 B� � Bn�1 it
holds that

j@
j1
zv@

j2
zh
�hv j � C j�j


�1�j1 ; j@
j1
zv@

j2
zh
�vh j � C j�j


C1�j1 ;

j@
j1
zv@

j2
zh
�vv j � C j�j


�j1 ; j@
j1
zv@

j2
zh
�hh j � C j�j


�j1 :
(6.5)

Denote mD d
e. Then for sufficiently small R > 0, there exist J -holomorphic coor-
dinates � D .�1; �2; : : : ; �n/ W B�R � Bn�1R ! B�2R � Bn�12R and a constant C 0 such that
for any j1C j2 � 2nC 1 it holds thatˇ̌

@
j1
zv@

j2
zh

�
�1 � z1.�/

�ˇ̌
� C 0j�1jmC1�j1 Iˇ̌

@
j1
zv@

j2
zh

�
�k � zk.�/

�ˇ̌
� C 0j�1jm�j1 ; 2� k � n:

Remark 6.2
The result obtained here is a counterpart of [18, Theorem 3.1] in our different asymp-
totically conical setting. In the proof of Theorem 3.1 there, the authors used gauge
fixing and a result of Nijenhuis and Woolf [25, Theorem II]. (See [12] for a different
proof following a similar argument as in [18].) We aim to give a more direct proof
by following the fundamental work of Newlander and Nirenberg. One should also be
able to adapt the work of Nijenhuis and Woolf [25] and Malgrange [23] to the current
setting to prove the compactification (extension) of the complex structures considered
here.

Remark 6.3
If we assume that 
 > 1, then the existence of such coordinates follows from the
work of [19]. However, even in this case, Proposition 6.1 provides more information
(weighted estimates), which is needed to read out the embedding order of the divisor
at infinity.
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In the remainder of Section 6.1, we will sketch the proof of Proposition 6.1 and
show how Theorem 1.6 follows from it. Section 6.2 contains the technical details of
the proof of Proposition 6.1.

The .0; 1/-vector under the new complex structure J is given by

1

2
.1C

p
�1J /

@

@zi
D

@

@zi
C

p
�1

2
�
Nj

i

@

@zj
C

p
�1

2
�k
i

@

@zk
:

Denote 
D �ı and �D j�j D jz1j. Then from (6.3), we can write

.�
j

i
/D

	
O.�
/1�1 O.�
C1/1�.n�1/

O.�
�1/.n�1/�1 O.�
/.n�1/�.n�1/



: (6.6)

We have the same order estimates for .�k
i
/. When � is sufficiently small, the matrix

.ı
j

i
C
p
�1
2
�
j

i
/ is invertible. It is easy to get the order estimates

.ak
i
/ WD �

�
ı
j

i
C

p
�1

2
�
j

i

��1�p�1
2

�k
j

�
D

	
O.�
/1�1 O.�
C1/1�.n�1/

O.�
�1/.n�1/�1 O.�
/.n�1/�.n�1/



: (6.7)

To get an analytic compactification of the complex structure J , we want to solve
for a map z W BnR! Bn2R �Cn, where BnR D ¹.�

1; : : : ; �n/ 2CnI j�j j �Rº, such that
z is a homeomorphism onto the image and is holomorphic with respect to J0 and J .
For the map z to be holomorphic, dz.@=@ N�l/ should be a .0; 1/-vector for any l � 1.
It is easily seen that zi D zi .�/ must solve the following equations:

@zi

@�
l
C

nX
pD1

aip.z/
@zp

@�
l
D 0; i; l D 1; : : : ; n: (6.8)

We first recall the important homotopy operator in [24]. For a vector of n
complex-valued functions F D .f1; : : : ; fn/, denote (see [24, (2.5)])

TF D

n�1X
sD0

.�1/s

.sC 1/Š

X
0T j1@j1 � � �T

js@js � T
kfk ;

where
P
0 denotes the summation over all .s C 1/-tuples with j1; : : : ; js; k distinct,

and

T 1f .�/D
1

2�i

“
0<j� j<R

f .�; �2; : : : ; �n/

�1 � �
d� d N�;

T jf .�/D
1

2�i

“
j� j<R

f .�1; : : : ; �j�1; �; �j ; : : : ; �n/

�j � �
d� d N�; for j � 2:
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To adapt this to our setting, we need to modify T 1. First choose N D d
e. Then we
define (see (6.25) and Lemma 6.5)

QT 1f .�/D T 1f .�1; �2; : : : ; �n/� T 1f .0; �2; : : : ; �n/

�

N�1X
kD1

.T 1f /.k/.0; �2; : : : ; �n/
�k

kŠ
;

QT jf .�/D T jf .�/; if j � 2:

Then by Lemmas 6.5 and 6.6, these operators are well defined for functions f
such that f � O.j�1j
�1/ and satisfy (see [9, p. 775]) the following identities on
B�R �B

n�1
R :

@j QT
jf D f; j D 1; : : : ; n; and @j QT

kf D QT k@jf; for j ¤ k: (6.9)

Then we define

eTF.�/D n�1X
sD0

.�1/s

.sC 1/Š

X
0 QT j1@j1 � � �

QT js@js �
QT kfk :

Then using relation (6.9) to manipulate, we can easily get the following formula which
is a variation of the one in [24, (2.6)] by replacing the operator T j by QT j :

@j QTF � fj D

n�2X
sD0

.�1/s

.sC 2/Š

X
j QT j1@j1 � � �

QT js@js �
QT k.@jfk � @kfj /; (6.10)

where
P

j denotes the summation over all .s C 1/-tuples with j1; : : : ; js; k distinct
and different from j . From (6.8), we will denote

f i
l
D�

nX
pD1

aip.z/
@zp

@�
l
; F i D .f i

1
; f i
2
; : : : ; f in /D

nX
lD1

f i
l
d�

l
: (6.11)

Denote also zi .�/D zi .�/� �i . We then want to transform (6.8) into

zi D �i CeT�F i .z/�() z
i DeT�F i .� C z/

�
() zD JŒz	: (6.12)

We will show in Lemma 6.13 that the solution to this equation with the appropriate
control is indeed the solution to (6.8). To get solutions to the system (6.8) with the
required order estimates, we prescribe the following asymptotic behaviors:

z1 D �1CO.�1C
/; zj D �j CO.�
/

() z
1 DO.�1C
/; z

k DO.�
/: (6.13)
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Here and in the following, we still denote �D j�1j since j�1j and jz1j are comparable
with this prescription. If we denote by h the index ¹2; : : : ; nº, then the precise meaning
of (6.13) is the following:ˇ̌

@
l1
�1
@
l2
�h
.z1 � �1/

ˇ̌
� C.l1; l2/j�

1j1C
�l1 ;ˇ̌
@
l1
�1
@
l2
�h
.zh � �h/

ˇ̌
� C.l1; l2/j�

1j
�l1 ; for all l1; l2 � 0:
(6.14)

However, to carry out the argument in [24], we first need to define the space of func-
tions which have only “mixed” higher-order derivatives. So we will first consider the
functions ¹zi I i D 1; : : : ; nº satisfying

z1 D �1C QO.�1C
/; zj D �j C QO.�
/

() z
1 D QO.�1C
/; z

k D QO.�
/; (6.15)

which implies that the following estimates hold:ˇ̌
@
0l1
�1
@
0l2
�h
.z1 � �1/

ˇ̌
� C.l1; l2/j�

1j1C
�l1 ;ˇ̌
@
0l1
�1
@
0l2
�h
.zh � �h/

ˇ̌
� C.l1; l2/j�

1j
�l1 ;
(6.16)

where @0 means that we do not allow repeated derivatives with respect to any single
variable (see Section 6.2.2).

Under this prescription, by using (6.11) and the asymptotic behavior of aip , we
first show (see Lemma 6.11) that

.f 1N1 ; f
1
m/D

�
QO.�
 C �2
/; QO.�2
C1C �
C1/

�
D . QO.�
/; QO.�
C1/;

.f
j
N1
; f

j
m /D

�
QO.�
�1C �2
�1/; QO.�2
 C �
/

�
D
�
QO.�
�1/; QO.�
/

�
:

(6.17)

Then we show (see Lemma 6.9) that

eTŒF 1	D QO.�
C1/; eTŒF k	D QO.�
/ for k � 2:

This is compatible with the prescription in (6.15) and should allow us to use the
arguments in [24] to solve the system (6.12). However, to use the contraction-iteration
principle (see Lemma 6.10), we have to relax the asymptotic behaviors in (6.15) a
little bit by replacing 
 by a � satisfying

0 < � < 
; d�e D d
e and � …N: (6.18)

Although replacing 
 by � might seem like a loss of derivative, we will gain this �
back using the analyticity of transition functions.
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More precisely, in the next subsection, we will introduce the weighted multiple
Hölder norm k � knCn˛;.�C1;�/ and show in Theorem 6.12 that, for any z, Qz satisfying
that when R is sufficiently small and kzknCn˛;.�C1;�/ �R, kQzknCn˛;.�C1;�/ �R, then
the following estimates hold:
(1) ��JŒz	��

nCn˛;.�C1;�/
�R; (6.19)

(2) ��JŒz	� JŒQz	
��
nCn˛;.�C1;�/

�
1

2
kz� QzknCn˛;.�C1;�/: (6.20)

By standard iteration, there is a unique solution to the system (6.12) such that

z
1 D QO.�1C�/; z

j D QO.��/; or equivalently

z1 D �1C QO.�1C�/; zj D �j C QO.��/:
(6.21)

In the following, BR D ¹� 2CI j�j �Rº denotes the closed disk of radius R with
center 0, and B�R D ¹� 2CI0 < j�j �Rº denotes the punctured closed disk. We need
to show that the map � 7! z gives a coordinate chart for � 2 BnR when R is sufficiently
small. First note that ¹zi .�/º is the identity for �1 D 0 and is Hölder continuous on
¹�1 D 0º. Second, on UR D B�R �B

n�1
R , consider the Jacobian

JD
� @.zi ; zi /
@.�j ; �

j
/

�
:

By an argument similar to the one used to obtain (6.7), it is easy to see that J is
invertible if R is very small. So on UR, � 7! z is a local diffeomorphism to its image.
We just need to show that it is an injective map and hence a homeomorphism.

To do this, we decompose the coordinate change in (6.13) into two steps. First
we let

y1 D z1.�/D �1C QO
�
j�1j1C�

�
; yk D �k for k � 2: (6.22)

Since the Jacobian matrix is invertible and C � , the map is a C 1;�-diffeomorphism and
is clearly a change of coordinates. We can express � in terms of y to get

�1 D y1C QO
�
jy1j1C�

�
; �k D yk for k � 2:

Now we can write the map in (6.13) as

z1 D y1; zk D yk C QO
�
jy1j�

�
for k � 2:
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We just need to show that this is injective. We assume that z.y/D z. Qy/. Then y1 D
Qy1 and zj .y/D zj . Qy/. On the slice y1 D Qy1, we connect y and Qy by yt D .1� t /yC
t Qy. Then we have

0D
��z. Qy/� z.y/��

D

nX
jD1

ˇ̌̌Z 1

0

nX
kD1

.@ykz
j /.yt / � . Qy

k � yk/ dt
ˇ̌̌

D

nX
jD2

ˇ̌̌Z 1

0

nX
kD2

�
ı
j

k
C QO

�
jy1j�

��
. Qyk � yk/ dt

ˇ̌̌
� C.1�R�/k Qy � yk:

So if R is sufficiently small, then we indeed have Qy D y.
To get all the higher-order estimates for the functions as stated in Proposition 6.1,

that is,

z
1 DO.�1C�/; z

j DO.��/; or equivalently

z1 D �1CO.�1C�/; zj D �j CO.��/;
(6.23)

we need to apply similar arguments as in [24, Section 6] involving regularity theo-
rems for elliptic equations (6.8). Since this part of argument is now standard, we will
be brief and refer to [24, Section 6] for references on differentiability theorems. By
(6.21), we know that z1; : : : ; zn are C 1C˛1C�;� functions of �j , N�j under the weighted
Hölder norm. Because (6.8) is first-order elliptic, we infer that the zk’s are C 2C˛1C�;�

with respect to the variables �j , N�j . Combining this with the “mixed” second deriva-
tives from (6.21), we see that the zk’s are of class C 2C˛1C�;� whose norm is defined
using all derivatives (including repeated derivatives) with respect to �1; : : : ; �n. The
higher-order regularity follows from differentiating equations (6.8) and improving the
derivatives by a standard bootstrapping argument. See [12] for a different proof of the
higher-order estimates using the gauge-fixing method and regularity theorems.

This completes the sketch of the proof of Proposition 6.1. We will now explain
the comfortable order of the divisor in the last statement in Theorem 1.6. Note that
the transition functions on the bundle ND!D in terms of ¹zi˛º are standard ones:

z1ˇ D aˇ˛.z
00/z1˛; zkˇ D �

k
ˇ˛.z

00
˛/ for k � 2:

By the asymptotic behavior (6.23) and its inverse, we see that the transition functions
in the �-coordinates have the shape

�1ˇ D aˇ˛.�
00
˛/�

1
˛ CO

�
j�1˛j

�C1
�
; �kˇ D �

k
ˇ˛.�

00
˛/CO

�
j�1˛j

�
�
:

We know that �i
ˇ

, for any 1� i � n, is a holomorphic function of �˛ outside D, and

from the above expressions it is Hölder continuous across D D ¹�1˛ D 0º. So we see
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that �i
ˇ

is holomorphic across D and hence is a holomorphic function of �˛ . Denote
m D d�e D d
e D d�ıe (recall that 
 D �ı and � D 
 � � for small �). Then the
analyticity of holomorphic functions clearly implies that we must have the following
improved transition:

�1ˇ D aˇ˛.�
00
˛/�

1
˛ CR

1
mC1; �kˇ D �

k
ˇ˛.�

00
˛/CR

k
m;

where R1mC1 2 ImC1D , Rkm 2 ImD , where ID is the ideal sheaf of D generated by ¹�1˛º.
By Theorem A.8 (see also (3.6)), we see that in the compactification, the divisor D is
indeed .m� 1/-comfortably embedded. In this way, we prove Theorem 1.6.

6.2. Estimates for the proof of Proposition 6.1
Suppose that f is a complex-valued function defined on B�R � Bn�1R . Denote by Dj
either of the differential operators @

@�j
, @

@�
j . We denote by Dk a general kth-order

derivative Dk DDi1 � � �Dik with i1; : : : ; ik distinct (i.e., we only consider “mixed”
derivatives), and we denote by Dk;j DDi1 � � �Dik (resp., Dk;¹1;j º) such a derivative
with the i1; : : : ; ik distinct and different from j (resp., ¹1; j º). For a fixed positive
˛ < 1, we denote the difference quotient operators

ı1f D
f . Q�1; �2; : : : ; �n/� f .�1; �2; : : : ; �n/

j Q�1 � �1j˛

for 0 < j�1j �R;0 < j Q�1j �R;�1 ¤ Q�1;

ıif D
f .�1; : : : ; Q�i ; : : : ; �n/� f .�1; : : : ; �i ; : : : ; �n/

j Q�i � �i j˛

for i > 1; j�i j<R; j Q�i j<R;�i ¤ Q�i :

Denote ım D ıj1 � � � ıjm for 0 � m � n and j1; : : : ; jm distinct; ı0 will denote the
identity operator; ım;1 will denote such a difference quotient with j1; : : : ; jm distinct
and different from 1.

6.2.1. Single-variable estimates
The following is the standard Schauder estimate for the elliptic operator N@ for a single
variable.

LEMMA 6.4
Assume that ˛ 2 .0; 1/ is fixed. There exists a constant c > 0 such that, if w 2
C 1;˛.B1.0// satisfies @w

@�
D f in B1 and if f 2 C 0;˛.B1.0//, then

kwkC1;˛.B1=2/ � c
�
kwkL1.B1/Ckf kC0;˛.B1/

�
: (6.24)
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Proof
In the following proof, the constant c may change but does not depend on f 2
C 0;˛.B.0//. Denote operators

Tf .�/D
1

2�i

“
B1

f .�/

� � �
d� ^ d N�; Sw.�/D

1

2�i

Z
C

w.�/

� � �
d�:

Then w 2 C 1;˛.B1/ satisfies

wD T @ N�wC SwD Tf C Sw:

By Chern [9, Main Lemma], we have

kTf kC1;˛.B1/ � ckf kC0;˛.B1/:

On the other hand, because SwDw � Tf is holomorphic, we have

kSwkC1;˛.B1=2/ � ckSwkL1.B1/

� c
�
kwkL1.B1/CkTf kL1.B1/

�
� ckwkL1.B1/C ckf kL1.B1/:

We need to extend the above Schauder estimate to the weighted Hölder space. We
follow [26, Chapter 2] to define the weighted Hölder norm for functions on the punc-
tured disks. For any s > 0, denote the annulus ¹�1 2 CI s < j�1j < 2sº by A.s; 2s/.
First we define the norm on the annulus:

Œw	1;˛;s WD sup
A.s;2s/

jwj C s sup
A.s;2s/

jD1wj C s
˛ sup
x;y2A.s;2s/

jw.x/�w.y/j

jx � yj˛

C s1C˛ sup
x;y2A.s;2s/

jD1w.x/�D1w.y/j

jx � yj˛
:

The following is the scaling-invariant weighted Hölder norm for functions on the
punctured disk of radius R:

kwk
C
1;˛
� .BR.0//

D sup
s2.0;R=2�

s�� Œw	1;˛;s:

As pointed out in [26, Corollary 2.1], the following lemma is important for deriving
the rescaled Schauder estimate in Lemma 6.6.

Denote mD d�e D d
e, and denote the area form d�^d N�

2	
p
�1

by dV , or dV.�/ if we

want to emphasize the integration variable. For any f 2 C 1;˛��1.BR/, define
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QT f .�/D Tf .�/� Tf .0/�

m�1X
kD1

.Tf /.k/.0/
�k

kŠ

D
1

2�i

�“
BR

f .�/

� � �
d� ^ d N� �

m�1X
kD0

“
BR

f .�/�k

�kC1
d� ^ d N�

�
D

1

2�i

“
BR

f .�/�m

.� � �/�m
d� ^ d N�: (6.25)

LEMMA 6.5
Denote �D j�j for any � 2 B�R. Then there exists a positive constant C independent
of R such that for any f 2 C 1;˛��1.BR/, we have

k��� QT f kL1.BR/ � Ck�
1��f kL1.BR/: (6.26)

Proof
We can first estimate

j��� QT f j D j�j��
ˇ̌̌“

BR

f .�/�m

.� � �/�m
dV

ˇ̌̌
�
��j�j1��f ��

L1
j�jm��

“
BR.0/

dV

j� � �jj� jmC1��
:

We split the integral into three parts:“
BR.0/

D

“
B�=2.0/

C

“
B�=2.�/

C

“
BR.0/n.B�=2.0/[B�=2.�//

D IC IIC III:

The inequality (6.26) follows from the following estimates:

I � C
Z �=2

0

ds

sm���=2
� C���m;

II � C
Z �=2

0

ds

�mC1��
� C���m:

To estimate part III, it is easy to see that j� � �j � j� j
4

for � 2 BR.0/ nB�=2.�/. So we
can estimate for any � <m:

III� C
Z R

�=2

ds

smC1��
�

C

m� �

���
2

���m
�R��m

�
� C���m:

It is clear that (6.26) follows by combining the above estimates.
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LEMMA 6.6
If f 2 C 0;˛��1.BR/, then QT f 2 C 1;˛� .BR/ and satisfies

k QT f k
C
1;˛
� .BR/

� Ckf k
C
0;˛
��1

.BR/
:

Proof
Let F.�/ D QT f .�/. Let � D j�j. By Lemmas 6.4 and 6.5 and a standard rescaling
argument as in [26, Corollary 2.1], we have

k QT f k
C
1;˛
� .BR=2/

� Ckf k
C
0;˛
��1

.BR/
:

To get the estimate on BRnBR=2, we use the explicit formula of QT . As in [9, (18),
(26)], we have

F� D f .�/;

F� D
1

2�
p
�1

“
BR.0/

f .�/� f .�/

.� � �/2
d� d N�

�
1

2�
p
�1

m�1X
kD1

k�k�1
“

BR.0/

f .�/

�kC1
d� ^ d N�:

So ˇ̌̌ jF� j
j�j��1

ˇ̌̌
�

1

2�

1

j�j��1

“
BR.0/

jf .�/� f .�/j

j� � �j2
dV.�/

C

m�1X
kD1

kRk��k�1��f k1

Z R

0

ds

sk��C1
:

The second term on the right-hand side of the above identity is uniformly bounded by
Ck�1��f k1. To estimate the first integral term, we split it into two parts:“

BR.0/

D

“
B�=2.0/

C

“
BR.0/nB�=2.0/

D IC II:

Here we need to separate the integral over B�=2.0/ from each estimate since we only
have Hölder estimates for x and y of comparable lengths. Notice that we can assume
that R=8� j�j �R and estimate

I �
1

2�

“
B�=2.0/

1

.j�j � j� j/2

�
j� j1��

ˇ̌
f .�/

ˇ̌ j�j1��
j� j1��

C j�j1��
ˇ̌
f .�/

ˇ̌�
dV.�/

� Ck�1��f kL1.BR/
1

R2

Z R=2

0

.R1��s��1C 1/s ds
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� Ck�1��f kL1.BR.0//;

II � C
“

BR.0/nB�=2.0/

kf k
C
0;˛
��1

j� � �j˛R�˛

j� � �j2
dV

� Ckf k
C
0;˛
��1

R�˛
Z 2R

0

s˛�2C1 ds � Ckf k
C
0;˛
��1

:

So we get k�1��D1 QT f kL1 � Ckf kC0;˛
��1

, that is, the C 1-estimate. This implies the

C 0;˛-estimate

R˛ sup
x;y2A.R=8;R/

jw.x/�w.y/j

jx � yj˛
� Ckf k

C
0;˛
��1

:

Similarly, one can prove that

R1C˛ sup
x;y2A.R=8;R/

jD1w.x/�D1w.y/j

jx � yj˛
� Ckf k

C
0;˛
��1

;

with w D QT .f /. In fact, we can prove the inequality as in [25, Section 6.1e], again
the only difference is that we need to separate the integral over B�=2.0/ from each
estimate since we only have Hölder estimates for x and y of comparable lengths.

6.2.2. Multivariable estimates
Similarly to [24, (3.1)–(3.3)], we introduce the weighted multiple Hölder space by
incorporating the weighted first-order Hölder space for �1 and the usual first-order
Hölder spaces for the other variables. Formally, we introduce various norms:
(1) (Integral part)

kukn;� D

n�1X
kD0

�Rk
kŠ

sup
BR.0/��BR.0/n�1

� jDk;1uj

j�1j�

�

C
RkC1

.kC 1/Š
sup

BR.0/��BR.0/n�1

� jD1Dk;1uj

j�1j��1

��
:

(2) (Fractional part, i.e., difference quotient part)

Œu	n˛;� D

n�1X
mD1

�Rm˛
mŠ

sup
BR.0/��BR.0/n�1

� jım;1uj
j�1j�

�

C
R.mC1/˛

.mC 1/Š
sup

s2.0;R=2/

s˛�� sup
¹�1;Q�12A.s;2s/º

jı1ı
m;1uj

�
:
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(3) (0th-order weighted multiple Hölder norm)

kukn˛;� D QH˛;� Œu	D sup
BR.0/��BR.0/n�1

juj

j�1j�
C Œu	n˛;� :

(4) (First-order weighted multiple Hölder norm)

kuknCn˛;� D kukn;�

C

n�1X
kD0

�Rk
kŠ
ŒDk;1u	n˛;� C

RkC1

.kC 1/Š
ŒD1D

k;1u	n˛;��1

�

D

n�1X
kD0

�Rk
kŠ
QH˛;� ŒD

k;1u	C
RkC1

.kC 1/Š
QH˛;��1ŒD1D

k;1u	
�
:

(5) (Partial first-order weighted multiple Hölder norm)

kuk1n�1Cn˛;� D

n�1X
kD0

Rk

kŠ
sup

BR.0/��BR.0/n�1

QH˛;� ŒD
k;1u	;

kuk
j
n�1Cn˛;� D

n�2X
kD0

�Rk
kŠ

sup
BR.0/��BR.0/n�1

QH˛;� ŒD
k;¹1;j ºu	

C
RkC1

.kC 1/Š
QH˛;��1ŒD1D

k;¹1;j ºu	
�

for j � 2:

(6) (Anisotropically weighted norm for vector of functions) Denote z D

.z1.�/; : : : ; zn.�//, F D .f1; : : : ; fn/. Denote

kzknCn˛;.�C1;�/ D kz
1knCn˛;�C1C

nX
jD2

kzj knCn˛;� ;

kF kn�1Cn˛;.�;�C1/ D kf1k
1
n�1Cn˛;� C

nX
jD2

kfj k
j
n�1Cn˛;�C1:

Now we come back to solve the system (6.12) which is equivalent to

z
i DeT�F i .� C z/

�
D J

i Œz	; where F i D .f i
l
/D

�
�

nX
pD1

aip
@zp

@�
l

�
: (6.27)

Arguing as in [24], the following lemma is a consequence of the definitions of the
above norms and Lemma 6.6.
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LEMMA 6.7 (cf. [24, (3.4), Lemma 4.1, Lemma 4.3])
We have the following estimates:

kDjf k
j
n�1Cn˛;� �

c

R
kf knCn˛;�; j D 1; : : : ; n;

k QT jDjf k
l
n�1Cn˛;� � ckf k

l
n�1Cn˛;�; j; l D 1; : : : ; n; j ¤ l;

k QT 1f knCn˛;�C1 � cRkf k
1
n�1Cn˛;�;

k QT jf knCn˛;� � cRkf k
j
n�1Cn˛;� for j � 2:

(6.28)

Remark 6.8
Note that the idea for the above estimates are the following.
(1) Differentiation with respect to zj for j ¤ 1 keeps the weight unchanged and

produces an R�1 factor under appropriate norms. QT j for j ¤ 1 keeps the
weight unchanged and produces an R factor.

(2) Differentiation with respect to z1 decreases the weight and produces an R�1

factor. QT 1 improves the weight by 1 and produces an extra R factor.

Packing these estimates for components of F 1, F j , the above lemma implies the
following one.

LEMMA 6.9 (cf. [24, Theorem 4.1])
We have ��eT.F 1/��

nCn˛;�C1
� cRkF 1kn�1Cn˛;.�;�C1/I��eT.F j /��

nCn˛;�
� cRkF j kn�1Cn˛;.��1;�/; for j � 2:

The next lemma follows from the decay rate of .aiNj / in identity (6.7) and the
definition of norms listed above. It shows the reason for relaxing the asymptotics by
replacing 
 by �.

LEMMA 6.10 (cf. [24, Lemma 3.1])
Suppose that kzknCn˛;.�C1;�/ � 1. Then��a1

1
.� C z/

��
n�1Cn˛;�

�KR
��
�
1CR�kzknCn˛;.�C1;�/

�
;��a1

k
.� C z/

��
n�1Cn˛;�C1

�KR
��
�
1CR�kzknCn˛;.�C1;�/

�
;��ak

1
.� C z/

��
n�1Cn˛;��1

�KR
��
�
1CR�kzknCn˛;.�C1;�/

�
;��aj

k
.� C z/

��
n�1Cn˛;�

�KR
��
�
1CR�kzknCn˛;.�C1;�/

�
:
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The following lemma is the precise formulation of the estimates in (6.17). Notice
that if 
D 1, then we get back the estimate in [24, Lemma 5.1].

LEMMA 6.11 (cf. [24, Lemma 5.1])
If kzknCn˛;.�C1;�/ �R, then

kF 1kn�1Cn˛;.�;�C1/ � CR

��

�
1CR�kzknCn˛;.�C1;�/

�
;��F 1Œz	�F 1ŒQz	��

nCn˛;.�;�C1/
� CR
�1kz� QzknCn˛;.�C1;�/:

(6.29)

For j � 2, we have

kF j kn�1Cn˛;.��1;�/ � CR

��

�
1CR�kzknCn˛;.�C1;�/

�
;��F j Œz	�F j ŒQz	��

nCn˛;.��1;�/
� CR
�1kz� QzknCn˛;.�C1;�/:

(6.30)

Proof
We prove the first two estimates for F 1 D .f 1N1 ; f

1
Nm/. We first deal with f 1N1 :

f 1N1 D a
1
N1

@ Nz1

@ N�1
C
X
m>1

a1Nm
@ Nzm

@ N�1
: (6.31)

For the first term on the right-hand side of (6.31), we have the following estimate:���a1
1

@z1

@�
1

���1
n�1Cn˛;�

� ka1
1
k1n�1Cn˛;�

�
1C

��� @z1
@�
1

���1
n�1Cn˛;0

�
�KR
��

�
1CR�kzknCn˛;.�C1;�/

�
�
�
1Ckz1knCn˛;�C1R

��1
�

� R
��
�
1CR�kzknCn˛;.�C1;�/

�
;

where we estimated ka1N1k
1
n�1Cn˛;� using Lemma 6.10. Using Remark 6.8, we can

estimate ���a1
1
.� C z/

@z1

@�
1
� a1

1
.� C Qz/

@ Qz
1

@�
1

���1
n�1Cn˛;�

�
��a1
1
.� C z/� a1

1
.� C Qz/

��1
n�1Cn˛;�

���@z1
@�
1

���1
n�1Cn˛;0

C
��a1
1
.� C Qz/

��
n�1Cn˛;�

���@.z1 � Qz1/
@�
1

���1
n�1Cn˛;0

�KR
�1kz� QzknCn˛;.�C1;�/:
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In the above estimates, similar to the method in our proof that � 7! z gives coordi-
nate charts, we have estimated the difference of a1

1
.z/� a1

1
. Qz/ by decomposing into

two parts and then using the mean value theorem to get the above estimate (cf. [24,
p. 401]): ��a1

1
.� C z/� a1

1
.� C Qz/

��1
n�1Cn˛;�

D
��a1
1
.� C z/� a1

1
.�1C Qz1; �00C z

00/
��
n�1Cn˛;�

C
��a1
1
.�1C Qz1; �00C z

00/� a1
1
.�1C Qz1; �00C Qz00/

��
n�1Cn˛;�

�R
�1kz1 � Qz1knCn˛;�C1CR

�1kz00 � Qz00knCn˛;� :

The following estimates deal with the second part on the right-hand side of (6.31):���a1m @zm
@�
1

���1
n�1Cn˛;�

� ka1mk
1
n�1Cn˛;�C1

���@zm
@�
1

���1
n�1Cn˛;�1

�KR
��
�
1CR�kzknCn˛;.�C1;�/

�
kzmknCn˛;�R

��1

� R
��
�
1CR�kzknCn˛;.�C1;�/

�
:

In the last inequality, we used kzmknCn˛;� �R:

���a1m.� C z/
@zm

@�
1
� a1m.� C Qz/

@ Qz
m

@�
1

���1
n�1Cn˛;�

�
��a1m.� C z/� a1m.� C Qz/

��1
n�1Cn˛;�C1

���@zm
@�
1

���1
n�1Cn˛;�1

C
��a1m.� C Qz/��n�1Cn˛;�C1���@.zm � Qzm/

@�
1

���1
n�1Cn˛;�1

�KR
�1kz� QzknCn˛;.�C1;�/:

We used the estimate��a1m.� C z/� a1m.� C Qz/
��1
n�1Cn˛;�C1

D
��a1m.� C z/� a1m.�

1C Qz1; �00C z
00/
��
n�1Cn˛;�C1

C
��a1m.�1C Qz1; �00C z

00/� a1m.�
1C Qz1; �00C Qz00/

��
n�1Cn˛;�C1

�R
�1kz1 � Qz1knCn˛;�C1CR

�1kz00 � Qz00knCn˛;� :

In the same way, one can verify the other estimates.



RATES AND COMPACTIFICATIONS OF AC KÄHLER METRICS 1471

6.2.3. Completion of the proof of Proposition 6.1
Combining Lemmas 6.9 and 6.11, we get the following result.

THEOREM 6.12
For any z, Qz satisfying kzknCn˛;.�C1;�/ � R, kQzknCn˛;.�C1;�/ �R with R sufficiently
small, we have ��J.z/��

nCn˛;.�C1;�/
� cR
��

�
1CR�kzknCn˛;.�C1;�/

�
;��J.Qz/� J.z/

��
nCn˛;.�C1;�/

� cR
kQz� zknCn˛;.�C1;�/:

So for R sufficiently small, we indeed get the desired inequalities (6.19) and
(6.20) needed to apply the contraction-iteration principle to get a solution to the sys-
tem (6.27).

LEMMA 6.13
If z is a solution to the system (6.27), then z is a solution to (6.8), that is,

gi
j
D
@zi

@�
j
C

nX
pD1

aip.z/
@zp

@�
j
D 0; i; j D 1; : : : ; n: (6.32)

Proof
We follow the argument in [24, p. 403]. Using the formula (6.10) and calculating as
in [24, (2.11)–(2.12)] (see also [25, (4.1.2)]), we get the identity

gi
j
D

n�2X
sD0

.�1/s

.sC 2/Š

X
j QT j1@j1 � � �

QT js@js

� QT k
�
.@pa

i
m/.�/.@j z

m � g
p

k
� @kz

m � g
p

j
/
�
; (6.33)

where
P

j denotes the summation over all .s C 1/-tuples with j1; : : : ; js; k distinct
and different from j . We claim that from (6.33) the following holds:

kG1kn�1Cn˛;.�;�C1/CkG
j kn�1Cn˛;.��1;�/

� CR
C�
�
kG1kn�1Cn˛;.�;�C1/CkG

j kn�1Cn˛;.��1;�/
�
; (6.34)

where we denote Gi D .gi
1
; : : : ; gin/. Assuming that (6.34) holds, then when R is

sufficiently small we have Gi D 0 and so we indeed get the solution to (6.32). To
verify the claim, we need to estimate the term in the bracket:

G
i

jk
WD
X
p;m

.@pa
i
m/.�/.@j z

m � g
p

k
� @kz

m � g
p

j
/DW

X
m;p

G
i
Nj Nkmp

:
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We will estimate it for different cases of indices.
(1) (i D 1, j D 1) In this case k � 2 (since k ¤ j in

P
j ).

(a) (p D 1, m D 1) Note that @1a1N1 D
QO.R
�1/, N@1 Nz1 D QO.1 C R�/,

kg1Nk
kn�1Cn˛;�C1 D QO.R�C1/, N@k Nz

1 D N@kz
1 D QO.R�C1/,

kg1Nj
kn�1Cn˛;� D QO.R

�/. So we can estimate the summand as:

kG1
1kmp
kn�1Cn˛;.�;�C1/

�R
�1
�
.1CR�/ �R�C1kG1kn�1Cn˛;.�;�C1/

CR�C1kN@k Nz
1kn�1Cn˛;�C1 �R

�kG1kn�1Cn˛;.�;�C1/
�

�R
C�
�
kG1kn�1Cn˛;.�;�C1/CkG

j kn�1Cn˛;.��1;�/
�
:

For convenience, we will just write formally that the following holds:

G
1

1kmp
D QO

�
�
�1.�0C�C1C ��C1C�/

�
D QO.�
��/:

By similar reasoning, we can estimate the other summands:
(b) (p � 2, mD 1) G1

1kmp
D QO.�
.�0C� C ��C1C��1//D QO.�
��/.

(c) (pD 1, m� 2) G1
1kmp

D QO.�
.���1C�C1C �0C�//D QO.�
��/.

(d) (p � 2, m� 2) G1
1kmp

D QO.�
C1.���1C� C �0C��1//D QO.�
��/.

Combining estimates (a)–(d) above gives

kG1
N1 Nk
kn�1Cn˛;� �R
C�

�
kG1kn�1Cn˛;.�;�C1/CkG

j kn�1Cn˛;.��1;�/
�
:

The same remark applies to the notation in the following estimates:
(2) (i D 1, j � 2) In this case k can be 1.

(a) (k D 1) We estimate norm kG1Nj N1kn�1Cn˛;� .

(i) (p D 1, m D 1) G1
j1mp

D QO.�
�1.��C1C� C �0C�C1// D

QO.�
��/.
(ii) (p � 2, m D 1) G1

j1mp
D QO.�
.��C1C��1 C �0C�// D

QO.�
��/.
(iii) (p D 1, m � 2) G1

j1mp
D QO.�
.�0C� C ���1C�C1// D

QO.�
��/.
(iv) (p � 2, m � 2) G1

j1mp
D QO.�
C1.�0C��1 C ���1C�// D

QO.�
��/.
(b) (k � 2) We use the norm kG1

Nj Nk
kn�1Cn˛;�C1.

(i) (pD 1,mD 1) G1
jkmp

D QO.�
�1.��C1C�C1C��C1C�C1//D

QO.�
C���C1/.
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(ii) (p � 2, m D 1) G1
jkmp

D QO.�
.��C1C� C ��C1C�// D

QO.�
C���C1/.
(iii) (p D 1, m � 2) G1

jkmp
D QO.�
.�0C�C1 C �0C�C1// D

QO.�
��C1/.
(iv) (p � 2, m � 2) G1

jkmp
D QO.�
C1.�0C� C �0C�// D

QO.�
��C1/.
(3) (i � 2, j D 1) In this case k � 2. From the expression of Gi

jk
, we see that the

only difference between this and the case i D 1, j D 1 lies in the term @pa
i
m.

We just need to decrease each order by 1 to get

G
i

1k
D QO.�
���1/;

or equivalently,

kGi
N1 Nk
kn�1Cn˛;� �R


C��1
�
kG1kn�1Cn˛;.�;�C1/CkG

j kn�1Cn˛;.��1;�/
�
:

(4) (i � 2, j � 2) In this case, k can be 1. Again, we see that the only difference
between this and the case i D 1, j � 2 lies in the term @pa

i
m. So we just need

to decrease each order by 1 to get

G
i

j1
D QO.�
���1/ and G

i

jk
D QO.�
��/:

Now from (1), we have that

kg1
1
k1n�1Cn˛;� � C

X
k�2

k QT kG1
1k
kn�1Cn˛;�

� CR
C�
�
kG1kn�1Cn˛;.�;�C1/CkG

j kn�1Cn˛;.��1;�/
�
:

From (2), we have for j � 2,

kg1
j
k
j
n�1Cn˛;� � C

�
k QT 1G1

j1
k
j
n�1Cn˛;�C1C

X
k�2

k QT kG1
jk
k
j
n�1Cn˛;�C1

�
� CR
C�

�
kG1kn�1Cn˛;.�;�C1/CkG

j kn�1Cn˛;.��1;�/
�
:

Note that we have used the fact from (6.7) that the operator QT 1 improves the weight
from � to �C1. The same argument applies to items (3) and (4) as well. So we indeed
get the estimate (6.34).

Appendix

A.1. Neighborhoods of complex submanifolds after Grauert–Abate–Bracci–Tovena
Assume that S is a smooth complex submanifold of X . In the Introduction, we
recalled the definition of S.k/ and the concept of linearizability. Grauert [14] showed
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that the obstruction for extending an isomorphism S.k � 1/! SN .k � 1/ to an iso-
morphism S.k/! SN .k/ lies in the cohomology group H 1.S;‚X jS ˝ IkS=I

kC1
S /.

He also pointed out that this obstruction consists of two parts. To see this, consider
the exact sequence

0!‚S ˝ IkS=I
kC1
S !‚X jS ˝ IkS=I

kC1
S !NS ˝ IkS=I

kC1
S ! 0

from which we get the long exact sequence

� � � !H 1.S;‚S ˝ IkS=I
kC1
S /

!H 1.S;‚X jS ˝ IkS=I
kC1
S /!H 1.S;NS ˝ IkS=I

kC1
S /! � � � :

So, roughly speaking, the obstruction comes from two parts: one from H 1.S;NS ˝

IkS=I
kC1
S /, and the other from H 1.S;‚S ˝ IkS=I

kC1
S /. In [1], Abate, Bracci, and

Tovena explicitly described these two cohomological obstruction classes, and intro-
duced the notion of k-splitting and k-comfortably embedded such that k-linearizable
equals k-splitting plus .k � 1/-comfortably embedded with respect to the induced
.k�1/th-order lifting. (This section includes results from Abate, Bracci, and Tovena’s
work referenced in the main body of the paper.)

Definition A.1 ([1, Definitions 2.1, 2.2])
(1) S is k-splitting in X (for some k � 1) if the exact sequence

0�! IS=I
kC1
S �!OX=I

kC1
S �!OS ! 0

splits as a sequence of sheaves of rings.
(2) A k-splitting atlas for S � X is an atlas ¹.V˛; z˛/º of X adapted to S (i.e.,

V˛ \ S ¤; implies V˛ \ S D ¹z1˛ D � � � D z
m
˛ D 0º) such that

@kz
p

ˇ

@zr1 � � �@z
rk
˛

ˇ̌̌
S
� 0;

for all r1; : : : ; rk D 1; : : : ;m, all p DmC 1; : : : ; n, and all indices ˛, ˇ such
that V˛ \ Vˇ \ S ¤;.

(3) An atlas ¹.V˛; z˛/º adapted to S is adapted to a kth-order lifting � W OS !
OM=I

kC1
S if

�Œf 	1 D

kX
lD0

.�1/l
h @lf

@z
r1
˛ � � �@z

rl
˛

zr1˛ � � � z
rl
˛

i
kC1

; (A.1)

for every f 2O.V˛/ and all indices ˛ such that V˛ \ S ¤;.
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In the following, if S is k-splitting, we will fix a lifting: �k W OS ! OX=I
kC1
S .

We also denote by �h;k the natural map

�h;k WOX=I
hC1
S !OX=I

kC1
S ; for h� k: (A.2)

PROPOSITION A.2 ([1, Proposition 2.2])
Assume that S is .k � 1/-splitting in X , let �k�1 W OS ! OX=I

k
S be a .k � 1/th-

order lifting, and let VD ¹.V˛; �˛/º be a .k � 1/-splitting atlas adapted to �k�1. Let
g
�k�1
k
2H 1.S;Hom.�S ;IkS=I

kC1
S // be the Čech cohomology class represented by a

1-cocycle ¹.g�k�1
k

/ˇ˛º 2H
1.VS ;Hom.�S ;IkS=I

kC1
S // given by

.g
�k�1
k

/ˇ˛ D�
1

kŠ

@kz
p
˛

@z
r1
ˇ
� � �@z

rk
ˇ

ˇ̌̌
S

@

@z
p
˛

˝ Œz
r1
ˇ
� � � z

rk
ˇ
	kC1

2 H 0.V˛ \ Vˇ \ S;‚S ˝ IkS=I
kC1
S /: (A.3)

Then there exists a kth-order lifting �k WOS !OX=I
kC1
S such that �k�1 D �k;k�1 ı

�k if and only if g�k�1
k
D 0. We call this g

�k�1
k

the obstruction to k-splitting relative
to �k�1.

PROPOSITION A.3 ([1, Proposition 3.2])
Assume that S is k-splitting in X , and let � WOS !OX=I

kC1
S be a kth-order lifting,

with k � 0. Then for any 1 � h � k C 1, the lifting � induces a structure of locally
OS -free modules on IS=I

hC1
S for 1� h� kC 1 in such a way that the sequence

0�! IhS=I
hC1
S �! IS=I

hC1
S �! IS=I

h
S �! 0 (A.4)

becomes an exact sequence of locally OS -free modules.

Definition A.4 ([1, Definitions 3.1, 3.2])
(1) If S is k-splitting in X and the sequence (A.4) splits for 1 � h � k C 1,

then S is called k-comfortably embedded in X . Denote by �h�1;h W IS=IhS !
IS=I

hC1
S the splitting OS -morphism of the sequence (A.4) and the comfort-

able splitting sequence �k D .�0;1; : : : ; �k;kC1/.
(2) A k-comfortable atlas is an atlas ¹.V˛; z˛/º adapted to S such that

@z
p

ˇ

@zr˛
2 IkS ; and

@2zr
ˇ

@z
s1
˛ @z

s2
˛

2 IkS

()
@kz

p

ˇ

@z
r1
˛ � � �@z

rk
˛

ˇ̌̌
S
� 0; and

@kC1zs
ˇ

@z
r1
˛ � � �@z

rkC1
˛

ˇ̌̌
S
� 0;
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for all r1; : : : ; rk D 1; : : : ;m, all p DmC 1; : : : ; n, and all indices ˛, ˇ such
that V˛ \ Vˇ \ S ¤;.

Remark A.5
Any submanifold S is always 0-comfortably embedded and 0-linearizable, but is not
always 1-linearizable (which is equivalent to having a splitting tangent sequence). If
S is k-comfortably embedded, then S is also k-splitting.

THEOREM A.6 ([1, Corollary 3.6])
Assume that there exists a kth-order lifting �k W OS ! OX=I

kC1
S such that S is

.k�1/-comfortably embedded inX with respect to �k�1 D �k;k�1 ı�k . Fix a .k�1/-
comfortable pair .�k�1;�k�1/, and let VD ¹.V˛; z˛/º be a projectable atlas adapted
to �k and .�k�1;�k�1/. Then the cohomology class h�k associated to the exact
sequence (A.4) is represented by 1-cocycle ¹h�k

ˇ˛
º 2H 1.VS ;NS˝IkC1S =IkC2S / given

by

h
�k
ˇ˛
D�

1

.kC 1/Š

@z
s1
ˇ

@z
r1
˛

� � �
@z
skC1
ˇ

@z
rkC1
˛

@kC1zt˛

@z
s1
ˇ
� � �@z

skC1
ˇ

ˇ̌̌
S
@zt˛ ˝ Œz

r1
˛ � � �z

rkC1
˛ 	kC2:

Remark A.7
If D is a smooth divisor, then the obstruction to k-comfortable embedding lies in
H 1.D;ND ˝ IkC1D =IkC2D /DH 1.D; .ND/

�k/. If we assume that the normal bundle
ND is ample on D and n� 1D dimD � 2, then the Kodaira–Nakano vanishing theo-
rem gives H 1.D; .ND/

�k/D 0 for any k � 1. So in this case, there is no obstruction
to passing from .k � 1/-comfortable embedding to k-comfortable embedding (with
respect to any k-splitting). Note that D is always 0-comfortably embedded. So we
obtain that ifND is ample onD and dimX � 3, thenD is k-comfortably embedded if
and only if D is k-splitting, and if and only if D is k-linearizable (see Theorem A.9).

THEOREM A.8 ([1, Theorems 2.1, 3.5])
S is k-splitting in X if and only if there is a k-splitting atlas VD ¹.V˛; z˛/º of X ,
that is an atlas adapted to S such that´

zr
ˇ
D
Pm
sD1.aˇ˛/

r
s .z˛/z

s
˛; for r D 1; : : : ;m;

z
p

ˇ
D �

p

ˇ˛
.z00˛/CR

p

kC1
; for pDmC 1; : : : ; n;

where z00˛ D .z
mC1
˛ ; : : : ; zn˛/ are local coordinates on S , and Rp

kC1
denotes a term

belonging to IkC1S . Furthermore, S is k-comfortably embedded in X if and only if
there is a k-comfortable atlas VD ¹.V˛; z˛/º, that is an atlas adapted to S such that
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zr
ˇ
D
Pm
sD1.aˇ˛/

r
s .z
00
˛/z

s
˛ CR

r
kC2

; for r D 1; : : : ;m;

z
p

ˇ
D �

p

ˇ˛
.z00˛/CR

p

kC1
; for pDmC 1; : : : ; n;

where Rr
kC2
2 IkC2S and Rp

kC1
2 IkC1S .

THEOREM A.9 ([1, Theorem 4.1])
S is k-linearizable if and only if S is k-splitting inX and .k�1/-comfortably embed-
ded with respect to the .k � 1/th-order lifting induced by the k-splitting, if and only
if there is an atlas V such that the changes of coordinates are of the form´

zr
ˇ
D
Pm
sD1.aˇ˛/

r
s .z
00
˛/z

s
˛ CR

r
kC1

for r D 1; : : : ;m;

z
p

ˇ
D �

p

ˇ˛
.z00˛/CR

p

kC1
for pDmC 1; : : : ; n;

where Rr
kC1

;RkC1p 2 IkC1S .

A.2. Deformation of normal algebraic varieties

A.2.1. First-order deformations
Assume that Z is a complex analytic variety in CN . Choose any analytically open set
W of CN , and assume that IZ.W / is generated by ¹f1; : : : ; fd º. Let Z! B be a flat
deformation of Z with Z0 D Z, which is realized as an embedding deformation of
Z! CN . Assume that IZt .W / is generated by ¹f1 C tg1; : : : ; fd C tgd º. Then by
the flatness condition, ¹giº induces a morphism

Ng W IZ=I
2
Z!OCN =IZ DOZ ;

X
i

Œfihi 	 7!
X
i

gihi jZ :

So we get Ng 2 HomOZ .IZ=I
2
Z ;OZ/ DH

0.Z;NZ/. To get the space of first-order
infinitesimal deformations of Z, one considers the conormal exact sequence

IZ=I
2
Z!�CN jZ!�Z! 0;

whose dual defines the sheaf T 1
Z (see [31, Section 1.2] and [15, Proposition II1.25]):

0!‚Z!‚CN jZ!NZ! T 1
Z ! 0:

Since we assumed that Z is an embedding in CN , we get the exact sequence

0!H 0.Z;‚Z/!H 0.Z;‚CN jZ/!H 0.Z;NZ/
 Z
�! T1Z! 0: (A.5)

In particular, T1Z is defined so that (A.5) becomes exact and is not equal to
H 1.Z;‚Z/ in general. The image of Ng in T1Z is the first-order information of
the deformation Z! B.
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PROPOSITION A.10 ([31, Theorem 1])
Assume that Z has an isolated normal singularity o, and denote U DZ n ¹oº. Then
there are exact sequences

H 0.U;‚CN jU / ! H 0.U;NU /
 U
�! T1Z! 0; (A.6)

0 �! T1Z
�U
!H 1.U;‚U /!H 1.U;‚CN jU /: (A.7)

Proof
For the reader’s convenience, we sketch the proof here. Because Z is normal, by
Serre’s criterion for normality, Z has depth depthoZ � 2 at its vertex. Because the
first three sheaves in (A.5) are reflexive, by [30, Lemma 1] the depth of each is at
least 2. So in (A.5) we can replace H 0.Z; �/ by H 0.U; �/ to get

0!H 0.U;‚U /!H 0.U;‚CN jU /!H 0.U;NU /! T1Z! 0: (A.8)

On the other hand, because U is smooth and embedded into CN , we have

0!‚U !‚CN jU !NU ! 0;

which gives us the exact sequence

0!H 0.U;‚U /!H 0.U;‚CN jU /

!H 0.U;NU /
ı
�!H 1.U;‚U /!H 1.U;‚CN jU /: (A.9)

Combining (A.8) and (A.9), we get (A.6) and (A.7).

A.2.2. Deformation of affine cones
As an example of the above general theory, consider a projective manifoldD � PN�1.
We assume that D is projectively normal in PN�1 so that the affine cone over D is
normal and is equal to C D C.D;H/, where H is the hyperplane bundle of PN�1.
Then it is easily verified (see [4], [31]) that

H 0.U;‚CN jU /D

C1X
jD�1

H 0
�
D;OD.j C 1/

�
;

H 0.U;NU /D

C1X
jD�1

H 0
�
D;ND.j /

�
:

Decompose T1C D
PC1
jD�1T1C .j / into weight spaces. Then by (A.6) we have the

exact sequence

H 0
�
D;OD.j C 1/

�N Jac
�!H 0

�
D;ND.j /

�
�! T1C .j /! 0: (A.10)
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Example A.11 (cf. [4, Section 4], [21])
Assume that Dn�1 � PN�1 is a complete intersection

D D

N�n\
iD1

¹Fi D 0º � PN�1;

where Fi is a homogeneous polynomial of degree di . We assume that ¹Z1; : : : ;ZN º
are homogeneous coordinates of PN�1 and denote

R.D;H/D

C1M
mD0

H 0.D;mH/ŠCŒZ1; : : : ;ZN 	=hF1; : : : ;FN�ni:

Note that this is nothing but the affine coordinate ring of C.D;H/. Then

H 0
�
D;OD.j C 1/

�
DH 0

�
D;.j C 1/H

�
DR.D;H/.j C 1/;

H 0
�
D;ND.j /

�
D

N�nM
iD1

H 0
�
D;.di C j /H

�

D

N�nM
iD1

R.D;H/.di C j /:

The map

Jac WR.D;H/.j C 1/N !
N�nM
iD1

R.D;H/.di C j /

is given by the Jacobian matrix .@Fk=@Zl/
lD1;:::;N
kD1;:::;N�n

, with the quotient

T1C .j /D

LN�n
iD1 R.D;H/.di C j /

Jac.R.D;H/.j C 1/˚N /
: (A.11)

Now assume that G D ¹gi D gi .z1; : : : ; zN /; i D 1; : : : ;N � nº consists of (not nec-
essarily homogeneous) polynomials. We can consider the deformation of C.D;H/�
CN given by

Ct D

N�n\
iD1

®
Fi .z1; : : : ; zN /C tgi D 0

¯
�CN :

If we assume that the image ŒG 	 in T1C is not zero, then, by (A.10), we see that the
weight of this deformation is the weight of ŒG 	. Note that the polynomials in the image
of Jac have degree at least di �1. So if gi is of degree ei � di �2, then it is easy to see
that ŒG 	 is indeed not zero and the weight is equal to max¹ei � diº D �min¹di � eiº.
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Remark A.12
The reason that we assume the nonvanishing of ŒG 	 is to guarantee that the induced
map C! T1C does not have a vanishing first-order derivative. Otherwise, we can
consider the reduced Kodaira–Spencer class, as the following example shows:

¹z21 C z
2
2 C z

2
3 D 0º� ¹z21 C z22 C z23 C tz3 D 0º:

We have T1C DCŒz1; z2; z3	=hz1; z2; z3i. So G D .gD z3/ gives the vanishing image
ŒG 	D 0. However, we have

¹z21 C z
2
2 C z

2
3 C tz3 D 0º D

°
z21 C z

2
2 C .z3C t=2/

2 �
t2

4
D 0

±
Š
°
z21 C z

2
2 C Qz

2
3 �

t2

4
D 0

±
:

So by Definition 2.11 and (2.32), we see that the order of the deformation is equal to
2 and the weight of the deformation is equal to �2.

Finally, we briefly recall Pinkham’s results on deformation of isolated singulari-
ties with C�-actions. We state the results in our setting of affine cones.

THEOREM A.13 (see [27], [28])
(1) There exists a formal versal C�-equivariant deformation C! V of C .
(2) Let Y! T be any formal C�-equivariant deformation of X . Then there exists

a C�-equivariant morphism � W T ! V and a C�-equivariant isomorphism of
the deformation Y! T with the pullback X �V T ! T .

Let tj be homogeneous generators of the maximal ideal of weigh d.tj /. Let J�

be the ideal in OV generated by ¹tj Id.tj / < 0º. Let V � be the subvariety defined
by J�.

THEOREM A.14 ([28, Theorem 2.9])
The deformation C�! V � of C extends to a proper flat family C

�
! V � of defor-

mations of NC . Moreover, there is an isomorphism C �C ŠD1�V
�, and C

�
! V �

is a locally trivial deformation near D1.
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