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Based on Donaldson’s method, we prove that, for an integral Kähler class, when there is

a Kähler metric of constant scalar curvature, then it minimizes the K-energy. We do not

assume that the automorphism group is discrete.

1 Introduction

Let X be a compact Kähler manifold of dimension nand fix a Kähler class [ω] on X. Define

the Kähler potential space

K(ω) := {φ ∈ C ∞(X, R) ; ω +
√−1

2π
∂∂̄φ > 0} (1)

We will write K for K(ω) if the reference metric ω is clear. K := K/R is the space of Kähler

metrics in [ω]. The K-energy functional was defined by Mabuchi [10].

Definition 1.1. For any φ ∈ K, let ωφ = ω + (
√−1/2π)∂∂̄φ ∈ K, define

νω(ωφ) = − 1

V

∫ 1

0
dt

∫
X
(S(ωφt) − S)

dφt

dt
ωn

φt
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2162 C. Li

φt is any path connecting 0 and φ in K. S(ωφ) denotes the scalar curvature of Kähler

metric ωφ , and

S = 1

V

∫
X

S(ω)ωn = nc1(X) · [ω]n−1

[ω]n , V =
∫

X
ωn

is the average of scalar curvature, which is independent of chosen Kähler metric in

[ω]. �

The K-energy is well defined, that is, it does not depend on the path connecting 0

and φ. In particular, we can take φ(t) = tφ. A Kähler metric of constant scalar curvature

is a critical point of K-energy and it is a local minimizer.

Now assume the Kähler class is c1(L) ∈ H2(X, Z) ∩ H1,1(X, R) for some ample line

bundle L over X.

In this note, we prove the following theorem:

Theorem 1.2. Suppose that there is a metric ω∞ of constant scalar curvature in the

Kähler class c1(L). Then ω∞ minimizes the K-energy in this Kähler class. �

In the case of Kähler–Einstein metrics, this result was proved by Bando and

Mabuchi in [1] and [2]. In [7], Donaldson proved the above theorem under the assumption

that the automorphism group Aut(X, L) is discrete. Here Aut(X, L) denotes the group

of automorphisms of the pair of (X, L) modulo the trivial automorphism C∗ (acting by

constant scalar multiplication on the fibres). The theorem was proved for more general

extremal Kähler metrics on any compact Kähler manifolds by Chen–Tian in [5], where

the authors used geodesics in infinite dimensional space of Kähler metrics in [ω]. It can

also be proved by recent result of Chen–Sun [4], where they use geodesic approximation

to prove weak convexity of K-energy.

In this note, we use Donaldson’s method to prove the theorem for every integral

class case.

The strategy to prove the theorem is finite dimensional approximation. We sketch

the idea here.

Tian’s approximation theorem (Proposition 2.2 and Corollary 2.3) says that K
can be approximated by a sequence of finite dimensional symmetric spaces Hk. Here

Hk ∼= GL(Nk, C)/U (Nk) is the space of Hermitian metrics on the complex vector space

H0(X, Lk).
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Kähler Metric Obtains the Minimum of K-energy 2163

In [7], Donaldson defined a sequence of functional Lk on K, which approximate

K-energy as k → ∞. When restricted to Hk, Lk is bounded below by the logarithmic of

Chow norm. It was known that balanced metric obtains the minimum of Chow norm

[16, 23]. In [6], Donaldson already proved, in the case of discrete automorphism group,

the existence of balanced metrics, which approximate Kähler metric of constant scalar

curvature. Putting these together, he can prove the theorem.

Mabuchi [12–14] extended many results of [6] to the case where the varieties

have infinitesimal automorphisms. As Mabuchi [11] showed, if the automorphism group

is not discrete, in general there will be no balanced metrics. Instead, Mabuchi defined T-

balanced metrics and T-stability with respect to some torus group contained in Aut(X).

Donaldson claimed [7] one can use these new techniques to prove the above theorem

without assuming that the automorphism group is discrete.

In this note, we use the same quantization strategy. But we don’t need existence

of balanced metrics nor T-balanced metrics. Instead we use simpler Bergman metrics

constructed directly from ω∞. Using asymptotic expansion of Bergman kernel, we show

that Bergman metrics are almost balanced in an asymptotical sense (Proposition 2.4),

and they can help us to prove the theorem. In this way, we don’t need the restriction on

the automorphism group; moreover, our argument is more direct.

As can be seen from the following, the argument follows [7] closely. The idea of

using almost balanced metrics is inspired by works of Mabuchi. In particular, the proof

of Lemma 3.3 is inspired by the argument of [15], page 13. See Remark 3.1. As the above

work shows, the convexity of various functionals is the essential property behind the

argument.

2 Notations and Preliminaries

2.1 Maps between Kk and Hk

We will use some definitions and notations from [7]. The set K defined in (1) depends

on reference Kähler metric ω. However in the following, we will omit writing down this

dependence, because it’s clear that K is also the set of metrics h on L whose curvature

form

c1(L , h) := −
√−1

2π
∂∂̄ log h
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2164 C. Li

is a positive (1,1) form on X. Let Kk denote the set of Hermitian metrics on Lk with

positive curvature form, then Kk 
 K = K1. Let Nk = dim H0(X, Lk), V = ∫
X c1(L)n. We

have maps between Kk and Hk.

Definition 2.1.

Hilb : Kk −→ Hk

hk �→ ‖s‖2
Hilb(hk)

= Nk

Vkn

∫
X

|s|2hk
c1(Lk, hk)

n, ∀s ∈ H0(X, Lk)

FS : Hk −→ Kk

Hk �→ |s|2FS(Hk)
= |s|2∑Nk

α=1 |s(k)
α |2

, ∀s ∈ Lk.

In the above definition, {s(k)
α ; 1 ≤ α ≤ Nk} is an orthonormal basis of the Hermitian com-

plex vector space (H0(X, Lk), Hk). �

2.2 Bergman metrics, expansions of Bergman kernels

For any fixed Kähler metric ω ∈ c1(L), take a Hermitian metric h on L such that

c1(L , h) = ω, the kth Bergman metric of h is

hk = FS(Hilb(h⊗k)) ∈ Kk.

Let {s(k)
α , 1 ≤ α ≤ Nk} be an orthonormal basis of Hilb(h⊗k). Define the kth (suitably

normalized) Bergman kernel of ω

ρk(ω) = Nkn!
Vkn

Nk∑
α=1

|s(k)
α |2h⊗k.

Note that h is determined by ω up to a constant, but ρk(ω) doesn’t depend on the

chosen h.

The following proposition is now well known.

Proposition 2.2 ([3, 9, 19, 20, 22]).

(i) For fixed ω, there is an asymptotic expansion as k → +∞

ρk(ω) = A0(ω) + A1(ω)k−1 + . . .

where Ai(ω) are smooth functions on X defined locally by ω.
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Kähler Metric Obtains the Minimum of K-energy 2165

(ii) In particular

A0(ω) = 1, A1(ω) = 1

2
S(ω).

(iii) The expansion holds in C ∞ in that for any r, N ≥ 0

∥∥∥∥∥ρk(ω) −
N∑

i=0

Ai(ω)k−i

∥∥∥∥∥
C r(X)

≤ Kr,N,ωk−N−1

for some constants Kr,N,ω. Moreover the expansion is uniform in that for any

r, N, there is an integer s such that if ω runs over a set of metrics, which are

bounded in C s, and with ω bounded below, the constants Kr,N,ω are bounded

by some Kr,N independent of ω. �

Remark 2.1. We choose a particular normalization of Bergman kernel, so that the ex-

pansion starts with order 0, other than order n as it appeared in [6, Proposition 6]. �

The following approximation result is a corollary of Proposition 2.2.(i)–(ii).

Corollary 2.3 ([20]). Using the notation at the beginning of this subsection, we have, as

k → +∞, (hk)
1/k → h, and (1/k)c1(Lk, hk) → ω, the convergence in C ∞ sense. More pre-

cisely, for any r > 0, there exists a constant Cr,ω such that

∥∥∥∥∥∥log
h

1
k
k

h

∥∥∥∥∥∥
C r

≤ Cr,ωk−2,

∥∥∥∥1

k
c1(Lk, hk) − ω

∥∥∥∥
C r

≤ Cr,ωk−2. (2)
�

Proof. It’s easy to see that

(hk)
1
k = h ·

(∑
α

|s(k)
α |2h⊗k

)− 1
k

=: he−φk.
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2166 C. Li

Note that by the expansion in Proposition 2.2.(i)–(ii), we have

∑
α

|sα|2h⊗k = (Nkn!/Vkn)
∑Nk

α=1 |s(k)
α |2

h⊗k

Nkn!/Vkn = 1 + 1
2 S(ω)k−1 + O(k−2)

1 + 1
2 Sk−1 + O(k−2)

= 1 + O(k−1).

So

φk = 1

k
log

(∑
α

|s(k)
α |2h⊗k

)
= O(k−2).

The error term is in C ∞ sense. So the first inequality in (2) holds. The second inequality

in (2) follows because

1

k
c1(Lk, hk) − ω =

√−1

2π
∂∂̄φk. �

Now assume we have a Kähler metric of constant scalar curvature ω∞ in the

Kähler class c1(L). Take a h∞ ∈ K1 such that

ω∞ = c1(L , h∞).

We will make extensive use of the kth Bergman metric of h∞ and its associated objects,

so for the rest of this note, we denote

H∗
k = Hilb(h⊗k∞ ), h∗

k = FS(H∗
k ) = FS(Hilb(h⊗k∞ )), ω∗

k = c1(Lk, h∗
k) =

√−1

2π
∂∂̄ log

⎛⎝ Nk∑
α=1

|τ (k)
α |2

⎞⎠ .

(∗)

Hereafter, we fix an orthonormal basis {τ (k)
α , 1 ≤ α ≤ Nk} of H∗

k = Hilb(h⊗k∞ ).

The next proposition says we can improve the convergence rate in corollary 2.3

for h∞. This will be important for us. (Compare [15], (3.8)–(3.10))

Proposition 2.4. For any r > 0, there exists some constant Cr,ω∞ such that

∥∥∥∥∥∥
Nk∑

α=1

|τ (k)
α |2

h⊗k∞
− 1

∥∥∥∥∥∥
C r

≤ Cr,ω∞k−2 (3)
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Kähler Metric Obtains the Minimum of K-energy 2167

So in particular,

√−1

2π
∂∂̄ log

⎛⎝ Nk∑
α=1

|τ (k)
α |2

⎞⎠ − k ω∞ = O(k−2) (4)
�

Proof. Since S(ω∞) ≡ S, by proposition 2.2, we have

Nk∑
α=1

|τ (k)
α |2

h⊗∞
− 1 =

(Nkn!/Vkn)
∑Nk

α=1 |τ (k)
α |2

h⊗k∞
Nkn!/Vkn − 1 = 1 + 1

2 S(ω∞)k−1 + O(k−2)

1 + 1
2 Sk−1 + O(k−2)

− 1

= O(k−2)

(4) follows because the left hand side of it is equal to
√−1
2π

∂∂̄ log
(∑Nk

α=1 |τ (k)
α |2

h⊗k∞

)
�

2.3 Aubin–Yau functional and Chow norm

We define the Aubin–Yau functional with respect to (Lk, h∗
k) by

Ik(h
∗
ke−φ) = −

∫ 1

0
dt

∫
X

dφ(t)

dt
c1(Lk, h∗

ke−φ(t))n.

Here φ ∈ Kk, that is, (1/k)φ ∈ K. φ(t) is a path connecting 0 and φ in Kk.

Under the orthonormal basis {τ (k)
α , 1 ≤ α ≤ Nk} of H∗

k , H0(X, Lk) ∼= CNk and

P(H0(X, Lk)∗) ∼= CPNk−1.

For any Hk ∈ Hk, take an orthonormal basis {sα, 1 ≤ α ≤ Nk} of Hk. Let det Hk

denote the determinant of matrix (Hk)αβ = (H∗
k (sα, sβ)). {sα} determines a projective

embedding into CPNk−1. (Note that the fixed isomorphism P(H0(X, Lk)∗) ∼= CPNk−1 is

determined by the basis {τ (k)
α }.) The image of this embedding is denoted by Xk(Hk) ⊂

CPNk−1 and has degree dk = Vkn. Xk(Hk) has a Chow point [16, 23]

X̂k(Hk) ∈ Wk := H0(Gr(Nk − n− 2, PNk−1),O(dk))

such that the corresponding divisor

Zero(X̂k(Hk)) = {L ∈ Gr(Nk − n− 2, PNk−1); L ∩ Xk(Hk) �= ∅}.
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2168 C. Li

Proposition 2.5 ([16, 23]). Wk has a Chow norm ‖ · ‖CH(H∗
k ), such that for all Hk ∈ Hk we

have

1

Nk
log det Hk − 1

Vkn Ik(FS(Hk)) = 1

Vkn log ‖X̂k(Hk)‖2
CH(H∗

k ) �

SL(Nk, C) acts on Hk and Wk. Note that Xk(σ · H∗
k ) = σ · Xk(H∗

k ). Define

fk(σ ) = log
(
‖X̂k(σ · H∗

k )‖2
CH(H∗

k )

)
∀σ ∈ SL(Nk, C)

It’s easy to see that fk(σ · σ1) = fk(σ ) for any σ1 ∈ SU (Nk), so fk is a function on the

symmetric space SL(Nk, C)/SU (Nk). We have

Proposition 2.6 ([7, 8, 18, 23]). fk(σ ) is convex on SL(Nk, C)/SU (Nk). �

To relate Kk and Hk, following Donaldson [7], we change F S(Hk) in the above

formula into general hk ∈ Kk and define:

Definition 2.7. For all hk ∈ Kk and Hk ∈ Hk,

P̃k(hk, Hk) = 1

Nk
log det Hk − 1

Vkn Ik(hk). �

Note that, for any c ∈ R, Ik(echk) = cVkn + Ik(hk), so

P̃k(e
chk, ecHk) = P̃k(hk, Hk). (5)

Remark 2.2. This definition differs from Donaldson’s definition by omitting two extra

terms, since we find no use for these terms in the following argument. �

3 Proof of Theorem 1.2

Lemma 3.1. For any hk, h′
k ∈ Kk, with h′

k = hke−φ , we have

−
∫

X
φ c1(Lk, hk)

n ≤ Ik(h
′
k) − Ik(hk) ≤ −

∫
X

φ c1(Lk, h′
k)

n. �

This is [7, Lemma 1].
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Proof. This lemma just says Ik is a convex function on Kk, regarded as an open subset

of C ∞(X). We only need to calculate its second derivative along the path hk(t) = hke−tφ :

d2

dt2 Ik(hk) = −
∫

X
φ�tφc1(Lk, hk(t))

n =
∫

X
|∇tφ|2c1(Lk, hk(t))

n ≥ 0

�t and ∇t are the Laplace and gradient operators of Kähler metric c1(Lk, hk(t)). �

From now on, fix a ω ∈ c1(L), take a Hermitian metric h ∈ K such that ω = c1(L , h).

We have the k-th Bergman metric hk = FS(Hilb(h⊗k)) and corresponding Kähler metric

ωk = c1(Lk, hk). By Corollary 2.3

(hk)
1
k → h,

1

k
ωk → ω, in C ∞.

Lemma 3.2.

P̃k(hk, Hilb(hk)) ≥ P̃k(FS(Hilb(hk)), Hilb(hk)). �

This is a corollary of [7, Lemma 4]. Since the definition of P̃ is a little different

from that in [7], we give a direct proof here.

Proof. Let h′
k = FS(Hilb(hk)). Then

P̃k(hk, Hilb(hk)) − P̃k(FS(Hilb(hk)), Hilb(hk)) = 1

Vkn(I (h′
k) − I (hk)).

Let {s(k)
α , 1 ≤ α ≤ Nk} be an orthonormal basis of Hilb(hk). Then log(h′

k/hk) =
− log(

∑Nk
α=1 |s(k)

α |2hk
). By Lemma 3.1 and concavity of the function log,

1

Vkn(I (h′
k) − I (hk)) ≥ − 1

Vkn

∫
X

log

(∑
α

|s(k)
α |2hk

)
c1(Lk, hk)

n

≥ − log

(
1

Nk

Nk

Vkn

∫
X

∑
α

|s(k)
α |2hk

c1(Lk, hk)
n

)

= − log

(
1

Nk

∑
α

‖s(k)
α ‖2

Hilb(hk)

)
= 0.

�
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2170 C. Li

Lemma 3.3. There exists a constant C > 0, depending only on h and h∞, such that

P̃k(FS(Hilb(hk)), Hilb(hk)) − P̃k(FS(H∗
k ), H∗

k ) ≥ −C k−1. �

Proof. Recall that H∗
k = Hilb(h⊗k∞ ) and {τ (k)

α ; 1 ≤ α ≤ Nk} is an orthonormal basis of H∗
k

(see (∗)). Let Hk = Hilb(hk) and {s(k)
α ; 1 ≤ α ≤ Nk} be an orthonormal basis of Hk. Trans-

forming by a matrix in SU (Nk), we can assume

s(k)
α = eλ

(k)
α τ (k)

α

Evaluating the norm Hilb(hk) on both sides, we see that

e−2λ
(k)
α = Nk

Vkn

∫
X

|τ (k)
α |2hk

ωn
k. (6)

Since by Corollary 2.3 we have the following uniform convergence in C ∞: (hk)
1
k → h,

1
kωk → ω. There exists a constant C1 > 0, C2 > 0, depending only on h and h∞, such that

C −k
1 ≤ hk

h⊗k∞
≤ C k

1, C −1
2 ω∞ ≤ 1

kωk ≤ C2ω∞, so we see from (6) that |λ(k)
α | ≤ C k.

Let λ = (1/Nk)
∑Nk

β=1 λ
(k)
β , H ′

k = e2λHk, λ̂
(k)
α = λ

(k)
α − λ. Then {ŝ(k)

α = eλ̂
(k)
α τ

(k)
α } is an

orthonormal basis of H ′
k. Note that λ̂

(k)
α satisfies the same estimate as λ

(k)
α :

|λ̂(k)
α | ≤ C k. (7)

(ê)αβ = eλ̂
(k)
α δαβ is a diagonal matrix in SL(Nk, C). By scaling invariance of P̃k (5) and

Proposition 2.5, we have

P̃k(FS(Hk), Hk) = P̃k(FS(H ′
k), H ′

k) = 1

Vkn log ‖X̂k(H ′
k)‖2

CH(H∗
k ) (8)

P̃k(FS(H∗
k ), H∗

k ) = 1

Vkn log ‖X̂k(H∗
k )‖2

CH(H∗
k ). (9)

As in Section 2.3, let

Xk(s) = eŝ · Xk(H∗
k )

fk(s) = log ‖X̂k(s)‖2
CH(H∗

k ).
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Then Xk(0) = Xk(H∗
k ) and Xk(1) = Xk(H ′

k) = Xk(Hk). By Proposition 2.6, fk(s) is a convex

function of s, so

fk(1) − fk(0) ≥ f ′
k(0).

We can estimate f ′
k(0) by the estimates in Proposition 2.4:

f ′
k(0) =

∫
X

∑
α λ̂

(k)
α |τ (k)

α |2
h⊗k∞∑

α |τ (k)
α |2

h⊗k∞

⎛⎝√−1

2π
∂∂̄ log

Nk∑
α=1

|τ (k)
α |2

⎞⎠n

=
∫

X

∑
α λ̂

(k)
α |τ (k)

α |2
h⊗k∞

1 + O(k−2)
(1 + O(k−2))(kω∞)n

=
∫

X
O(k−2)(

Nk∑
α=1

λ̂(k)
α |τ (k)

α |2
h⊗k∞

)(kω∞)n

where the last equality is because of

∫
X

Nk∑
α=1

λ̂(k)
α |τ (k)

α |2
h⊗k∞

(kω∞)n = Vkn

Nk

Nk∑
α=1

λ̂(k)
α = 0

By the estimate for λ̂
(k)
α (7), we get

| f ′
k(0)| ≤ C k−2kNk ≤ C kn−1.

So fk(1) − fk(0) ≥ f ′
k(0) ≥ −C kn−1, and

1

Vkn(log ‖X̂k(H ′
k)‖2

CH − 1

Vkn log ‖X̂k(H∗
k )‖2

CH) = 1

Vkn( fk(1) − fk(0)) ≥ −C
1

Vknkn−1 ≥ −C k−1.

So the lemma follows from identities (8) and (9). �

Remark 3.1. The proof of this lemma is similar to the argument in the beginning part of

[15, Section 5] where Mabuchi proved K-semistability of varieties with constant scalar

curvature metrics. Roughly speaking, here we consider geodesic segment connecting

H∗
k and Hk in Hk, while Mabuchi [15, Section 5] considered geodesic ray in Hk de-

fined by a test configuration. The estimates in Proposition 2.4 show that, to prove the

K-semistability as in Mabuchi’s argument [15, Section 5], we only need Bergman metrics

of h∞ instead of Mabuchi’s T-balanced metrics. �
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Remark 3.2. The referee pointed out that the similar argument also appears in the

proof of Theorem 2 in [17]. �

Remark 3.3. In [7, Corollary 2], H∗
k is taken to be balance metric, that is, H∗

k is a fixed

point of the mapping Hilb(FS(·)). Then the difference in Lemma 3.3 is nonnegative, in-

stead of bounded below by error term −C k−1. �

Lemma 3.4. There exists a constant C > 0, which only depends on h∞, such that

∣∣∣ P̃k(FS(H∗
k ), H∗

k ) − P̃k(h
⊗k∞ , Hilb(h⊗k∞ ))

∣∣∣ ≤ C k−2
�

Proof. Recall from (∗) that: Hilb(h⊗k∞ ) = H∗
k , h∗

k = FS(H∗
k ) = FS(Hilb(h⊗k∞ )), so it’s easy to

see that

P̃k(FS(H∗
k ), H∗

k ) − P̃k(h
⊗k∞ , Hilb(h⊗k∞ )) = 1

Vkn(Ik(h
⊗k∞ ) − Ik(h

∗
k))

For any section s of Lk, |s|2h∗
k

=
|s|2

h⊗k∞∑
α |τ (k)

α |2
h⊗k∞

. So

h⊗k∞
h∗

k
=

Nk∑
α=1

|τ (k)
α |2

h⊗k∞

By proposition 2.4.
∣∣∣log

h∗
k

h⊗k∞

∣∣∣ = | log(1 + O(k−2))| = O(k−2). So by Lemma 3.1, we get

∣∣∣∣ 1

Vkn(Ik(h
⊗k∞ ) − Ik(h

∗
k))

∣∣∣∣ ≤ C k−2

�

Definition 3.5. For any Kähler metric ωφ = c1(L , h) + (
√−1/2π)∂∂̄φ ∈ [ω], let hk(φ) =

h⊗ke−kφ . Define

Lk(ωφ) = P̃k(hk(φ), Hilb(hk(φ))) �
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Lemma 3.6 ([7]). There exist constants μk, such that

Lk(ωφ) + μk = 1

2
νω(ωφ) + O(k−1).

Here O(k−1) depends on ω and ωφ . �

Proof. Let ψ(t) = tφ ∈ K connecting 0 and φ, hk(t) = hke−tkφ , ωt = ω + t(
√−1/2π)∂∂̄φ, �t

be the Laplace operator of metric ωt. Plugging in expansions for Bergman kernels ρk in

Proposition 2.2, we get

d

dt
P̃k(hk(t), Hilb(hk(t))) = 1

Nkn!
∫

X

Nkn!
Vkn

∑
α

|s(k)
α |2hk(t)(−kφ + �tφ)knωn

t + 1

Vkn

∫
X

kφknωn
t

= 1

V

kn

kn + 1
2 S kn−1 + · · ·

∫
X
(−kρk(ωt) + �tρk(ωt))φωn

t + k

V

∫
X

φωn
t

= − 1

2V

∫
X
(S(ωt) − S)φωn

t + O(k−1)

{ωt, 0 ≤ t ≤ 1} have uniformly bounded geometry, so by Proposition 2.2.(3), the expan-

sions above are uniform. So the lemma follows after integrating the above equation. �

Proof of Theorem 1.2. Let ωφ = c1(L , h) +
√−1
2π

∂∂̄φ ∈ [ω], hk = hk(φ) = h⊗ke−kφ

By Lemma 3.2, Lemma 3.3, Lemma 3.4

P̃k(hk, Hilb(hk)) ≥ P̃k(FS(Hilb(hk)), Hilb(hk))

≥ P̃k(FS(H∗
k ), H∗

k ) + O(k−1)

= P̃k(h
⊗k∞ , Hilb(h⊗k∞ )) + O(k−1)

So by Lemma 3.6

νω(ωφ) = 2Lk(ωφ) + 2μk + O(k−1) = 2 P̃k(hk, Hilb(hk)) + 2μk + O(k−1)

≥ 2 P̃k(h
⊗k∞ , Hilb(h⊗k∞ )) + 2μk + O(k−1) = 2Lk(ω∞) + 2μk + O(k−1)

= νω(ω∞) + O(k−1)

The Theorem follows by letting k → +∞. �
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