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Thus a subsequence converges (as explained above for the continuity method)

to an element ψ∞ of D0,γ
w ∩C∞(M\D). Since each step in the iteration follows

a continuity path of the form (30) with ω replaced by ωkτ , Lemma 6.8 im-

plies that Eβ0 (ω(k−1)τ , ωkτ ) < 0 (unless ω was already Kähler–Einstein). Since

Eβ0 is an exact energy functional, i.e., satisfies a cocyle condition [42], then

Eβ0 (ω, ωkτ ) =
∑k
j=1E

β
0 (ω(j−1)τ , ωjτ ) < 0. Therefore, ψ∞ is a fixed point of Eβ0 ,

hence a Kähler–Einstein edge metric. By Lemma 5.2 such Kähler–Einstein

metrics are unique; we conclude that the original iteration converges to ψ∞
both in A0 and in D0,γ′

w for each γ′ ∈ (0, γ).

Next, consider the case µ > 0, and take µ = 1 for simplicity. By the

properness assumption, Corollary 6.9 implies the iteration exists (uniquely by

Lemma 6.6) for each τ ∈ (0,∞) and then the monotonicity of Eβ0 implies

that J(ω, ωkτ ) ≤ C. To obtain a uniform estimate on oscψkτ we will employ

the argument of [10] as explained to us by Berman. By Lemma 6.10, have∫
M e−p(ψkτ−supψkτ )ωn ≤ C, where p/3 = max{1− 1

τ ,
1
τ }. Now rewrite (33) as

(96) ωnψkτ = ωnefω−(1− 1
τ

)ψkτ− 1
τ
ψ(k−1)τ .

Using Ko lodziej’s estimate and the Hölder inequality this yields the uniform

estimate oscψkτ ≤ C. Unlike for solutions of (30), the functions ψkτ need

not be changing signs. Therefore we let ψ̃kτ := ψkτ − 1
V

∫
M ψkτω

n. As in

the previous paragraph we obtain a uniform estimate trωkτω ≤ C. However,

to conclude that trωωkτ ≤ C from (96) we must show that |(1 − 1
τ )ψkτ −

1
τψ(k−1)τ | ≤ C. This is shown in [52, p. 1543]. Thus, as before, we conclude

that {ψ̃kτ} subconverges to the potential of a Kähler–Einsteinedge metric.

Whenever it is unique, the iteration itself necessarily converges. Berndtsson’s

generalized Bando–Mabuchi Theorem [7], [12] shows uniqueness of Kähler–

Einstein edge metrics up to an automorphism (which must preserve D by (7)

or Lemma 6.1). This concludes the proof of Theorem 2.5.

Appendix A. Upper bound on the bisectional curvature

of the reference metric

By Chi Li1 and Yanir A. Rubinstein

Proposition A.1. Let β ∈ (0, 1], and let ω = ω0 +
√
−1∂∂̄|s|2βh be given

by (26). The bisectional curvature of ω is bounded from above on M \D.

We denote throughout by ĝ, g the Kähler metrics associated to ω0, ω,

respectively. As in [66], to simplify the calculation and estimates we need
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a lemma to choose an appropriate local holomorphic frame and coordinate

system, whose elementary proof we include for the reader’s convenience. We

thank Gang Tian for pointing out to us the calculations in [66] that were

helpful in writing this appendix.

Lemma A.2 ([66, p. 599]). There exists ε0 > 0 such that if 0 < distĝ(p,D)

≤ ε0, then we can choose a local holomorphic frame e of LD and local holo-

morphic coordinates {zi}ni=1 valid in a neighborhood of p, such that

(i) s = z1e, and a := |e|2h satisfies a(p) = 1, da(p) = 0, ∂2a
∂zi∂zj

a(p) = 0; and

(ii) ĝī,k(p) = ∂
∂zk

ω0( ∂
∂zi
, ∂

∂zj
)|p = 0, whenever j 6= 1.

Proof. (i) Fix any point q ∈ D, and choose a local holomorphic frame

e′ and holomorphic coordinates {wi}ni=1 in Bĝ(q, ε(q)) for 0 < ε(q) � 1. Let

s = f ′e′ with f ′ a holomorphic function and |e′|2h = c. Let e = Fe′ for some

nonvanishing holomorphic function F to be specified later. Then a = |Fe′|2h =

|F |2c. Now fix any point p ∈ Bĝ(q, ε(q)) \ {q}. In order for a to satisfy the

vanishing properties with respect to the variables {wi}ni=1 at a point p, we can

just choose F such that F (p) = c(p)−1/2, and

∂wiF (p) =−c−1F∂wic(p) = −c−3/2∂wic(p)

∂wi∂wjF (p) =−c−1(F∂wi∂wjc+ ∂wjc∂wiF + ∂wic∂wjF )(p)

=−c−3/2∂wi∂wjc(p) + 2c−5/2∂wic∂wjc(p).

Since c = |e′|2h is never zero, when ε(q) is small, which implies |w − w(p)| is

small, we can assume F 6= 0 in Bĝ(q, ε(q)). Now s = fe = f ′e′ with f = f ′F−1

a holomorphic function. Since D = {s = 0} is a smooth divisor, we can assume

∂w1f(q) 6= 0, and choosing ε(q) sufficiently small, we can assume that ∂w1f 6= 0

in Bĝ(q, ε(q)). Thus by the inverse function theorem, z1 = f(w1, . . . , wn), z2 =

w2, . . . , zn = wn are holomorphic coordinates in Bĝ(q, ε(q)/2) and now s =

f(w)e = z1e. By the chain rule, it then follows that a satisfies a(p) = 1,

∂zia(p) = ∂zi∂zja(p) = 0.

Now cover D by ∪q∈DBĝ(q, ε(q)/2). By compactness of D the conclusion

follows.

(ii) Denote by {wi}ni=1 the coordinates obtained in (i). Following [29,

p. 108], let z̃k := wk − wk(p) + 1
2b
k
st(w

s − ws(p))(wt − wt(p)), with bkst = bkts,

define a new coordinate system. Then, ω0( ∂
∂wi

, ∂

∂wj
) = ω0( ∂

∂z̃i
, ∂

∂z̃j
)+ ĝt̄b

t
ipw

p+

ĝit̄b
t
jpw

p +O(
∑n
i=1 |wi − wi(p)|2), and

dīk :=
∂

∂wk
ω0(

∂

∂wi
,
∂

∂wj
)|p =

∂

∂z̃k
ω0(

∂

∂z̃i
,
∂

∂z̃j
)|p+ ĝt̄(p)b

t
ik =: eīk + ĝt̄(p)b

t
ik.

Let ĝ′rs̄ := ĝrs̄ for each r, s > 1, and denote the inverse of the (n− 1)× (n− 1)

matrix [ĝ′rs̄] by [ĝ′rs̄]. Let b1ik = 0. Then, for each j > 1, the equations can be

rewritten as dīk−
∑
t>1 ĝ

′
t̄(p)b

t
ik = eīk. Hence,

∑
j>1 ĝ

′s̄eīk =
∑
j>1 ĝ

′s̄dīk−



164 APPENDIX BY CHI LI AND YANIR A. RUBINSTEIN

bsik, s > 1. For each s > 1, define bsik so that the right-hand side vanishes.

Multiplying the equations by [ĝ′st̄], we obtain eit̄k = 0 for each t > 1. Finally,

set zi := z̃i + wi(p), i = 1, . . . , n. Since b1ik = 0, we have z1 = w1, and

therefore these coordinates satisfy both properties (i) and (ii) of the statement,

as desired. �

Let H := aβ, then |s|2βh = |z1e|2βh = H|z1|2β. Note that both a and H

are locally defined smooth positive functions. Let ω =
√
−1
2 gīdz

i ∧ dzj , ω0 =
√
−1
2 ĝīdz

i ∧ dzj , and write z ≡ z1 and ρ := |z|. Using the symmetry for

subindices, we can calculate in a straightforward manner:

gī = ĝī +Hī|z|2β + βHiδ1̄|z|2β−2z + βH̄δ1i|z|2β−2z̄ + β2H|z|2β−2δ1iδ1̄,

gī,k = ĝī,k +Hīk|z|2β + βHikδ1̄|z|2β−2z + β(Hk̄δ1i +Hīδ1k)|z|2β−2z̄

+ β2(Hiδ1̄δ1k +Hkδ1iδ1̄ +H̄δ1iδ1k)|z|2β−2

+ β2(β − 1)H|z|2β−4z̄δ1iδ1̄δ1k,

gī,k ¯̀ = ĝī,k ¯̀ +Hīk ¯̀|z|2β

+ β
î
(Hik ¯̀δ1̄ +Hik̄δ1¯̀)|z|2β−2z + (H̄¯̀iδ1k +H̄¯̀kδ1i)|z|2β−2z̄

ó
+ β2(Hk̄δ1iδ1¯̀ +Hīδ1kδ1¯̀ +Hk ¯̀δ1iδ1̄ +Hi¯̀δ1̄δ1k)|z|2β−2

+ β(β − 1)
î
Hikδ1̄δ1¯̀|z|2β−4z2 +H̄¯̀δ1iδ1k|z|2β−4z̄2

ó
+ β2(β − 1)

î
(Hiδ1k +Hkδ1i)δ1̄δ1¯̀|z|2β−4z

+ (H̄δ1¯̀ +H¯̀δ1̄)δ1iδ1k|z|2β−4z̄
ó

+ β2(β − 1)2H|z|2β−4δ1iδ1̄δ1kδ1¯̀.

Let p ∈ M \D satisfy distĝ(p,D) ≤ ε0. The lemma implies, in particular,

H(p) = 1, Hi(p) = Hij(p) = 0, and the expressions above simplify to

gī(p) = ĝī +Hī|z|2β + β2|z|2β−2δi1δ1̄,

gī,k(p) = ĝī,k +Hīk|z|2β + β(δi1Hk̄ + δk1Hī)|z|2β−2z̄

+ β2(β − 1)δi1δ̄1δk1|z|2β−4z̄,

gī,k ¯̀(p) = ĝī,k ¯̀ +Hīk ¯̀|z|2β + β(δi1H̄k ¯̀ + δk1Hī¯̀)|z|2β−2z̄

+ β(δ̄1Hik ¯̀ + δ¯̀1Hīk)|z|2β−2z + β2(δi1δ̄1Hk ¯̀ + δi1δ¯̀1Hk̄

+ δk1δ̄1Hi¯̀ + δk1δ¯̀1Hī)|z|2β−2 + β2(β − 1)2δi1δ̄1δk1δ¯̀1|z|2β−4.

It follows that

(97) grs̄(p) = O(1), g1s̄(p) = O(ρ2−2β) for r, s > 1

and

(98) g11̄(p) = β−2ρ2−2β 1

1 + b(p)ρ2−2β
+O(ρ2),
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where O(ρ2) < C3ρ
2 and b(p) := β−2 det[ĝī]/det[ĝrs̄]r,s̄>1|p with 0 < C1 <

b(p) < C2, and C1, C2, C3 independent of p ∈M \D.

Take two unit vectors η = ηi ∂
∂zi
, ν = νi ∂

∂zi
∈ T 1,0

p M , so that g(η, η)|p =

g(ν, ν)|p = 1. Then from the expression of gī, we have

(99) η1, ν1 = O(ρ1−β) ηr, νr = O(1) for r > 1.

Set

Bisecω(η, ν) = R(η, η̄, ν, ν̄) = Rīk ¯̀ηiηjνkν` =
∑
i,j,k,l

Λīk ¯̀ + Πīk ¯̀,

with Λīk ¯̀ := −gī,k ¯̀ηiηjνkν` and Πīk ¯̀ := gst̄ git̄,k gs̄,¯̀η
iηjνkν` (no summa-

tions). By (97)–(99), we have |Λīk ¯̀| ≤ C except for

Λ11̄11̄ = −β2(β − 1)2|z|2β−4|η1|2|ν1|2,

hence

(100)
∑
i,j,k,l

Λīk ¯̀(p) = O(1) + Λ11̄11̄(p) = O(1)− β2(β − 1)2|z|2β−4|η1|2|ν1|2.

The proposition follows immediately by combining (100) and the following

estimate.

Lemma A.3. There exists a uniform constant C > 0 such that for every

p ∈M \D, ∑
i,j,k,l

Πīk ¯̀(p) ≤ C + β2(β − 1)2|z|2β−4|η1|2|ν1|2.

Proof. Define a bilinear Hermitian form of two tensors a = [aīk], b =

[bpq̄r] ∈ (Cn)3 satisfying aīk = ak̄i and bpq̄r = brq̄p by setting

〈[aīk], [bpq̄r]〉 :=
∑

i,j,k,p,q,r

gq̄(ηiaīkν
k)(ηpbpq̄rνr).

It is easy to see that this is a nonnegative bilinear form. We denote by ‖ · ‖
the associated norm. Then

∑
i,j,k,l Πīk ¯̀ = ‖[gī,k]‖2. Write

gī,k = Aīk +Bīk +Dīk + Eīk,

with Aīk := ĝī,k, Bīk := Hīk|z|2β, Dīk := β(δi1Hk̄ + δk1Hī)|z|2β−2z̄ and

Eīk := β2(β − 1)δi1δ̄1δk1|z|2β−4z̄. Denote A = [Aīk] and similarly B,D,E.

Using (97),

〈D,E〉 ≤ C
∣∣∣∣∑
j

g1̄|η1|2ν1ρ2β−1ρ2β−3
∣∣∣∣ ≤ Cρ1−β,

and similarly we conclude that ‖[gī,k]‖2 ≤ C + ‖A+E‖2. Now, since ‖ 1√
ε
A−

√
εE‖2 ≥ 0, we obtain ‖A+E‖2 ≤ (1 + 1

ε )‖A‖2 + (1 + ε)‖E‖2. Note now that
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by (98),

‖E‖2 = g11̄|E11̄1|2|η1|2|ν1|2 ≤ C +
β2(1− β)2

1 + b(p)ρ2−2β
ρ2β−4|η1|2|ν1|2.

Thus, letting ε = ε(p) = b(p)ρ2−2β, we will have proved the lemma provided

we can bound (1 + ρ2β−2)‖A‖2. Now, by (98) and Lemma A.2(ii),

ρ2β−2‖A‖2 =
∑
i,k,p,r

ρ2β−2ĝi1̄,kĝ1̄,¯̀g
11̄ηiηjνkν` ≤ C.

This concludes the proof of Lemma A.3. �

Appendix B. A local third derivative estimate (after Tian)

A general result due to Tian [57], proved in his M.Sc. thesis, gives a local

a priori estimate in W 3,2 for solutions of both real and complex Monge–Ampère

equations under the assumption that the solution has bounded real or complex

Hessian and the right-hand side is at least Hölder. By the classical integral

characterization of Hölder spaces this implies a uniform Hölder estimate on

the Laplacian. This result can be seen as an alternative to the Evans–Krylov

theorem (and, in fact, appeared independently around the same time).

We present a very special case of this here that applies, in particular, to

ϕ(s) along the Ricci continuity path (30). Unlike Calabi’s estimates, this local

estimate does not require curvature bounds on the reference geometry (which

works only when β < 1/2 [15]). The argument here is an immediate adaptation

of [57] to the complex edge setting and is based entirely on the presentation in

[57] and Tian’s unpublished notes [64]. He understood the applicability of this

method in the edge setting for some time and had described this in various

courses and lectures over the years.

Theorem B.1 (Tian [57], [64]). Let ϕ(s) ∈ D0,0
w ∩C4(M \D)∩PSH(M,ω)

be a solution to (30), with s > S and 0 < β < 1. For any γ ∈ (0, β−1 − 1) ∩
(0, 1), there are constants r0 ∈ (0, 1) and C > 0 such that for any x ∈ M and

0 < a < r0,

(101)

∫
Ba(x)

|∇ωϕ|2 ωn ≤ C a2n−2+2γ ,

where Ba(x) denotes the geodesic ball with center x and radius a, ∇ the co-

variant derivative and | · | the norm, all taken with respect to ωβ (3). The

constant C depend only on γ, β, ω, n, ||∆ωϕ||L∞(M) and ||ϕ||L∞(M).

For the proof, we may assume that x ∈ D and fix some neighborhood U

of x in M . We will also always assume 1/2 < β < 1 purely for simplicity of

notation. Setting t = 1 in (87),

(102) log det[uij̄ ] = fω − sϕ+ log det[ψij̄ ] =: log h,
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