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Abstract
Let X be a smooth complex manifold. Assume that Y ⊂ X is a Kähler submanifold
such that X \ Y is biholomorphic to ℂ

n. We prove that (X,Y ) is biholomorphic to
(ℙn,ℙn−1). We then study certain Kähler orbifold compactifications of ℂn and, as an
application, prove that on ℂ

3 the flat metric is the only asymptotically conical Ricci-
flat Kähler metric whose metric cone at infinity has a smooth link. As a key technical
ingredient, we derive a new characterization of minimal discrepancy of isolated Fano
cone singularities by using S1-equivariant positive symplectic homology.

1 Introduction

Our work is motivated by two problems in complex geometry. The first is Hirze-
bruch’s classical problem on analytic compactification of ℂn. Let X be a com-
pact complex manifold of complex dimension n. Assume that Y is a subvariety
of X such that X \ Y is biholomorphic to ℂ

n. Of course, the simplest example is
(X,Y )= (ℙn,ℙn−1) where ℙ

n−1 ⊂ ℙ
n is a linear subspace. In this case, we will just

say that (X,Y ) is standard. In [19], Hirzebruch asked the problem of classifying all
such pairs (X,Y ) with the second Betti number b2(X)= 1. The Betti number condi-
tion is known to imply that Y is irreducible. When dimX = 1 or 2, it is known that
there is only the standard example. For n= 3, under the assumption that X is projec-
tive, all such analytic compactifications of ℂ3 are now classified. The subvariety Y in
any known non-standard example is always singular. For example, one can compact-
ify ℂ

n to a smooth quadric hypersurface in ℙ
n+1 by adding an irreducible singular

divisor (which is a projective cone over a lower-dimensional quadric) at infinity. It is
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a long-standing conjecture that if Y is assumed to be smooth then (X,Y ) should be
standard (see [7, 36, 43]). This was proved in [7] when dimX ≤ 3. Here we prove
this conjecture under the Kähler assumption for all dimensions.

Theorem 1.1 With the above notation, if Y is a Kähler submanifold, (X,Y ) is stan-
dard.

Early results of Brenton-Morrow from [7] showed already that, with the Kähler
assumption, Y must be a Fano manifold and they reduce the problem to proving that
Y is biholomorphic to ℙ

n−1 (see Theorem 2.8). We will prove that the Fano index
of Y must be n, which then implies that Y is ℙ

n−1 by a well-known criterion of
Kobayashi-Ochiai ([24]). The main tools we use are (S1-equivariant, positive) sym-
plectic homology and two ways to compute it, one from the functorial properties and
the special symplectic topology of ℂn, and the other from the Morse-Bott spectral
sequences applied to the Boothby-Wang contact structure on the unit circle bundle of
the normal bundle of Y .

Another problem that motivates our work is the study of asymptotically conical
(AC) Ricci-flat Kähler metrics, which goes back to the work of Tian-Yau [42]. Let
(W,g) be a complete Kähler manifold. It is called asymptotically conical (AC) if it
is asymptotic to a Kähler cone (𝒞, g0) (see Definition 2.5). By the compactification
results from [10, 30] (see Theorem 2.7), the classification of such Kähler metrics is
closely related to the orbifold compactifications of W . We have the following folklore
conjecture:

Conjecture 1.2 Let g be a complete AC Ricci-flat Kähler metric on ℂ
n whose asymp-

totical cone 𝒞 has a smooth link. Then g is the flat Euclidean metric.

In [41, Theorem 5.2], Tian proved that this is true when n= 2, answering a ques-
tion of Calabi, and in this case, the condition of the asymptotical metric cone 𝒞 having
a smooth link automatically holds true thanks to a regularity result of Cheeger-Tian.
He then asked a similar question in higher dimensions (see [41, Remark 5.3]). By
the recent examples constructed in [11, 29, 40], when n≥ 3, the condition of having
a smooth link is needed. We will use the symplectic techniques in an orbifold set-
ting and reduce the Conjecture 1.2 to Shokurov’s conjecture (see Conjecture 2.3) for
isolated cone singularities.

Theorem 1.3 The following statements are true:

(1) Let 𝒴 ⊂ 𝒳 be an orbifold Kähler compactification of ℂn that is associated to
a complete AC Kähler metric (obtained from Theorem 2.7). Then the orbifold
cone 𝒞(𝒴,ℒ) over 𝒴 with ℒ being the orbifold normal bundle is a Gorenstein klt
singularity which has the minimal discrepancy equal to n− 1.

(2) Conjecture 1.2 is true assuming Shokurov’s conjecture. In particular, Conjec-
ture 1.2 is true when n≤ 3.
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As a key ingredient for proving the above results, we derive the following new
formula for the minimal discrepancy of isolated Fano cone singularities (see §2.1
for the explanation of these terminologies). Our formula is motivated by the work of
McLean ([32]), who introduced the lSFT-invariant (see Definition 2.18) as a gener-
alized Conley-Zehnder type index for closed Reeb orbits.

Theorem 1.4 Let o ∈ 𝒞 be an isolated Fano cone singularity of dimension n. For
any quasi-regular conic contact form η on the contact link M , we have the following
formula for the minimal discrepancy:

2 md(o,𝒞)= inf
γ

lSFTη(γ ) >−2. (1)

Here γ on the right ranges over all closed Reeb orbits of η. If moreover M admits a
Liouville filling W such that c

ℚ
1 (W)= 0 ∈H 2(W ;ℚ), then we have

2 md(o,𝒞)= inf{d | SH
+,S1

d (W ;ℚ) ≠ 0} + n− 3 (2)

where SH
+,S1

∗ (W ;ℚ) denotes the ℚ-coefficient S1-equivariant positive symplectic
homology of the Liouville filling W .

In the more special case of isolated quotient singularities, this formula recovers
the result in [44, Proposition 2.12]. We remark that our proof of Theorem 1.4 does
not use the main formula from [32, Theorem 1.1] (and in fact reproves it in Propo-
sition 3.8 for our setting) which states that 2 · md is equal to the highest minimal
index denoted by hmi for canonical singularities. Indeed, the definition of the con-
tact invariant hmi in [32] (see (18)) requires enumeration through all contact forms,1

while Theorem 1.4 asserts that the minimal discrepancy can be computed using the
Reeb dynamics from a single conic contact form and is witnessed by a non-trivial
class in Floer homology. The latter can be approached using properties of symplectic
homology, which allows us to show the equality md(o,𝒞)= n− 1 for the Fano cone
arising in our problems. The existence of a Liouville filling W is just for the existence
of ℚ-graded S1-equivariant positive symplectic cohomology. The specific choice of

W does not matter. In a more general setting, one can replace SH
+,S1

∗ (W ;ℚ) by
the linearized contact homology of M w.r.t. a ℚ-graded augmentation over ℂ, which
always exists in our case (see Remark 3.9 for more discussions).

The application of tools from symplectic geometry to the compactification prob-
lem seems new to us. From a broader perspective, we use techniques from symplectic
geometry to rule out certain singularities. The application of (very different) symplec-
tic techniques to complex geometry to rule out singularities has appeared in the recent
solution to the generalized Bishop problem [13].

1The minimal discrepancy is achieved by certain contact forms constructed from a simple normal crossing
resolution in [32].
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2 Preliminaries

2.1 Fano cone singularities and AC Kähler metrics

Let 𝒞 be an n-dimensional normal affine variety with an isolated ℚ-Gorenstein sin-
gularity o ∈ 𝒞. Here ℚ-Gorenstein means that the canonical divisor K𝒞 is ℚ-Cartier,
i.e. there exists k ∈ ℤ>0 such that kK𝒞 is a Cartier divisor. We choose a log resolution
of singularity μ : 𝒞→ 𝒞 such that μ is an isomorphism away from o ∈ 𝒞 and μ−1(o)

is a simple normal crossing divisor. Then we have an identity

K𝒞 = μ∗K𝒞 +
∑︂

i

a(Ei,𝒞)Ei (3)

where a(Ei,𝒞) ∈ℚ is called the discrepancy of the exceptional divisor Ei .

Remark 2.1 Analytically, one can compute discrepancies in the following way. For
simplicity, we assume k = 1 (Gorenstein case) and refer to [26, Definition 2.1]
for the general situation. Pick a local generator s of 𝒪(K𝒞)(U) where U is a
small neighborhood of o ∈ 𝒞. Then s is a non-vanishing holomorphic n-form on
U \ o and its pull-back μ∗s is in general a meromorphic n-form. Choose a gen-
eral point on Ei and nearby coordinates {y1, . . . , yn} such that Ei = {y1 = 0} and
μ∗s = f (y)dy1 ∧ · · · ∧ dyn. Then by definition a(Ei,𝒞) = ord{y1=0}f (y). For ex-
ample, if E is the exceptional divisor of the standard blowup of ℂn at a point, then
a(E,ℂn)= n− 1.

Definition 2.2 With the above notation, the singularity (𝒞, o) is Kawamata log ter-
minal (klt) if a(Ei,𝒞) >−1 for any i. The minimal discrepancy of o ∈ 𝒞 is defined
as

md(o,𝒞)=min
i
{a(Ei,𝒞);μ(Ei)= {o}} .

In other words, the singularity (𝒞, o) is klt if and only if md(o,𝒞) > −1. It is
known that this definition of klt singularity and the minimal discrepancy do not de-
pend on the choice of log resolution of the singularity. Klt singularities are local
analogues of Fano varieties, and they play an important role in birational algebraic
geometry (see [26]).

Conjecture 2.3 (Shokurov) For any klt singularity o ∈ 𝒞 of dimension n, md(o,𝒞)≤
n− 1 and the equality holds if and only if o ∈ 𝒞 is a smooth point.

Shokurov’s conjecture has important applications in birational algebraic geometry,
and it has been proved in dimension ≤ 3 ([12, 22]).

We now explain the concept of a Kähler cone metric on 𝒞. This means that there
is smooth function 𝔯 : 𝒞◦ := 𝒞 \ o → ℝ>0, called the radius function, which is a
surjective submersion such that if we set ω̂ := √−1∂∂̄𝔯2 and g0 = ω̂(·, J0·) where J0
is the integrable complex structure on 𝒞◦, then g0 is a Riemannian metric on 𝒞◦ that
is isometric to a Riemannian cone metric d𝔯2 + 𝔯2gM where M = {𝔯= 1} is the link
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and gM = g0|M . Define the conic contact form associated to the radius function 𝔯 as
η =−𝔯−1J0d𝔯. Then we have ω̂ = 2𝔯d𝔯∧ η+ 𝔯2dη. The Reeb vector field, denoted
by 𝔳= J0(𝔯∂𝔯), is a holomorphic Killing vector field on 𝒞 and satisfies η(𝔳)= 1. The
associated holomorphic vector field 𝔳ℂ = 𝔯∂𝔯 −

√−1J0(𝔯∂𝔯) generates an effective
holomorphic action by a (complexified) torus (ℂ∗)m which we will also denote by
⟨𝔳⟩. If m= 1, 𝔳 and η are called quasi-regular and otherwise (i.e. when m≥ 2) 𝔳 and
η are called irregular.

The Lie algebra of this torus ⟨𝔳⟩ ∼= (ℂ∗)m is isomorphic ℂ
m = ℝ

m ⊕ √−1ℝm

whose elements correspond to special holomorphic vector fields on 𝒞. The Reeb cone
t+
ℝ

is a convex cone in the ℝ
m factor whose elements correspond to the Reeb vector

fields associated to radius functions as above. The Reeb cone can be described al-
gebraically (cf. [8, Definition 3.2]) and can also be considered as the dual cone to
the cone image of the moment map associated with the Hamiltonian (S1)m-action
on (𝒞, ω̂) (see [31, 1.2]). In general, any element 𝔳′ ∈ t+

ℝ
is called quasi-regular if

𝔳′ − √−1J0𝔳
′ generates a ℂ

∗ action and is called irregular otherwise. It is easy to
see that the quasi-regular condition is equivalent to the condition that all orbits of the
Reeb vector field are closed.

Remark 2.4 As the notation conventions in the Sasaki geometry literature and contact
geometry literature are different, we fix η as the contact form, 𝔳 as the Reeb vector
field, and ξ := kerη as the contact structure in this paper.

In the quasi-regular case, we can take the quotient of 𝒞◦ by the ℂ
∗-action or,

equivalently, the quotient of M by the S1-action, to get an orbifold 𝒴 := (Y,Δ) =
M/S1 = 𝒞◦/ℂ∗ equipped with an orbifold line bundle ℒ. Here Y denotes the quotient
space and Δ =∑︁α(1 − 1

mα
)Dα denotes the branch divisor where the sum is taken

over all Weil divisors Dα that lie in the orbifold singular locus and mα is the gcd
of the orders of the local uniformizing groups taken over all points of Dα (see [6,
Definition 4.4.8]). There is a natural projection π : 𝒞◦ → Y which makes 𝒞◦ a ℂ∗-
Seifert bundle over the cyclic orbifold 𝒴 which was studied by Kollár in [25].2 The
affine variety 𝒞 is algebraically described as:

𝒞 = 𝒞(𝒴,ℒ) := Spec

(︄
⨁︂

m

H 0(𝒴,mℒ)

)︄
.

Geometrically, it is obtained from the total space of the orbifold line bundle ℒ−1 by
contracting the zero section. For simplicity, we will call o ∈ 𝒞 an orbifold cone singu-
larity. The affine variety 𝒞 can be compactified to a projective variety 𝒞 by adding an
divisor 𝒴∞ ∼= 𝒴 at infinity (see [25, 14]). According to [25, 42], the singularity o ∈ 𝒞
is klt if and only (Y,Δ) is a Fano orbifold (i.e. the orbifold anti-canonical line bundle
−Korb

(Y,Δ) is ample) and there exists ℓ ∈ℚ>0 such that −Korb
(Y,Δ) ∼ℚ ℓℒ (see Proposi-

tion 2.15 for a proof in our setting). In this case, we will simply call the orbifold cone
o ∈ 𝒞 a Fano cone (by following the terminology in [8, Definition 3.7]). Moreover,

2In the literature of algebraic geometry, 𝒞 is also called an affine variety with a good ℂ
∗-action (See [25]

and its references).
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in the quasi-regular case, the metrics g0 and gM discussed in the previous paragraph
are induced by a Hermitian metric h on ℒ over (Y,Δ) whose Chern curvature will be
denoted by ωY .

We now introduce the class of Kähler metrics on quasi-projective varieties that are
modeled on Kähler cone metrics near infinity.

Definition 2.5 Let (W,g) be a complete Kähler manifold whose integrable complex
structure is denoted by J . It is called asymptotically conical (AC) with the asymp-
totical cone (𝒞, g0) if there exists a compact subset K ⊂ W and a diffeomorphism
Φ : {𝔯 > 1}→W \K such that for some λ1 > 0, λ2 > 0 and all j ∈ ℤ≥0.

|∇j
g0(Φ

∗g− g0)|g0 =O(𝔯−λ1−j ), (4)

|∇j
g0(Φ

∗J − J0)|g0 =O(𝔯−λ2−j ). (5)

If the Kähler metric g is Ricci-flat, then its asymptotical cone (𝒞, g0) is also Ricci-
flat. In this case, the metric gM on the link M is called Sasaki-Einstein. When 𝔳 is
quasi-regular, then gM is Sasaki-Einstein if and only if the orbifold Kähler metric ωY

is Kähler-Einstein i.e. Ric(ωY ) = ℓωY . We refer to the book [6] for these facts and
an extensive exposition on Sasaki geometry, particularly Sasaki-Einstein metrics.

Example 2.6 (Tian-Yau metrics, [42]) Let X be a Fano manifold, which means that X

is a projective manifold with an ample anticanonical line bundle −KX . Let Y be a
smooth divisor whose associated line bundle over X is denoted by [Y ]. Assume that
there exists β > 1 such that −KX = β[Y ]. In particular, [Y ] is an ample line bundle.
By adjunction formula, −KY = (β− 1)L with L= [Y ]|Y being the normal bundle of
Y ⊂X and hence Y is also a Fano manifold. Then there exists a complete AC Kähler
metric on X \Y whose asymptotical cone 𝒞 is given by Spec

(︁⨁︁+∞
m=0 H 0(Y,mL)

)︁
. In

fact, the Kähler form near Y can be chosen to be given by
√−1∂∂̄∥s∥− 2(β−1)

n where s

is the defining section of Y and ∥ · ∥2 is a smooth Hermitian metric on the line bundle
[Y ] ([42, (2.2)], see also [30, Sect. 5]). Moreover, if Y admits a Kähler-Einstein metric
with positive Ricci curvature, then there exists a complete AC Ricci-flat Kähler metric
on X \ Y by solving a complex Monge-Ampère equation.

We will use the following compactification result, which only assumes that the
complex structure is asymptotic to the cone.

Theorem 2.7 Let (W,g,J ) be a complete Kähler manifold and (𝒞, g0, J0) be an orb-
ifold cone as before. Assume that there exist a compact subset K ⊂W and a diffeo-
morphism Φ : {𝔯 > 1}→W \K such that for some λ2 > 0 and all j ∈ ℤ≥0,

|∇j
g0(Φ

∗J − J0)|g0 =O(𝔯−λ2−j ).

(1) ([10, 30]) Assume that the Reeb vector field 𝔳 is quasi-regular on the cone 𝒞.
There exists a compact Kähler orbifold 𝒳 and a sub-orbifold divisor 𝒴 such that
𝒴 ∼= 𝒞◦/⟨𝔳⟩ and 𝒳 \𝒴 is biholomorphic to W . Moreover there exists an orbifold
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diffeomorphism ϕ : (𝒰 ,𝒴) → (𝒱,𝒴∞) where 𝒰 is a strongly pseudo-concave
neighborhood of 𝒴 ⊂ 𝒳 and 𝒱 is a strongly pseudo-concave neighborhood of
𝒴∞ ⊂ 𝒞 where 𝒞 = 𝒞 ∪ 𝒴 is the projective compactification of 𝒞 mentioned
above.

(2) ([10]) Assume that the Reeb vector field 𝔳 is irregular. Then there exists a se-
quence of radius functions 𝔯i on 𝒞 whose associated Reeb vector fields 𝔳i are
quasi-regular such that 𝔳i converge to 𝔳 inside the Reeb cone t+

ℝ
as i →+∞.

For any 0 < ϵ ≪ λ2 there exists I such that for any i ≥ I , |∇j
g0,i

(Φ∗J − J0)| =
O(𝔯

−λ2+ϵ−j
i ) for all j ∈ ℤ≥0. As a consequence, there exists an orbifold com-

pactification of W by 𝒴i = 𝒞◦/⟨𝔳i⟩ when i ≥ I .

The compactification result in (1) was proved when 𝔳 is regular in [30] and gen-
eralized to the orbifold setting in [10, Appendix IV]. One way to get the diffeomor-
phism Φ is to use the deformation to the normal cone, which we now briefly explain.
Assume first that 𝔳 is regular so that 𝒴 = (Y,∅) and 𝒳 = (X,∅) in the above The-
orem are smooth complex manifolds. Denote by μ : 𝔛→ X × ℂ the blowing-up of
Y × {0} ⊂ X × ℂ. The exceptional divisor E is isomorphic to the projective bundle
ℙ(L⊕ ℂ) where L is the normal bundle of Y in X. The divisor E contains the di-
visor at the zero section Y0 and the divisor Y∞ at infinity. We then get a flat family
π = proj2 ◦ μ : 𝔛→ ℂ of projective varieties. Denote the fiber over t ∈ ℂ by Xt .
The central fiber X0 is the union X ∪ E such that X and E are glued along Y ⊂ X

and Y∞ ⊂ E. On a neighborhood of Y0 ⊂ 𝔛 we can integrate a smooth vector field
to construct a smooth family of diffeomorphism σt from a neighborhood 𝒰 of Y ⊂ L

to a small neighborhood 𝒱t of Y ⊂ Xt such that σ0 = id𝒰 and |σ ∗t J − J0| =O(|t |)
where J is the complex structure on Xt = X and J0 is the complex structure on
L (see [30, Proposition 3.1]). Choose ϵ ≪ 1 such that Mϵ = {s ∈ L; |s|2 = ϵ} is
contained in 𝒰 . It is clear that Mϵ is isomorphic to M as CR-manifolds thanks to
the holomorphic ℂ

∗ action on L. For |t | ≪ 1, the CR manifolds (Mt , σ
∗
t J |Mϵ ) are

still strongly pseudo-convex, whose associated contact structures are constant due to
Gray’s stability theorem in contact geometry. More generally, if 𝔳 is quasi-regular,
Conlon-Hein observed that the construction of deformation to the normal cone can
be applied and moreover the restriction deformation of 𝔛 to a small neighborhood of
𝒴 ⊂𝒳 is locally trivial (see [10, Definition IV.5]). This can be considered as a tubular
neighborhood theorem in the setting of cyclic orbifolds and allows us to use the same
construction on uniformizing charts, like in the regular case, to get a diffeomorphism
Φ as stated in the above theorem.

2.2 Orbifold Kähler compactification of ℂ𝒏

First, we recall some results proved by Brenton-Morrow in [7] (see also [36, 43]).

Theorem 2.8 [7, Theorem 1.1] Let X be a connected compact complex manifold and
let Y be a Kähler submanifold such that X \ Y is biholomorphic to ℂ

n. Then the
following statements are true:

(1) The complex manifold X is projective algebraic and Y is positively embedded
hypersurface. The line bundle [Y ] associated to the divisor Y is ample over X.
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(2) There are ring isomorphisms H ∗(X,ℤ) ∼= H ∗(ℙn,ℤ) and H ∗(Y,ℤ) ∼=
H ∗(ℙn−1,ℤ).

(3) H 2(X,ℤ) is generated by c1([Y ]) and H 2(Y,ℤ) is generated by c1(L) where
L= [Y ]|Y is the normal bundle of Y inside X.

(4) −KX = (r + 1)[Y ] with r ≥ 1 and −KY = rL. In particular, X and Y are both
Fano manifolds.

Remark 2.9 Rigorously speaking, in [7], the above results were proved in a more
general situation that X \Y is a complex homology cell, and for that purpose, another
assumption was added: X contains no exceptional subvarieties. This assumption was
used in the proof first to show that the normal bundle L= [Y ]|Y → Y is positive (it
was shown that L is either positive or negative) and then to show that X is projective
via a result of Grauert ([15], [33, Theorem 2.4]). Here we already know that X \ Y is
ℂn, which is Stein, hence it is guaranteed that the normal bundle L is positive (since
otherwise by Grauert’s criterion ([15]) Y can be contracted to a point p to give a
compact analytic space X̂, but X \Y = X̂ \p can never be Stein when the dimension
n > 1).

Now we generalize the above results to an orbifold setting. Let (ℂn, g) be an AC
Kähler metric that is asymptotical to (𝒞, g0) with a quasi-regular Reeb vector field
𝔳. Let 𝒴 ⊂ 𝒳 be the orbifold compactification of ℂn obtained by Theorem 2.7. In
particular, 𝒴 = 𝒞◦/⟨𝔳⟩. Let [𝒴] denote the orbifold line bundle on 𝒳 associated to
the orbifold divisor [𝒴] and denote by ℒ its restriction to 𝒴 which coincides with
the orbifold normal bundle ℒ= [𝒴]|𝒴 =N𝒴/𝒳 . We refer to [6, 4.4] for these notions
for complex orbifolds. We will use the orbifold cohomology introduced in [17]. In
other words, we set Hi

orb(𝒳 ,ℤ)=Hi(B𝒳 ,ℤ) and Hi
orb(𝒴,ℤ)=Hi

orb(B𝒴,ℤ) where
B𝒳 and B𝒴 are the classifying spaces of the orbifolds 𝒳 and 𝒴 respectively. B𝒳
can be constructed by the following procedure (see [17, 18] and [6, Chap. 4] for
more details). Choose a Riemannian metric on 𝒳 and let P denote the differentiable
bundle of orthonormal frames of 𝒳 . Let EO(2n)→ BO(2n) be a universal O(2n)-
bundle, then B𝒳 is the quotient of EO(2n)× P by the diagonal action of O(2n). A
similar construction applies to 𝒴 . Moreover, since it is a global quotient of M by an
effective S1 action, we can use the following construction following [18, Sect. 5.3].
We choose an S1-invariant Riemannian metric on M . Let PM denote the bundle of
orthonormal frames of M and set BM = PM ×O(2n−1) EO(2n− 1) where EO(2n−
1)→ BO(2n− 1) is a universal O(2n− 1)-bundle. We can set B𝒴 = BM/S1 and
we have a principal S1-bundle BM → BM/S1 = B𝒴 .

Proposition 2.10 With the above notation, the following properties hold true:

(1) There are ring isomorphisms H ∗
orb(𝒳 ,ℚ) ∼= H ∗(ℙn,ℚ) and H ∗

orb(𝒴,ℚ) ∼=
H ∗(ℙn−1,ℚ).

(2) H 2
orb(𝒳 ,ℤ) is generated by corb

1 ([𝒴]) and H 2
orb(𝒴,ℤ) is generated by corb

1 (ℒ).
(3) −Korb

𝒳 = (r+1)[𝒴] with r ≥ 1 is an ample orbifold line bundle and−Korb
𝒴 = rℒ

is also ample. In particular, both 𝒳 and 𝒴 are Fano orbifolds and (r + 1), r are
their Fano indices respectively.

(4) The link M of the cone 𝒞 is an integral homology sphere and bounds a homology
ball in ℂ

n.
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Proof Let 𝒰 be the closed neighborhood of 𝒴 ⊂ 𝒳 as obtained from Theorem 2.7.
We denote by U the underlying space of the orbifold 𝒰 (with smooth boundary). We
have an exact sequence for ordinary cohomology:

Hk(X−U,∂U,ℤ)→Hk(X−U,ℤ)→Hk(∂U,ℤ)→Hk+1(X−U,∂U,ℤ). (6)

Using the excision property, we have Hk(X − U,∂U,ℤ) = Hk(X,U,ℤ) =
Hk(X,Y,ℤ)=Hk

c (X \ Y,ℤ) for 0≤ k < 2n. So we have

Hk(X−U,ℤ)∼=Hk(∂U,ℤ) for 0≤ k ≤ 2n− 2. (7)

On the other hand, by the Lefschetz duality, we have Hk(X − U,ℤ) = H 2n−k(X −
U,∂U,ℤ) = 0 for 1 ≤ k ≤ 2n. By the Universal Coefficients Theorem, Hk(X −
U,ℤ)= 0 for 1≤ k ≤ 2n. So we also get:

Hk(∂U,ℤ)= 0 for 1≤ k ≤ 2n− 2. (8)

Next, we consider the exact sequence for relative orbifold cohomology:

Hk
orb(𝒳 ,𝒴,ℤ)→Hk

orb(𝒳 ,ℤ)→Hk
orb(𝒴,ℤ)→Hk+1

orb (𝒳 ,𝒴,ℤ) (9)

We have Hk
orb(𝒳 ,𝒴,ℤ) = Hk

c (𝒳 \ 𝒴,ℤ) = 0 for 0 ≤ k < 2n. Therefore we
get Hk

orb(𝒴,ℤ) = Hk
orb(𝒳 ,ℤ) for 0 ≤ k ≤ 2n − 2. In particular H 0

orb(𝒴,ℤ) =
H 0

orb(𝒳 ,ℤ)∼= ℤ and hence Y is connected. Since H 2n
orb(𝒳 ,𝒴,ℤ)=H 2n

c (X \ Y,ℤ)=
ℤ when k = 2n− 1, we get:

0→H 2n−1
orb (𝒳 ,ℤ)→H 2n−1

orb (𝒴,ℤ)→ ℤ→H 2n
orb(𝒳 ,ℤ)→H 2n

orb(𝒴,ℤ)→ 0. (10)

Hence for k ≥ 2n+ 1, we get Hk
orb(𝒳 )∼=Hk

orb(𝒴,ℤ).
Let M denote the circle bundle of ℒ, which is diffeomorphic to ∂U . We apply the

Leray spectral sequence to the S1-principal bundle BM → B𝒴 to get the Gysin exact
sequence:

Hk(M,ℤ)→Hk−1
orb (𝒴,ℤ)

αk−1−→Hk+1
orb (𝒴,ℤ)→Hk+1(M,ℤ) (11)

where αk−1 is the cup product with c1(ℒ) ∈ H 2
orb(𝒴,ℤ). By the vanishing property

(8), we know that αk−1 is an isomorphism for 1≤ k ≤ 2n−3. Since H 0
orb(𝒴,ℤ)= ℤ,

we get H
p

orb(𝒴,ℤ)= corb
1 (ℒ)p/2

ℤ for 0≤ p ≤ 2n− 2 even. For k = 0 in (11), we get
H 1

orb(𝒴,ℤ)= 0 and we get H
p

orb(𝒴,ℤ)= 0 when 1≤ p ≤ 2n−3 is odd. By applying
the same argument to ℚ coefficients, we also see that the orbifold cohomology ring of
𝒴 with ℚ-coefficients is the same as the cohomology ring of ℙn−1, which is generated
by c1(ℒ).

Next, the Kähler assumption implies that there is a Hodge decomposition of
Hk

orb(𝒴,ℂ) and Hk
orb(𝒳 ,ℂ) for any k (see [37, Part I, 2.5]). In particular, we have

Hk
orb(𝒳 ,ℂ)=

⨁︂

p+q=k

H
p

orb(𝒳 ,Ω
q

𝒳 ). (12)
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We get in particular that H 1
orb(𝒳 ,𝒪𝒳 ) = 0 and H 2

orb(𝒳 ,𝒪X) = 0. The exponen-
tial sequence in the complex orbifold setting (see [6, Theorem 4.4.23]) implies
that the map Picorb(𝒳 ) = H 1

orb(𝒳 ,𝒪∗
𝒳 ) ∼= H 2

orb(𝒳 ,ℤ) ∼= H 2
orb(𝒴,ℤ) = ℤ. Because

H 1(M;ℤ)= 0, we know that c1(ℒ) is primitive in H 2
orb(𝒳 ,ℤ).

This implies in particular, −Korb
𝒳 = b[𝒴] for some b ∈ ℤ. If b ≤ 0, then Korb

𝒳 has

nonzero holomorphic section s−b
𝒴 which contradicts dimH 0

orb(𝒳 ,Korb
𝒳 )= h

n,0
orb(X)=

0. So b = 1 + r ≥ 1 i.e. r ≥ 0. By the adjunction formula, we get −Korb
𝒴 = rℒ. If

r = 0, then Korb
𝒴 is trivial and Hn−1

orb (𝒴,𝒪Y )=H 0
orb(𝒴,Korb

𝒴 )∼=ℂ which contradicts

to the vanishing h0,n−1(𝒴)= 0. So r ≥ 1.
By (8), we see that M = ∂Ū is an integral homology sphere. By applying the

Mayer-Vietoris sequence to ℂ
n = (U\𝒴)∪(ℂn \U), we know that M =U ∩(ℂn \U)

bounds an integral homology ball ℂn \U . □

Remark 2.11 In general, Hk
orb(𝒴,ℤ) is not 0 when k ≥ 2n − 1. For example, it is

well-known that for the weighted projective space ℙ(w) = ℙ(w1,w2, . . . ,wn) with
d =∏︁i wi , we have the orbifold cohomology:

Hk
orb(ℙ(w),ℤ)=

⎧
⎨

⎩

ℤ k ≤ 2n− 2 and is even
ℤd k ≥ 2n and is even
0 k is odd.

(13)

We will now show that the (2n− 1)-dimensional submanifold M of ℂn from the
above proposition, equipped with the induced contact structure, is cobordant to the
standard contact sphere via a Liouville cobordism.

Definition 2.12 Given two contact manifolds (M+, ξ+), (M−, ξ−), we say (W,λ) is
a Liouville cobordism from (M−, ξ−) to (M+, ξ+) if

(1) dλ is a symplectic form on W ;
(2) ∂W = (−M−)∪M+ as oriented manifolds;
(3) The Liouville vector field Xλ defined by λ= ιXλdλ is transversal to ∂W pointing

outward/inward along M+/M− respectively;
(4) kerλ|M± = ξ±.

(W,λ) is called a Liouville filling of (M+, ξ+) if M− = ∅.

If M is the smooth boundary of strongly pseudo-convex domain W , then
(W,dCρ := −Jdρ) is a Liouville filling3 of M whose contact structure is induced
by the CR structure and ρ is the strongly plurisubharmonic function whose sub-level
set is W with M a regular level set. More generally, (ρ−1([a, b]),dCρ) is a Liou-
ville cobordism from ρ−1(a) to ρ−1(b) assuming both a, b are regular values. In
particular, by [20, Theorem 2.6.12], we have the following.

Proposition 2.13 The domain W bounded by the contact link M in ℂ
n by Proposi-

tion 2.10 gives a Liouville filling of M .

3Note that in [39, (3.15)], (dCρ)(v)= dρ(Jv)= (Jdρ)(v). This explains the potential sign difference in
some symplectic literature.
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In general, being a strongly pseudo-convex hypersurface in ℂ
n does not imply

that the cobordism from M to the standard S2n−1 end of ℂn is a Liouville cobordism.
Thanks to the asymptotic cone structure, we do have a Liouville cobordism in our
case, which is crucial for our computation of symplectic homology.

Proposition 2.14 The cobordism from the contact link M to the standard S2n−1 end
of ℂn admits a Liouville cobordism structure from the CR structure on M to the
standard contact/CR structure on S2n−1.

Proof Since M , as a contact manifold, can be viewed as a level set of the radius
function 𝔯2, where 𝔯2 defines a strongly plurisubharmonic function on the end of
ℂ

n by the asymptotic cone assumption. Let ρ = |z|2 using the Euclidean metric.
Then f (ρ) is plurisubharmonic on ℂ

n if f ′′ ≥ 0, f ′ ≥ 0. We assume M is con-
tained in the ball B(r) for a fixed r ≫ 1. We can choose f , such that f ′′ ≥ 0,
f ′ ≥ 0, f (ρ) = 0 for ρ ≤ r2. Fix R > r and we require f to grow sufficient fast
such that so that |∇𝔯2| < 1

2 |∇f (ρ)| outside the ball B(R). As a consequence, for
some C ≫ 1, C is a regular value of Ft := t𝔯2 + f (ρ) for all t ∈ [0,1]. The function
F1 = 𝔯2 + f (ρ) is strongly plurisubharmonic outside M and inside F−1

1 (C), where
M is a regular level set of F1 by construction. Therefore, we have a Liouville cobor-
dism from M to F−1

1 (C). Finally, as F−1
t (C) is a smooth family of strongly pseudo-

convex hypersurfaces in ℂ
n, the Gray stability implies that F−1

1 (C) is isomorphic
to F−1

0 (C) as contact manifolds, while F−1
0 (C) is the standard contact sphere by

construction. □

For the rest of this subsection, we study the algebraic property of the singularity
(𝒞, o), which is again the asymptotical cone associated to a complete AC Kähler
metric on (ℂn, J0) obtained by Theorem 2.7.

Proposition 2.15 With the above notation, the vertex o ∈ 𝒞 is a Gorenstein klt singu-
larity.

Proof The proof is similar to [26, 3.1]. Let 𝒞′ denote the total space of the orbifold
line bundle π𝒞′ : ℒ−1 → 𝒴 . Then we have the identity K𝒞′ ⊗ 𝒪(𝒴0) = π∗

𝒞′K
orb
𝒴 .

Away from the zero section 𝒴0 we have K𝒞◦ = π∗Korb
𝒴 = π∗(ℒ−r ) ∼= 𝒪𝒞◦ where

π : 𝒞◦ → 𝒴 is the natural projection. Since 𝒞 is normal, K𝒞 is also trivial and hence
𝒞 is Gorenstein.

Let μ1 : 𝒞′ → 𝒞 be the contraction of the zero section. We have the identity:

K𝒞′ = μ∗
1K𝒞 + (r − 1)𝒴0

where 𝒴0 is the zero section of ℒ−1. Let μ2 : 𝒞→ 𝒞′ be the resolution of singularities
with simple normal crossing exceptional divisors {Fi}, we get an identity similar to
(3):

K𝒞 + ˜︁𝒴0 = μ∗
2(K𝒞′ +𝒴0)+

∑︂

i

aiFi
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= μ∗
2μ

∗
1K𝒞 + rμ∗

2𝒴0 +
∑︂

i

aiFi

= μ∗K𝒞 + r˜︁𝒴0 +
∑︂

i

(ai + r · ordFi
(𝒪(−𝒴0))Fi .

Here 𝒪(−𝒴0) denotes the ideal sheaf of 𝒴0 ⊂ 𝒞′ and ˜︁𝒴0 is the strict transform of
𝒴0 under μ2 and μ= μ2 ◦ μ1 : 𝒞 → 𝒞 is a resolution of singularity. The coefficient
ai = a(F,𝒞′,𝒴0) defined by the first equality is called the discrepancy of the excep-
tional divisor Fi with respect to the pair (𝒞′,𝒴0) (see [26, Definition 2.4]). Note that
𝒴0 has only quotient singularities which are klt. By the theorem of inversion of ad-
junction (see [26, Theorem 4.9]), (𝒞′,𝒴0) is plt (meaning “purely log terminal”, see
[26, Definition 2.8]) which implies ai = a(Fi,𝒞′,𝒴0) >−1. So we get the formula:

md(o ∈ 𝒞)=min{r − 1, ai + r · ordFi
(𝒪(−𝒴0))}>−1

which implies that o ∈ 𝒞 is indeed klt (see Definition 2.2). □

By the linearity property of discrepancies (see [26, Lemma 2.5]), a(Fi,𝒞′,
(1 − r)𝒴0) = a(Fi,𝒞′,𝒴0) + r · ordFi

(𝒪(−𝒴0)). Therefore, we can also write the
minimal discrepancy of o ∈ 𝒞 as

md(o ∈ 𝒞)=min{r − 1, a(Fi,𝒞′, (1− r)𝒴0)}. (14)

We can then derive an algebraic formula for the minimal discrepancy of o ∈ 𝒞 by
adapting the argument as in [26, Proof of Theorem 3.21]. First note that 𝒞′ has only
quotient singularities that are contained in 𝒴0. Let p ∈ 𝒞′ be a quotient singularity
given by πp : ℂn → ℂ

n/Gp where Gp is a cyclic subgroup of U(n). According
to the local classification of smooth Seifert ℂ∗-bundles from [25, 25], ℂn/Gp is
isomorphic to ℂ

n/ 1
m

(b1, . . . , bn) that satisfies the condition that π∗
p𝒴0 = {x1 = 0}

with {x1, . . . , xn} being linear coordinates on ℂ
n and b1 is relatively prime to m. We

have the following formula for the minimal discrepancy of o ∈ 𝒞, which can be seen
as a generalization of Reid-Tai’s criterion for klt quotient singularities to the case of
isolated Fano cone singularities.

Proposition 2.16 With the above notations, we have the equality

md(o,𝒞)=min
p,g

{︄
r,

1

m

(︄
rw1(g)+

n∑︂

i=2

wi(g)

)︄}︄
− 1 (15)

where p ranges over all quotient singularities on 𝒞′ and g ranges over all non-
identity elements in the cyclic groups Gp

∼= ℤm and satisfies g∗xi = ϵwi(g)xi with

ϵ = e2π
√−1/m and 0≤wi(g) < m.

Proof We pick any exceptional divisor F over ℂ
n/Gp dominated by an excep-

tional divisor E over ℂ
n that is pointwise fixed by a cyclic subgroup ⟨g⟩ of or-

der k > 1. Assume m = kℓ. We have the equality a(F,ℂn/Gp, (1 − r)𝒴0) + 1 =
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k−1(a(E,ℂn,Δ′) + 1) where Δ′ = (1 − r)π∗
p𝒴0 (see [26, (2.42.4)]). At a gen-

eral point of E contained in a birational model over X, choose local coordinates
y1, . . . , yn such that E = {y1 = 0}, g∗y1 = ϵℓy1 is a g-eigenfunction (up to a change
of the generator of ⟨g⟩). Using the linear coordinates {xi} on ℂ

n as above such that
π∗

p𝒴0 = {x1 = 0}, we can write g∗xi = y
ci

1 ui where the ui are units. Thus (the pull-
back of) g∗(dx1∧· · ·∧dxn) vanishes to order equal to (−1+∑︁i ci) along E. By the
definition of discrepancy (see Remark 2.1), we get a(E,ℂn)=∑︁i ci − 1, and by the
linearity property a(E,ℂn,Δ′)+ 1= a(E,ℂn)+ 1+ (r − 1)c1 ≥∑︁i ci + (r − 1)c1.
If g∗xi = ϵwi xi with 0≤wi < m, then ℓci ≡wi mod m. So we get:

a(F,ℂn/Gp, (1− r)𝒴0)+ 1= 1

k
(a(E,ℂn,Δ′)+ 1)

≥ 1

k
(
∑︂

i

ci + (r − 1)c1)≥ 1

kℓ
(

n∑︂

i=1

wi + (r − 1)w1)

= 1

m

(︄
rw1(g)+

n∑︂

i=2

wi(g)

)︄
.

Because of (14), this proves that the left-hand side of (15) is greater than the right-
hand side.

Conversely any element g ∈ Gp generates a cyclic subgroup which acts faith-
fully on ℂ

n as ℂ
n/ 1

m
(w1, . . . ,wn) where 𝒴0 = {x1 = 0}. We want to show that

1
m

(
∑︁

i wi + (r − 1)w1) ≥ md(o,𝒞) + 1. If gcd(w1, . . . ,wn) = ℓ > 1, then the ele-
ment 1

m
(w1/ℓ, . . . ,wn/ℓ) contributes a smaller number to the right-hand-side. So we

assume that gcd(w1, . . . ,wn) = 1. Consider the weighted blow-up ℂ
n with weights

(w1, . . . ,wn). By [26, pg. 106], a local chart is given by

f :ℂn
z/

1

w1
(1,−w2, . . . ,−wn)→ℂ

n
x

with f ∗x1 = z
w1
1 , f ∗xi = z

wi

1 zi for i ≥ 2. Let E denote the exceptional divisor of
this weighted blowup that dominates an exceptional divisor F over ℂn/G. Because

f ∗(xr−1
1 dx1 ∧ · · · ∧ dxn)=w1z

−1+(r−1)w1+∑︁n
i=1 wi

1 dz1 ∧ · · · ∧ dzn and the covering
f is generically unramified along the exceptional divisor {z1 = 0}, we get

a(F,ℂn/Gp, (1− r)𝒴0)+ 1= a({z1 = 0},ℂn, (1− r){z1 = 0})+ 1

m

= 1

m
((r − 1)w1 +

n∑︂

i=1

wi).

By (14) we get the formula (15). □

Example 2.17 Set (𝒞, o) = (ℂn,0) and let ℂ
∗ act on ℂ

n by t · (z1, . . . , zn) =
(ta1z1, . . . , t

anzn) with ai ∈ ℤ>0, a1 ≥ · · · ≥ an and gcd(a1, . . . , an) = 1. The cor-
responding orbifold 𝒴 = (ℂn \ 0)/ℂ∗ = ℙ(a1, . . . , an) is the weighted projective
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space with the Fano index r =∑︁n
j=1 aj which is always greater than n except for

ℙn−1 = ℙ(1, . . . ,1). It is easy to verify that the minimum on the right-hand-side of
(15) is obtained when p = [1,0, . . . ,0] and g = ϵ = e2π

√−1/a1 ∈ Gp = ⟨ϵ⟩ ∼= ℤa1 .
Indeed, we have w1(g)= 1, wi(g)= a1 − ai for 2≤ i ≤ n and hence

1

m

(︄
rw1(g)+

n∑︂

i=2

wi(g)

)︄
= 1

a1

⎛

⎝
n∑︂

j=1

aj +
n∑︂

i=2

(a1 − ai)

⎞

⎠

= n=md(0,ℂn)+ 1

2.3 Conley-Zehnder indices and SFT degrees

For later purposes, we briefly review the basics of Conley-Zehnder indices and re-
lated concepts. Given a path ϕ : [0,1] → Sp(2n) in the symplectic matrices, such
that ϕ(0)= id and ϕ(1) ∈ Sp∗(2n) := {A ∈ Sp(2n) |det(A− id) ≠ 0 }, we can define
the integral Conley-Zehnder index μCZ(ϕ), which is characterized by the following
properties [16, Proposition 8]:

(P1) Given any path ψ : [0,1]→ Sp(2n), we have μCZ(ψϕψ−1)= μCZ(ϕ);
(P2) The Conley-Zehnder index is homotopy invariant for homotopies of paths from

id to Sp∗(2n);
(P3) Given paths ϕ1, ϕ2 in Sp(2n1), Sp(2n2) respectively, then the path ϕ1 ⊕ ϕ2 in

Sp(2n1 + 2n2) has Conley-Zehnder index μCZ(ϕ1)+μCZ(ϕ2);
(P4) Given a loop ψ : [0,1]→ Sp(2n) with ψ(0)=ψ(1)= id, then

μCZ(ϕψ)= μCZ(ϕ)+ 2μ(ψ)

where μ(ψ) is the Maslov index of the loop ψ , i.e. the degree of S1 →
Sp(2n) → U(n)

detℂ−→ U(1), here Sp(2n) → U(n) is the homotopy inverse of
the inclusion U(n)→ Sp(2n);

(P5) (−1)n−μCZ(ϕ) = sign det(id− ϕ(1));
(P6) Let S be a symmetric matrix such that |S|< 2π , for ϕ(t)= exp(tJS) where J

is the standard complex structure on ℂ
n ≃ ℝ

2n, we have μCZ(ϕ) is half of the
signature of S.

Properties (P2), (P4) and (P6) determine Conley-Zehnder index uniquely, see [16,
Proposition 9].

The Conley-Zehnder indices have the following generalizations.

(P7) Conley-Zehnder index has a generalization called the Robbin-Salamon index
μRS ∈ 1

2ℤ defined for any path in Sp(2n). One important feature of μRS is that
it is additive w.r.t. concatenation of paths [16, Property 4 of Lemma 26]. By
property (P4) above, we have μRS(ψ) = 2μ(ψ) for a loop ψ . Moreover, we
have the following normalization formula for the path in U(1)⊂ Sp(2):

μRS({eiθ ;0≤ θ ≤ T })=
{︃

T
π
, if T ∈ 2πℤ

2⌊ T
2π
⌋ + 1, if T /∈ 2πℤ.

(16)
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(P8) μCZ has a lower semi-continuous extension μLCZ ∈ ℤ to all paths in Sp(2n)

starting from id [32, Definition 2.11]. By [32, Lemma 4.10],

μLCZ(ϕ)= μRS(ϕ)− 1

2
dim ker(ϕ(1)− id). (17)

We now turn to the geometric setting. For a contact manifold (M2n−1, η), let ϕt

denote the flow generated by the Reeb vector field 𝔳. For a closed Reeb orbit γ , after
choosing a trivialization of γ ∗(ξ := kerη), the linearized flow gives rise to a path in
Sp(2n− 2). By properties (P2) and (P4), the Conley-Zehnder index (including μLCZ,
μRS) only depends on the induced trivialization τ of detℂ ξ , which will be denoted
by μτ

CZ(γ ) (μτ
LCZ(γ ), μτ

RS(γ )) respectively. To get Conley-Zehnder indices for all
Reeb orbits, we have the following:

(i) For any Reeb orbit γ , μ
ℤ2
LCZ(γ ) ∈ ℤ2 is well-defined. This is defined by

μτ
LCZ(γ ) mod 2 for any trivialization τ of detℂ γ ∗ξ . The well-definedness fol-

lows from Property (P4).
(ii) If c1(ξ) = 0, detℂ ξ can be trivialized over M (the set of trivializations is pa-

rameterized by H 1(M;ℤ)). After choosing a trivialization τ of detℂ ξ , we get
μτ

LCZ(γ ) for all Reeb orbits and it is independent of τ if [γ ] = 0 ∈H1(M;ℚ).

In the case, μ
ℤ2
LCZ(γ )= μLCZ(γ ) mod 2.

(iii) If c
ℚ
1 (ξ) = 0 in H 2(M;ℚ), we can trivialize detℂ⊕Nξ for some N ∈

ℤ>0, after choosing a trivialization τ , this allows us to define μ
ℚ,τ
LCZ(γ ) =

μτ
LCZ(⊕Nϕ)/N ∈ ℚ, where ϕ is the linearized flow along γ . This definition

is independent of N and is moreover independent of τ if [γ ] = 0 ∈ H1(M;ℚ)

[14, §3.3.2]. This rational index coincides with the integer index above when
c1(ξ) = 0. In general, one should think (μ

ℚ
LCZ,μ

ℤ2
LCZ) ∈ ℚ × ℤ2 is a pair of

indices associated to an orbit.

Definition 2.18 Let (M, ξ) be a 2n− 1 dimensional contact manifold with rational
first Chern class c

ℚ
1 (ξ) = 0 and H 1(M;ℚ) = 0. For any Reeb orbit γ for a fixed

contact form η, we define its lower SFT degree

lSFTη(γ ) := μ
ℚ
LCZ(γ )+ n− 3.

Under the same assumption, McLean4 [32] defined the highest minimal index by

hmi(M) := sup
η

inf
γ

{︁
lSFTη(γ )

}︁ ∈ℝ∪ {±∞}, (18)

where η ranges over all contact forms and γ ranges over all Reeb orbits of η. When M

is the contact link of an isolated ℚ-Gorenstein normal singularity, McLean [32, Theo-
rem 1.1] proved that hmi(M) is twice the minimal discrepancy number if hmi(M)≥ 0
and hmi(M) < 0 is equivalent to that the minimal discrepancy number is negative.

4The Robbin-Salamon index was denoted as CZ(γ ) in [32].
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3 Proof of main results

In the following, we study the Fano index of the orbifold 𝒴 as well as the minimal
discrepancy number of the cone singularity 𝒞(Y,ℒ) using Floer cohomology from
symplectic geometry to finish the proof of the main theorem.

3.1 Quasi-regular Sasaki manifolds

Returning to the quasi-regular Sasaki case, the contact manifold M has a contact form
η whose Reeb vector field 𝔳 generates an S1-action and 𝒴 =M/S1 is a symplectic
orbifold. The standing topological assumption in this subsection is that

c
ℚ
1 (ξ)= 0.

This is a consequence of the cone singularity being ℚ-Gorenstein and guarantees ℚ-
valued indices (μLCZ, μRS) after choosing a trivialization of detℂ⊕Nξ . In fact, by
[32, Lemma 3.3] and [3, Corollary 5.17], it is equivalent to the singularity being ℚ-
Gorenstein given that the singularity is klt. In the special case here, we do not need
to assume H 1(M;ℚ) = 0, as all Reeb orbits of a conic contact form are rationally
null-homologous, making the index independent of the trivialization. Moreover, in
the question of compactification of ℂn, we have H 2(M;ℤ)= 0 by Proposition 2.10
guaranteeing ℤ-valued indices. Let N be a positive integer such that Nc1(ξ) = 0.
Note that for any x ∈ M , the direct sum of N copies of the linearization of the S1-
action along the orbit S1 · x gives rise to a loop in Sp((2n − 2)N) by trivializing
⊕Nξ ⊂ T M along the orbit, where the trivialization matches with the unique (by our
topological assumptions) global trivialization of detℂ⊕Nξ . We use R(M) to denote
the Maslov index μ of this loop divided by N , which is independent of the point x

by the homotopy invariant property of the Maslov index.

Lemma 3.1 Let (M, ξ) be a contact manifold with c
ℚ
1 (ξ) = 0 and W a symplectic

filling. For a rationally null-homologous Reeb orbit γ , and a bounding surface u :
S → W such that ∂u = γ , using the unique trivialization of u∗ detℂ T W over S,
we get an integer lower Conley-Zehnder index μu

LCZ(γ ). The rational lower Conley-
Zehnder index is given by

μ
ℚ
LCZ(γ )= μu

LCZ(γ )− 2⟨c1(W),u∗[S]⟩,

where we view c1(W) as in H 2(W,M;ℚ) as c
ℚ
1 (ξ)= 0 and u∗[S] ∈H2(W,M;ℤ).

Alternatively, if A ∈H2(W ;ℚ) satisfy [A] = u∗[S] in H2(W,M;ℚ) (such A exists as
u∗[∂S] = 0 ∈H1(M;ℚ)), then the rational lower Conley-Zehnder index μ

ℚ
LCZ(γ )=

μu
LCZ(γ )− 2⟨c1(W),A⟩.

Proof Assume Nc1(ξ) = 0, and write ϕ(t) as the linearized flow of the Reeb flow.
We then apply Property (P4) to ⊕Nϕ(t) for trivializations from u and the global
trivialization of detℂ⊕Nξ , which are differed by 2N⟨c1(W),u∗[S]⟩. □
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Under the above setup, by the ℚ-Gorenstein property or c
ℚ
1 (ξ) = 0, there is

r(𝒴,ℒ) ∈ ℚ such that −K𝒴 = r(𝒴,ℒ)ℒ. In the case of Proposition 2.10, r(𝒴,ℒ)

is the Fano index of 𝒴 .

Proposition 3.2 Under the setup above, we have the identity R(M)= r(𝒴,ℒ).

Proof We can compute the Maslov index by the induced S1-symplectic action on
the symplectization ℝs ×M , where the symplectic tangent bundle along an orbit is
the contact structure direct sum with ⟨𝔳, ∂s⟩. Along with the obvious trivialization
of ⟨𝔳, ∂s⟩, the linearized action along the orbit has an extra block of 2 × 2 iden-
tity matrix compared to the contact case. In particular, the Maslov index does not
change. If we compute the Maslov index using the induced trivialization from the
bounding disk D–the fiber disk–in the orbifold line bundle ℒ−1, then the loop of
the symplectic matrices is just a full rotation in the two coordinates in the disk D,
hence the Maslov index is 1. As 2R(M)− n+ 1 is μ

ℚ
LCZ of the principal Reeb or-

bit (the S1 orbit that is not multiply covered) on M , R(M) enjoys the same prop-
erty as μ

ℚ
LCZ in Lemma 3.1 without the factor 2. Let A be a closed rational chain

whose intersection number with 𝒴 is 1, we may view A as contained in the zero sec-
tion in ℒ−1. Then we have [A] = [D] in H2(ℒ−1,M;ℚ) and ⟨c1(ℒ−1),A⟩ = 1. We
have R(M)= 1−⟨c1(T ot (ℒ−1)),A⟩ = 1−⟨c1(𝒴)+ c1(ℒ−1),A⟩ = r(𝒴,ℒ), where
T ot (ℒ−1) is the total space of ℒ−1 as a complex orbifold. □

We consider the finite set S of isotropy groups (including the trivial group, which
is the isotropy group for a generic point) of the S1 action on M . The set S is equipped
with a partial order, we say Gx > Gy if Gy ⊂Gx ⊂ S1 is a subgroup. For G ∈ S, the
quotient of the fixed point set MG/S1 gives rise to a branch locus 𝒴G of the quotient
Kähler orbifold 𝒴 =M/⟨𝔳⟩ giving M a stratification over the partial order set S. For
non-minimal G ∈ S, we use G− to denote the unique maximal element that is smaller
than G. We formally define G− = ∅ when G is the minimal element of S. We may
rescale the contact form, such that the principal orbit (the simple Reeb orbit over a
non-singular point of M/S1) has a period 1. For G ∈ S, we write 𝒴G = ⊔i∈CG

𝒴 i
G as

the decomposition into disconnected components. MG has a similar decomposition
into ⊔i∈CG

MG
i

Proposition 3.3 The Reeb flow is Morse-Bott non-degenerate with the following prop-
erties:

(1) The Morse-Bott families of Reeb orbits are parameterized by G ∈ S, k ∈G\G−
and ℓ ∈ ℤ≥0, where the family of parameterized Reeb orbit is diffeomorphic to
MG via the starting point of the Reeb orbit and the period of the orbit is ℓ+ k

|G|
(we parameterize S1 by [0,1]). The corresponding Morse-Bott family of unpa-
rameterized Reeb orbits is diffeomorphic to the orbifold MG/S1, which is a
branch locus 𝒴G of the base orbifold 𝒴 with isotropy G. We will call (G, k, ℓ, i)

the signature of such a Reeb orbit in the component MG
i , where i ∈ CG. When

G= {e}, we have ℓ≥ 1, corresponding to ℓth cover of a principal orbit.
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(2) The lower Conley-Zehnder index μLCZ(G, k, ℓ, i) and Robbin-Salamon index
μRS(G, k, ℓ, i) of orbits with signature (G, k, ℓ, i) satisfy the following proper-
ties:
(a) μLCZ(G, k, ℓ, i)= μRS(G, k, ℓ, i)− dimℂ𝒴 i

G;
(b) μRS({e},0, ℓ)= 2ℓR(M) (there is only one component for π0(𝒴{e} = 𝒴));
(c) μRS(G, k, ℓ, i)= μRS(G, k,0, i)+ 2ℓR(M);
(d) μ

ℤ2
LCZ(G, k, ℓ, i)= n− 1.

(3) If R(M)≥ 0, then

inf
γ

(lSFT(γ ))= min
G,k,i

{μRS(G, k,0, i)− dimℂ𝒴 i
G + n− 3} ∪ {2R(M)− 2},

where γ ranges over Reeb orbits of η.

Proof The description of the Morse-Bott family follows from the fact that the Reeb
flow is the S1-action. The identity μLCZ(G, k, ℓ, i)= μRS(G, k, ℓ, i)− dimℂ𝒴 i

G fol-
lows from (17). Since the Robin-Salamon index for a loop of symplectic matrices is
twice the Maslov index, we have μRS({e},0, ℓ) = 2ℓR(M). The linearized flow for
μRS(G, k, ℓ, i) is the linearized flow for μRS(G, k,0, i) concatenated with ℓ-multiple
of the loop of symplectic matrices from the S1 action, and so μRS(G, k, ℓ, i) =
μRS(G, k,0, i) + 2ℓR(M) by the concatenation property. To see 2(d), the mod 2
lower Conley-Zehnder index is the sum of the mod 2 indices from two components,
as the matrix path decomposes into two components: one from MG and the other
from the normal direction. In the direction of MG, the mod 2 lower Conley-Zehnder
index is dimℂ𝒴 i

G as it is a loop of symplectic matrices in Sp(dimℝ𝒴 i
G). In the normal

direction, as the endpoint/linearized return map is complex-linear, we know that the
parity of the complex dimension of the normal bundle, i.e. 1

2 (dimM − dimMG
i ) =

n− 1 − dimℂ𝒴 i
G mod 2, is the same as the parity of the Conley-Zehnder index in

the normal direction, by property (P5), as sign detℝ(id− complex linear matrix)= 1
when it (the linearized return map in the normal direction) is non-singular. Then 2(d)
follows from property (P3). For a Reeb orbit of signature (G, k, ℓ, i), we have the
identity

lSFT(γ )= μRS(G, k, ℓ, i)− dimℂ𝒴 i
G + n− 3,

When R(M) ≥ 0, 2(b) implies that infγ {lSFT(γ )} is attained by Reeb orbits with
ℓ= 0 or G= {e} and ℓ= 1, i.e.

inf
γ

(lSFT(γ ))= min
G̸={e},k,i

{μRS(G, k,0, i)− dimℂ𝒴 i
G + n− 3} ∪ {2R(M)− 2}. □

In the following, we compute directly that infγ lSFT(γ ) is twice the minimal dis-
crepancy in (15) for the conic contact form η. We will give two proofs of (19). The
one given below uses axiomatic properties of the Conley-Zehnder index. Another
proof is contained in the Appendix.

Proposition 3.4 Let o ∈ 𝒞 be an isolated Fano cone singularity of dimension n. For
any conic contact form η, we have

inf
γ

lSFT(γ )= 2 md(o,𝒞). (19)
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Proof Locally, the holomorphic vector bundle is modeled on ℂ×ℂ
n−1 with a cyclic

action 1
m

(w1, . . . ,wn), where the first factor is the fiber direction and (m,w1) = 1
as the link is smooth. The contact form on the associated S1 bundle, i.e. M , is given
by a connection form whose curvature is

√−1 times the symplectic form on the
base 𝒴 . The choice of connections does not matter locally, as they differ by a gauge
transformation. In the tangent space of 0 in the base ℂ

n−1, complex subspaces are
symplectic, and the symplectic complement of an invariant symplectic subspace is
also invariant, as the symplectic form is invariant. Hence there exists a symplectic
basis such that the tangent space at 0, as a symplectic vector space, is (ℂn−1,ωstd)

with a cyclic quotient action 1
m

(w2, . . . ,wn). By Moser’s trick, one can argue that the
symplectic form on the base is locally modeled on (ℂn−1,ωstd) with a cyclic quo-
tient action 1

m
(w2, . . . ,wn). As ωstd = dλstd = d( 1

2

∑︁n
i=2(xidyi −yidxi)) and λstd is

invariant under the cyclic action, we can use dθ + λstd as the connection on the triv-
ialization. Therefore the contact form is locally modeled on (S1 ×ℂ

n−1,dθ + λstd)

with a cyclic action 1
m

(w1, . . . ,wn). Note that we are only claiming the contact form,
not the Sasaki structure, is standard, as Moser’s trick only preserves the symplec-
tic structure. With such a standard contact model, the Reeb flow is given by ∂θ .
The projection π : ξ = ker(dθ + λstd)⊂ T (S1 ×ℂ

n−1)→ℂ
n−1 is an isomorphism,

and π∗(d(θ + λstd)) = dλstd = ωstd on ℂ
n−1. In order to make the principal orbits

have period 1 as in Proposition 3.3, we rescale the contact form to 1
2π

(dθ + λstd),
such that the Reeb flow is ϕt (θ, v) = (θ + 2πt, v). Let γ denote the Reeb orbit
(e2πw1

√−1t/m,0) for t ∈ [0,1], we consider the symplectic trivialization γ ∗ξ by

S1 ×ℂ
n−1 → γ ∗ξ

(t, v = (v2, . . . , vn)) ↦→ π−1(e2πw2
√−1t/mv2, . . . , e

2πwn

√−1t/mvn)

Under such a trivialization τ , the linearized Reeb flow gives rise to the following path
of symplectic matrices

t → diag(e−2πw2
√−1t/m, . . . , e−2πwn

√−1t/m), t ∈ [0,1] (20)

With such a trivialization τ , we have

lSFTτ (γ )=−#{i|i ≥ 2,wi > 0} − #{i|i ≥ 2,wi = 0} + n− 3=−2,

where −#{i|i ≥ 2,wi > 0} is from those axes with wi > 0 by Property (P6) of the
Conley-Zehnder index, and−#{i|i≥2,wi = 0} is−dimℂ𝒴ℤ/m=− 1

2 dim ker(ϕ(1)−
id) in (17), which is the lower Conley-Zehnder index from those axes with wi = 0 by
Properties (P7) and (P8). Then the claim follows from Property (P3). Similarly, by
Properties (P7) and (P8), we have

lSFTτm

(γ m)=−2
n∑︂

i=2

wi − 2,

where τm is the induced trivialization on γ m, under which the linearized flow is (20)
for t ∈ [0,m]. Since γ m is w1-th cover of a principal orbit, by Proposition 3.3, lSFT
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using a global trivialization is

lSFT(γ m)= 2w1r(M)− 2.

Therefore, we can compute the discrepancy between the trivialization τ and the
global trivialization and conclude that:

lSFT(γ )= lSFTτ (γ )+ lSFT(γ m)− lSFTτm
(γ m)

m
= 2

m
(

n∑︂

i=1

wi + (r − 1)w1)− 2.

Therefore infγ lSFT(γ ) is twice the minimal discrepancy in (15). □

3.2 Symplectic homology and its variants

Let W be the Liouville filling of M in ℂ
n in Proposition 2.13. To every Liouville fill-

ing, one can associate several symplectic invariants, namely the symplectic homology
(over ℚ) SH∗(W ;ℚ) as well as its variants, see e.g. [9]. Those invariants are always
graded over ℤ2, and they are generated by (non-degenerate) Reeb orbits/Hamiltonian
orbits with grading from the Conley-Zehnder index. When c1(W)= 0, those invari-
ants are graded by ℤ, where the grading depends on a choice of the trivialization of
detℂ T W . If we only have c

ℚ
1 (W) = 0, those invariants can be graded over ℚ with

similar dependence on trivializations.
Our proof follows from the computation of the positive S1-equivariant symplectic

homology SH
+,S1

∗ (W ;ℚ) of W from two perspectives: (1) from functorial properties
of the invariants, (2) direct computation with the help of the S1-symmetry on the
Sasaki link and the Morse-Bott spectral sequence [27].

Remark 3.5 There are many different conventions regarding symplectic (co)homol-
ogy and its variants. Since the references cited here are not completely consistent, we
point out their relations: the symplectic homology SH∗ and its variants in [5, 9, 27]
is isomorphic to the symplectic cohomology SH ∗ and its variants in [38, 39] by
SH ∗ = SHn−∗, where n is half of the dimension of the symplectic domain. The sym-
plectic homology in [5, 9, 27] is graded by Conley-Zehnder indices of the Hamilto-
nian orbits.

Proposition 3.6 Let W be the strongly pseudo-convex domain bounded by M in ℂ
n

obtained by Proposition 2.10, the positive S1-equivariant symplectic homology of W

is

SH+,S1

∗ (W ;ℚ)=
{︃
ℚ, ∗ = n+ 1+ 2m,m ∈ ℤ≥0
0, else

.

Proof By gluing the Liouville filling W from Proposition 2.13 and the Liouville
cobordism in Proposition 2.14, we get a Liouville filling W̃ of the standard contact
sphere. Then by a theorem of Seidel and Smith [39, Corollary 6.5], the symplec-
tic homology of W̃ vanishes. Because there is a unital ring map SH∗(W̃ ;ℚ) →
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SH∗(W ;ℚ) from the Viterbo transfer [38, Theorem 9.5], we have the vanishing
SH∗(W ;ℚ)= 0. Then by the tautological long exact sequence [38, Lemma 8.1]

· · ·→H ∗(W ;ℚ)→ SHn−∗(W ;ℚ)→ SH+
n−∗(W ;ℚ)→H ∗+1(W ;ℚ)→ ·· · ,

we get that SH+∗ (W ;ℚ) is supported in degree n+1 with rank 1 as W is a homology
ball by Proposition 2.10. By [5, Theorem 1.1], we have the following Gysin exact
sequence,

· · · → SH+
k (W ;ℚ)→ SH

+,S1

k (W ;ℚ)
D→ SH

+,S1

k−2 (W)→ SH+
k−1(W)→ ·· · .

As a consequence, we know that D : SH
+,S1

k (W ;ℚ) → SH
+,S1

k−2 (W) is an isomor-
phism when k ≥ n+ 3 or k ≤ n. The map D is nilpotent in the sense that for every

x ∈ SH
+,S1

∗ (W ;ℚ) there exists a K ∈ ℤ≥ 0 depending on x, such that Dkx = 0.
This follows from the definition of D [5] as it decreases the action. Therefore we

have SH
+,S1

k (W ;ℚ)= 0 when k ≤ n. Then from the Gysin exact sequence, we have
exact sequences:

· · · → 0→ SH+
n+1(W ;ℚ)→ SH

+,S1

n+1 (W ;ℚ)
D→ 0→ ·· · ,

and

· · ·→ 0→ SH
+,S1

n+2 (W ;ℚ)
D→ 0→ ·· · .

So we get SH
+,S1

n+1 (W ;ℚ)=ℚ and SH
+,S1

n+2 (W ;ℚ)= 0. The claim now follows be-
cause we know that D is an isomorphism when k ≥ n+ 3. □

The next result works for more general M , namely for those Proposition 3.3 ap-
plies. Let W be a Liouville symplectic filling of M such that the rational first Chern
class c

ℚ
1 (W)= 0. We have a Morse-Bott spectral sequence [27, Theorem 5.4. (5.3)]

computing SH
+,S1

∗ (W ;ℚ). Its first page is given by:

E1
p,q =

⨁︂

p=N(ℓ+ k
|G| )

Hp+q−μLCZ(G,k,ℓ,i)(𝒴 i
G;ℚ)

where N = lcmG∈S(|G|). Here, the spectral sequence is from the filtration by the pe-

riod recorded by p and p+ q is the (rational) grading on SH
+,S1

∗ (W ;ℚ) by the (ra-
tional) Conley-Zehnder indices. This spectral sequence is induced by the increasing
filtration by subcomplexes generated by Reeb orbits with period up to p/N . This is
a homological spectral sequence with differential dr

p,q : Er
p,q → Er

p−r,q+r−1. More-

over, each element from H∗(𝒴 i
G;ℚ) also has a well-defined ℤ2 grading correspond-

ing to the same spectral sequence from the period filtration but graded by the mod
2 Conley-Zehnder index. The differential dr is degree −1 for both the ℚ-grading
and ℤ2-grading. In the following picture (Fig. 1), we spell out the ℚ-grading and use
different colors (hollow red and solid blue) to mark the ℤ2-grading of each element.
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Fig. 1 A schematic picture of the first page of the spectral sequence (Color figure online)

Remark 3.7 [27, Theorem 5.4, condition (ii)] requires that c1(ξ),π1(M)= 0. Such a
condition is only needed to obtain a canonical ℤ-grading on symplectic homology.
Moreover, the actual condition needed to obtain a canonical ℤ-grading is that all Reeb
orbits are null-homologous and c1(ξ) = 0. While the spectral sequence is induced
from a period/action filtration, which always exists in a Morse-Bott situation by the
proof of [27, Theorem 5.4]. The extra condition equips the spectral sequence with
ℤ-grading. In our case here, we have c

ℚ
1 (ξ) = 0 and all Reeb orbits have torsion

homology class, this equips symplectic homology and the spectral sequence with a
canonical ℚ-grading using the rational Conley-Zehnder index recalled in §2.3.

To present the first page of the spectral sequence, the vertical axis is p and the
horizontal axis is q; each dot represents a copy of ℚ with color indicating their ℤ2
grading. Each dashed block represents some H∗(𝒴 i

G;ℚ) with the p + q coordinate
of the leading term is μLCZ(G, k, ℓ, i). All the leading dots have the same ℤ2 grading
by (2d) of Proposition 3.3, where hollow red means n − 1 mod 2. The arrows are
differentials that respect both gradings.

Proposition 3.8 Under the assumption of Proposition 3.3 and R(M) > 0. If there is
a Liouville filling W of M such that c

ℚ
1 (W)= 0, we have

inf
γ

(lSFT(γ ))= inf{k|SH
+,S1

k (W ;ℚ) ≠ 0} + n− 3= hmi(M),

where γ ranges over Reeb orbits of a conic contact form η.

Proof We know that SH
+,S1

∗ (W ;ℚ) is an invariant independent of η whose underly-
ing cochain complex is supported in degrees at least infγ (lSFT(γ ))+ 3− n for any
contact form η. Therefore for any contact form η, we have

inf
γ

(lSFT(γ ))≤ inf{k|SH
+,S1

k (W ;ℚ) ≠ 0} + n− 3

where we enumerate γ through all Reeb orbits of η. Hence, we know that

hmi(Y )≤ inf{k|SH
+,S1

k (W ;ℚ) ≠ 0} + n− 3.
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Now we return to the case of conic contact forms. As R(M) > 0, infγ (lSFT(γ )) =
minG,k{μRS(G, k,0, i)−dimℂ𝒴 i

G+n−3}∪{2R(M)−2}. We claim that an element
in H0(𝒴 i

G;ℚ) with the minimal rational degree p+q and the maximal p will survive
in the spectral sequence. The R(M) > 0 condition implies that concatenation with
principal orbits increases both the period and grading, hence such elements exist. For
such an element α to be killed in the spectral sequence, we must have an element β

in E1
p+r,q−r+1 that survives till the r th page and drβ = α.

Since the α and β have different ℤ2 grading, we must have α hollow red and
β solid blue, i.e. in the situation shown in the picture above (Color figure online).
As a consequence, the minimal degree term γ of the block containing β must have
strictly larger p and no larger p + q compared to α. But this contradicts with the

choice of α. Therefore α is non-trivial in SH
+,S1

∗ (W ;ℚ) with the minimal grading
infγ (lSFT(γ )) + 3 − n. On the other hand, we have hmi(M) ≥ infγ (lSFT(γ )) by
definition. So we must achieve the following equalities:

inf
γ

(lSFT(γ ))= inf{k|SH
+,S1

k (W ;ℚ) ≠ 0} + n− 3= hmi(M). □

Remark 3.9 Assume the Reeb flow of η gives an S1-action as above and R(M) > 0.
It is always true that hmi(M) is the infγ (lSFT(γ )), which is observed by a homol-
ogy class, i.e. we do not need to assume the existence of a Liouville filling W . The
existence of a Liouville filling allows us to use ℚ-graded positive S1-equivariant sym-
plectic homology, which is the linearized contact homology w.r.t. the augmentation
from W [4]. Such a Liouville filling always exists in our setting if o ∈ 𝒞 is smoothable
and dimℂ 𝒞 ≥ 3, or in the compactification problem by Proposition 2.13. In general,
we can use the linearized contact homology w.r.t. an algebraic ℚ-graded augmen-
tation over ℂ. The Morse-Bott spectral sequence works for such linearized contact
homology as well, and the proof of Proposition 3.8 holds. As contact manifolds with
S1-Reeb flow are strongly fillable by [23], the contact homology does not vanish [28,
Theorem 1 and Proposition 2.9]. Since the vanishing of contact homology is the only
obstruction to the existence of an algebraic augmentation over an algebraically closed
field, we can always use the linearized contact homology, which is expected to be a
contact invariant.5

5The foundation of linearized contact homology is an ongoing project [2] of Russell Avdek, Erkao Bao,
Georgios Dimitroglou Rizell, and the second author.
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3.3 Proofs of the main theorems

Proof of Theorem 1.4 The statement follows immediately by combining (15), Propo-
sitions 3.4 and Proposition 3.8. □

Proof of Theorem 1.3 By approximation, we can assume that there exists a sequence
of quasi-regular 𝔳k that converges to 𝔳 as k →+∞. For each 𝔳k , we apply Theo-
rem 2.7 to get Kähler orbifold compactification of ℂn. By Proposition 2.15 we know
that 𝒞 has a Gorenstein isolated singularity at the vertex o.

By Propositions 2.10 and Proposition 3.2, we have R(M) > 0. Then Proposi-

tions 3.8 and Proposition 3.6 imply that infγ (lSFT(γ )) = inf{k|SH
+,S1

k (W ;ℚ) ≠
0} + n − 3 = 2n − 2, which implies the minimal discrepancy number is n − 1 by
Theorem 1.4.

If we assume that Shokurov’s conjecture is true, in particular if the dimension
n ≤ 3, then 𝒞 is a smooth affine variety with an effective torus action with a unique
fixed attractive point o ∈ 𝒞. By [21], we know that 𝒞 is equivariant biholomorphic
to ℂ

n with a linear torus action. So the Reeb vector field of (𝒞, g0) ∼= (ℂn, g0) is
exactly given by the imaginary part of some linear vector field

∑︁n
i=1 wizi∂zi

with
wi > 0, i = 1, . . . , n. Now if g is Ricci flat, then (𝒞, g0) is also Ricci flat. By the
volume minimization property of Reeb vector fields associated to Ricci flat Kähler
cone metrics (see [31]), the vector (w1, . . . ,wn) must minimize the normalized func-
tional (w1+···+wn)n

w1·····wn
. This forces w1 = w2 = · · · = wn and g0 is the flat metric on ℂ

n.
In other words, the metric tangent cone of (ℂn, g) at infinity is the flat metric on ℂ

n.
By the rigidity result from [1], we know that the Ricci flat metric g on ℂ

n itself must
be flat. □

Proof of Theorem 1.1 By [7, Theorem 1.1.III] or Proposition 2.10, we know that X

and Y are Fano manifolds satisfying −KX = (r + 1)[Y ] for r > 0. According to
the construction of Tian-Yau (see Example 2.6), there exists a complete AC metric
on X \ Y whose asymptotical cone is 𝒞(Y,L) with L = [Y ]|Y . So we can apply
Theorem 1.3 to the case when (𝒴,ℒ) = (Y,L) has no orbifold singularities. Since
−KY = rL, by (15) it is easy to see that md(o,𝒞(Y,L)) + 1 is now equal to r . So
by Theorem 1.3, r is equal to n. By Kobayashi-Ochiai’s criterion ([24]), we know
that Y is holomorphic to ℙ

n−1 and the conclusion now follows from the results in [7,
Theorem 1.1.(II)]. □

Appendix: An alternative proof of Proposition 3.4

We will use the same notation as our proof of the formula (15). Let 𝒞 = 𝒞(𝒴,ℒ) be
an isolated Fano cone singularity. Let 𝒞′ denote the total space of the orbifold line
bundle π : ℒ−1 → 𝒴 and μ1 : 𝒞′ → 𝒞 be the contraction of the zero section. Fix any
point p ∈ 𝒴 , by [25, 25] there exist a neighborhood U of p ∈ 𝒴 and m ∈ ℤ>0 and
e2, . . . , en ∈ {0,1, . . . ,m− 1} such that

π−1(U)=ℂ×ℂ
n−1/

1

m
(1, e2, . . . , en).
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Let {x1, x2, . . . , xn} denote the coordinates on the ramified cover ℂn. We have the
isomorphism

ℂ
∗ ×ℂ

n−1/
1

m
(1, e2, . . . , en)= Spec(ℂ[xm

1 , x2x
−e2
1 , . . . , xnx

−en

1 ]).

Assume that −K𝒴 = rℒ so that 𝒞 is ℚ-Gorenstein, i.e. there exists N ∈ ℤ>0 such
that N ·K𝒞 is Cartier. Then we can write down a local trivializing section of (K𝒞)⊗N

as

σ𝒞 =
(︂
xr−1

1 dx1 ∧ dx2 ∧ · · · ∧ dxn

)︂⊗N

which induces a trivializing section of ((det ξ)∨)⊗N as σ := (ιx1∂x1
σ𝒞)⊗N =

(xr
1dx2 ∧ · · · ∧ dxn)

⊗N . Choose an orbifold Hermitian metric h on the orbifold line
bundle ℒ−1 → 𝒴 such that its Chern curvature

√−1∂∂̄ logh is an orbifold Kähler
form. Locally over the uniformization chart h is represented as a(x′)|x1|2 where
x′ = {x2, . . . , xn}. For any β > 0, hβ induces a radius function 𝔯 on 𝒞 which in turn
defines a Riemannian cone metric g𝒞 on 𝒞. Over the regular part 𝒞◦, we can find
a basis of the contact distribution ξ that are compatible with the trivialization of
(det ξ)⊗N :

Vj := x
ej

1 (∂xj
− a−1(∂xj

a)x1∂x1), 2≤ j ≤ n.

Indeed, it is easy to verify that {Vj : 2 ≤ j ≤ n} are a basis for the orthogonal com-
plement to the Euler vector field x1∂x1 and are invariant under the cyclic group ac-

tion. Let ∇ denote the Levi-Civita connection of g𝒞 |{𝔯=1}. Set x1 = |x1|e
√−1θ . By a

straightforward calculation, we get:

∇∂θ Vj =−(β + ej )Vj , ∇∂θ σ =N(r − β(n− 1))σ.

So if we choose β = r
n−1 then the parallel transport trivializes (det ξ)⊗N . From now

on, we set β to be of this value. Let γ be the parametrized closed Reeb orbit: θ →
[(θ,0, . . . ,0)] with θ ∈ [0, 2π

m
]. We now write down a trivialization of γ ∗ξ⊕N by

an appropriate choice of basis that is compatible with the trivialization of det(ξ)⊗N .
First, we consider the Gorenstein case, i.e. when N = 1. We set

V ′
2 = e

√−1(β(n−1)+∑︁n
j=2 ej )θ

V2, V ′
j = Vj , 3≤ j ≤ n.

Note that we have the Lie derivatives:

L∂θ V
′
2 =

√−1

⎛

⎝(n− 1)β +
n∑︂

j=2

ej − e2

⎞

⎠V ′
2, L∂θ V

′
j =−√−1ejV

′
j .

So the linearized flow {ϕθ : 0≤ θ ≤ 2π/m} is represented by the diagonal matrix:

(e
√−1((n−1)β+∑︁n

j=2 ej )θ
,1, . . . ,1) · (e−

√−1e2θ , . . . , e−
√−1enθ ).
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Since (n− 1)β = r , its CZ index is equal to

2
1

m
(r +

n∑︂

j=2

ej )− ♯{j : ej > 0} = 2
1

m
(rw1 +

n∑︂

j=2

wj)− (n− 1)

+ 1

2
dim ker(ϕ2π/m − Id)

where w1 = 1, wj = ej , 2 ≤ j ≤ n. Similarly for 1 ≤ k < m, the CZ index of γ k is
calculated by using the path {ϕθ ,0≤ θ ≤ 2π k

m
} (see (16)):

2
k

m

⎛

⎝r +
n∑︂

j=2

ej

⎞

⎠−
∑︂

j :ej >0

(︃
2

⌊︃
ej k

m

⌋︃
+ 1

)︃

= 2
1

m

⎛

⎝kr +
∑︂

j :ej >0

(kej modm)

⎞

⎠− ♯{j : ej > 0}

= 2
1

m
(rw1 +

n∑︂

j=2

wj)− (n− 1)+ 1

2
dim ker(ϕ2πk/m − Id)

where we used the identity (w1,w2, . . . ,wn) = (k, ke2 modm, . . . , ken modm).
When k =m, lSFT(γ m) is 2r − 2. So we indeed get:

inf
1≤k≤m

lSFT(γ k)= 2 min

⎧
⎨

⎩r,
1

m
(rw1(g)+

n∑︂

j=2

wj(g)), g ≠ id ∈G

⎫
⎬

⎭− 2. (21)

When m > k, lSFT can be computed similarly but will be strictly larger than (21)
as r > 0. Finally for the case when N ≥ 2, we can trivialize γ ∗ξ⊕N by using the
following basis vectors:

V
′ (p)
j =

⎧
⎨

⎩
e
√−1N(β(n−1)+∑︁n

j=2 ej )θ
V2, if p = 1, j = 2

Vj , otherwise i.e. if p = 1,3≤ j ≤ n or
2≤ p ≤N,2≤ j ≤ n.

Then a similar calculation gives the same expression as (21).

Postscript Note: After this paper was posted on arXiv, Prof. Thomas Peternell posted
a preprint [34] about a completely different approach (though a direct computation of
Chern numbers) to Theorem 1.1. In [35], the authors used such an approach to give a
proof of Theorem 1.1 when the dimension n ≢ 3 (mod 4).
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