
ON THE PROPER MODULI SPACES OF
SMOOTHABLE KÄHLER–EINSTEIN
FANO VARIETIES

CHI LI, XIAOWEI WANG, and CHENYANG XU

Abstract
In this paper we investigate the geometry of the orbit space of the closure of the sub-
scheme parameterizing smooth Kähler–Einstein Fano manifolds inside an appropri-
ate Hilbert scheme. In particular, we prove that being K-semistable is a Zariski-open
condition, and we establish the uniqueness of the Gromov–Hausdorff limit for a punc-
tured flat family of Kähler–Einstein Fano manifolds. Based on these, we construct a
proper scheme parameterizing the S-equivalent classes of Q-Gorenstein smoothable,
K-semistable Q-Fano varieties, and we verify various necessary properties to guar-
antee that it is a good moduli space.
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1. Introduction
Constructing moduli spaces for higher-dimensional algebraic varieties is a fundamen-
tal problem in algebraic geometry. For the dimension 1 case, the moduli space param-
eterizing stable Deligne–Mumford curves was constructed via various kinds of meth-
ods, for example, by geometric theory (GIT), Teichmüller quotient space modulo the
mapping class group action, and so on. For higher-dimensional cases, one of the natu-
ral classes to consider is that of all canonically polarized manifolds, for which the GIT
machinery has been quite successful (see, e.g., [3], [13], [54], [56]). However, because
the GIT method in its classical form fails to produce a geometrically natural compact-
ification for these moduli spaces (see [55]), researchers have had to develop suitable
substitutes. In fact, it has taken quite some time for people to realize what kind of vari-
eties should be included in order to construct a proper moduli space (see [30]). Thanks
to a recent breakthrough in the theory underlying the minimal model program (see,
e.g., [8]), it has become possible to obtain a rather satisfactory theory on proper pro-
jective moduli spaces parameterizing KSBA-stable varieties, or KSBA theory (derived
from Kollár, Shepherd-Barron, and Alexeev; see [27] for a concise survey of this the-
ory). We also remark that it was only realized later that this compactification should
coincide with the compactification from Kähler–Einstein metric/K-stability (see, e.g.,
[6], [36], [55]).

As for Fano varieties, the story is much more subtle. Apart from some local prop-
erties, for example, having only Kawamata log terminal (klt) singularities when a
Fano variety is assumed to be K-semistable (see [36]) and admitting klt Fano degen-
erations as long as the general fiber is a klt Fano variety in a 1-parameter family (see
[34]), it is still not clear what kind of general Fano varieties we should parameterize
in order to obtain a nicely behaved moduli space, especially if we aim to find a com-
pact Hausdorff space, or how to construct it. The recent breakthrough in the Kähler–
Einstein problem—namely, the solution to the Yau–Tian–Donaldson conjecture (see,
e.g., [9]–[11], [53])—is a major step forward, especially for understanding those Fano
manifolds with Kähler–Einstein metrics. Furthermore, it implies that the right limits
of smooth Kähler–Einstein manifolds form a bounded family. In this paper, we aim
to use the analytic results established by these authors to investigate the geometry of
the compact space of orbits, which is the closure of the space parameterizing smooth
Fano varieties.

1.1. Main results
Our first main result of this paper is the following.

THEOREM 1.1
Let X! C be a flat family of projective varieties over a pointed smooth curve .C; 0/
with 0 2 C . Suppose that
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(1) KX is Q-Cartier and �KX=C is relatively ample over C ;
(2) for any t 2 C ı WD C n ¹0º, Xt is smooth, and X0 is klt;
(3) X0 is K-polystable.
Then
(i) there is a Zariski-open neighborhood U of 0 2 C on which Xt is K-semistable

for all t 2 U , and K-stable if we further assume that X0 has a discrete auto-
morphism group;

(ii) for any other flat projective family X0! C satisfying (1)–(3) as above and

X0 �C C
ı ŠX �C C

ı;

we can conclude that X00 ŠX0;
(iii) X0 admits a weak Kähler–Einstein metric !KE.X0/, and moreover, if we fur-

ther assume that Xt is K-polystable for all t 2 C ı, then .X0;!KE.X0// is
the Gromov–Hausdorff limit of a family ¹.Xt ;!KE.Xt /ºt2Cı as t! 0, where
!KE.Xt / is a Kähler–Einstein metric on Xt for each t 2 C ı.

If both X0 and X00 are assumed to be smooth Kähler–Einstein manifolds, then
part of Theorem 1.1 is a consequence of Székelyhidi’s work in [48], where the more
general case for arbitrary polarization is established. When the fiber is of dimension 2,
this is also implied by the work of [39] and [50], in which explicit compactifications of
Kähler–Einstein del Pezzo surfaces are constructed. We remark that Zariski openness
has already been established in [18] and [38] when the fibers are Kähler–Einstein Fano
manifolds with discrete automorphism group. Finally, we note that an independent
work [47] obtains similar results along this line (see Remark 1.4).

Now let us give a brief description of our approach to Theorem 1.1. First, we
note that, although part of our theorem is stated in algebro-geometric terms, the proof
indeed relies heavily on known analytic results, which is especially true in some recent
work (see, e.g., [10], [11], [53]). On the other hand, we note that no further analytic
tools are developed beyond their work in the present paper. So our argument is actu-
ally more algebro-geometric in nature.

The first main tool for us is a continuity method very similar to the one proposed
by Donaldson in [16]. Indeed, by throwing in an auxiliary divisor D 2 j�mKX j, we
consider the following log extension of Theorem 1.1.

THEOREM 1.2
For a fixed ˇ 2 Œ0; 1�, let X! C be a flat family over a pointed smooth curve .C; 0/
with a relative codimension 1 cycle D over C . Suppose that
(1) �KX=C is ample and D �C �mKX=C for some positive integer m> 1;
(2) for any t 2 C ı WD C n ¹0º, Xt and Dt are smooth, .X0;

1
m

D0/ is klt;
(3) .X0;D0/ is ˇ-K-polystable (see Definition 2.3).
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Then
(i) there is a Zariski neighborhood U of 0 2 C on which .Xt ;Dt / is ˇ-K-semi-

stable for all t 2 U ;
(ii) for any other flat projective family .X0;D 0/! C with a relative codimension

1 cycle D 0 satisfying (1)–(3) as above and

.X0;D 0/�C C
ı Š .X;D/�C C

ı;

we can conclude that .X00;D
0
0/Š .X0;D0/;

(iii) .X0;D0/ admits a weak conical Kähler–Einstein metric with cone angle
2�.1� .1� ˇ/=m/ along D0, which is the Gromov–Hausdorff limit of .Xti ;

Dti / endowed with the conical Kähler–Einstein metric with cone angle 2�.1�
.1� ˇi /=m/ along Dti �Xti for any sequence ti ! 0 and ˇi % ˇ.

To prove Theorem 1.2, we begin by noting that the uniqueness is well understood
when the angle is small. We give an account of this fact using completely algebro-
geometric means. To be precise, we use the result that the set of log canonical thresh-
olds satisfies the ascending chain condition (ACC) (see [23]) to show that when the
angle ˇ is smaller than a positive number ˇ0 > 0, there is only one extension with
at worst klt singularities. Fix � such that 0 < � < ˇ0. We define a set B� Œ�; 1� (see
Section 6 for the precise definition) for which the conclusions of Theorem 1.2 hold
for the angles belonging to the set B. The result in the small-angle case implies that
B� Œ�; ˇ0�.

Now to prove Theorem 1.1, let us first assume that all the nearby fibers Xt are
K-semistable. Then it suffices to show that B is open and closed in Œ�; 1/. We establish
closedness and openess using two facts. First we prove a simple but very useful fact
(see Lemma 3.1), which says that for a point p on the limiting orbit with reductive
stabilizer, there is a Zariski-open neighborhood p 2 U such that the closure of the
SL.N C 1/-orbit of any point in the limiting orbit near p actually contains g � p for
some g 2 SL.N C 1/. In particular, it guarantees that there are no nearby nonequiva-
lent K-polystable points on the limiting orbit. With this, using a crucial intermediate
value theorem type of results (see Lemma 6.9), we show that if there is a different
limit, which a priori could be far away from the given central fiber in the parame-
terizing Hilbert scheme, then we can indeed always find another limit which either
specializes to .X0;D0/ in a test configuration or becomes the central fiber of a test
configuration of .X0;D0/, violating the K-stability assumption. Similarly, this argu-
ment can also be applied to study the case when ˇ% 1.

To finish the proof, we need to verify the assumption that all the nearby fibers
Xt are K-semistable. For this, one needs two observations. First, it follows from the
work of [10], [11], and [53] that to check for K-semistability of Xt , t ¤ 0, it suffices
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to test for all 1-parameter subgroup (1-PS) degenerations in a fixed PN. Second, it
follows from a straightforward GIT argument that the K-semistable threshold (kst)
(see Section 7.2) is a constructible function. So what remains to show is that it is
also lower semicontinuous (which is also observed in [47]), but this is a consequence
of the upper semicontinuity of the dimension of the automorphism groups and the
continuity method deployed in the proof of Theorem 1.2. With all this knowledge in
hand, we are able to achieve our main goal here—that is, to construct a proper (or
good) moduli space for all Q-Gorenstein smoothable, K-semistable Fano varieties.

THEOREM 1.3
For N 	 0, let Z� be the seminormalization of the locus inside Hilb�.PN / parame-
terizing all Q-Gorenstein smoothable, K-semistable Fano varieties in PN with fixed
Hilbert polynomial � (see Section 8 for the precise definition of Z�). Then the alge-
braic stack ŒZ�=SL.N C 1/� admits a proper seminormal scheme KF N as its good
moduli space (in the sense of [1]). Furthermore, for sufficiently large N , KF N does
not depend on N .

Recall from [1, Section 1.2] that a quasicompact morphism � WZ�!M from an
Artin stack Z to an algebraic space M is a good moduli space if
(1) the pushforward functor on quasicoherent sheaves is exact, and
(2) the induced morphism on sheaves OM ! ��OZ is an isomorphism.
This concept is a generalization of good quotient in classical GIT. In more concrete
terms, Theorem 1.3 says that each SL.N C 1/-orbit inside Z� corresponds to a Q-
Gorenstein smoothable, K-semistable Q-Fano variety, and Z� admits a categorical
quotient KF N , whose points correspond to the S -equivalence (i.e., the equivalence
relation generated by the orbital closure inclusion) classes of SL.N C 1/-action on
Z�. In particular, the set of C-points in KF N precisely corresponds to set of closed
minimal SL.N C 1/-orbits in Z�, that is, the set of Q-Gorenstein smoothable, K-
polystable Q-Fano varieties over C.

The existence of a moduli space for Kähler–Einstein Fano manifolds was antic-
ipated by [50]. A local quotient picture was suggested in [15, Section 5.3] and [48],
and was explicitly conjectured in [46, Sections 1.3, 1.4] and [39, Conjecture 6.2].
Furthermore, the moduli space is speculated to be projective by the existence of the
descending CM (Chow–Mumford) line bundle (see, e.g., [39], [42]). We also note that
smooth Kähler–Einstein Fano manifolds with discrete automorphism group (which
are known to be asymptotically Chow stable by [13]) admit (possibly nonproper)
algebraic moduli spaces thanks to the work of [18] and [38].

Now let us explain our approach to Theorem 1.3. Due to the lack of a global GIT
interpretation of the K-stability, our strategy is to replace GIT by the work of [2]. So to
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obtain a good quotient, one needs to verify all the assumptions of [2, Theorem 1.2]. In
particular, among other things one needs to establish the following two key properties:
(1) the stabilizer-preserving condition for the local presentation of the moduli

stack;
(2) the affineness of the quotient morphism.
Intuitively, the first property implies that the local Zariski-open charts of the mod-
uli space can be glued together, while the second property guarantees that the local
charts constructed above are actually affine. Moreover, the second property guaran-
tees the goodness of the quotient ŒZ�=SL.N C 1/�!KF N , and as a consequence
the restriction of the CM line bundle toZ� �Hilb descends to the good moduli space.
This was crucial in our recent study of the projectivity of the moduli space KF in
[32]. We singled out these two properties that depend in an essential way on the exis-
tence of a global proper topological (equipped with Gromov–Hausdorff topology)
moduli space.

We remark that both properties follow from Luna’s famous étale slice theorem
for a reductive group G-acting on an affine varietyZ; that is, if z 2Z and the G-orbit
G � z � Z is closed, then there is a nice slice containing z satisfying the above two
properties. Unfortunately, we are unable to verify the affineness assumption of Luna’s
theorem since there is no global GIT interpretation of K-stability, but the closedness
of G �x in an affine variety will be a consequence of our proof instead, which is based
on the existence of a nice continuous proper slice (although nonalgebraic) lying over
the stack. The slice is obtained via a family version of Tian’s embeddings of Kähler–
Einstein Fano varieties and its properness follows from Theorem 1.1. The slice can be
regarded as an alternative to the zero set of the moment map in the classical Kempf–
Ness–Kirwan picture.

Finally, we close this Introduction by outlining the plan of this article. In Sec-
tion 2, we give some basic definitions. In Section 3, we review some facts on the
linear action of a reductive group on a projective space. In Section 4, we list the main
analytic results we need in this article. First we recall the recent results appearing in
[10], [11], and [53]. Then we also state the Gromov–Hausdorff continuity for coni-
cal Kähler–Einstein metrics on a smooth family of Fano pairs (see [10], [11], [53]).
In Section 5, we prove that when the angle is small enough, the filling is always
unique. In Section 6, we establish the main technical tool of our argument—a conti-
nuity theorem. We remark that, with it, we can already show Theorem 1.2 under the
assumption that the nearby fibers are all ˇ-K-polystable. In Section 7, we prove the
K-semistability of the nearby points by applying the continuity method. First, in Sec-
tion 7.1 we prove Theorem 7.2, which says that any orbit closure of a K-semistable
Fano manifold contains only one isomorphic class of K-polystable Q-Fano variety
(this is an extension of the result of [12] for the Fano case). In Section 7.2, we show
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that a smoothing of a K-semistable Q-Fano variety is always K-semistable. In Sec-
tion 7.3, by putting all the results together, we finish the proofs of Theorems 1.1 and
1.2. In Section 8, we apply our results and prove a Luna slice-type theorem for K-
stability, which is used to establish Theorem 1.3. In the Appendix, we discuss several
technical results that are needed on the general theory of linear action of a reductive
group on projective space.

Remark 1.4 (Remarks on the history)
The present article was originally titled “Degeneration of Fano Kähler–Einstein man-
ifolds” (see [33]). In the first version, we established the separateness of the mod-
uli space and proved the uniqueness of K-polystable degeneration for K-semistable
Fano manifolds. After it was posted on the arXiv, the authors of [47] notified us that
they had independently investigated similar questions with a circle of parallel ideas
(but in a more analytic fashion) and obtained closely related results. In particular, in
[47], the authors first obtained: the existence of weak Kähler–Einstein metrics on Q-
Gorenstein smoothable, K-polystable Q-Fano varieties; the analytic openness of K-
stability under the assumption of finite automorphism group; and the lower semicon-
tinuity of the cone angle for conical Kähler–Einstein metrics. Those statements were
not included in the first version of our preprint. As a consequence, the uniqueness of
K-stable filling with finite automorphism group was also independently obtained in
[47]. After the appearance of [47] on the arXiv, we realized that the approach in the
first version of our paper could be naturally extended, which we have done in the cur-
rent version. After we posted the second version of our paper on the arXiv, we were
contacted by Odaka, who claimed (see [37]) to have independently obtained some
parts of Theorem 1.3 based on the work of [33] and [47].

2. Preliminaries
In this section, we establish the conventions used in our paper. The definitions of
K-stability (resp., ˇ-K-stability) given below are recalled from [14] and [51] (resp.,
[16]). We also refer the reader to the lecture notes [43] and [49] for both an analytic
and an algebro-geometric point of view.

Definition 2.1
Let .X;DIL/ be an n-dimensional projective variety polarized by an ample line bun-
dle L together with an effective divisorD �X . A log test configuration of .X;DIL/
consists of the following:
(1) a projective flat morphism � W .X;D IL/!A1 and an effective divisor D on

X such that Supp.D/ does not contain any component of the central fiber X0;
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(2) a Gm-action on .X;D IL/, such that � is Gm-equivariant with respect to the
standard Gm-action on A1 via multiplication;

(3) L is relatively ample, and we have a Gm-equivariant isomorphism

.Xı;DıILjXı/Š .X �Gm;D �GmI�
�
XL/; (1)

where .Xı;Dı/D .X;D/�A1 Gm and �X WX �Gm!X .
A log test configuration is called a product test configuration if .X;D IL/Š .X �
A1;D � A1I��XL/ where �X W X � A1! X , and a trivial test configuration if � W
.X;D IL/!A1 is a product test configuration with Gm acting trivially on X .

Assume X to be normal, and let � denote the Hilbert polynomial. We introduce
ai ; Qai ; bi ; Qbi 2Q via the following expansions:
� �.X;L˝k/ WD dimH 0.X;Lk/D a0k

nC a1k
n�1CO.kn�2/;

� �.D; .LjD/
˝k/ WD dimH 0.D;LkjD/D Qa0k

n�1CO.kn�2/;
� w.k/ WD weight of Gm-action on ^topH 0.X0;L

˝kjX0/D b0k
nC1C b1k

nC

O.kn�1/;
� Qw.k/ WD weight of Gm-action on ^topH 0.D0;L

˝kjD0/D
Qb0k

nCO.kn�1/.
In this article, we will focus on the projective pairs .X;D/ introduced in Defini-

tion 2.1 satisfying that the divisor D is prime and .X; 1
m
D/ is a projective pair with

klt singularities (see [29, Definition 2.34]) for a given positive integer m.

Definition 2.2
Let .X;D/ be a projective pair with klt singularities. Then .X;D/ to said to be a
log Fano pair if �.KX CD/ is an ample Q-Cartier divisor, and a Q-Fano variety if
D D 0.

Now we are ready to state the algebro-geometric criterion for the existence of
conical Kähler-Einstein metrics on a log Fano manifold .X;D/ with cone angle
2�.1� .1� ˇ/=m/ along the divisor D 2 j�mKX j.

Definition 2.3
For a Q-Fano variety X with D 2 j�mKX j and a real number ˇ 2 Œ0; 1�, we define
the log generalized Futaki invariant with the angle ˇ as

DF1�ˇ .X;D IL/DDF.XIL/C .1� ˇ/ �CH.X;D IL/

with (see [31, Definition 3.3])

DF.XIL/ WD
a1b0 � a0b1

a20
and CH.X;D IL/ WD

1

m
�
a0 Qb0 � b0 Qa0

2a20
:
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Then

DF1�ˇ .X;D IL
˝r/DDF1�ˇ .X;D IL/:

We say that .X;DIL/ is ˇ-K-semistable if DF1�ˇ .X;D IL/ 
 0 for any normal
test configuration .X;D IL/, and ˇ-K-polystable (resp., ˇ-K-stable) if it is ˇ-K-
semistable with DF1�ˇ .X;D IL/D 0 if and only if .X;D IL/ is a product test con-
figuration (resp., trivial test configuration).

Thanks to the linear dependence of DF1�ˇ .X;D IL/ on ˇ, we immediately
obtain the following interpolation property.

LEMMA 2.4
If .X;DIL/ is both ˇ1-K-semistable and ˇ2-K-polystable with ˇ1 < ˇ2 (resp., ˇ2 <
ˇ1), then .X;DIL/ is ˇ-K-polystable for any ˇ 2 .ˇ1; ˇ2� (resp., ˇ 2 Œˇ2; ˇ1/).

Remark 2.5
Note that if for .X;DIK˝.�r/X /, where X is a Q-Fano variety with D 2 j�mKX j,

� WGm! SL.Nr C 1/ with Nr C 1 WD dimH 0.X;K
˝.�r/
X /

induces a test configuration .X;D IL/, then

CH.X;D IL/D
1

2mrn.�KX /n
�
�

CH.D0/�
nm

.nC 1/
r CH.X0/

�
(2)

with CH.D0/ and CH.X0/ being precisely the �-weights for the Chow points of
D0;X0 � PNr .

3. Linear action of reductive groups on projective spaces
In this section, we prove a basic fact on a reductive group acting on PM , which will
be crucial for the later argument. Let G be a reductive algebraic group acting on PM

via a rational representation � WG! SL.M C1/, and let z W C ! PM be an algebraic
morphism satisfying z.0/D z0 2 PM , where .0 2 C/ is a smooth pointed curve germ.
Let

BO WD lim
t!0

Oz.t/

with Oz.t/ WD G � z.t/, and let Oz.t/ � PM be its closure; that is, BO is a union of
(broken) orbits to which Oz.t/ is specialized.
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LEMMA 3.1
Suppose thatGz0 <G, the stabilizer of z0 2 PM for theG-action on PM , is reductive.
Then there is a G-invariant Zariski-open neighborhood of z0 2 U � PM satisfying

BO \U D
[

Op�BO

Oz0\Op¤∅

Op \U where Op WDG � p �BOI (3)

that is, the closure of the G-orbit of any point in BO near z0 contains g � z0 for some
(hence for all) g 2G. We will call Oz0 a minimal orbit.

Proof
We divide the proof into two steps.

Step 1: G D Gz0 . The representation � W G! SL.M C 1/ induces a G-linear-
ization of OPM .1/! PM . Let �0 WG!Gm be the character of the resultingG-action
on OPM .1/jz0 , since z0 is fixed by G. Then z0 is GIT-polystable with respect to the
linearization of OPM .1/ induced by the representation �˝ ��10 W G! SL.M C 1/.
It follows from the construction in classical GIT that the semistable locus z0 2 U WD
.PM /ss � PM is G-invariant and Zariski-open. To see that U serves our purpose, it
suffices to note that G � z0 is the unique polystable orbit in .PM /ss \BO and for any
z 2BO \U ,Oz0 �G � z, which follows from the classical result of Kempf and Ness
(see [35, proof of Theorem 8.3]).

Step 2: G > Gz0 . Since Gz0 is reductive, we have a decomposition of its Lie
algebra

Lie.G/D gD gz0 ˚ p

as representations of Gz0 . The infinitesimal action of G at 0¤ Oz0 2 CMC1, a lifting
of z0 2 PM , induces a Gz0 -invariant decomposition CMC1 DC � Oz0˚W

0˚p. By the
proof of [17, Proposition 1],

PW D P.W 0˚C Oz0/� PM

satisfies the following properties:
(1) z0 2 PW and is preserved by Gz0 ;
(2) PW is transversal to the G-orbit of z0 at z0;
(3) for w 2 PW near z0 and 	 2 g WD Lie.G/, if we let 
w W g! TwP

M denote
the infinitesimal action of G, then


w.	/ 2 TwPW () 	 2 gz0 WD Lie.Gz0/:

In particular, (3) implies that there exists a Zariski-open neighborhood U0 � PW of
z0 such that the infinitesimal action induced by p? on PW is transversal for all points
in U0 (see Lemma A.7).
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CLAIM 3.2
Let S WD G � Imz � PN , and let H be the identity component of Gz0 . Then there is
a Zariski-open subset UW � U0 � PW and a finite collection of pointed arcs ¹zi W
.Ci ; 0/! .U0; z0/º

d
iD0 with z0 D z W C ! PW such that

S \UW D

d[
iD0

O.H;zi /\UW with O.H;zi / WDH � Im zi � PW:

Assuming Claim 3.2 for the moment, let us define

BOWi WD lim
t!0

OW
zi .t/

with OW
zi .t/
WDH � zi .t/�O.H;zi /� PW:

Next, for each 0 � i � d , by applying Step 1 to the H -action on PW and BOWi �
PW , we obtain an H -invariant Zariski-open neighborhood z0 2 U 0i � PW such that

8p 2 U 0i \BO
W
i H) z0 2G � p:

Then U D G � .
Td
iD0U

0
i / is the G-invariant Zariski-open set we want. In fact, to

see that U is Zariski-open, one first notes that
Td
iD0U

0
i is Zariski-open as each of

U 0i � PW is so for all i ; hence U is constructible by Chevalley’s lemma (see [25,
Chapter II, Exercise 3.19]). On the other hand, U is also open in PM with respect
to the analytic topology. This follows from the fact that the g?z0 -action on PW is
transversal (see Lemma A.7) and 8g 2G < SL.M C 1/ is an automorphism of PM .
Being constructible and analytically open implies that U is Zariski-open in PM .

Now let us proceed to the proof of Claim 3.2. To better illustrate the picture, let
us treat the case dimGz0 D 0 first.

Case 1: dimGz0 D 0. Let us consider the variety S WD G � Imz � PM , and let
@S WD S n S . Then there is an open neighborhood UW � U0 such that S \ UW has
only finitely many irreducible components. Let us write

S \UW D

d[
iD0

Ci

with C0 D Im z.C / and where the Ci ’s are irreducible components passing through
z0.

Since @S \ Ci is constructible, after a possible shrinking of Ci we have two
possibilities:
(1) @S \Ci D Ci ,
(2) @S \Ci D∅ or z0.
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We claim that the first case does not happen. Then by choosing the arc zi W .Ci ; 0/!
.U0; z0/, we establish Claim 3.2. To prove our claim, we observe that there are two
kinds of points on the boundary @S :
� first kind: a boundary point of G � z.t/ for a fixed t ,
� second kind: all the remaining points on @S .
Note that the sets of both kinds of points form constructible sets. Any boundary point
of the first kind can indeed be written as a limit of points in G � z.t/\UW for a fixed
t , but this is absurd as G acts on U0 transversally. So we may assume that all the
points on Ci are of the second kind, which implies that

Imz 6�G � z.t/ for a fixed t 2 C:

In particular, we have dimG C 1D dimS as dimGz0 D 0. Since @S is G-invariant,
we have G �Ci � @S . Now let us consider the G-action on z 2 Ci , which implies that

dim@S 
 dimG C dimCi D dimG C 1D dimS;

which is a contradiction. Thus our claim is verified.
Case 2: The general case. Let us consider the variety S WD G � Imz � PM , and

let @S WD S nS . Then there is an H -invariant open neighborhood UW � U0 such that
S \UW has only finitely many irreducible components, which are denoted by

S \UW D

d[
iD0

Vi

with V0 D O.H;z/ and z0 2 Vi , 0 � i � d . Moreover, Vi is H -invariant for each i
since S is.

Then Claim 3.2 amounts to saying that for each i there is an arc zi W Ci ! U0

such that

Vi DO.H;zi /\UW :

To find such an arc, all we need is a general v 2 Vi satisfying

dimH � vC 1
 dimVi ; (4)

since that implies two situations: either dimH � v < dimVi , in which case we choose
zi W Ci ! Vi to be an arc joining z0 and v so that Imzi 6�H � v; or dimH �vD dimVi ,
in which case we choose any nonconstant arc zi W Ci ! Vi satisfying zi .0/ D z0.
Then dimVi D dimO.H;zi / and our claim is justified.

To find such v 2 Vi , we only need it to satisfy

dimH � v 
 dimH � z.t/ for all t 2 C;
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which again follows from the transversality. Indeed, there is a Zariski-open set UC of
C such that for any t0 2 UC ,

dimH � z.t0/Dmax
t2C

dimH � z.t/:

By the definition of Vi , for a fixed general v 2 Vi there are gi 2G and t0 2 UC such
that gi �z.t0/ 2B.v; �/ 2 PM . By the transversality of p-action on U0, for �� 1 there
is an h 2 G close to identity such that h � gi � z.t0/ 2 Vi . By the genericity of v, we
obtain

dimH � v 
 dimH � h � gi � z.t0/D dimH � z.t0/
 dimH � z.t/ for all t 2 C;

and hence dimO.H;zi /
 dimO.H;z/ by our choice of zi W Ci ! Vi .
Now we prove (4). Suppose that (4) does not hold, which is equivalent to dimVi >

dimO.H;zi /. Then we have

dimS 
 dimG � Vi


 dimG=H C dimVi .p-acting transversely on U0/

> dimG=H C dimO.H;zi /


 dimG=H C dimO.H;z/D dimS;

which is a contradiction. In this way we complete the proof of Claim 3.2 and hence
of Lemma 3.1.

The necessity of the assumption that Gz0 is reductive can be illustrated by the
following example.

Example 3.3
Let M2.C/ D ¹Œv;w� j v;w 2 C2º be the linear space of 2 � 2 matrices on which
G WDGL.2/ is acting via multiplication on the left. Let V WDM2.C/˚C˚C. Then
G acts on PV via the representation

� WGL.2/�! SL.V /

g 7�! �.g/
with �.g/ �

2
4Ax5
x6

3
5 WD

2
4 g �A

det.g�1/x5
det.g�1/x6

3
5 :

Let

z0 D

2
402�21

0

3
5 and z00 D

2
664
�
1 0

0 0

�
0

0

3
775 2 PV:
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Then their stabilizers are Gz0 D G and Gz0
0
D
�
� �
0 �

�
< GL.2/. In particular, Gz0 is

reductive while Gz0
0

is not. Now let

z.t/D

2
664
�
t 0

0 t2

�
1

t

3
775 and z0.t/D

2
664
�
1 0

0 t

�
t

t2

3
775 2 PV

be two curves in PV . Then we have

lim
t!0

Oz.t/ D lim
t!0

PVŒ1;t� D lim
t!0

Oz0.t/ D PVŒ1;0�;

where VŒ1;t� WD ¹tx5 D x6º � V . Clearly, z0 WD z.0/ satisfies (3) while z00 WD z
0.0/

does not, since

z00 … P
1 ŠG � z00� � PVŒ1;0� for 0 < j�j � 1 where z00� WD

2
664
�
1 �

0 0

�
0

0

3
775 :

4. Gromov–Hausdorff continuity of conical Kähler–Einstein metrics on
smooth Fano pairs

In this section, we list the important analytic results that will be needed in our main
argument.

4.1. Gromov–Hausdorff limit of Kähler–Einstein Fano manifolds
In this section, let us recall the main technical results obtained in the solution of the
Yau–Tian–Donaldson conjecture (see, e.g., [4], [10], [11], [53]).

THEOREM 4.1
Let Xi be a sequence of n-dimensional Fano manifolds with a fixed Hilbert poly-
nomial �, and let Di � Xi be smooth divisors in j�mKXi j for a fixed m > 0. Let
ˇi 2 .0; 1/ be a sequence converging to ˇ1 with 0 < �0 � ˇ1 � 1. Suppose that
each Xi admits a Kähler metric !i .ˇi / solving

Ric
�
!.ˇi /

	
D ˇi!.ˇi /C

1� ˇi

m
ŒD� on Xi I (5)

that is, !i .ˇi / is a conical Kähler–Einstein metric with cone angle 2�.1 � .1 �
ˇi /=m/ along the divisor Di � Xi . Then the Gromov–Hausdorff limit of any sub-
sequence of ¹.Xi ;!i .ˇi //ºi is homeomorphic to a Q-Fano variety Y . Furthermore,
there is a unique Weil divisor E � Y such that
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(1) .Y; 1�ˇ1
m

E/ is klt;
(2) Y admits a weak conical Kähler–Einstein metric solving

Ric
�
!.ˇ1/

	
D ˇ1!.ˇ1/C

1� ˇ1

m
ŒE� on Y;

where in particular, Aut.Y;E/ is reductive and the pair .Y;E/ is ˇ1-K-
polystable;

(3) possibly after passing to a subsequence, there are embeddings Ti W Xi !
PN and T1 W Y ! PN , defined by the complete linear systems j�rKXi j and
j�rKY j, respectively, for r D r.m; �0; �/ and N C 1 D �.Xi ;K

�˝r
Xi

/, such
that the Ti .Xi /’s converge to T1.Y / as projective varieties and the Ti .Di /’s
converge to T1.E/ as algebraic cycles.

In the following corollary, we denote byC ;˛;ˇ the space of conical Kähler metrics
defined in [16].

COROLLARY 4.2
Let .X;D/ be a smooth Fano pair with D 2 j�mKX j. Then the following hold.
(1) We have that .X;D/ is ˇ-K-stable if and only if it admits a conical Kähler–

Einstein metric !.ˇ/ 2 C ;˛;ˇ solving (5).
(2) Let � 2 .0; 1�. Then .X;D/ is � -K-semistable if and only if it admits a conical

Kähler–Einstein metric !.ˇ/ 2 C ;˛;ˇ solving (5) for any ˇ 2 .0; �/.

Remark 4.3
Note that the limiting divisor E � Y is actually Q-Cartier. To see this, one notes that
on the smooth locus of Y

EjY reg ��mKY reg ; (6)

which implies thatEjY ��mKY as Y is normal. On the other hand, Y being Q-Fano
implies that KY is Q-Cartier. This, together with (6), implies that E is Q-Cartier. It
was also pointed out in [19, Section 4.3] and [11, Section 5] that if the sequence
¹.Xi ;Di /º D ¹.Xti ;Dti /º is a subsequence of a projective flat family .Xı;Dı/!
C ı of smooth log Fano pairs over a smooth punctured (not necessarily complete)

curve C ı D C n ¹0º, that is, ¹tiº � C ı and ti
i!1
�! 0, then the Gromov–Hausdorff

limit .Y;E/ can be realized as the central fiber of a flat degeneration

.Xı;Dı/ .X;D/

C ı C
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that is, .Y;E/D .X0;D0/. This important consequence is used in [11] and [53] to
construct the destabilizing test configurations. In particular, the flatness of X ! C

is established in [19, Section 4.3], and the flatness of D ! C can be deduced (see
[25, Chapter III, Exercise 10.9]) from the fact that D is Cohen–Macaulay since we
have already shown that it is Q-Cartier (see [29, Corollary 5.25]), and the morphism
D! C is equidimensional.

4.2. Gromov–Hausdorff continuity of conical Kähler–Einstein metrics on smooth
Fano families

Definition 4.4
Let

H�IN WDHilb�.P
N / (7)

denote the Hilbert scheme of closed subschemes of PN with Hilbert polynomial �.
For a closed subscheme X � PN with Hilbert polynomial �.X;OPN .k/jX /D �.k/,
let Hilb.X/ 2H�IN denote its Hilbert point.

To set the scene, let

.X;D/
i

����! PN � PN ��??y� ??y
� �

be a projective flat family of Fano varieties over the disk �D ¹jt j< 1º �C such that
(1) X is smooth and D 2 j�mKX=�j is a smooth divisor defined by a smooth

section sD 2 .�;!
˝�m
X=�

/;
(2) both � and �jD are holomorphic submersions over �.
To get rid of the U.N C 1/-ambiguity for the later argument, let us assume that !˝�r

X

is relatively very ample, and let i be the embedding induced by a prefixed basis®
si .t/

¯N
iD0
� 

�
�;��OX.�rKX=�/

	
:

Then i�OPN .1/ Š OX.�rKX=�/. Now let .r!FS.t/; h
˝r
FS .t// denote the metric on

.Xt ;OX.�rKX=C /jXt / induced from the embedding i via the basis ¹siº. Suppose
that for each t 2 �, Xt is K-semistable. Then by Lemma 2.4, .Xt ;Dt / is ˇ-K-
polystable for any ˇ 2 .0; 1/. So by Corollary 4.2, for any ˇ 2 .0; 1/ there exists
the conical Kähler–Einstein metric !.t;ˇ/ on the pair .Xt ;

1�ˇ
m

Dt / which satisfies

Ric
�
!.t;ˇ/

	
D ˇ!.t;ˇ/C

1� ˇ

m
ŒDt �:
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In the following, by abuse of notation, sometimes we will abbreviate !.t;ˇ/ as a
conical Kähler–Einstein metric with cone angle ˇ (instead of 2�.1 � .1 � ˇ/=m/)
along D, since the integer m is fixed once and for all throughout the paper. Now
assume that !.t;ˇ/D !KE.t; ˇ/D !FS.t/C

p
�1@N@'.t; ˇ/, where r �!FS.t/ is equal

to the Fubini–Study metric induced from the embedding of Xt ! PN using the basis
¹si .t/º

N
iD0. Then '.t;ˇ/ is the unique solution (see [7, Theorem 7.3]) to the equation

�
!FS.t/C

p
�1@N@'.t; ˇ/

	n
D ef .t/�ˇ'.t;ˇ/

!nFS.t/

.jsDt j
2

h
˝m
FS .t/

/
1�ˇ
m

; (8)

where f .t/ satisfies

Ric
�
!FS.t/

	
D !FS.t/C

p
�1@N@f .t/ andZ

Xt

ef .t/ �!nFS.t/D

Z
Xt

!nFS.t/:
(9)

Remark 4.5
It is easy to check that an equivalent form of (8) is

�
!FS.t/C

p
�1@N@'.t; ˇ/

	n
� jsDt j

�
2ˇ
m

hFSe�'
.sDt ˝ sDt /

1
m D 1: (10)

We define a positive definite Hermitian matrix

AKE.t; ˇ/D
�
.si ; sj /KE;ˇ .t/

�
with

.si ; sj /KE;ˇ .t/D

Z
Xt

˝
si .t/; sj .t/

˛
h
˝r
KE .t;ˇ/

!n.t; ˇ/;

where hKE.t; ˇ/ WD hFS.t/ � e
�'.t;ˇ/. Now we introduce the r th Tian’s embedding

T W
�
Xt ;Dt I!.t;ˇ/

	
�! PN (11)

to be the one given by the basis ¹g.t;ˇ/ ı sj .t/ºNjD0 with g.t;ˇ/DA�1=2KE .t; ˇ/.

Definition 4.6
We denote by

Hilb
�
Xt ; .1� ˇ/Dt

	
2H�IN WDH�IN �H Q�IN (12)

the Hilbert point of the pair .Xt ;Dt � Xt / � PN using Tian’s embedding for the
basis ¹siº with respect to a Kähler form !.t;ˇ/, where .�; Q�/ are the Hilbert polyno-
mials of X � PN and D � PN , respectively. We note that when ˇ D 1, the second
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factor H Q�IN is not trivial as we still remember Dt ; that is, Hilb.X; 0 �D/ is not the
same as Hilb.X/. See Remark 4.7(1) below.

Remark 4.7
We make the following observations.
(1) It is by definition that

Hilb
�
Xt ; .1� ˇ/Dt

	
D
�
Hilb.Xt /;Hilb.Dt /I!.t;ˇ/

	
:

In the following, we will always use the coefficient .1 � ˇ/ to stress that the
cycle is obtained via Tian’s embedding with respect to the metric !.t;ˇ/.

(2) Tian’s embedding is well defined for any klt Q-Fano log pair with weak con-
ical Kähler–Einstein metric .X; .1 � ˇ/DI!KE.ˇ//. Note that for any weak
conical Kähler–Einstein metric !KE.ˇ/, we always assume that the local
potential is bounded (see [5]).

(3) The advantage of fixing a basis ¹si .t/ºNiD0 � .�;��OX.�rKX=�// lies in
the fact that the image of Tian’s embedding and hence the Hilbert point
Hilb.Xt ; .1 � ˇ/Dt / is completely determined by the isometric class of
!.t;ˇ/. See Lemma 4.9.

PROPOSITION 4.8
We have that Hilb.Xt ; .1� ˇ/Dt / varies continuously in H�; Q�IN with respect to the
pair .ˇ; t/ 2 .0; 1/��.

Proof
Using the above notation, we claim that 'KE.t; ˇ/ is continuous with respect to t
for any ˇ < 1. Assuming the claim, AKE.t; ˇ/ is then continuous with respect to
t , and hence the images of Tian’s embedding given by orthonormal basis change
continuously.

Now we verify the claim by applying the implicit function theorem. First, we note
that the complex manifold .Xt ;Dt / is diffeomorphic to a fixed pair .X;D/ endowed
with the integrable complex structure Jt thanks to the assumption that � is a sub-
mersion. Let C 2;˛Iˇ .Xt ;Dt IJt / and C ;˛Iˇ .Xt ;Dt IJt / denote the function spaces
on .Xt ;Dt IJt / defined in [16]. For each fixed t 2�, we consider the map

F.t;ˇ; �/ W C 2;˛Iˇ.Xt ;Dt IJt /�! C ;˛Iˇ.Xt ;Dt IJt /

' 7�! log
.!t C

p
�1@Jt

N@Jt'/
njsDt

j
2.1�ˇ/=m

ht

!n
� ft C ˇ'

(13)
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where for simplicity we write ft D f .t/, !t D !FS.t/, and ht D h
˝m
FS .t/, and sDt

is the defining section for Dt as before. Note that 'KE.t; ˇ/ is exactly the solution
to the equation F.t;ˇ;'/D 0. We would like to apply the implicit function theorem
to obtain the continuity of 'KE.t; ˇ/ with respect to t . In order to do that, we need
to work with a fixed function space, whereas the spaces C 2;˛Iˇ .Xt ;Dt IJt / depend
on the parameter t . To get around this, we note that the metrics ¹!t .�; Jt �/ºt vary
smoothly and hence C ;˛Iˇ .X;DIJt /D C ;˛Iˇ .X;DIJ0/. This key observation allows
us to identify the spaces C 2;˛Iˇ .X;DIJ0/ and C 2;˛Iˇ .X;DIJt / via the following
simple way. Let us fix a family of background conical Kähler metrics

O!t D !t C �
p
�1@Jt

N@Jt jsDt j
2�

ht
;

with � D 1� 1�ˇ
m
2 .0; 1/ being fixed and 0 < �� 1. Then we define a linear map

Qt;ˇ WDQ.t;ˇ; �/ W C
2;˛Iˇ .X;DIJ0/�! C 2;˛Iˇ .X;DIJt /

Q' 7�! .�4 O!t C 1/
�1 ı .�4 O!0 C 1/ Q':

(14)

Since ker.�4 O!t C 1/D ¹0º by the proof of [16, Proposition 8], it follows from Don-
aldson’s Schauder estimate in [16, Section 4.3] that Qt;ˇ 0 is an isomorphism for
jt j � 1 and ˇ0 2 .ˇ��;ˇC�/ with 0 < �� 1. Also, by using the explicit parametrix
constructed in [16, Section 3], Qt gives rise to a continuous local linear trivialization
of the family of subspaces C 2;˛Iˇ .X;DIJt / � C ;˛Iˇ .X;DIJt /D C ;˛Iˇ .X;DIJ0/.
Denoting Q'.t;ˇ/DQ�1

t;ˇ
.'.t; ˇ//, we can calculate

@F.t;ˇ;Q.t;ˇ; Q'//

@ Q'

ˇ̌̌
.0;ˇ; Q'KE/

.�/D .4!KE C ˇ/ ıQ0� D .4!KE C ˇ/�

which is invertible by [16, Theorem 2] since there exists no holomorphic vector
field on the pair .X0;D0/ (see [45, Theorem 2.1] or Lemma 5.4). Now we can
apply the effective version of the implicit function theorem as in [16, Section 4.4]
to the map F.t;ˇ;Q.t;ˇ; �// W C 2;˛Iˇ .X;DIJ0/! C ;˛Iˇ .X;DIJ0/ to get a con-
tinuous family of solutions Q'KE.t; ˇ

0/ to the equation F.t;ˇ0;Q.t;ˇ0; Q'// D 0 for
all jt j � 1 and ˇ0 2 .ˇ � �;ˇ C �/ with 0 < � � 1. Since the argument for this
last statement is standard, we will only sketch its proof. For a fixed ˇ, by the usual
implicit function theorem we first get a family of solutions Q'.1/KE .t; ˇ/ to the equation
F.t;ˇ;Q.t;ˇ; Q'

.1/
KE //D 0 for jt j � 1. Then we can apply Donaldson’s argument of

deforming cone angles in [16, Section 4.4] in a family version to further get Q'KE.t; ˇ
0/

for any jt j � 1 and ˇ0 2 .ˇ � �;ˇC �/.
More precisely, let !KE.t; ˇ/D !FS C

p
�1@N@ Q'

.1/
KE .t; ˇ/ be the continuous fam-

ily of C ;˛Iˇ conical Kähler–Einstein metrics obtained earlier. For each ˇ0 2 .ˇ �
�;ˇC �/ and t near zero, we define the new reference metric !.t;ˇ0/ WD !KE.t; ˇ/C
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p
�1@N@.ksDt k

2ˇ 0=m � ksDt k
2ˇ=m/, where k � k2 is a smooth extension of the Hermi-

tian metric determined by hFS exp.� Q'.1/KE .t; ˇ// on .K�1
Xt
/˝mjDt (using the fact that

Q'
.1/
KE .t; ˇ/ is smooth in tangential directions by [16, Section 4.3]). Then as in the proof

of [16, Proposition 7], one can show that
(1) kˇ 0 WD jsD j

�2ˇ 0=m

ˇ 0
.sD ˝ sD/

1=m !.t;ˇ0/n (see (10)) satisfies kkˇ 0

� 1kC ;˛Iˇ0 ! 0 as ˇ0! ˇ; here we used j � j2
ˇ 0

to denote the Hermitian metric
on OXt .�mKXt / whose curvature is equal to m �!.t;ˇ0/;

(2) if we let�ˇ 0 denote the Laplace operator associated to !.t;ˇ0/, then�ˇ 0Cˇ0

is invertible and the operator norm of its inverse is bounded by a fixed constant
independent of ˇ0 and for t near zero.

So the effective version of the implicit function theorem allows us to get a continuous
family of solutions Q'KE.t; ˇ

0/. In fact, one notes that !.t;ˇ0/D !FSC
p
�1@N@ .t;ˇ0/

with  .t;ˇ0/D Q'.1/KE .t; ˇ/C ksDt k
2ˇ 0=m � ksDt k

2ˇ=m is an approximate solution to
the conical Kähler–Einstein equation by item (1) above and is continuous with respect
to both t and ˇ0. By item (2) and the effective version of the implicit function the-
orem, we then know that the difference between the actual solution Q'KE.t; ˇ

0/ and
 .t;ˇ0/ approaches zero in C 2;˛Iˇ

0

-norm as ˇ0! ˇ. As a consequence, Q'KE.t; ˇ
0/

is continuous at ˇ0 D ˇ in C 0-norm with respect to both ˇ0 and t . We note that the
argument above does not depend on the origin 0 and ˇ is chosen; hence 'KE.t; ˇ

0/D

Q.t;ˇ0; Q'KE.t; ˇ
0// is continuous with respect to all t 2� and ˇ0 2 .ˇ � �;ˇC �/.

By using the complex Monge–Ampère equation in (8) or (10), we see that the
family of volume forms !KE.t; ˇ

0/n on the fixed smooth manifold X is continuous in
Lp.X/, 8p 2 Œ1; 1=.1� ˇ0// with respect to ˇ0 and t , which implies that the family
of matrices of L2-inner products AKE.t; ˇ

0/ D Œ.si ; sj /KE;ˇ 0.t/� is also continuous
with respect to t and ˇ0. So Tian’s embeddings T .Xt ;Dt I!.t;ˇ

0// determined by
¹A
�1=2
KE .t; ˇ0/ı sj .t/º

N
jD0 indeed produce a continuous family of Hilbert points inside

H�IN .

Let ¹.Xi ;Di /º be a sequence of smooth Fano pairs with a fixed Hilbert polyno-
mial � and Di 2 j�mKXi j. Suppose that each Xi admits a unique conical Kähler–
Einstein form !.i;ˇi / solving

Ric
�
!.i;ˇi /

	
D ˇi!.i;ˇi /C

1� ˇi

m
ŒDi � on Xi

with infˇi 
 � > 0. Then we define

Ti W
�
Xi ;Di I!.i;ˇi /

	
�! PN

to be Tian’s embedding with respect to !.i;ˇi / for sufficiently large N depending
only on �, m and the fixed Hilbert polynomial �, and we let Hilb.Xi ; .1� ˇi /Di / 2
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H�IN �H Q�IN denote the Hilbert point corresponding to Tian’s embedding of Xi with
respect to !.i;ˇi /. Then we have the following.

LEMMA 4.9
Let .X;D/ � PN be a log Q-Fano pair with the same Hilbert polynomial �, and
let D 2 j�mKX j. Suppose that .X;D/ admits a weak conical Kähler–Einstein form
!.ˇ/ with ˇD limi!1 ˇi solving

Ric
�
!.ˇ/

	
D ˇ!.ˇ/C

1� ˇ

m
ŒD� on X:

Then �
Xi ;Di I!.i;ˇi /

	 GH
�!

�
X;DI!0.ˇ/

	
as i!1

for a conical Kähler–Einstein metric !0.ˇ/ is equivalent to the following statement:
there is a sequence of ¹giº �U.N C 1/ such that

gi �Hilb
�
Xi ; .1� ˇi /Di

	
�!Hilb

�
X; .1� ˇ/D

	
2H�IN as i!1;

where Hilb.X; .1 � ˇ/D/ denotes the Hilbert point of Tian’s embedding T W .X;DI
!.ˇ//! PN for a fixed basis ¹siº.

Proof
This follows directly from Theorem 4.1 which in turn follows from work in [10],

[11], [52], and [53]. Indeed, let us assume that .Xi ;Di I!.i;ˇi //
GH
�! .X;DI!0.ˇ//,

where we can assume that the limit exists by Theorem 4.1. Then by Theorem 4.1(3),
.Ti .Xi /; Ti .Di // ! .T 01.X/;T

0
1.D//, where Ti (resp., T 01) is given by Tian’s

embedding determined by an orthonormal basis of H 0.Xi ;�mKXi / (resp., H 0.X;

�mKX /) with respect to !.i;ˇi / (resp., !0.ˇ/). Assume that !.ˇ/ is also a conical
Kähler–Einstein metric on .X;D/. By the uniqueness of conical Kähler–Einstein met-
rics proved in [5], there exists a holomorphic automorphism 
 2Aut.X;D/ such that

�!.ˇ/D !0.ˇ/. Moreover, because 
 lifts to Aut.X;D;�mKX /, there is a unitary
isomorphism between .H 0.X;�mKX /;k � k

2
!0.ˇ/

/ and .H 0.X;�mKX /;k � k
2
!.ˇ/

/,

where k � k2
!.ˇ/

(k � k2
!0.ˇ/

) is the L2-inner product induced by !.ˇ/ (resp., !0.ˇ/).
Via this isomorphism, we have .Ti .Xi /; Ti .Di //! .T1.X/;T1.D//, where T1 is
given by Tian’s embedding determined by an orthonormal basis of H 0.X;�mKX /

with respect to !.ˇ/. Now the statement of the lemma holds because the orthonormal
basis of a unitary vector space is defined only up to a U.N C 1/-ambiguity.

5. Strong uniqueness for 0 < ˇ� 1

In this section, we will give a purely algebro-geometric proof of the fact that when
the angle ˇ > 0 is sufficiently small, then there is a unique filling.
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PROPOSITION 5.1
For a fixed finite set I � Œ0; 1�, there exists a number ˇI > 0 such that if .X; .1 �
ˇI /D/ is a klt pair, D is R-Cartier, and the coefficients of R-divisorD are contained
in I , then .X;D/ is log canonical.

Proof
By [23, Theorem 1.1], we know that for the set of all n-dimensional log pairs .X;D/
satisfying the property that D is an R-divisor and its coefficients are contained in I ,
the set of log canonical thresholds®

lct.X;D/
ˇ̌
X is n dimensional, the coefficients of D are in I

¯
satisfies the ACC. In particular, there exists a maximum ˇI among all log canonical
thresholds which are strictly less than 1.

Then we know that if .X; .1 � ˇI /D/ is klt and D is Q-Cartier, .X;D/ is log
canonical, since otherwise, we have a pair whose log canonical threshold is in .1 �
ˇI ; 1/, which is a contradiction.

Let X ! C be a flat family of Q-Fano varieties over a smooth pointed curve
0 2 C , and assume that X is Q-Gorenstein. Fix m > 1, and let D �C �mKX be a
divisor such that after a possible shrinking of the pointed curve C , for every t 2 C
the fiber .Xt ;

1
m

Dt / is klt. For instance, we can choose m sufficiently divisible such
that j�mKX j is relatively basepoint-free over C , and let D �C �mKX be a general
divisor in j�mKX j. In particular, after a possible shrinking of C , if X! C is smooth
over C ı, then one might choose D so that Dt is smooth for t 2 C ı provided that Xt

is so for t 2 C ı.

THEOREM 5.2
Let .X;D/! C be a flat family introduced as above. Let

ˇ0 WDmin
°
ˇI ;

1

mC 1

±
;

with ˇI being given in Proposition 5.1 for the set I D ¹ q
m
jq D 1; 2; : : : ;mº. For any

fixed ˇ 2 .0;ˇ0�, suppose that .X0;D 0/! C is another flat family with KX0 C
1
m

D 0

being Q-Cartier satisfying

.X0;D 0/�C C
ı Š .X;D/�C C

ı (15)

with .Yˇ ;
1�ˇ
m
Eˇ / WD .X

0
0;
1�ˇ
m

D 00/ being Q-Fano. Then the above isomorphism can
be extended to an isomorphism

.X0;D 0/Š .X;D/:
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Proof
Since D �C C

ı is integral by our choice, the coefficients of 1
m
Eˇ lie in the set ¹ q

m
j

q 2Nº. By our assumption that .Yˇ ;
1�ˇ
m
Eˇ / is klt and ˇ � ˇ0 � 1

mC1
, we have

1

mC 1
�
1� ˇ

m
and

1� ˇ

m
ci < 1 hence ci <mC 1;

where Eˇ D
P
i ciEˇ;i with Eˇ;i being a prime divisor for each i . Hence the coef-

ficients of 1
m
Eˇ must lie in I D ¹ q

m
j q D 1; 2; : : : ;mº. By our assumption of ˇ 2

.0;ˇ0�� .0;ˇI �, we know that .Yˇ ;
1
m
Eˇ / is log canonical by Proposition 5.1. Fur-

thermore, since Yˇ is irreducible, we know that

KX0 C
1

m
D 0 �Q;C 0

as this holds over C ı.
Let W be a common resolution

W
p q

X
�

X0

that is an isomorphism over C ı. If the birational map � extends to a birational map

X0

�jX0

Yˇ, then

q�KX0 �C;Q p
�KX

as � is an isomorphism in codimension 1, which implies that

X D Proj
1M
rD0

OW .�rp
�KX=C /D Proj

1M
rD0

OW .�rq
�KX0=C /DX0

since both X0 and Yˇ are Q-Fano, and we are already done. So from now on we
assume that X0 ¤ Yˇ on W .

Now let us write

p�
�
KX C

1

m
D
�
C a0Yˇ C

X
aiEi DKW C

1

m
p�1� D : (16)

Since .X0;
1
m

D0/ is klt, this implies that .X; 1
m

D CX0/ is purely log terminal (plt)
near X0 by inversion of adjunction (see [29, Theorem 5.50]). Hence for any divisor
F whose center is contained in X0, we have
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�1 < a
�
F;X;

1

m
D CX0

�
D a

�
F;X;

1

m
D
�
� ordF .X0/� a

�
F;X;

1

m
D
�
� 1;

where ordF denotes the vanishing order along the divisor F . Therefore, .X; 1
m

D/ is
terminal along X0 and a0 > 0, ai > 0. Similarly, by writing

q�
�
KX0 C

1

m
D 0
�
C b0X0C

X
biEi DKW C

1

m
q�1� D 0; (17)

we obtain b0; bi 
 0 because .Y; 1
m
E/ is log canonical thanks to our choice of ˇ and

Proposition 5.1. Since the right-hand sides of (16) and (17) are equal to each other by
(15), X0 ¤ Yˇ , and both KX C

1
m

D and KX0 C
1
m

D 0 are Q-linearly equivalent to a
relatively trivial divisor over C , the implication is that there is a constant c � 0 such
that

a0Yˇ C
X

aiEi D b0X0C
X

biEi C c �W0:

By comparing the coefficients of Yˇ on both sides, we see that c > 0; but by compar-
ing the coefficients of X0 on both sides, we see that c � 0. This contradiction implies
that X0 DX.

Remark 5.3
If mD 1, then the pair we get is plt instead of klt. The above argument also applies to
this case. A similar uniqueness statement is observed in [38, Corollary 4.3], and the
above argument indeed gives a straightforward proof of it.

We also note that the automorphism group Aut.X;D/ is always finite by the
following well-known fact.

LEMMA 5.4
Let .X;D/ be a klt pair such that �KX is ample and D �Q �KX . Then Aut.X;D/
is finite.

Proof
We can choose a sufficiently small � > 0 such that .X; .1 C �/D/ is klt, and we
know that KX C .1 C �/D is ample. As Aut.X;D/ preserves KX C .1 C �/D, it
gives polarized automorphisms. Therefore, to prove that it is finite, we only need to
show that it does not contain Gm or Ga as a subgroup. For Gm this follows from [24,
Lemma 3.4]. As mentioned there, the same argument also works verbatim for Ga.

6. Continuity method
In this section, we will develop our continuity method which serves as the main tech-
nique in the proof of our main result. Let .C; 0/ be a smooth pointed curve. We define
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C ı WD C n ¹0º as before. To begin with, let us fix B2 .0; 1�, and we will assume that
the nearby smooth fibers are all B-K-polystable for the rest of this section. We fix
an � 2 .0;ˇ0/, with ˇ0 given as in Theorem 5.2. By Lemma 2.4, for any ˇ 2 Œ�;B�,
.Xt ;Dt / is ˇ-K-polystable. Applying [9]–[11], and [52] (see Corollary 4.2), we con-
clude that .Xt ;Dt / admits a (unique when ˇ < 1 thanks to [7, Theorem 7.3]) conical
Kähler–Einstein metric with cone angle 2�.1� .1� ˇ/=m/ along Dt for all t 2 C ı

near zero. This leads us to introduce the following notion.

Definition 6.1
We say that

.X;D IL/ ����!
�
PEIOPE.1/

	
??y� ??y
C C

is a Kähler–Einstein degeneration of index .r;B/ if, for any ˇ 2 Œ�;B�,
(1) D 2 j�mKX j;
(2) LDK˝�r

X
is relatively very ample and ED ��L is locally free of rankN C1;

(3) 8t 2 C , .Xt ;
1
m

Dt / is klt and .Xt ;Dt / is a smooth Fano pair for 8t 2 C ı;
(4) for ˇ < 1 and 8t 2 C ı, .Xt ;Dt / admits a unique Kähler form !.t;ˇ/ 2 C ;˛;ˇ

in the sense of [16] solving

Ric
�
!.t;ˇ/

	
D ˇ!.t;ˇ/C

1� ˇ

m
ŒDt � on Xt I (18)

moreover, !.t;ˇ/ gives rise to Tian’s r th embedding

T W
�
Xt ;Dt I!.t;ˇ/

	
�! PN :

By Theorem 4.1, there is a uniform r D r.X;D/ independent of ˇ 2 Œ�;B� such
that all Gromov–Hausdorff limits of subsequences of the family ¹.Xt ;Dt I

!.t;ˇ//ºt2C;ˇ2Œ�;B� can be embedded into PN .

Definition 6.2
Continuing with the above notation, we define

Br .X;D/

WD

8̂̂
ˆ̂<
ˆ̂̂̂:
ˇ 2 Œ�;B�

ˇ̌̌
ˇ̌̌
ˇ̌̌
ˇ

.X;D/ admits a conical Kähler–Einstein metric !.ˇ/

solving Ric
�
!.ˇ/

	
D ˇ!.ˇ/C

1� ˇ

m
ŒD� on X I

moreover,
�
Xt ;Dt I!.t;ˇ/

	 GH
�!

�
X;DI!.ˇ/

	
as t! 0;

9>>>>=
>>>>;

and we fix T such that � � T� sup¹
 2 Œ�;B� j Œ�; 
�� Br.X;D/º.
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By Theorem 4.1, the Gromov–Hausdorff limit of any subsequence of .Xti ;Dti ;

!.ti ; ˇ// is a Q-Fano Y together with a Q-Cartier divisor E such that .Y; 1�ˇ
m
E/ is

log Fano.

LEMMA 6.3
We have

Br .X;D/� Œ�; ˇ0�:

Proof
After shrinking C if necessary, we may choose a holomorphic basis®

si .t/
¯N
iD0
� 

�
�;��OX.�rKX=�/

	
for the family X! C as in Section 4.2, which gives rise to an algebraic arc

z W C �������!H�IN �C

t 7�!
�
Hilb.Xt ;Dt /; t

	
:

(19)

For this arc, we know that Hilb.Y;E/ for the Gromov–Hausdorff limit .Y;EI!Y /
of any subsequence ¹.Xti ;Dti I!KE.ti ; ˇ//ºti!0 lies in the fiber over 0 2 C of the
morphism

SL.N C 1/ � Imz ����! H�IN �C??y�C ??y
C C

By choosing an arc Qz W QC ! SL.N C 1/ � Imz that passes through Hilb.Y;E/ and
dominates C , and comparing the universal family over Im Qz � H�IN � C with the
pullback family induced by the map �C ı Qz W QC ! C , we conclude that .Y;E/ D
.X;D/ as long as ˇ � ˇ0 thanks to Theorem 5.2. Our proof is thus completed.

Remark 6.4
Note that Lemma 6.3 implies that for ˇ 2 Œ0;ˇ0�, .X;D/ is actually ˇ-K-stable (see
Lemma 5.4), which can also be proved by using Theorem 5.2 and a verbatim exten-
sion of the theory of special test configuration developed in [34] to the log setting.
In fact, using the latter approach, we can indeed conclude that a pair .X0;D0/ is
ˇ-K-stable if D0 � �mKX0 , .X0; 1mD0/ is klt, and ˇ 2 Œ0;ˇ0�, without assuming
that X0 is smoothable. However, this stronger fact is not needed for the rest of this
paper.
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From now on, let us assume that .X0;D0/ is B-K-polystable. We will now show
that Br.X;D/ is both open and closed in the set Œ�;B�; equivalently, we can choose

TDBD max
Œ�;	��Br .X;D/

¹
º:

To do this, we first define a map (see Definition 4.6)

� W Œ�;B��C ı �!H�IN ;

.ˇ; t/ 7�!Hilb
�
Xt ; .1� ˇ/Dt

	
:

(20)

Then we have the following.

LEMMA 6.5
We have that � jŒ�;B��Cı is continuous.

Proof
By Proposition 4.8, �.�; �/ is continuous with respect to .ˇ; t/ on Œ�;B/�C ı. By Theo-
rem 4.1, the Gromov–Hausdorff limit of .Xt ;Dt I!.t;ˇi // for any sequence ˇi %B

is B-K-polystable and lies in SL.N C 1/ �Xt . On the other hand, since .Xt ;Dt /

is B-K-polystable, this implies that the limit must lie in U.N C 1/ � Hilb.Xt ; .1 �

B/Dt /; hence the metrics ¹hKE.t; ˇ/º.t;ˇ/2Œ�;B��Cı (see Section 4.2) vary continu-
ously for .ˇ; t/ 2 Œ�;B� � C ı. So �.�; t / is also continuous at ˇ DB with respect to
the basis ¹siº in Definition 4.6. Thus the proof is completed.

By Lemma 6.3, we know that the continuity of q ı � can be extended to Œ�; ˇ0��
¹0º, where q W H�IN !H�IN =U.N C 1/ is the natural quotient morphism, which is
continuous with respect to the quotient topology on H�IN =U.N C 1/. Next, we show
that the ˇ-continuity of q ı � can indeed be extended to Œ�;T��¹0º (i.e., including the
central fiber) as long as q ı � can be continuously extended to Œ�;T/�C based on the
fact that .X;D/ is a degeneration of smooth pairs .Xt ;Dt / admitting conical Kähler–
Einstein metrics !.t;ˇ/ for any ˇ 2 Œ�;T/. To do this, let us prefix a continuous
distance function on H�IN :

distH�IN WH
�IN �H�IN �!R�0: (21)

LEMMA 6.6
Let us continue with the above setting. In particular, .X;D/ D .X0;D0/ is B-K-
polystable. Then .X;D/ admits a conical Kähler–Einstein metric !X .T/ with cone
angle 2�.1� .1�T/=m/ along the divisorD. Furthermore, for any sequence ¹ˇiº �
.�;T/ satisfying ˇi % T, we have

distH�IN .Hilb
�
X; .1� ˇi /D

	
;U.N C 1/ �Hilb

�
X; .1�T/D

	
�! 0;
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where Hilb.X; .1�T/D/ is the Hilbert point corresponding to the cycle obtained via
Tian’s embedding of .X;DI!X .T//.

Proof
By Theorem 4.1 and the definition of T, for any ˇ < T, the Gromov–Hausdorff limit
as t! 0 of .Xt ;Dt I!.t;ˇ// converges to a weak conical Kähler–Einstein metric on
.X;DI!.ˇ//D .X0;D0I!.0;ˇ//. This implies that for each fixed ˇi < T, there is a
C ı 3 ti ! 0 so that

distH�IN
�
Hilb

�
Xti ; .1� ˇi /Dti

	
;U.N C 1/ �Hilb

�
X; .1� ˇi /D

		
< 1=i: (22)

It follows from Theorem 4.1 that for any subsequence of ¹.Xti ;Dti I!.ti ; ˇi //º,
there is a Gromov–Hausdorff convergent subsequence. Now suppose that there is a
subsequence

�
Xtik

;Dtik
I!.tik ; ˇik /

	 GH
�!

�
Y;EI!Y .T/

	
as k!1;

from which we obtain that there are gik 2U.N C 1/ such that

gik �Hilb
�
Xtik

; .1� ˇik /Dtik

	
�!Hilb

�
Y; .1�T/E

	
;

where Hilb.Y; .1 � T/E/ is the Hilbert point corresponding to Tian’s embedding
of .Y;E/ using the limiting conical Kähler–Einstein metric !Y .T/ with cone angle
2�.1 � .1 � T/=m/ along a Q-Cartier divisor E . In particular, .Y;E/ is T-K-poly-
stable by [4, Theorem 4.2]. On the other hand, by (22) we have

Hilb
�
Y; .1�T/E

	
2 SL.N C 1/ �Hilb.X;D/�H�IN : (23)

Suppose that .Y;E/ � .X;D/. Then by [17, Proposition 1], there is a test configu-
ration of .X;D/ with central fiber .Y;E/ and vanishing generalized Futaki invariant
since .Y;E/ is T-K-polystable. This contradicts our assumption that .X;D/ is T-K-
polystable. Hence we must have .Y;E/ Š .X;D/. In particular, X admits a weak
conical Kähler–Einstein metric with cone angle 2�.1� .1�T// along D.

In conclusion, we have

�
Xtik

;Dtik
I!.tik ; ˇik /

	 GH
�!

�
X;DI!X .T/

	
;

which implies that

distH�IN .Hilb
�
X; .1� ˇi /D

	
;U.N C 1/ �Hilb

�
X; .1�T/D

	
�! 0:

Combining with (22), the proof is completed.
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Remark 6.7
Note that in the above argument, the existence of the conical Kähler–Einstein metric
on Xti is needed only for an angle ˇi < T instead of T. So the proof remains valid
only by assuming that Xt is T-K-semistable for any t 2 C ı instead of being T-K-
polystable.

An immediate consequence is the following.

COROLLARY 6.8
The automorphism group Aut.X;D/ is finite. If TD 1, then Aut.X/ is reductive.

Proof
The first part is just Lemma 5.4. The second part follows from [11, Theorem 6] thanks
to the existence of a weak Kähler–Einstein metric on X .

Let

BO WD lim
t!0

SL.N C 1/ �Hilb.Xt ;Dt /�H�IN (24)

denote the limiting orbit, and let

OHilb.X;.1�T/D/ D SL.N C 1/ �Hilb
�
X; .1�T/D

	
and

OHilb.X;.1�T/D/ � H�IN

be the SL.N C 1/-orbit of Hilb.X; .1� T/D/ and its closure. By Corollary 6.8, this
allows us to construct an SL.N C 1/-invariant Zariski-open neighborhood

Hilb
�
X; .1�T/D

	
2 U �H�IN (25)

satisfying the condition (3) in Lemma 3.1. We point out that the open neighborhood
U is independent of T (see Remark 4.7(1)). Then we have the following.

LEMMA 6.9
Let ¹tiº � C be a sequence of points approaching 0 2 C , and let

¹ˇiº; ¹ˇ
�
i º; ¹ˇ

0
iº � Œ�; 1�

be three sequences satisfying ˇ�i < ˇi for all i .
(1) Assume that ˇi ! T, ˇ�i ! T and that there is a sequence ¹.Xti ;Dti / j

.Xti ;Dti / being ˇi -K-polystableº with ti ! 0 such that

Hilb
�
Xti ; .1� ˇ

�
i /Dti

	 i!1
�! U.N C 1/ �Hilb

�
X; .1�T/D

	
; (26)
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and for gi 2U.N C 1/

gi �Hilb
�
Xti ; .1� ˇi /Dti

	 i!1
�! Hilb

�
Y; .1�T/E

	
: (27)

Then Hilb.Y; .1�T/E/D g �Hilb.X; .1�T/D/ for some g 2U.N C 1/.
(2) Assume that ˇ0i % T and that for any fixed i , there is a gi 2 U.N C 1/ such

that

Hilb
�
Xt ; .1� ˇ

0
i /Dt

	 t!0
�! gi �Hilb

�
X; .1� ˇ0i /D

	
(28)

and

Hilb
�
Xti ; .1� ˇ

0
i /Dti

	 i!1
�! Hilb

�
Y; .1�T/E

	
2BO nOHilb.X;.1�T/D/:

(29)

If .X;D/ � .Y;E/, then there exists a sequence ¹t 0iº satisfying 0 <

distC .t 0i ; 0/ < distC .ti ; 0/ such that

Hilb
�
Y 0; .1�T/E 0

	
D lim
i!1

Hilb
�
Xt 0

i
; .1� ˇ0i /Dt 0

i

	
2
�
OHilb.X;.1�T/D/ [ .U \BO/

	
nOHilb.X;.1�T/D/

�H�IN ; (30)

where distC W C �C !R is a fixed continuous distance function on C .

Proof
To prove Lemma 6.9(1), one first notes that (26), together with Lemma 4.9, implies
that .X;D/ is T-K-polystable. We will show that under the above assumption and

Hilb
�
Y; .1�T/E

	
…U.N C 1/ �Hilb

�
X; .1�T/D

	
;

one can then construct a new sequence ¹ˇ00i º satisfying ˇ00i 2 Œˇ
�
i ; ˇi � such that

Hilb
�
Y 0; .1�T/E 0

	
D lim
i!1

Hilb
�
Xti ; .1� ˇ

00
i /Dti

	
2
�
OHilb.X;.1�T/D/ [ .U \BO/

	
nOHilb.X;.1�T/D/ �H�IN :

On the other hand, Lemma 4.9 implies that

�
Xti ;Dti I!.ti ; ˇ

00
i /
	 GH
�!

�
Y 0;E 0I!Y 0.T/

	
;

thus .Y 0;E 0/ admits a weak conical Kähler–Einstein metric with cone angle 2�.1�
.1 � T/=m/ along E 0 and hence is T-K-polystable. These allow one to construct



SPACES OF SMOOTHABLE KÄHLER–EINSTEIN FANO VARIETIES 1417

either a test configuration of .X;D/ with central fiber .Y 0;E 0/ and vanishing gen-
eralized Futaki invariant or a test configuration of .Y 0;E 0/ with central fiber .X;D/
and vanishing generalized Futaki invariant, contradicting the fact that both .X;D/
and .Y 0;E 0/ are T-K-polystable. So we must have

Hilb
�
Y; .1�T/E

	
D g �Hilb

�
X; .1�T/D

	
for some g 2U.N C 1/.

Now we proceed to the construction of ¹ˇ00i º. Let

B
�
Hilb

�
X; .1�T/D

	
; �1
	
� U

be the open balls of radius �1 with respect to the distance function (21), and let U be
given as in (25).

By shrinking the pointed curve .0 2 C/ if necessary, we may assume that

Hilb
�
Xti ; .1� ˇ

�
i /Dti

	
2U.N C 1/ �B

�
Hilb

�
X; .1�T/D

	
; �1
	

(31)

for all i thanks to our assumption (26). On the other hand, by our assumption that
.X;D/� .Y;E/—and we may assume that .Y;E/ is not in the closure of the orbit of
.X;D/ (otherwise, we can just let ˇ00i D ˇi )—there is an �1 > 0 such that

distH�IN
�
Hilb

�
Xti ; .1� ˇi /Dti

	
;OHilb.X;.1�T/D/

	
> �1 for i	 1:

By the ˇ-continuity of �.�; ti / for each fixed i	 1, for any 0 < " < �1 there is

ˇ00i;k D sup
®
ˇ 2 .ˇ�i ; ˇi /

ˇ̌
�.�; ti /

ˇ̌
.ˇ�
i
;ˇ/
�B.OHilb.X;.1�T/D/; "=2

k/

[U.N C 1/ �B
�
Hilb

�
X; .1�T/D

	
; �1
	¯
; (32)

where B.OHilb.X;.1�T/D/; "=2
k/ is the "=2k-tubular neighborhood ofOHilb.X;.1�T/D/;

that is, ˇ00
i;k

is the smallest ˇ such that �.�; ti / escapes B.OHilb.X;.1�T/D/; "=2
k/ [

U.N C 1/ �B.Hilb.X; .1�T/D/; �1/. Clearly, we have ˇ00
i;kC1

� ˇ00
i;k

. Now if

�.ˇ00i;0; ti / 2 SL.N C 1/ �B
�
Hilb

�
X; .1�T/D

	
; �1
	
;

then we let ˇ00i D ˇ
00
i;0; otherwise, we let ˇ00i D ˇ

00
i;k

, where ˇ00
i;k

is the first number
satisfying

�.ˇ00i;k; ti / 2 SL.N C 1/ �B
�
Hilb

�
X; .1�T/D

	
; �1
	
:

Such a k exists because of (31). Now by our construction, there is a gi 2 SL.N C 1/
such that

�.ˇ00i ; ti / 2 gi �B
�
Hilb

�
X; .1�T/D

	
; �1
	
: (33)
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We let

Mi D inf
®
Tr.g�g/

ˇ̌
g 2 SL.N C 1/ such that (33) is satisfied

¯
C 1;

and by passing through a subsequence we may assume that Tr.g�i gi /�Mi . Then we
have the following dichotomy.

Case 1: There is a subsequence ¹Mil º such that jMil j<M for some constant M
independent of i . Then we claim that®

�.ˇ00il ; til /DHilb
�
Xtil

; .1� ˇ00il /Dtil

	¯
is the subsequence we want, and its limit Hilb.Y 0; .1�T/E 0/ lies in

.U \BO/ nOHilb.X;.1�T/D/:

To see this, one only needs to note that it follows from our construction of ˇ00il that

distH�IN
�
�.ˇ00il ; ti /;OHilb.X;.1�T/D/

	
is uniformly bounded from below by some "=2k , since there is a k D k.M/ such that®

z 2H�IN
ˇ̌

distH�IN
�
z;g �Hilb

�
X; .1�T/D

		
� "=2k.M/ and jgj<M

¯
� SL.N C 1/ �U:

Case 2: jMi j !1. If this happens, we replace " by "=2 in (32) and repeat the
above process. If for the new sequence ¹M Œ1�

i º � R there is a bounded subsequence

¹M
Œ1�
il
º, then we reduce to Case 1; otherwise, we keep on repeating this process. Then

either we stop at a finite stage, or this becomes an infinite process. If we stop at a finite
stage, then we obtain our subsequence as before; if the process never terminates, we
claim that we are able to extract a subsequence whose limit Hilb.Y 0; .1�T/E 0/ lands
in the boundary

@OHilb.X;.1�T/D/ DOHilb.X;.1�T/D/ nOHilb.X;.1�T/D/:

This is because by choosing a diagonal sequence we will have

distH�IN
�
�.ˇ
00;Œk�
ik

; tik /;OHilb.X;.1�T/D/
	
< "=2k! 0;

so we know that

z WD lim
k!1

�.ˇ
00;Œk�
ik

; tik / 2OHilb.X;.1�T/D/:

On the other hand, if z 2OHilb.X;.1�T/D , then
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z D g �Hilb
�
X; .1�T/D

	
for some g 2 SL.N C1/. In particular, g �B.Hilb.X; .1�T/D/; �1/ contains a neigh-
borhood of z. However, this violates the assumption that jM Œk�

ik
j ! 1 as k!1.

Hence our proof is completed.
The proof of Lemma 6.9(2) is similar. In contrast to part (1), we will vary t

instead of ˇ in �.ˇ; t/. First by our assumption (29) together with Lemma 4.9, .Y;E/
is T-K-polystable, and hence

Hilb
�
Y; .1�T/E

	
… @OHilb.X;.1�T/D/:

So there is an �1 > 0 such that

distH�IN
�
Hilb

�
Xti ; .1� ˇ

0
i /Dti

	
;OHilb.X;.1�T/D/

	
> �1 for i	 1:

On the other hand, by our assumption (28) and Lemma 6.6 we have that, for any fixed
ˇ0i with i	 1, there is a 0 < si 2R such that

Hilb
�
Xt 0

i
; .1� ˇ0i /Dt 0

i

	
2U.N C 1/ �B

�
Hilb

�
X; .1�T/D

	
; �1
	

for any t satisfying 0 < distC .t; 0/ < si , since

U.N C 1/ �Hilb
�
X; .1� ˇ0i /D

	 i!1
�! U.N C 1/ �Hilb

�
X; .1�T/D

	
inside H�IN =U.N C 1/.

By the t -continuity of �.ˇ0i ; �/ for each fixed i	 1, for any " < �1=2 there is

si;k WD sup
®
s 2

�
0; jti j

	 ˇ̌
�.ˇ0i ; �/

ˇ̌
BC .0;s/

�B.OHilb.X;.1�T/D/; "=2
k/

[U.N C 1/ �B
�
Hilb

�
X; .1�T/D

	
; �1
	¯
; (34)

where jti j WD distC .ti ; 0/ and BC .0; s/ WD ¹t 2 C j distC .t; 0/� sº. Then si;k D jti;kj
is the smallest distance needed for t so that �.ˇ0i ; t / escapes B.OHilb.X;.1�T/D/;

"=2k/[U.N C 1/ �B.Hilb.X; .1�T/D/; �1/. Clearly, we have si;kC1 < si;k . Now if

�.ˇ0i ; ti;0/ 2 SL.N C 1/ �B
�
Hilb

�
X; .1�T/D

	
; �1
	
;

then we let t 0i D ti;0; otherwise, we let t 0i D t
0
i;k

, where t 0
i;k

is the first point in C
satisfying

�.ˇ0i ; t
0
i;k/ 2 SL.N C 1/ �B

�
Hilb

�
X; .1�T/D

	
; �1
	
:

Such a process must terminate in finite steps by (28). Now we define Mi 2R to be

Mi WD inf
gi

®
Tr.g�i gi /C 1j�.ˇ

0
i ; t
0
i / 2 gi �B

�
Hilb

�
X; .1�T/D

	
; �1
	¯
:
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Then again we have two situations exactly the same as in the proof of Lemma 6.9(1)
depending on ¹Miº being bounded or not. Replacing ˇ00i by t 0i in the argument for part
(1), one see that the rest of the proof is a verbatim copy, which we omit. Thus the
proof of Lemma 6.9 is completed.

Remark 6.10
Note that when TD 1 and both ˇi ; ˇ�i � 1, 8i , then Lemma 6.9 and its proof imply
a slight variation of the following form.

Let

�1 WH
�IN DH�IN � P Q�IN �! P�;nIN�

Hilb.X/;Hilb.D/
	
7�!Hilb.X/

(35)

be the projection to the first factor.
(1) Assume that ˇi ! 1, ˇ�i ! 1 and assume that there is a sequence ¹.Xti ;Dti / j

.Xti ;Dti / being ˇi -K-polystableº with ti ! 0 such that

�1
�
Hilb

�
Xti ; .1� ˇ

�
i /Dti

		 i!1
�! U.N C 1/ �Hilb.X/�H�IN ; (36)

and for gi 2 U.N C 1/

�1
�
gi �Hilb

�
Xti ; .1� ˇi /Dti

		 i!1
�! Hilb.Y / 2H�IN : (37)

Then Hilb.Y /D g �Hilb.X/ for some g 2 U.N C 1/.
(2) Assume that ˇ0i % 1 and suppose that for any fixed i there is a gi 2U.N C 1/

such that

Hilb
�
Xt ; .1� ˇ

0
i /Dt

	 t!0
�! gi �Hilb

�
X; .1� ˇ0i /D

	
2H�IN (38)

and

�1
�
Hilb

�
Xti ; .1� ˇ

0
i /Dti

		 i!1
�! Hilb.Y / 2BO nOHilb.X/ �H�IN : (39)

If X � Y , then there exists a sequence ¹t 0iº satisfying 0 < distC .t 0i ; 0/ <
distC .ti ; 0/ such that

Hilb.Y 0/D lim
i!1

�1
�
Hilb

�
Xt 0

i
; .1� ˇ0i /Dt 0

i

		
2
�
OHilb.X/ [ .U \BO/

	
nOHilb.X/ �H�IN ; (40)

where distC W C �C !R is a fixed continuous distance function on C .

Now we are ready to prove the openness.
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PROPOSITION 6.11
Let .X;D IL/! C be a Kähler–Einstein degeneration of index .r;B/ as in Def-
inition 6.1 with r D r.X;D/ being the uniform index as in Theorem 4.1(3). Then
Br .X;D/� Œ�;B� is an open set.

Proof
Let us assume that T 2 Br .X;D/. Then by fixing a local basis ¹siº for ��!

�˝r
X=C

, we
have

distH�IN
�
Hilb

�
Xt ; .1�T/Dt

	
;U.N C 1/ �Hilb

�
X; .1�T/D

		
�! 0 as t! 0:

(41)

Now we claim that there is a ı > 0 such that Œ�;TC ı/ � Br .X;D/. Suppose that
does not hold. For any k, there is a T< ˇk < TC 1=k and a sequence ¹ti;kº1kD1 such
that

Hilb
�
Xti;k ; .1� ˇk/Dti;k

	 i!1
�! Hilb

�
Yk; .1� ˇk/Ek

	
… U �H�IN ;

with U � H�IN being the SL.N C 1/-invariant Zariski-open neighborhood of
Hilb.X; .1� T/D/ constructed in Lemma 3.1, since .X;D/ is also ˇk-K-polystable
because of ˇk 2 Œ�;B� and Lemma 2.4. For any fixed i , we can pick up ki 	 0 such
that

Hilb
�
Xti;ki

; .1� ˇki /Dti;ki

	
…U.N C 1/ �B

�
Hilb

�
X; .1� T /D

	
; �1
	
:

Now let us introduce the diagonal sequence®
Hilb

�
Xti ; .1� ˇi /Dti

	
WDHilb

�
Xti;ki

; .1� ˇki /Dti;ki

	¯1
iD0
:

Then by Theorem 4.1, after passing to a subsequence if necessary, we obtain a new
sequence, which by abuse of notation will still be denoted by ˇi & T and ti ! 0,
such that

Hilb
�
Xti ; .1� ˇi /Dti

	
�!Hilb

�
Y; .1�T/E

	
…OHilb.X;.1�T/D/: (42)

But this violates Lemma 6.9(1) with ˇ�i D T 8i .

Next, we prove the closedness.

PROPOSITION 6.12
Let .X;D/! C be a family satisfying the condition of Proposition 6.11. Suppose
further that X! C is a family of B-K-polystable varieties. Then B.X;D/� Œ�;B�

is also closed with respect to the induced topology, and hence B.X;D/D Œ�;B�.
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Proof
By our assumption, for every t 2 C ı, .Xt ;Dt / is a smooth Fano pair with Dt 2

j�mKXt j. Since Xt is B-K-polystable, it is ˇ-K-polystable for ˇ 2 Œ�;B� by Lem-
ma 2.4. As .Xt ;Dt / are smooth, by Theorem 4.1, [45, Proposition 2.2], and [31,
Proposition 1.7] they admit a unique conical Kähler–Einstein metric !t solving

Ric
�
!.t;ˇ/

	
D ˇ!.t;ˇ/C

1� ˇ

m
ŒDt �

with cone angle 2�.1 � .1 � ˇ/=m/ along Dt for any ˇ 2 Œ�;B�. By Theorem 4.1
and the definition of T, for any fixed ˇ < T, we have

�
Xt ;Dt I!.t;ˇ/

	 GH
�!

�
X0;D0I!.0;ˇ/

	
as t! 0:

By Lemma 6.6, for any sequence ˇi % T, we have

distH�IN
�
Hilb

�
X; .1� ˇi /D

	
;U.N C 1/ �Hilb

�
X; .1�T/D

		
�! 0:

Our goal is to prove that

Hilb
�
Xt ; .1�T/Dt

	
�!U.N C 1/ �Hilb

�
X; .1�T/D

	
/ as t! 0:

We will argue by contradiction. Suppose first that this is not the case. Then there is a
subsequence ¹tiº1iD1 � C , ti ! 0 as i!1 such that

Hilb
�
Xti ; .1�T/Dti

	
!Hilb

�
Y; .1�T/E

	
…U.N C 1/ �Hilb

�
X; .1�T/D

	
:

By the continuity of �.�; ti / at T for each fixed i (see Lemma 6.5), there is a conse-
quence ¹ˇ0iº

1
iD1 � .�0;T/ such that ˇ0i % T and

Hilb
�
Xti ; .1� ˇ

0
i /Dti

	
!Hilb

�
Y; .1�T/E

	
…U.N C 1/ �Hilb

�
X; .1�T/D

	
as i!1: (43)

We claim that Hilb.Y; .1 � T/E/ 2 BO n SL.N C 1/ � U . Otherwise, Hilb.Y; .1 �
T/E/ 2 U . Then

Hilb
�
X; .1�T/D

	
2 SL.N C 1/ �Hilb

�
Y; .1�T/E

	
:

But this violates the fact that .Y;E/ is T-K-polystable by [4, Theorem 4.2], since we
can construct a test configuration of .Y;E/ with central fiber .X;D/ and vanishing
generalized Futaki invariant. Hence our claim is proved.

Now we can apply Lemma 6.9(2) to obtain a new sequence ¹t 0i º � C
ı satisfying

t 0i ! 0 2 C and
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Hilb
�
Y 0; .1�T/E 0

	
D lim
i!1

Hilb
�
Xt 0

i
; .1� ˇ0i /Dt 0

i

	
2
�
OHilb.X;.1�T/D/ [ .U \BO/

	
nOHilb.X;.1�T/D/

� H�IN ; (44)

which contradicts the fact that both .Y 0;E 0/ and .X;D/ are T-K-polystable by the
same reason as above. Thus the proof is completed.

Remark 6.13
We remark that, interestingly, in the proof of Proposition 6.11 we only used the con-
tinuity of �.�; t / for each fixed t . In particular, the continuity of � with respect to the
variable t is not used. Contrast this with the continuity of �.ˇ; �/ with respect to t ,
which is what we use in the proof of Proposition 6.12.

We note that, by this point, we have already established the following.

COROLLARY 6.14
Theorem 1.2 holds under an additional assumption that Xt is ˇ-K-polystable for all
t 2 C ı.

7. K-semistability of the nearby fibers

7.1. Orbit of K-semistable points
In this section, we extend our continuity method to study the uniqueness of K-poly-
stable Fano varieties that a K-semistable Fano manifold can specialize to, which will
also be needed in the proof of our main theorem.

Let X be a smooth Fano manifold, and let D 2 j�mKX j be a smooth divisor for
m 
 2. Assume that X is T-K-semistable with respect to D. By Theorem 4.1, we
know that for any sequence ˇi % T, after possibly passing to a subsequence (which
by abuse of notation will still be denoted by ˇi % T), there exists a log Q-Fano pair
.X0;D0/ which is the Gromov–Hausdorff limit of the conical Kähler–Einstein metric
.X;DI!.ˇi //, that is,

Hilb
�
X; .1� ˇi /D

	
�!U.N C 1/ �Hilb

�
X0; .1�T/D0

	
2OHilb.X;.1�T/D/ as i!1

with X0 being T-K-polystable, where

OHilb.X;.1�T/D/ D the closure of SL.N C 1/ �Hilb
�
X; .1�T/D

	
�H�IN :
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In particular, .X0;D0/ admits a weak conical Kähler–Einstein metric !.T/ with cone
angle 2�.1� .1�T/=m/ along the divisor D0 �X0.

LEMMA 7.1
The limit is independent of the choice of the sequence ¹ˇiº in the sense that for every
sequence ˇi % T,

�
X;DI!.ˇi /

	 GH
�!

�
X0;D0I!.T/

	
:

Proof
The existence of a weak conical Kähler–Einstein metric !.T/ on .X0;D0/ allows
us to construct a test configuration .X;D IL/ of .X;D/ with central fiber .X0;D0/
since Aut.X0;D0/ is reductive by Theorem 4.1. Now our claim follows by applying
Lemma 6.9(1) to the family .X;D IL/.

THEOREM 7.2
Suppose that X is a smooth K-semistable Fano manifold and that D0 2 j�m0KX j
and D1 2 j�m1KX j are two smooth divisors. Let X0 and X1 be the limits defined as
in Lemma 7.1 with TD 1. Then X0 ŠX1.

Proof
By introducing a third divisor in j�mKX j with mD lcm.m0;m1/, we may assume
that rm0 D m1 for a positive integer r . By Bertini’s theorem, we may choose
¹Dtºt2Œ0;1� � j�mKX j to be a continuous path joining rD0 and D1 such that
� the path ¹Dtº lies in an algebraic arc C � j�mKX j with corresponding family

D! C ,
� Dt is smooth for all t ¤ 0.
By assumption, X is K-semistable, and hence .X;Dt / are ˇ-K-stable for all .ˇ; t/ 2
.0; 1/� .0; 1�. In particular, ¹.X;Dt /º admit a conical Kähler–Einstein metric !.t;ˇ/,
8.ˇ; t/ 2 .0; 1/ � Œ0; 1� by Corollary 4.2. Using Tian’s embedding, we can similarly
define a map


 W .0; 1/� .0; 1��!H�IN ;

.ˇ; t/ 7�!Hilb
�
X; .1� ˇ/Dt

	 (45)

using a prefixed basis of H 0.X;OX .�rKX //. By Proposition 4.8 and [16, Theo-
rem 2], 
 is continuous on .0; 1/ � .0; 1�. We claim that q ı 
 is continuous on
.0; 1/� Œ0; 1� with q W H�IN !H�IN =U.N C 1/. For fixed ˇ 2 .0; 1/, we can deduce
the continuity of 
.ˇ; �/ at zero by applying Corollary 6.14 to the product family
.X DX �C;D/! C with .Xt ;Dt /D .X;Dt /. Thus, all we need to show is



SPACES OF SMOOTHABLE KÄHLER–EINSTEIN FANO VARIETIES 1425

lim
ˇ!1

distH�IN
�
Q
.ˇ; t/;U.N C 1/ �Hilb.X0/

	
D 0; 8t 2 Œ0; 1�; (46)

where Q
 WD �1 ı 
 with �1 being given in (35). To achieve this, let Qq W H�IN !
H�IN =U.N C 1/. Then Lemma 7.1 allows us to introduce

lim
ˇ!1
Qq ı Q
.ˇ; t/DU.N C 1/ �Hilb.Xt / 2H

�IN =U.N C 1/ for t 2 Œ0; 1�

with Xt being a Q-Fano variety admitting a weak Kähler–Einstein metric for each t 2
Œ0; 1�. Let X1!A1 be a test configuration with central fiber X1, and let Hilb.X1/ 2
U �H�IN be the open neighborhood constructed for the family X1! A1 via Lem-
ma 3.1.

Now suppose that (46) does not hold; that is, there is a t0 2 Œ0; 1� such that

lim
ˇ!1
Q
.ˇ; t0/DHilb.Xt0/ … U �Hilb.X1/:

Then by applying the continuity of Qq ı Q
.ˇ; �/ with respect to t 2 Œ0; 1� for fixed ˇ
the same way as in the proof of Lemma 6.9(2), we can construct a new sequence
¹.ˇi ; ti /º

1
iD1 � .0; 1�� Œt0; 1� such that ˇi % 1 as i!1 and

Hilb.Y /D lim
i!1

Q
.ˇi ; ti / 2
�
OHilb.X1/ [ .U \ @OHilb.X//

	
nOHilb.X1/ �H�IN ;

with bothX1 and Y (�X1) being K-polystable, which is impossible. Hence our proof
is completed.

7.2. Zariski openness of K-semistable varieties
In this section, we will study the Zariski openness of the locus of the Q-Gorenstein
smoothable,K-semistable varieties inside Hilbert schemes. This needs a combination
of the continuity method with the algebraic result in Appendix A.1.

Let

.X;D/



����! PN � PN � S??y� ??y
S S

be a flat family of Q-Fano varieties over a smooth (not necessarily complete) base S ,
and let D 2 j�mKX j be an irreducible divisor defined by a section sD 2

.S;OX.�mKX//. Let us assume further that OX.�rKX/ is relatively very ample
and that � is the embedding induced by a prefixed basis ¹si .t/ºNiD0 � .S;

��OX.�rKX=S //, and in particular, that ��OPN .1/Š OX.�rKX=S /. Then we have
the following.
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THEOREM 7.3
Let .X;D/! C be the family over a smooth curve such that .Xt ;Dt / is smooth for
t 2 C ı and .Xt ;

1
m

Dt / is klt for all t 2 C . Assume that .X0;D0/ is B-K-semistable.
Then there is a Zariski-open neighborhood 0 2 C � � C such that .Xt ;Dt / is B-
K-semistable for t 2 C �. Furthermore, if .X0;D0/ is B-K-polystable and has only
finitely many automorphisms, then .Xt ;Dt / is B-K-polystable after a possible fur-
ther shrinking of C �.

Definition 7.4
For every t 2 S , we define the kst as

kst.Xt ;Dt / WD sup
®
ˇ 2 Œ0;B�

ˇ̌
.Xt ;Dt / is ˇ-K-semistable

¯
:

By Theorem 4.1, testing ˇ-K-semistability for Xt , 8t 2 S , is reduced to testing for
all 1-PS’s inside SL.N C 1/ for a fixed sufficiently large PN . This implies that
kst.Xt ;Dt / is a constructible function of t (see Proposition 7.5 below). By Re-
mark 6.4, we know that .Xt ;Dt / is ˇ-K-stable for all ˇ 2 .0;ˇ0�. This, together
with Lemma 2.4, in particular implies that kst.Xt ;Dt / is actually a maximum for
every t 2 S .

Then we have the following proposition which essentially follows from Paul’s
work, especially his theory on stability of pairs (see [41, Theorem 1.3]). For the
reader’s convenience, a proof is included in Proposition A.4 in the Appendix.

PROPOSITION 7.5
The K-semistable threshold kst.Xt ;Dt / defines a constructible function on S ; that
is, S D

F
i Si is a union of finite constructible sets ¹Siº on which kst.Xt ;Dt / is

constant.

Proof of Theorem 7.3
By Proposition 7.5, kst.Xt ;Dt / is constant when restricted to each stratum Si . So all
we need to show is that if ti ! 0 and .Xti ;Dti / is strictly T-K-semistable, then

TD kst.Xti ;Dti /
 kst.X;D/DB:

Suppose that this is not the case. Then we have B> T, and we look for a contra-
diction. First, we claim that for any sequence ti ! 0, after passing to a subsequence
which by abuse of notation is still denoted by ¹tiº, we can find a sequence ¹ˇ�i º% T
such that

distH�IN
�
Hilb

�
Xti ; .1� ˇ

�
i /Dti

	
;U.N C 1/ �Hilb

�
X; .1�T/D

		
�! 0: (47)
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In fact, since we have already established Theorem 1.2 under the extra assump-
tion that the nearby points are all ˇ-K-polystable (see Corollary 6.14), for any fixed
ˇ < T we have

distH�IN
�
Hilb

�
Xt ; .1� ˇ/Dt

	
;U.N C 1/ �Hilb

�
X; .1� ˇ/D

		
�! 0 as t! 0;

and thus Lemma 6.6 implies that

distH�IN
�
Hilb

�
X; .1� ˇ0i /D

	
;U.N C 1/ �Hilb

�
X; .1�T/D

		
�! 0

for any sequence ˇ0i % T <B. Since ti ! 0, for any fixed ˇ0i there is a ki 
 i such
that

distH�IN
�
Hilb

�
Xtki

; .1� ˇi /Dtki

	
;U.N C 1/ �Hilb

�
X; .1� ˇi /D

		
< 1=i:

Now we pick the subsequence ¹tki º and define ˇ�
ki
WD ˇ0i . Then the sequence

¹ˇ�
ki
ºi!1% T is a sequence satisfying (47); hence our claim is justified.
On the other hand, for each fixed ti , let ˇ% T. By Theorem 4.1, we have

distH�IN
�
Hilb

�
Xti ; .1� ˇ/Dti

	
;U.N C 1/ �Hilb

�
QXti ; .1�T/ QDti

		
�! 0 (48)

with Hilb. QXti ; .1 � T/ QDti / 2 @OHilb.Xti ;Dti /
and . QXti ; .1 � T/ QDti / being a T-K-

polystable variety. Now we claim that

Hilb
�
QXti ; .1�T/ QDti

	
�! g �Hilb

�
X; .1�T/D

	
for some g 2U.N C 1/: (49)

To see this, one notes that by Theorem 4.1 and Lemma 4.9, after passing to a subse-
quence, there is a sequence ˇi % T such that

Hilb
�
QXti ; .1� ˇi /

QDti

	
�!Hilb

�
Y; .1�T/E

	
;

and such that .Y;E/ is T-K-polystable. Moreover, we may assume that ˇ�i < ˇi , 8i
after rearranging. Combining (48) and Lemma 4.9, we have

�
Xti ;Dti I!.ti ; ˇi /

	 GH
�!

�
Y;EI!Y .T/

	
;

where .Y;E/ is a log Q-Fano pair admitting a weak conical Kähler–Einstein metric
!Y .T/ with cone angle 2�.1 � .1 � T/=m/ along E . In particular, .Y;E/ is T-K-
polystable. By Lemma 6.9(1), we conclude that

Hilb
�
Y; .1�T/E

	
D g �Hilb

�
X; .1�T/D

	
for some g 2U.N C 1/:

Hence our claim is proved.
To conclude the proof, we note that the stabilizer group of Hilb.X0ti ; .1�T/D 0ti /

is of positive dimension for each i . Let gD sl.N C1/ be the Lie algebra. By the upper
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semicontinuity of the dimension of the stabilizer gHilb.X0ti
;.1�T/D 0ti /

, we must have

dimgHilb.X;.1�T/D/ > 0, contradicting the fact that the automorphism group of .X;D/
is finite for T <B � 1 (see Corollary 6.8). To prove the last part of the statement,
we just note that, under our assumption, .X0t ;D

0
t / has to have finite automorphism

groups, which implies that

.X0t ;D
0
t /Š .Xt ;Dt /:

Hence our proof is completed for this case.

7.3. Proofs of Theorems 1.1 and 1.2
Before we start the proofs, let us fix a divisor D �C �mKX in general position for
the flat family X! C satisfying the assumption of Theorem 5.2 and with .Xt ;Dt /

being smooth for all t 2 C ı.

Proof of Theorem 1.1
First, we note that (i) is proved in Section 7.2. To prove (ii), one notes that Theo-
rem 4.1 implies that there exists an r such that the Gromov–Hausdorff limit of the
family .Xt ;Dt I!.t;ˇt // for any t 2 C and ˇ < 1 can all be embedded into PN for
N D N.r;d/. By combining Propositions 6.11 and 6.12, we obtain that for every
B< 1,

Br .X;D/D Œ�;B�

for .X;D/ (see Corollary 6.14). Therefore, their union will contain Œ�; 1/. In partic-
ular, it follows from Lemma 6.6 and Remark 6.7 for BD 1 that X DX0 admits a
Kähler–Einstein metric. This in particular verifies the first part of (iii).

Now we finish the proof of part (ii). By part (i), after a possible shrinking of C ,
we may assume that Xt is K-semistable for every t 2 C ı. For any t ¤ 0, there is
a unique K-polystable Q-Fano QXt such that Hilb. QXt / 2 OHilb.Xt / by Theorem 7.2,
which is the Gromov–Hausdorff limit of .Xt ;Dt I!.ˇ// as ˇ! 1, and hence admits
a weak Kähler–Einstein metric Q!.t/ by Theorem 1.2.

We claim that

distH�IN
�
U.N C 1/ �Hilb. QXt /;U.N C 1/ �Hilb.X/

	
�! 0 as i!1; (50)

and hence part (ii) follows. To prove this, let ti ! 0 be any sequence. It follows from
the compactness of the Hilbert scheme of PN that, after passing to a subsequence if
necessary, we may assume that

Hilb. QXti /�!Hilb.Y / as ti ! 0:
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Since �
Xti ;Dti I!.ti ; ˇ/

	 GH
�!

�
QXti I Q!.ti /

	
as ˇ% 1;

by Theorem 7.2, there is a sequence ˇi % 1 such that

distH�IN
�
�1 ıHilb

�
Xti ; .1� ˇi /Dti

	
;U.N C 1/ �Hilb. QXti /

	
< 1=i;

where �1 is given in (35). In particular, by passing to another subsequence if neces-
sary, we may assume that

�
Xti ; .1� ˇi /Dti I!.ti ; ˇi /

	 GH
�! .Y;!Y /

by Lemma 4.9, where Y is a Q-Fano variety admitting a weak Kähler–Einstein metric
!Y . This implies that

distH�IN
�
�1 ıHilb

�
Xti ; .1�ˇi /Dti

	
;U.N C1/ �Hilb.Y /

	
�! 0 as i!1: (51)

On the other hand, by Lemma 2.4 we know that .Xti ;Dti / is ˇ-K-polystable for
any ˇ < 1. This, together with Corollary 6.14, implies that for every fixed ˇ < 1,

distH�IN
�
Hilb

�
Xti ; .1� ˇ/Dti

	
;U.N C 1/ �Hilb

�
X; .1� ˇ/D

		
�! 0 as i!1:

Therefore, for any fixed ˇi there is a ki > i such that

distH�IN
�
Hilb

�
Xtki

; .1� ˇi /Dtki

	
;U.N C 1/ �Hilb

�
X; .1� ˇi /D

		
< 1=i:

On the other hand, Lemma 6.6 implies that

distH�IN
�
�1 ıHilb

�
X; .1� ˇ/D

	
;U.N C 1/ �Hilb.X/

	
�! 0 as ˇ! 1:

This implies that if we define ˇ�
ki
WD ˇi < ˇki , then ˇ�

ki
! 1 and

distH�IN
�
�1 ıHilb

�
Xtki

; .1� ˇ�ki /Dtki

	
;U.N C 1/ �Hilb.X/

	
�! 0 as i!1:

(52)

By combining (52) and (51) and applying Remark 6.10(1), we conclude that
Hilb.Y / 2 U.N C 1/ � Hilb.X/, and (50) is established. Thus the proof of part (ii)
is completed.

Finally, to finish the proof of part (iii), we can assume that Xt is K-polystable for
all t 2 C by Theorem 7.3. Then by taking BD 1, we can conclude that Br.X;D/D

Œ�; 1�. In particular, .Xti I!.ti //
GH
�! .X0I!X0/. Hence our proof is completed.
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Proof of Theorem 1.2
Choose a sequence ˇ%B. By applying Propositions 6.11 and 6.12, we obtain that
Br .X;D/D Œ�;B�. Then by repeating the argument in a manner completely parallel
to the one given above, we obtain the conclusion.

Remark 7.6
We call a Q-Fano variety Q-Gorenstein smoothable if there is a projective flat family
X over a smooth curve C such that KX is Q-Cartier and antiample over C , a gen-
eral fiber Xt is smooth, and X ŠX0 for some 0 2 C . We note that by a standard
argument, we can generalize Theorems 1.1, 7.2, and 7.3 to the case that the base is of
higher dimension. As a consequence, we can just assume in these theorems that the
general fibers are Q-Gorenstein smoothable instead of smooth. We will make frequent
use of these extensions in Section 8.

8. Local geometry near a Q-Gorenstein smoothable, K-polystable
Q-Fano variety

In this section, we will devote to the proof of Theorem 1.3 based on Theorem 1.1, the
results in Section 7, and the following criterion.

THEOREM 8.1 ([2, Theorem 1.2 ])
Let X be an algebraic stack of finite type over C. Suppose that:
(1) for every closed point x 2X , there exists a local quotient presentation f W

W �!X (see [2, Definition 2.1]) around x such that:
(a) the morphism f is stabilizer preserving (see [2, Definition 2.5]) at

closed points of W , and
(b) the morphism f sends closed points to closed points; and

(2) for any point x 2X.C/, the closed substack ¹xº admits a good moduli space.
Then X admits a good moduli space as an algebraic space.

Let us fix our notation.

Definition 8.2
We define

Z WD

8̂̂
<
ˆ̂:Hilb.Y /

ˇ̌̌
ˇ̌̌
ˇ̌
Y � PN be a smooth Fano manifold with

N D dimH 0
�
Y;OY .�rKY /

	
;

OPN .1/jY ŠOY .�rKY / and �
�
Y;OPN .k/jY

	
D �.k/

9>>=
>>;

� H�IN� PM ; (53)
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where the last inclusion is the Plücker embedding. By the boundedness of smooth
Fano manifolds with fixed dimension (see [28]), we may choose r 	 1 such that Z
includes all such Fano manifolds. Now let Z � H�IN be the closure of Z � H�IN ,
and let Zı be the open set of Z that parameterizes the K-semistable Q-Fano subva-
riety Y such that OY .�rKY / � OPN .1/jY (see [54, Lemma 1.19]). Let Z� be the
seminormalization of Zıred, which is the reduction of Zı.

Remark 8.3
By Theorem 4.1, the Gromov–Hausdorff limit of Fano Kähler–Einstein manifolds is
automatically in Zı, and hence, so are the Q-Gorenstein smoothable, K-polystable
Q-Fano varieties.

Then we have a commutative diagram

X�
i

����! PN �Z� ����! PN �Zıred

�

??y ??y ??y
Z� ����! Z� ����! Zıred

(54)

where X� is the universal family over Z� (see [26, Section I.3]). Before we state the
main result of this section, let us first deduce the following boundedness result which
is a consequence of our Theorem 1.1.

LEMMA 8.4
The K-semistable Q-Fano varieties admitting a Q-Gorenstein smoothing with a fixed
dimension form a bounded family.

Proof
We first prove the statement for K-polystable Q-Fano varieties. Let X be an n-dimen-
sional, Q-Gorenstein smoothable, K-polystable Q-Fano variety, and let X ! C be
a smoothing of X with X0 D X . It follows from Theorem 1.1 that the nearby fibers
Xt are all K-semistable, and we can take a D �C �mKX=C such that X0 is the
Gromov–Hausdorff limit of .Xti ; .1� ˇi /Dt / for any sequences ti ! 0 and ˇi ! 1.

On the other hand, by the boundedness of smooth Fano varieties, we know that
there exists m0 depending only on n, and a divisor

D� �Cı �m0KXı=Cı ;

such that D�t is smooth for any t 2 C ı after a possible shrinking of the base. Since
all the Xt ’s are K-semistable, they admit conical Kähler–Einstein metrics !.t;ˇi /
with cone angle 2�.1 � .1 � ˇi /=m/ along D�t . By applying Theorem 1.2(iii) for



1432 LI, WANG, and XU

.Xt ; .1�ˇi /D
�
t /, we know that the Gromov–Hausdorff limit for this family as t! 0

is also X0. Thus it is a subvariety of a fixed PN for some N 	 0 by Theorem 4.1.
In general, ifX is a Q-Gorenstein smoothable, K-semistable Q-Fano variety, then

we know that the closure of its orbit contains a unique K-polystable Q-Fano variety
X0 (see Theorem 7.2, Remark 7.6). And as a consequence of volume convergence for
the Gromov–Hausdorff limit, we obtain that

.�KX0/
n D .�KX /

n

are bounded from above; on the other hand, the Cartier index of KX divides the
Cartier index of KX0 , which is also bounded from above thanks to work of [19,
Theorem 1.2]. Therefore, X is contained in a bounded family (see, e.g., [23, Corol-
lary 1.8]).

Fix a K-polystable Q-Fano varietyX parameterized by a point inZ�, which is Q-
Gorenstein smoothable by the definition of Z�, so it admits a weak Kähler–Einstein
metric by Theorem 1.1 from which we deduce that Aut.X/� SL.N C1/ is reductive.
Let Hilb.X/ be the Hilbert point for Tian’s embedding of X � PN after we fix a basis
of H 0.OX .�rKX //. Let H�IN � PM be the Plücker embedding which is clearly
SL.N C 1/-equivariant. Then by [17, Proposition 1] or the proof of Lemma 3.1, there
is an Aut.X/-invariant linear subspace z0 WDHilb.X/ 2 PW � PM such that

PM D P
�
W ˚Cz0˚ aut.X/?

	
with aut.X/?˚ aut.X/D sl.N C 1/; (55)

where W ˚C � z0˚ aut.X/? DCMC1 is a decomposition as Aut.X/-invariant sub-
spaces.

In particular, this induces a representation � W Aut.X/! SL.W /. On the other
hand, Hilb.X/ is fixed by Aut.X/. We let �X W Aut.X/! Gm denote the character
corresponding to the linearization of Aut.X/ on OH�IN .1/jHilb.X/ induced from the
embedding Aut.X/� SL.N C 1/. Then we can introduce the following.

Definition 8.5
A point z 2 PW is GIT-polystable (resp., GIT-semistable) if z is polystable (resp.,
semistable) with respect to the linearization �˝ ��1X on OPW .1/! PW in the GIT
sense.

Before we apply the results in the Appendix, notably Theorem A.10 and Lem-
ma A.15, to finish our proof of Theorem 1.3, let us review the geometric consequences
we have obtained so far.

Summary 8.6
Let us consider the set † � H�;N of Hilbert points corresponding to Q-Gorenstein
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smoothable, Kähler–Einstein Q-Fano varieties via Tian’s embedding. By [19], † is
compact, and Theorem 1.1 implies that it is Hausdorff. Thus it yields a proper U.N C
1/-invariant slice

†� .Z�/kps H�IN
Plücker

PM

†=U.N C 1/ PM=U.N C 1/

(56)

where .Z�/kps �Z� denotes the locus of K-polystable points in Z�. In other words,
† � .Z�/kps is a U.N C 1/-invariant closed subset such that there is a bijection
between the quotient †.N C 1/=U.N C 1/ and all isomorphic classes of Q-Goren-
stein smoothable, Kähler–Einstein Q-Fano varieties. Moreover, we have Aut.X/ D
.Aut.X/\U.N C 1//C for all Hilb.X/ 2† (see Lemma 8.7).

LEMMA 8.7
Let X be a Q-Gorenstein smoothable, Q-Fano variety admitting a weak Kähler–
Einstein metric. Then Aut.X/ D .Isom.X//C. In particular, Aut.X/ D .Aut.X/ \
U.N C 1//C.

Proof
This follows from the proof of [11, Theorem 4].

Our first main result of this section is the following.

THEOREM 8.8
There is an Aut.X/-invariant linear subspace PW � PM and a Zariski-open neigh-
borhood Hilb.X/ 2 UW � PW �PM Z� such that for any Hilb.Y / 2 UW , Y is K-
polystable if and only if Hilb.Y / is GIT-polystable with respect to Aut.X/-action on
PW �PM Z�. Moreover, for all GIT-polystable Hilb.Y / 2 UW , we have Aut.Y / <
Aut.X/; that is, the local GIT presentation UW ==Aut.X/ is stabilizer-preserving in
the sense of [2, Definition 2.5].

Remark 8.9
As we will see in Corollary 8.14, we are able to establish the stabilizer-preserving
property for all GIT-semistable Hilb.Y / 2 UW . This property is stronger than the
condition of being strongly étale introduced in [2, Definition 2.5].

Let
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� WZ� �!H�IN �Z�;

z 7�! .z; z/:
(57)

be the diagonal morphism. We define OZ� WD SL.N C 1/ � �.Z�/ � H�IN � Z�,
where SL.N C 1/ acts trivially on Z� and acts on H�IN via the action induced from
PN . This allows us to construct the family of limiting orbit spaces associated to the
family (54) as

BOz�BOZ�
i

����! H�IN �Z�??y ??y ??y�Z�
z 2Z� Z�

(58)

where BOZ� �H�IN �Z� is the closure of OZ� and BOz is the union of limiting
broken orbits. Then by Theorem 1.1, we know that there is a unique K-polystable
orbit inside BOz . To see this, one only needs to note that for any z 2 Z�, we can
always find a smooth curve f W C !Z� that passes through z and where the image
f .C / meets the dense open locus inside of Z� corresponding to smooth K-polystable
Fano manifolds with the maximal dimension of its SL.N C 1/-orbit space. Then our
claim follows by applying Theorem 1.1 to the pullback family over C .

For a K-polystable point Hilb.X/ 2 Z� (corresponding to Tian’s embedding of
X � PN with respect to the Kähler–Einstein metric), by Lemma 3.1, we can find a
Zariski open neighborhood Hilb.X/ 2 U � Z�, and (after a possible shrinking) we
may assume that

U \BOHilb.X/ contains a unique minimal (see Lemma 3.1)

orbit SL.N C 1/ �Hilb.X/: (59)

By Theorem 7.2 (and its extension in Remark 7.6), every z 2 U can be specialized to
a K-polystable point Oz unique up to SL.N C 1/-translation. Moreover, we have the
following.

LEMMA 8.10
Let Hilb.X/ 2 U � Z� be as above. Then there is an analytic-open neighborhood
Hilb.X/ 2 U ks such that for any K-semistable point z 2 U ks, we can specialize it to
a K-polystable point Oz 2 U via a 1-PS � � SL.N C 1/. Moreover, if limi!1 zi D

Hilb.X/, then

lim
i!1

distH�IN
�
Hilb

�
X Ozi ;!KE. Ozi /

	
;U.N C 1/ �Hilb.X/

	
D 0;

where Hilb.X Ozi ;!KE. Ozi // is the Hilbert point corresponding to Tian’s embedding of
X Ozi with respect to the weak Kähler–Einstein metric !KE. Ozi /.
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Proof

Suppose that this is not the case. Then there is a sequence zi D Hilb.Xzi /
i!1
�!

Hilb.X/ and

O Ozj \U D∅ with O Oz WD SL.N C 1/ � Oz:

In particular, by equipping each X Ozi with a weak Kähler–Einstein metric !KE. Ozi /, and
taking the Gromov–Hausdorff limit Y , which is still embedded in PN by Lemma 8.4,
we obtain

Hilb
�
X Ozi ;!KE. Ozi /

	 i!1
�! g �Hilb.Y / 2BOHilb.X/ nU for some g 2U.N C 1/;

contradicting the fact that the limiting broken orbits BOz contain a unique K-poly-
stable orbit.

Now we are ready to prove Theorem 8.8.

Proof of Theorem 8.8
Let U be the open set constructed above satisfying (59), and let (see Lemma 8.10)

U an
W D .U

ks \ PW /�PM Z�:

After a possible shrinking, we may assume that all the points in U an
W are GIT-semi-

stable and that every GIT-semistable point can be degenerated to a GIT-polystable
point in U an

W .
Suppose that Hilb.Y / 2 U an

W is GIT-polystable and strictly K-semistable. Then by
Lemma 8.10, we can degenerate it to a variety Y 0 � PN which is K-polystable such
that

Hilb.Y 0/ 2 U \ SL.N C 1/ �Hilb.Y /�Zı �H�IN ;

where Hilb.Y 0/ is close to Hilb.Y / in H�IN in the sense that there is a short (with
respect to the metric distH�IN ) path inside SL.N C 1/ �Hilb.Y / joining Hilb.Y / and
Hilb.Y 0/.

Using the transversality of the action of aut.X/? � sl.N C 1/ on PW � PM ,
one can always find a g 2 SL.N C 1/ close to the identity such that

Hilb.Y 00/ WD g �Hilb.Y 0/ 2 PW �PM Z�;

where Y 00 Š Y 0 is GIT-semistable. This allows us to find a short path inside
SL.N C 1/ �Hilb.Y / joining Hilb.Y / and Hilb.Y 00/, which by transversality we may
assume to be entirely contained in PW and which satisfies Hilb.Y 00/ 2
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Aut.X/ �Hilb.Y /. But this is absurd, since Hilb.Y / is already GIT-polystable, and
no point on the boundary of Aut.X/ �Hilb.Y / is semistable.

Conversely, suppose that Hilb.Y / 2 U an
W and Y is K-polystable, but Hilb.Y /

is not GIT-polystable. Then there is a 1-PS � � Aut.X/ degenerating Hilb.Y / to a
nearby GIT-polystable

Hilb.Y 0/ 2Aut.X/ �Hilb.Y /\U an
W

by the classical GIT. Thus Y 0 is K-polystable by the preceding paragraph, contradict-
ing the assumption of Y being K-polystable. Hence our proof is completed.

To pass from an analytic neighborhood to a Zariski neighborhood, we need to
investigate the geometry of Aut.X/-orbits. Let U ss

W � PW containing Hilb.X/ be the
Zariski-open set of GIT-semistable points. By [35, Chapter 2, Proposition 2.14] and
[38, Lemmas 2.11, 2.12], we know that the set of GIT-polystable points in U ss

W forms
a constructible set. On the other hand, K-polystable points inside U ss

W \ Z
ı
red also

form a constructible set (see Remark A.5) containing the point Hilb.X/. These two
constructible sets coincide along U an

W after lifting to PW �PM Z� by the proof above,
so they must coincide on a Zariski-open set.

Finally, we establish the last statement. The slice † obtained from Summary 8.6
satisfies Assumption A.9. Thus, by applying Theorem A.10 to our setting we can
construct an analytic-open set UW � PW �PM Z� that is stabilizer-preserving. To
obtain the Zariski openness, one observes that

Aut.Z�/ WD
®
.z; g/ 2Z� � SL.N C 1/

ˇ̌
g � z D z

¯
D ��1SL.NC1/.�Z�/

is a closed subset of Z� � SL.N C 1/, where

Z� � SL.N C 1/
�SL.NC1/

������!Z� �Z�

.z; g/ 7�! .z; g � z/

and

�Z� D
®
.z; z/

ˇ̌
z 2Z�

¯
�Z� �Z�:

Next let

� W
Aut.Z�/������!Z�

.z; g/ 7�! g �Hilb.X/:

Then the locus of ®
Hilb.Y / 2Z�

ˇ̌
Aut.Y / <Aut.X/

¯
is precisely the complement of pr1.�

�1.Z� n ¹Hilb.X/º// which is constructible,
where pr1 WAut.Z�/!Z� is the projection to the first factor. So we can prolong UW
from an analytic-open subset to a Zariski-open one, and our proof is completed.
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Remark 8.11
One notes that, in contrast to Theorem 8.8, there exist smooth Fano varieties admitting
Kähler–Einstein metrics which are not asymptotically Chow stable (see [40]). On the
other hand, Theorem 8.8 can be regarded as an extension of work in [48] to the case
of Q-Gorenstein smoothable, Q-Fano varieties.

Finally, to prove Theorem 1.3, we need to show that for each C-closed point
Œz� 2 ŒZ�=SL.N C 1/�, ¹zº has a good moduli space in the sense of [2, Theorem 1.2,
Proposition 3.1]. To do this, let us first establish Assumption A.11 in the Appendix.
Let z D Hilb.Y / 2 UW specialize to z0 D Hilb.X/ 2 UW � H�IN via a 1-PS �.t/ W
Gm! Aut.X/ < SL.N C 1/. Let .Y DXjC ;X/! .C D �.t/ � z; z0/� UW be the
restriction of the universal family X!Z� to the pointed curve .C; z0/, and we also
prefix a basis ¹siº �OY.�rKY=C /.

LEMMA 8.12
Under the notation introduced above, we have Aut.Y / < Aut.X/ for z WD Hilb.Y /
close to z0 DHilb.X/.

Proof
By property (3) in the proof of Lemma 3.1, for z DHilb.Y / 2 U0 we have aut.Y /�

aut.X/; hence the identity component of Aut.Y / lies in Aut.X/. We will assume
from now on that z D Hilb.Y / 2 PW lies in a small analytic neighborhood of z0 D
Hilb.X/ 2 U1; that is, z is very close to z0. This, together with the fact that there
always exists a finite subgroup H < Aut.Y / that meets every connected component
of Aut.Y / < SL.N C 1/, implies that all we need is that: for any finite subgroup
H < Aut.Y /, we have H < Aut.X/. To achieve this, let us choose an H -invariant
smoothable divisorE 2 j�mKY jH so that .Y; E

m
/ is klt. The existence of such E � Y

is guaranteed by the following result.

CLAIM 8.13
Let Y be a Q-Gorenstein smoothable, Q-Fano variety. Fix a finite groupH �Aut.Y /.
For m sufficiently divisible there is an invariant section E 2 j�mKY jH such that
.Y; .1 � �/E/ is klt for any 0 < � � 1 and Q-Gorenstein smoothable. In particular,
.Y; 1

m
E/ is Q-Gorenstein smoothable and klt for m > 1. Moreover, m can be uni-

formly bounded provided Y is inside a bounded family.

Proof
Let � W Y ! QY be the quotient of Y by H , and let D be the branched divisor. So
��.K QY CD/D KY . In particular, . QY ;D/ is klt (since klt is preserved under finite
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quotient; see [29, Theorem 5.20]) and �.K QY CD/ is ample. Thus, for a sufficiently
divisible m satisfying �m.K QY C D/ being very ample, we can choose a general
section F 2 j�m.K QY C D/j so that . QY ;D C .1 � �/F / is klt for any 0 < � � 1.
Then E WD ��.F / is H -invariant and .Y; .1� �/E/ is klt for any 0 < � � 1. Finally,
we justify that .Y;E/ is actuallyQ-Gorenstein smoothable as long as Y is. Since Y
is a degeneration of a smooth family ¹Ytºt , and every element in j�mKY j can be
represented as a degeneration of general members of j�mKYt j, we conclude that
.Y;E/ is a degeneration of smooth pairs ¹.Yt ;Et /ºt .

Then by Theorems 1.2 and 5.2, .Y; E
m
/ admits a continuous family of Kähler

metrics ¹!Y .ˇ/º solving

Ric
�
!Y .ˇ/

	
D ˇ!Y .ˇ/C

1� ˇ

m
ŒE� on Y;

from which we obtain

Hilb
�
Y;!Y .ˇ/

	 ˇ!1
�! U.N C 1/ �Hilb.X/�H�IN (60)

thanks to Theorem 7.2 and the fact that m is uniformly bounded by Lemma 8.4,
where Hilb.Y;!Y .ˇ// is the Hilbert point corresponding to Tian’s embedding of
Y � PN with respect to the metric !Y .ˇ/ on Y � PN and any prefixed basis ¹siº �
H 0.OY .�rKY //. This allows us to introduce a continuous family of Hermitian met-
rics hKE.ˇ.t// with ˇ.t/ WD 1�jt j on OYt .�KYt /! Yt for 0 < jt j WD distC .t; 0/ < 1
such that !Y .ˇ.t// D �

p
�1@N@ loghKE.ˇ/. By (60), the metrics hKE.ˇ.t// can be

continuously extended to 0 2 C . Now let ¹siº be the local basis of
��OY.�rKY=C /j¹jt j<1º�C D ��.OPN .1/jY/ corresponding to the coordinate sections
of OPN .1/ such that ¹si .0/º induces Tian’s embedding for z0 DHilb.X/, and define

AKE
�
t; ˇ.t/

	
D
�
.si ; sj /KE;ˇ.t/.t/

�
with

.si ; sj /KE;ˇ .t/D

Z
Yt

˝
si .t/; sj .t/

˛
h
˝r
KE .ˇ.t//

!nY
�
ˇ.t/

	
:

Then we obtain a family of Tian’s embeddings

T W
�
Yt ;Et I!Y

�
ˇ.t/

		
�! PN with .Yt ;Et /Š .Y;E/ for t ¤ 0; (61)

given by ¹g.t/ ı sj .t/ºNjD0 with g.t/DA�1=2KE .ˇ.t//. The map T extends to Y0 DX

thanks to the continuity of the metric hKE.ˇ.t// at 0 2 C .
Now by our choice of z0 and basis ¹si .t/º, we haveAKE.0; 1/D INC1 2 SL.N C

1/, and hence
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g.t/� INC1CO.t/: (62)

This implies that

Qz.t/ WDHilb
�
Yt ;!Y

�
ˇ.t/

		
D g.t/ � zt 2 U1;� WD exp

�
aut.X/?<�

	
�U1 (63)

for 0 < jt j � 1, where zt D �.t/ � Hilb.Y /. Since !Y .ˇ.t// is a conical Kähler–
Einstein metric on Yt , it follows from the log version of Lemma 8.7 (see [11, Theo-
rem 4]) that

HQz.t/ D g.t/ �Hz.t/ � g.t/
�1 <U.N C 1/ where Hz.t/ D �.t/ �H � �.t/

�1:

By Lemma A.8 and (62), we obtain that Hz.t/ < Aut.X/ and hence H < Aut.X/
as �.t/ < Aut.X/ by our choice. On the other hand, by transversality of aut.X/?-
action on U1;� , for 0 < t � 1 we have Aut0.Y / < Aut.X/, where Aut0.Y / is the
identity component of Aut.Y /. This implies that Aut.Y /D hAut0.Y /;H i<Aut.X/,
where hAut.Y /;H i is the subgroup generated by H and Aut0.Y /, and our proof is
completed.

As a direct consequence of Lemmas 8.4, 8.10, and 8.12, we have the following
statement, which implies Assumption A.11.

COROLLARY 8.14
After a possible shrinking of the Zariski-open neighborhood z0 2 UW � PW �PM Z

�,
we have

SL.N C 1/z <Aut.X/; 8z 2 UW ;

where SL.N C 1/z is the stabilizer of z inside SL.N C 1/. In other words, Assump-
tion A.11 holds in this case.

Next, in order to apply Lemma A.15 in the Appendix, we now establish Assump-
tion A.14. Let us fix G D SL.N C 1/ and Gz0 D Aut.X/. Recall from Assump-
tion A.14 that an analytic-open neighborhood of z0 2 U fd � PW is of finite distance
if there is a compact subsetGU fd �G=Gz0 depending only onU fd and z0 such that for
any pair .z; g/ 2 U fd�G satisfying g �z 2 U fd, there is an h 2G, Œh� 2GU fd �G=Gz0
such that g � z D h � z.

LEMMA 8.15
Let z0 2 Ur � PW be defined in Definition A.13, and let

UZ�;r WDUr �PM Z�:
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Then for 0 < r sufficiently small, UZ�;r is a Gz0 -invariant subset of finite distance;
that is, Assumption A.14 is satisfied for UZ�;r .

Proof
In order to better illustrate the idea, let us first deal with the case that z0 is K-stable,
and hence Gz0 <1. As we have seen in the proof of Theorem 8.8, there is a proper
U.N C 1/-invariant slice z0 2†�H�IN obtained via Tian’s embedding. By the con-
tinuity of † and the transversality of the g?z0 -action on U0 (see the proof Lemma 3.1),
for some 0 < r 00 < r 0� 1 and 0 < �� 1 we have

BZ�.z0; r
00/� Ur 0 \ expg?z0;<� �†; (64)

where g?z0;<� WD ¹	 2 g?z0 j j	j < �º and BZ�.z0; r 00/ denotes the ball of radius �
centered at z0 2 Z� with respect to a prefixed continuous metric on Z�. More-
over, by choosing a small r if necessary, we may assume that Xz is K-stable for
all z 2BZ�.z0; r 00/.

To see the lemma, let ¹siº be the local basis of ��.OPN .1/jX/ corresponding
to the coordinate sections of PN such that the induced embedding of X D Xz0 �

PN gives rise to Hilb.X/. Now let us equip the line bundle OX.�rKX=Z�;kps/ Š

OPN .1/jX with a Hermitian metric which gives rise to the unique Kähler–Einstein
metric when restricted to each Xz with z 2 BZ�.z0; r 00/, and we can introduce the
matrix AKE.z/ as in the proof of Lemma 8.12. Then (64) follows from the continu-
ity of AKE.z/ with respect to z 2 Z� and AKE.z0/ D INC1 (as X � PN is Tian’s
embedding).

As a consequence, for any pair .z; g/ 2 BZ�.z0; r 00/ � G satisfying g � z 2

BZ�.z0; r
00/, there are h0; h00 2G such that under the quotient map

Œ�� WG!G=Gz0 ;

Œh0�; Œh00� 2 G=Gz0 are perturbations of Œ1� 2 G=Gz0 and h0 � z; h00 � g � z 2 †. Since
both h � z and h0 � g � z are the Hilbert points of Tian’s embedding of the same Q-Fano
variety, we know that u WD h0�1 �h00 �g 2U.N C1/. This implies that g �z D h �z with
hD h00�1 � h0 � u and Œh� being uniformly bounded (with the bound depending only on
BZ�.z0; r

00/ and z0) in G=Gz0 . Since the property describing whether or not z lies
in UZ�;r is independent of the Gz0 -translation, we conclude that Assumption A.14
holds for all points in UZ�;r �Gz0 �BZ�.z0; r

00/ for some 0 < r < r 00.
For the general case, let us introduce a general divisor D 2 j�mKX j for a suffi-

ciently divisible m such that
(1) .X;D/jUW (where UW is given in the proof of Theorem 8.8) are a family of

Q-Fano varieties;
(2) Dz is smooth whenever Xz is for z 2 UW .
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Then by Theorem 1.2, we can construct a proper U.N C 1/-invariant slice † 1�ˇ
m D
�

H�IN using Tian’s embedding of Xz � PN with respect to the unique conical Kähler–
Einstein metric

Ric
�
!Xz .ˇ/

	
D ˇ!Xz .ˇ/C

1� ˇ

m
ŒDz� on Xz

for all z 2 UW near z0. In particular, Theorems 1.2 and 7.2 imply that † 1�ˇ
m D

!†

in the sense that 8� > 0, † 1�ˇ
m D

falls into a �-tubular neighborhood of † as ˇ! 1.

This implies that for 0 < r 0 � 1 and z; z0 2 BZ�.z0; r 0/ that are contained in (see
(74)) �

G �Hilb.Xz/
	
\
�
U.N C 1/ � exp

p
�1g?z0;<�

	
�BZ�.z0; r

0/

with g?z0;<� WD ¹	 2 gz0 j j	j < �º, the U.N C 1/-orbits for Tian’s embedding of
.Xz;Dz/ and .Xz0 ;Dz0/ are very close in the sense that they can be translated to each
other by an element h 2 U.N C 1/ � exp

p
�1g?z0;<� �Gz0 � G (i.e., Œh� 2 G=Gz0 is

bounded in the sense of (74)). In particular, this allows us to treat these two U.N C1/-
orbits as almost identical, and we argue in exactly the same way as in the K-stable
case. This completes the justification of Assumption A.14 for a neighborhood of
z0 2 UZ�;r for some sufficiently small r > 0.

Finally, with all the above preparations in hand, we are now ready to finish our
main construction of this section.

Proof of Theorem 1.3
By [2, Theorem 1.2, Proposition 3.1], proving our statement boils down to establish-
ing the following. For any C-closed point Œz0� 2 ŒZ�=SL.N C 1/� there is an affine
neighborhood z0 2 UW � PW determined in (55) such that
(1) the morphism ŒUW =Gz0 �! ŒZ�=G� is affine and strongly étale (i.e., stabi-

lizer-preserving and sending closed point to closed point), and
(2) for any z 2Z� specializing to z0 under G-action, the closure of substack Œz�

inside ŒZ�=G�, ¹Œz�º � ŒZ�=G� admits a good moduli space.
Here we fix G D SL.N C 1/ and Gz0 DAut.X/.

We have shown that the morphism is strongly étale by Theorem 8.8. Next we
confirm the affineness. Since Z�! ŒZ�=SL.N C 1/� is faithfully flat, it suffices to
show that

� W G �Gz0 UW !Z�

is affine. Since � is quasifinite and Z� is separated, it suffices to choose UW such that
G �Gz0 UW is affine. Let UW �Z� \P.W / be a Gz0 -invariant affine open set. Then
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we know that G �Gz0 UW is affine since it is a quotient of the affine scheme G �UW
by the free action of the reductive group Gz0 . Furthermore, we have an isomorphism

.G �Gz0 UW / == G ŠUW == Gz0 ;

where G �Gz0 UW is the inverse image of the affine neighborhood

�W jUW .z0/D 0 2 UW == Gz0

with �W defined in (73) under the GIT quotient by G.
Now we establish the second condition. Since we have already established the

uniqueness of a minimal orbit contained in BOz0 (stated after diagram (58)), all we
need is the affineness of G � ��1W .0/ as it implies that, for any z 2 Z� satisfying
G � z 3 z0, the closure of Œz� 2 ŒZ�=G� is a closed substack of ŒG ���1W .0/=G�, which
can be written as ŒSpec.A/=G� for some affine scheme Spec.A/; hence Œz� admits a
good moduli space.

To obtain the affineness, one notes that Theorem 8.8 and Corollary 8.14 guarantee
Assumption A.11. Additionally, we have already established Assumption A.14 by
Lemma 8.15. Thus

�jG�Gz0UZ�;r
WG �Gz0 UZ

�;r !G �UZ�;r (65)

is a finite morphism for 0 < r � 1 by Lemma A.15 in the Appendix. By choosing
0 < r even smaller, we may conclude that �jG�Gz0Ur is an analytic isomorphism,
since �jG�z0 is an isomorphism and an immersion near G � z0. Now we restrict � to
the fiber over Œz0� 2 ŒZ�=G�. We have a finite morphism

G �Gz0 �
�1
W .0/�!G � ��1W .0/:

Since G �Gz0 �
�1
W .0/ is a fiber of a GIT quotient morphism, we conclude that G �

��1W .0/ is affine.
As a consequence, the étale chart �=G W .G �Gz0 UW / == G ! G � UW =G is

actually a finite morphism, which implies that G � UW =G is affine. This gives an
affine neighborhood of Œz0� 2KF N , and proves that the algebraic space KF N is
actually a scheme. Finally, to prove the last statement of Theorem 1.3, we observe
that Lemma 8.4 implies that the closed points of KF N stabilize. However, since
KF N is seminormal, we indeed know that they are isomorphic (see [26, Chapter I,
7.2]).

Remark 8.16
We want to point out that by shrinking UW if necessary, the map � WG �Gz0 UW !
G � UW is actually strongly étale in the sense of [35, p. 198]; that is, UW is Luna’s
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étale slice. To see this, one notes that we have already established in the above that
the categorical quotient .G � UW /=G is in fact a good quotient (see also [20, Defini-
tion 2.12]); moreover, the map � induces an étale morphism

�=G W .G �Gz0 UW /=G! .G �UW /=G:

So all we need to show is that

.�;�G�Gz0UW
/ W
G �Gz0 UW

�

�������!G �UW �.G�UW /=G .G �Gz0 UW /=G

.g;w/ 7�!
�
g �w; Œg �w�

	
is an isomorphism, where �G�Gz0UW WG�Gz0 UW ! .G�Gz0 UW /=G ŠUW ==Gz0
is the GIT quotient map. But this follows from the fact that �jG�Gz0Ur in (65) is an
analytic isomorphism for small r and � is finite.

Remark 8.17
Note that we can take the local GIT quotient of a similarly defined Zıred for each
Nr D �.X;OX .�rKX // � 1. Although we are unable to conclude that those local
GIT quotients we constructed in this section will be stabilized for N 	 1, their semi-
normalizations indeed will be. Another reason why we work over a seminormal base
is that the condition of being smoothable does not yield a reasonable moduli func-
tor for schemes; for example, in general, there is no good definition of smoothable
varieties over an Artinian ring.

We also remark that in our case it makes no difference whether one works on
the Hilbert scheme or the Chow variety, at least after the seminormalization. This is
because by our definition of Zı (see Definition 8.2), the closed points correspond
to Q-Fano varieties (see Remark 4.3) which in particular are geometrically reduced,
hence the Hilbert-to-Chow morphism is a bijection (see [26, Chapter I, Theorem 6.3])
when restricted to Zı, and thus they share the same seminormalization (see [26, Sec-
tion 3.15]).

Appendix

A.1. Constructibility of kst
In this section, we will prove Proposition 7.5 in a more general setting. First, let us
recall some basics from [35, Section 2, Chapter 2]. Let G be a reductive group acting
on a (quasi)projective variety .Z;L/ polarized by a G-linearized very ample line
bundle L.

Definition A.1
The rational flag complex �.G/ is the set of nontrivial 1-PS’s � of G modulo the
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equivalence relation �1 � �2 if there are positive integers n1 and n2 and a point
� 2 P.�1/ such that

�2.t
n2/D ��1�1.t

n1/� for all t 2Gm;

where

P.�/ WD
®
� 2G

ˇ̌
lim
t!0

�.t/��.t�1/ exists
¯
�G

is the unique parabolic subgroup associated to �. The point of �.G/ defined by
� will be denoted by �.�/. In particular, for a maximal torus T � G, �.T / D
HomQ.Gm; T /.

Then we have the following.

LEMMA A.2 ([35, Chapter 2, Proposition 2.7])
For any 1-PS � WGm!G, let �L.z;�/ denote the �-weight of z 2Z with respect to
the G-linearization of L. Then for any .�; z/ 2G �Z, we have

�L.z;�/D �L.�z; ����1/:

Moreover, if � 2 P.�/, then �L.z;�/D �L.z; ����1/.

The next lemma is a slight extension of [35, Chapter 2, Proposition 2.14] essen-
tially contained in [38, proof of Lemma 2.11], and hence the proof will be omitted.

LEMMA A.3
Let T � G be a maximal torus, and let Li , i D 1; 2 be two G-linearized ample line
bundles over Z. Then there is a finite set of linear functionals lLi1 ; : : : ; l

Li
rLi

, i D 1; 2,
which are rational on HomQ.Gm; T / with the following property:

8z 2Z; 9I.z;Li /� ¹1; : : : ; rLi º; I.z;L2/� ¹1; : : : ; rL2º (66)

such that the �-weight of z 2Z with respect to the linearization of G on L1 ˝L�12
is given by

�L1.z;�/��L2.z;�/Dmax
®
l
L1
i .�/

ˇ̌
i 2 I.z;L1/

¯
�max

®
l
L2
i .�/

ˇ̌
i 2 I.z;L2/

¯
for all 1-PS’s �� T . Moreover, the functions

 L1;L2 WZ �! 2¹1;:::;rL1 º t 2¹1;:::;rL2 º

z 7�! I.zIL1;L2/ WD I.z;L1/t I.z;L2/
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are constructible in the sense that 8I 2 2¹1;:::;rL1 º t 2¹1;:::;rL2 º, the set  �1.I /�Z
is constructible.

For any line bundle that can be written as L1˝L�12 with L1 and L2 both being
G-linearized and very ample, we can similarly show thatZ can be decomposed into a
union of finitely many constructible sets indexed by 2¹1;:::;rL1 º t 2¹1;:::;rL2 º such that,
restricted on each piece,

�L1˝L
�1
2 .z;�/D �L1.z;�/��L2.z;�/

is a rational function on HomQ.Gm; T /.

PROPOSITION A.4
Let G act on an polarized variety .Z;L/. Let Mi ; i D 1; 2 be two G-linearized (not
necessarily ample) line bundles on Z. For z 2Z and ı 2�.G/, we define

�
M1;M2
1�ˇ

.z; ı/ WD
�M1.z;�/� .1� ˇ/�M2.z;�/

j�j
with �.�/D ı;

and we define

$
M1;M2
G .z/ WD sup

®
ˇ 2 .0; 1�

ˇ̌
inf

ı2�.G/
�
L;M
1�ˇ 0

.z; ı/
 0;8ˇ0 2 Œ0;ˇ/
¯

or zero if the set on the right-hand side is an empty set. Suppose that S �Z is a con-
structible set such that $M1;M2

G jS > 0. Then $.M1;M2/ defines a Q-valued con-
structible function on S ; that is, S D

F
i Si is a union of finite constructible sets with

$.M1;M2/ being constant on each Si .

Proof
We replace L!Z by its power such that L1 WDL˝M1 and L2 WDL˝M2 are both
ample. Then we fix a maximal torus T � G and let ¹lL1i º and ¹lL2i º be the rational
linear functionals on HomQ.Gm; T / associated to Li ; i D 1; 2. By Lemma A.3, for
any I 2 2¹1;:::;rL1 º t 2¹1;:::;rL2 º, STI WD  

�1.I / \ S is a constructible set. Now we
define

$
M1;M2
T .z/ WD sup

®
ˇ 2 .0; 1�

ˇ̌
inf

ı2�.T /
�
L;M
1�ˇ 0

.z; ı/
 0;8ˇ0 2 Œ0;ˇ/
¯

or zero if the right-hand side is an empty set. In other words, it is the first time such
that the difference of two rational piecewise linear convex functions

�L1.z; �/� .1� ˇ/�L2.z; �/� ˇ�L.z; �/D �M1.z; �/� .1� ˇ/�M2.z; �/
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vanishes along a ray in HomQ.Gm; T / or in ¹0; 1º. Clearly, we have ˇI 2Q and they
are independent of the choice of L.

Now in order to pass from $
M1;M2
T to $M1;M2

G , let us recall Chevalley’s lemma
in [25, Chapter II, Exercise 3.19] which states that the image of a constructible set
under an algebro-geometric morphism is again constructible. By applying it to the
group action morphism

G �Z �!Z;

we obtain that SGI WDG � . 
�1.I /\S/� STI are all constructible 8I 2 2¹1;:::;rL1 º t

2¹1;:::;rL2 º. Now for any 1-PS �, there is a � 2 G such that ����1 � T . By Lem-
ma A.2, we have �Li .z;�/D �Li .�z; ����1/, i D 1; 2, which implies that

$
M1;M2
G .z/Dmin¹ˇJ j S

T
J \G � z ¤∅ for J 2 2¹1;:::;rL1 º t 2¹1;:::;rL2 ºº:

To see that it is a constructible function on the constructible setG �S , one notes that all
possible finite intersections of ¹SGJ ºJ form a stratification of G � S into constructible

sets and $M1;M2
G is constant on each stratum.

Now we proceed to apply the above setup to the ˇ-K-stability of .X;D/ � PN

with respect to the SL.N C 1/ action. Let N C 1D dimH 0.X;K
˝.�r/
X /, and define

an open subscheme

Z WD

8̂̂
<
ˆ̂:Hilb.X;D/

ˇ̌̌
ˇ̌̌
ˇ̌
.X;D/� PN � PN be a klt pair with

Hilbert polynomial �D .�; Q�/ satisfying:

D �X;D 2 j�mKX j and OPN .1/jX ŠK
�˝r
X

9>>=
>>;�H�IN :

(67)

Let �CM!Z (see [22], [21, Definition 2.3], [42, (2.4)]) be the CM-line bundle over
Z normalized in such a way that the corresponding weight for any 1-PS of SL.N C1/
is exactly the DF introduced in Definition 2.3, and let

�Chow.X/ WD �CH
�
X;OX.�rKX/

	
!Z

�Chow.D/ WD �CH
�
D ;OX.�rKX/jD

	
!Z

be the Chow line bundles introduced in [21, (3.3)]) for the flat families X!Z and
D!Z, respectively.

Proof of Proposition 7.5
Let us introduce (see (2))
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M1 WD �CM and M2 WD
�
�Chow.X/

˝ nm
.nC1/r ˝ �Chow.D/�1

	˝ 1
2mrn�.�KX/

n :

By Theorem 5.2, we know that .Xt ;Dt / is ˇ-K-stable 8t 2 C and ˇ 2 .0;ˇ0�. After
removing a finite number of points from C , we obtain a quasiprojective 0 2 S � C
over which ��OX.�rKX=C /jS Š O˚NC1S . By fixing a basis of ��OX.�rKX=C /jS ,
we obtain an embedding

� W
�
X;D IOX.�rKX=C /

	
�C S �! PN � PN � S;

which in turn induces an embedding S � Z with S being constructible and
$
M1;M2
SL.NC1/ 
 ˇ0 > 0. By applying Proposition A.4 to S �Z, we obtain that

kst.Xt ;Dt /D$
M1;M2
SL.NC1/.t/; 8t 2 S

is a constructible function. Our proof is completed.

Remark A.5
The above argument first appeared in Paul [41] and Odaka [38] independently, where
both authors observed that one can conclude that the K-polystable locus in S is also
constructible.

A.2. Stabilizer-preserving and finite distance properties
In this section, we will establish the criteria that guarantee the stabilizer preserving
condition and ingredients needed to prove the existence of good moduli for the closed
substack ¹Œz�º for any C-point Œz� 2 ŒZ�=SL.N C 1/�.

A.2.1. Stabilizer preserving
The following example indicates that stabilizer preserving condition is a condition of
properness and cannot be deduced from the reductivity of stabilizer alone.

Example A.6 (Richardson’s example)
Consider the SL.2;C/-action on

Sym˝3C2 DH 0
�
OP1.3/

	
D SpanC¹X

3;X2Y;XY 2; Y 3º

induced by the standard action on C2. Then the stabilizer of p0.X;Y /D .X � Y /�
.X C Y /2 is trivial, and the stabilizer of p.X;Y /D .X � Y /.X �!Y /.X �!2Y / is
given by �

! 0

0 !�1

�
2 SL.2;C/ with !3 D 1:

Let
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˛.t/D
1

2

�
1 1

�1 1

��
t2 0

0 t�1

��
1 �1

1 1

�
2GL.2;C/

D
1

2

�
t2C 1=t �t2C 1=t

�t2C 1=t t2C 1=t

�
2GL.2;C/:

Then

˛.t/ W

´
X � Y �! t2.X � Y /

X C Y �! t�1.X C Y /

fixes p0.X;Y /D 3
4
.X � Y /.X C Y /2 2 Sym˝3C2. Now let us define

pt .X;Y /D p
�
˛.t/ �X;˛.t/ � Y

	
D
1

4
t2.X � Y /

��
t2.1C!/C t�1.1�!/

	
X

C
�
�t2.1C!/C t�1.1�!/

	
Y
	

�
��
t2.1C!2/C t�1.1�!2/

	
X C

�
�t2.1C!2/C t�1.1�!2/

	
Y
	

D
1

4
.X � Y /

��
t3.1C!/C .1�!/

	
X C

�
�t3.1C!/C .1�!/

	
Y
	

�
��
t3.1C!2/C .1�!2/

	
X C

�
�t3.1C!2/C .1�!2/

	
Y
	
:

Then we have

lim
t!0

pt .X;Y /D
3

4
.X � Y /.X C Y /2;

and the stabilizer of pt is the subgroup h�t WD �pt i � SL.2/ with

�pt WD ˛.t
�1/

�
! 0

0 !�1

�
˛.t/

D
1

2

�
1 1

�1 1

��
! C!�1 t�3.! �!�1/

t3.! �!�1/ ! C!�1

��
1 �1

1 1

�
t!0
�!1:

In particular, the family of stabilizers h�t i � SL.2;C/ is unbounded as t ! 0 unless
! D 1.

Our goal here is to find conditions preventing the existence of pathological exam-
ples like above. Let us collect some basic facts on compact Lie groups acting on PM .
Although our main application is to the situation in Summary 8.6, we will proceed in
a more general fashion as it might be valuable for future applications.
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LetK be a compact Lie group, let � WK! SU.MC1/ be a linear representation,
and let �C WG DKC! SL.M C 1/ be its complexification. Let z0 2 PN with stabi-
lizer Gz0 D .Kz0/

C WD .Gz0 \K/
C. Let kz0 D Lie.Kz0/ be the Lie algebra. Fix a bi-

invariant inner product h�; �ik on k, and let k?z0 � k be its orthogonal complement with
respect to h�; �ik. Then the infinitesimal action 
z0 W g �! Tz0P

M is Gz0 -equivariant
in the sense that


z0.Adg 	/D g � 
z0.	/ for all g 2Gz0 ;

and there is a Gz0 -invariant linear subspace W 0 �CMC1 such that

CMC1 DW ˚ .k?z0/
C WDW 0˚C Oz0˚ .k

?
z0
/C with .k?z0/

C WD k
?
z0
˝C

is a decomposition as a Gz0 -module. Hence we have

PM D P
�
W ˚ .k?z0/

C
	
D P

�
W 0˚C Oz0˚ .k

?
z0
/C
	
; (68)

where 0¤ Oz0 2CMC1 is a lift of z0 2 PM .
Consider the map

G � PW
�

�������!G � PW � PM ;

.g;w/ 7�! g �w:

(69)

Then for 	 2 gz0 and ıw 2 Tz0PW , we have

d�j.e;z0/.	; ıw/D 
z0.	/C ıw 2 Tz0P
N Š .k?z0/

C˚ Tz0PW;

where 
z0 W g D kC ! Tz0P
M denotes the infinitesimal action, e 2 G denotes the

identity, and as a consequence kerd�j.e;z0/ D gz0 . Now let us define an open set

U0 WD
®
w 2 PW

ˇ̌
rk
�
q ı d�

ˇ̌
¹1º�PW

W g� T PW ! .TPN jPW /=T PW
	
D dimg

?
z0

¯
� PW

with q W T PN jPW ! .T PN jPW /=TPW being the quotient morphism between vector
bundles over PW . Then we have the following.

LEMMA A.7
We have that U0 � PW is a Gz0 -invariant Zariski-open set.

Proof
Note that the Zariski openness follows from the fact that q ı d� 2H 0.PW;T .G �

PW /j_
¹1º�PW

˝ .T PN jPW /=TPW /. So all we need is the Gz0 -invariance. To achieve
this, one notes that for any g 2Gz0 , 	 2 g, and w 2 PW , we have
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.g�/�
w.	/D 
g �w.Adg 	/;

which implies that


w.	/ 2 TwPW () 
g �w.Adg 	/ 2 Tg �wPW:

Now w 2 U0 can be characterized as q ı d� being of full rank, which is also
equivalent to


w.	/ 2 TwPW () 	 2 gz0 : (70)

If g �w … U0, then there is a 0¤Adg 	 2 g?z0 such that 
g �w.Adg 	/ 2 Tg �wPW , and
hence 
w.	/ 2 TwPW . On the other hand, we have decomposition gD gz0 ˚ g?z0 as
a Gz0 -module via the adjoint action thanks to the reductivity of Gz0 . This implies that
0 ¤ 	 2 g?z0 , contradicting (70) and the assumption that w 2 U0. Thus our proof is
completed.

Now � is Gz0 -invariant with respect to the action h � .g;w/D .gh�1; h �w/, and
hence it descends to aK-invariant map, which by abuse of notation is still denoted by

G �Gz0 PW
�

�������!G � PW � PM ;

.g;w/ 7�! g �w:

(71)

Moreover, it is a biholomorphism (see the proof of [44, Theorem 1.12]) from a K-
invariant tubular neighborhood

U� WD
®
.g exp

p
�1	;w/ 2G �Gz0 V

ˇ̌
g 2K;	 2 k<�

¯
with k<� WD

®
	 2 k

ˇ̌
j	j< �

¯
(72)

of the orbit K � z0 Š K=Kz0 onto �.U�/ D K � exp k<� � V for 0 < � � 1, where
z0 2 V � PW is a K-invariant analytic-open neighborhood.

Now suppose that Qg D g � exp
p
�1	 satisfies g 2K and 	 2 k with j	j< � such

that Qg �wDw. Then

�.g � exp
p
�1	;w/D �. Qg;w/D Qg �wDwD �.e;w/ and . Qg;w/ 2 U�:

This, together with the fact that �jU� is biholomorphic, implies that

. Qg;w/
Gz0
� .e;w/ 2G � PW I

that is, there is an h 2Gz0 such that . Qgh�1; hw/D .e;w/, hence QgD h 2Gz0 \Gw .
In conclusion, we obtain the following.
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LEMMA A.8 (Local rigidity)
Let w 2 V � PW (defined in (72)), and suppose that Qg 2 Gw is of the form Qg D
g � exp 	 with g 2K and that 	 2 g satisfies j	j< �. Then Qg 2Gz0 .

Assumption A.9 (Properness)
There is a closed K-invariant subset

† PM

satisfying:
(1) 8z 2 PM , .G � z/\† consists of at most one K-orbit. † is continuous in the

sense that for any sequence ¹ziº1iD1 � PM satisfying .G �zi /\†¤∅, 8i and
limi!1 zi D z1 2†, we have

lim
i!1

distPM ..G � zi /\†;K � z1/D 0:

(2) Gz D .Gz \K/
C for all z 2†.

THEOREM A.10
Let K be a compact Lie group acting on PM via a representation K! U.M C 1/,
and letG DKC be its complexification. Let z0 2 PM with its stabilizerGz0 satisfying
Gz0 D .Gz0 \K/

C and z0 2†� PM satisfying Assumption A.9. Then there is aGz0 -
invariant Zariski-open neighborhood z0 2 U sp � PW such that for 8w 2 U sp\G �†,
we have Gw <Gz0 .

Proof
We will first prove that our statement holds true for an analytic neighborhood, then we
can pass from an analytic-open to a Zariski-open neighborhood by the constructibility.

Suppose that Assumption A.9 holds. Then the continuity of the slice † implies
that there is a sufficiently small analytic Kz0 -invariant neighborhood z0 2 QV � V �
PW such that for any w 2 QV , there is a 	 2 .k?z0/

C satisfying j	j < ı < � and z 2 †
such that wD exp 	 �z. In particular, exp 	 �Kz � exp.�	/�Gw is a maximal compact
subgroup of Gw . Since Kz <K is compact, we have

exp 	 �Kz � exp.�	/D
®
h � exp.Adh�1 	/ � exp.�	/

ˇ̌
h 2Kz

¯
�
®
g � exp

p
�1�j� 2 g; j�j< � and g 2K

¯
:

By Lemma A.8, we must have exp.�	/ �Kz � exp 	 �Gz0 . Hence

Gz0 �
�
exp.�	/ �Kz � exp 	

	C
DGw ;
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since Gz0 is reductive. Finally, we note that the set

¹w 2 PW jGw <Gz0º �Gz0 �
QV

is Gz0 -invariant and constructible. This allows us to choose a Gz0 -invariant Zariski-
open subset U sp �Gz0 �

QV , and our proof is completed.

Assumption A.11 (Stabilizer-preserving)
There is a Gz0 -invariant Zariski-open neighborhood of z0 2 U sp � PW such that
Gw <Gz0 for all w 2 U sp.

Example A.12
Note that Assumption A.11 does not hold in general, even in the situation of a 1-
PS ˛.t/ degenerating limt!0 ˛.t/ � z D z0, so we cannot conclude that Gzt < Gz0 .
Consider the SL.2/-action on P.Sym˝3C2/ as in Example A.6. The 1-PS

˛.t/D
1

2

�
1 1

�1 1

��
t 0

0 t�1

��
1 �1

1 1

�
D
1

2

�
t C 1=t �t C 1=t

�t C 1=t t C 1=t

�
2 SL.2;C/

degenerates p.X;Y / to p0.X;Y / 2 P.Sym˝3C2/. Then Z=3Z Š SL.2/pt 6�
SL.2/p0 D h˛.t/i ŠGm, and the map

SL.2/�Gm PW �! SL.2/ � PW

is not finite.

A.2.2. Finite distance property
In this subsection, we establish a criteria that guarantees the properness of the map
� (defined in (71)) near z0, which is crucial to prove the existence of a good moduli
space of ¹Œz�º � ŒZ�=G� for any Œz� specializing to Œz0� 2 ŒZ�=G� in Section 8.

Twisting the linearization of Gz0 on OPM .1/jPW by the inverse of the character
corresponding to the action Gz0 � OPM .1/jz0 as in the proof of Lemma 3.1, we
obtain that z0 2 PW is GIT-polystable with respect to the new Gz0 -linearization on
OPM .1/jPW . Let U ss � PW denote the GIT-semistable points with respect to this
linearization, and let

�W W PW � U
ss �!M WD PW ==Gz0 with �W .z0/D 0 2M (73)

denote the GIT quotient map. Let 0 2 BM.0; r/ �M be the open ball of radius r
with respect to a prefixed continuous metric. Then for each r > 0, we introduce the
following.
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Definition A.13
Let Ur be the connected component of�

G � ��1W
�
B.0; r/

		
\ PW � U ss

containing z0. In particular, Ur is Gz0 -invariant.

Let Œ�� WG!G=Gz0 denote the quotient map. We say that a sequence ¹hiº �G
is bounded in G=Gz0 if and only if ¹ �1.Œhi �/º is contained in a bounded subset of
K �Kz0 .

p
�1k?z0/, where  is the Cartan decomposition (see [44, (1.8)])

 WK �Kz0 .
p
�1k?z0/�������!G=Gz0 ;

.g;
p
�1	/ 7�! .g � exp

p
�1	/ �Gz0 ;

(74)

which is a K-equivariant diffeomorphism.

Assumption A.14 (Finite distance)
An analytic-open neighborhood of z0 2 U fd � PW is of finite distance if there is
a bounded (in the above sense) set GU fd � G=Gz0 depending only on U fd and z0
such that for any pair .z; g/ 2 U fd � G satisfying g � z 2 U fd, there is an h 2 G,
Œh� 2 GU fd � G=Gz0 such that g � z D h � z, where Œ�� W G! G=Gz0 is the quotient
map, and � stands for the compact embedding with respect to the analytic topology.
It follows from the definition that U fd is Gz0 -invariant.

LEMMA A.15
Suppose that Assumptions A.11 and A.14 are satisfied. Then there is a positive � > 0
such that for any 0 < r < �, Ur (defined in Definition A.13) satisfies the following:
for any sequence ¹.gi ; yi /º 2 G �Gz0 Ur satisfying zi D gi � yi ! z1 2 G � Ur , as
i!1, after passing to a subsequence, there is a

.g1; y1/ 2
®
.gi ; yi /

¯
i
�G �Gz0 Ur such that g1 � y1 D z1:

In particular, the map �jG�Gz0Ur WG �Gz0 Ur !G �Ur is a finite morphism.

Proof
First, we note that after translating z1 by a g 2 G if necessary, we may assume
that z1 2 Ur . Since U r � PW is compact by Definition A.13, by passing to a sub-

sequence if necessary we may and will assume yi
i!1
�! z1 2 Ur after a possible

shrinking of r .
By Assumption A.14, we may choose 0 < r� 1 such that Ur �U fd. Then there

is a sequence ¹hiº �G, with ¹Œhi �º being bounded in G=Gz0 and satisfying gi � yi D
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hi � yi . Hence h�1i � gi 2Gyi , 8i . Now by Assumption A.11, we have

h�1i � gi 2Gyi <Gz0 ; 8i;

from which we conclude that ¹Œgi �º is bounded in G=Gz0 , and hence the set
¹.gi ; yi /º �G�Gz0 Ur is precompact. Thus the morphism �jG�Gz0Ur

WG�Gz0 Ur !

G �Ur is a proper and étale morphism and hence finite.

Remark A.16
Assumption A.14 is introduced to guarantee that the multiplication morphism

�jG�Gz0Ur
WG �Gz0 Ur !G �Ur

is proper. For that purpose, we want to make sure that for 0 < r � 1, any point
z 2 Ur , and any infinite sequence ¹giº1iD1 � G satisfying G=Gz0 3 Œgi �!1 (with
respect to the analytic topology), there is no infinite recurrence of points gi � z inside
Ur . As we have seen in the proof of Lemma 8.15, the properness of slice † obtained
via Tian’s embedding guarantees Assumption A.14.
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