
ON THE VOLUME OF K-SEMISTABLE FANO MANIFOLDS
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ABSTRACT. We prove that the volume of an n-dimensional K-semistable Fano manifold that is not
Pn is at most 2nn. Moreover, the equality holds only if X ∼= P1 × Pn−1 or X is a smooth quadric
hypersurface Q ⊂ Pn+1. Our proof is based on a new connection between K-semistability and minimal
rational curves. More generally, we show that the volume of a K-semistable Fano manifold with a
minimal rational curve of degree d is bounded above by the volume of Pd−1 × Pn−d+1.
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1. INTRODUCTION

The study of K-(poly)stable Fano varieties is a very active research area. Thanks to the resolution
of the Yau-Tian-Donaldson conjecture, we know that a Fano variety admits a Kähler-Einstein metric
(resp. a unique Kähler-Einstein metric) if and only if it is K-polystable (resp. K-stable). A Fano
variety is K-semistable if and only if it degenerates (via a special test configuration) to a K-polystable
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Fano variety. There are well-established valuative criterion for K-(semi)stability ([Fuj19, Li17]) and
powerful methods to test it (see [AZ22]).

In this paper, we study the anticanonical volume (or degree) of K-semistable Fano varieties. For
a Fano variety X , its (anticanonical) volume vol(X) is defined to be the self-intersection number
(−KX)

n. It is known that the volume of an n−dimensional Fano manifold can exceed the volume of
Pn, even among toric Fano manifolds (see [Deb01, Section 5.11]). In a major advance in the study of
K-stability, Fujita [Fuj18] proved that the volume of an n-dimensional K-semistable Fano manifolds
X satisfies vol(X) ≤ (n + 1)n = vol(Pn) and the first equality holds if and only if X ∼= Pn. It
was later generalized to possibly singular Q-Fano varieties by Liu [Liu18]. The toric Fano case was
proved earlier in [BB17]. Moreover, from the boundedness of K-semistable Q-Fano varieties ([Jia20,
Corollary 1.2]), we know that the set of volumes of n-dimensional K-semistable Q-Fano varieties is
finite away from zero. In this paper, we solve the conjecture on characterizing the second-largest
volume for K-semistable Fano manifolds,

Theorem 1.1. Any K-semistable Fano manifold X that is not Pn satisfies vol(X) = (−KX)
n ≤ 2nn

and the equality holds only if X ∼= P1 × Pn−1 or X is a smooth quadric hypersurface Q ⊂ Pn+1. In
particular, this holds for any Kähler-Einstein metric manifold with positive Ricci curvature.

Like the result of Fujita, the last statement could be seen as a result in Kähler differential geometry.
However, our proof uses purely algebraic geometry. The above result seems to be first conjectured
in [AIM20, Problem 2.6], and is stated as a folklore conjecture in [Zhu25, Conjecture 6.8] which
highlights the interesting (but also mysterious) feature that there are two Fano manifolds with second
largest volume. Our proof will indeed give a satisfactory explanation of this feature by connecting it
to the theory of minimal rational curves on Fano manifolds.

There is a local analogue of this conjecture sometimes called the ODP conjecture (see Conjecture
2.3) for the volume of klt singularity (see [SS17, LX19]). The ODP conjecture would imply that
the volume of singular K-semistable Fano varieties is strictly less than 2nn (by Liu’s local-to-global
volume comparison, see Remark 3.9). Conversely, using Theorem 1.1, we immediately verify the
ODP conjecture for the Fano cone over a K-semistable smooth Fano manifold (see Theorem 4.5).

The toric version of Theorem 1.1 has its own interest and is called the “gap hypothesis” in [AB24,
Conjecture 3.10]. It implies the sharp bound of the canonical height of canonical model of toric
Fano varieties over SpecZ by [AB24, Lemma 3.8]. Moreover, in the toric case, the ODP conjecture
is solved by Moraga-Süß’s result ([MS24]) using convex geometric methods. So combined with
Theorem 1.1, we indeed have the sharp upper bound for all possibly singular K-semistable toric
Fano varieties.

Theorem 1.2. The second largest volume of n-dimensional K-semistable toric Fano varieties is 2nn

and the equality holds only if X ∼= P1 × Pn−1.

We remark that Theorem 1.2 was proved in [AB24] for smooth toric Fano manifolds of dimension
n ⩽ 6 by using the classification of [Obr07] and also for certain singular toric Fano varieties by
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convex geometric arguments (see [AB24, Lemma 3.9]). Furthermore, using the well-known one-to-
one correspondence between Gorenstein toric Fano varieties and reflexive lattice polytopes in Rn,
Theorem 1.2 immediately implies a convex geometric statement.

Corollary 1.3. Suppose P ⊆ Rn is a n-dimensional reflexive lattice polytope with barycenter at
0 ∈ Rn. Assume P is not unimodularly equivalent to (n + 1) times a standard simplex (n + 1)∆n,
then the volume of P with respect to the Lebesgue measure in Rn satisfies volRn(P ) ⩽ 2nn/n! and
the equality holds if and only if P is unimodularly equivalent to [0, 2]× (n∆n−1).

We will prove Theorem 1.1 by exploring a new connection between K-stability and minimal ratio-
nal curves. Roughly speaking, we are going to estimate the volume by using the valuative criterion to
test K-semistability via valuations associated to weighted blowups along minimal rational curves. An
interesting new phenomenon we find is that the volume estimates become sharp when we let certain
weights go to infinity, and we indeed get the following general result, which to our knowledge is the
first result connecting explicitly the theory of K-stability and the theory of minimal rational curves
on Fano manifolds.

Theorem 1.4. Assume that a K-semistable Fano manifold X admits a minimal rational curve f :

P1 → X such that f ∗TX = O(2) ⊕ O(1)⊕(d−2) ⊕ O⊕(n−d+1) for 2 ≤ d ≤ n + 1. Then we have
vol(X) ≤ vol(Pd−1 × Pn−d+1).

The smooth toric case is special in the sense that there are always smoothly embedded projec-
tive spaces with trivial normal bundles (see [CFH14, Ara06]). So the toric Fano case can also be
considered as an example of the following direct generalization of Fujita’s result.

Theorem 1.5. Let X be an n-dimensional K-semistable Fano manifold, and Z ⊂ X a codimension
r smooth complex submanifold. Assume that the normal bundle of Z inside X is trivial and set
d = (−KX)

n−r · Z. Then we have the inequality

(1) (−KX)
n ⩽ (r + 1)r ·

(
n

r

)
· d = (−KPr×Z)

n.

Moreover, the equality holds if and only if X is biholomorphic to Pr × Z. In particular Z is also a
K-semistable Fano manifold.

We sketch the organization of this paper. In the next section, we recall basic knowledge about
some key concepts used in later sections: K-stability, Seshadri constant, and minimal rational curves.
In section 3, we prove Theorem 1.5, and Theorem 1.1 in the case the Fano manifold contains a
minimal rational curve with a trivial normal bundle. We also deduce Theorem 1.2 and Corollary 1.3.
In section 4, we prove Theorem 1.4 to achieve the full proof of Theorem 1.1. We end the paper by
giving some related examples and finding (K-semistable) Fano manifolds with minimal volumes.
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2. PRELIMINARIES

We will work over C. Unless otherwise specified, all varieties are assumed to be normal and
projective. A Q-Fano variety X is a variety with at worst klt singularities such that the anti-canonical
divisor −KX is an ample Q-Cartier divisor. A singularity x ∈ X consists of a variety X and a closed
point x ∈ X . A singularity x ∈ X is called klt if X is klt near a neighborhood of x. A R-valuation
over singularity x is a valuation v : K(X)∗ → R center at x (namely, for all f ∈ OX,x, we have
v(f) ⩾ 0 and v(f) > 0 if and only if f ∈ mx) and v|C∗ = 0. The set of all such valuations is denoted
by ValX,x.

2.1. K-stability. K-stability, first introduced by Tian ([Tia97]) and later reformulated algebraically
by Donaldson ([Don02]), is an algebro-geometric notion to characterize the existence of Kähler-
Einstein metrics on Fano varieties. In this subsection, we recall some notions in K-stability theory
that are relevant to our paper, and refer to [Xu24] for a detailed exposition of K-stability theory.

We say that a prime divisor E is over X if there exists a proper birational morphism µ : Y → X

such that Y is normal and E is a prime divisor on Y . We define the log discrepancy of the divisor E
over X as

A(E) = AX(E) := 1 + coeffE(KY − µ∗KX).

The volume of an R-Cartier divisor D is defined as volX(D) := lim supm→+∞
h0(X,OX(⌊mD⌋))

mn/n!
. Note

that the limsup is actually a limit and the volume function is continuous in the big cone Big(X)

([Laz04, Section 2.2.C]). Define the S-invariant

S(E) := S(−KX ;E) :=
1

(−KX)n

∫ ∞

0

vol(−KX)− xE) dx,

where, for the simplicity of notation, we just write vol(−KX − xE) for vol(µ∗(−KX) − xE). We
have the following valuative criterion for K-semistability,

Theorem 2.1. [Fuj19, Li17] A Fano variety X is K-semistable if and only if A(E) − S(E) ⩾ 0 for
every divisor E over X .

Another equivalent way to characterize K-semistability is via the δ-invariant (also known as sta-
bility threshold), we recall δ(X) := infE/X

A(E)
S(E)

where the infinum is taking over all divisors E over
X ([FO18, BJ20]). Then X is K-semistable if and only if δ(X) ⩾ 1 by the valuative criterion.
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One may define the log discrepancy AX(v) for any valuation v ∈ ValX,x, see [JM12, Section 5.1].
For a klt singularity x ∈ (X,∆), we always have AX(v) > 0 for any valuation v ∈ ValX,x. Denote
Val∗X,x = {v ∈ ValX,x | A(X,∆)(v) < +∞}. The volume of a valuation v ∈ ValX,x is defined as

volX,x(v) := lim sup
m→+∞

l(OX,x/am(v))

mn/n!
,

where am(v) denotes the valuation ideals: am(v) := {f ∈ OX,x | v(f) ≥ m}. The first named
author introduced the following invariant for singularity ([Li18]), which plays a key role in the study
of local K-stability:

Definition 2.2. Suppose x ∈ X is a klt singularity, for a valuation v ∈ ValX,x, we define the
normalized volume

v̂olX(v) :=

{
AX(v)

n · vol(v) if AX(v) < +∞

+∞ if AX(v) = +∞.

The local volume of x ∈ X is defined as v̂ol(x,X) := infv∈ValX,x
v̂olX(v).

It was proved that for any n-dimensional klt singularity x ∈ X , we have v̂ol(x,X) ⩽ nn, with the
equality holds if and only if x ∈ X is a smooth point ([LX19]). The following conjecture is known
as the ODP conjecture ([SS17, LX19]).

Conjecture 2.3. (ODP conjecture) The second largest local volume of an n-dimensional klt singu-
larity is 2(n− 1)n, with equality if and only if x ∈ X is an ordinary double point.

For later purposes, we formulate a calculus lemma and an estimate of volume. Let F denote the
collection of continuous functions ϕ : [0,∞) → [0,∞) that is piecewise smooth, strictly increasing
and surjective. In particular, such a function ϕ satisfies

(2) lim
x→0

ϕ(x) = 0, lim
x→+∞

ϕ(x) = +∞.

For any ϕ ∈ F , consider the following function of V ∈ [0,∞):

F ϕ(V ) :=
1

V

∫ ϕ−1(V )

0

(V − ϕ(x)) dx.

Lemma 2.4. (1) For any ϕ ∈ F , the function F ϕ(V ) is also an element of F .

(2) If ψ ∈ F satisfies (ϕ−1)′(V ) ≥ (ψ−1)′(V ) for any V ∈ (0,∞), then F ϕ(V ) ≥ Fψ(V ) for
any V ∈ (0,∞). If moreover the first strict inequality holds for V ≥ V1, then F ϕ(V ) > Fψ(V )

for V ≥ V1. As a consequence, we get (F ϕ)−1(A) < (Fψ)−1(A) for any A ∈ (0,∞) with strict
inequality if A > Fψ(V1).

Proof. First assume that ϕ(x) is smooth and strictly increasing on [0,∞). Then its inverse function
ϕ−1(x) is also smooth, strictly increasing and satisfies (2). Set G(V ) =

∫ ϕ−1(V )

0
(V − ϕ(x))dx so

that F (V ) = F ϕ(V ) = G(V )/V . Then G is a smooth function satisfying G(0) = 0. Its derivative
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is equal to G′(V ) =
∫ ϕ−1(V )

0
1 dx = ϕ−1(V ). We can then calculate the derivative of F (V ) at any

V ∈ (0,∞):

F ′(V ) =
G′ · V −G

V 2
=

∫ ϕ−1(V )

0
ϕ(x)dx

V 2
=
H(V )

V 2
> 0

with H(V ) = Hϕ(V ) =
∫ ϕ−1(V )

0
ϕ(x)dx. So we know that F (V ) is a strictly increasing function of

V ∈ [0,∞). Using L’Hospital’s rule, we easily see that F satisfies the limit conditions in (2). So
F ∈ F .

Note that H(0) = 0 and H ′(V ) = ϕ(ϕ−1(V ))(ϕ−1)′(V ) = V (ϕ−1)′(V ). By integrating the
assumed inequality twice, we get the inequality F ϕ(V ) ≥ Fψ(V ). For the last statement, note that
under the assumption of strict inequality, we know that if A > Fψ(V1) then (Fψ)−1(A) > V1 which
implies: F ϕ((Fψ)−1(A)) > Fψ((Fψ)−1(A)) = A. So we conclude that (Fψ)−1(A) > (F ϕ)−1(A)

when A > Fψ(V1).

If ϕ is only piecewise smooth, we can just carry out the above argument piecewise on each interval
of smoothness. The same argument applies to the second statement too. □

Corollary 2.5. Assume (X,L := −KX) is a K-semistable Q-Fano variety. Let E be a divisor over
X that satisfies the estimate: there exists ϕ ∈ F such that for any x ∈ [0,∞),

(3) vol(L− xE) ⩾ V − ϕ(x).

There exists a unique solution T = T (AX(E)) to the equation

(4) (T − AX(E))ϕ(T ) = Φ(T )

where Φ(x) =
∫ x
0
ϕ(t)dt is the primitive function of ϕ(x) with Φ(0) = 0. Moreover, we have an

estimate of the volume:

(5) V = (−KX)
n ⩽ ϕ(T ) = (F ϕ)−1(A(E)).

The equality V = ϕ(T ) holds if and only if the equality holds in (3) for x ∈ [0, T ]. In this case, T is
the pseudo-effective threshold of the valuation ordE and in particular vol(L− TE) = 0.

Proof. We have an estimate:

0 ⩽ AX(E)−
1

V

∫ +∞

0

vol(L− xE)dx ⩽ AX(E)−
1

V

∫ ϕ−1(V )

0

(V − ϕ(x))dx

= AX(E)− F ϕ(V ).

By the above lemma, F ϕ(V ) is a strictly increasing function that diverges to +∞ as V → +∞. So
there exists a unique V ∗ that satisfies A(E) = F ϕ(V ∗) which is equivalent to the equality:

(ϕ−1(V ∗)− A(E))V ∗ =

∫ ϕ−1(V ∗)

0

ϕ(x)dx.

Setting T = ϕ−1(V ∗), we see that T satisfies (T − A(E))ϕ(T ) = Φ(T ). □
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Example 2.6 (Fujita [Fuj18]). Assume that ϕ(x) = xn and A(E) = n. The Φ(x) = xn+1

n+1
. The

equation (4) has the solution T = n+ 1 and ϕ(T ) = (n+ 1)n.

Example 2.7. Assume that ϕ(x) = 2nxn−1 and A(E) = n − 1. The Φ(x) = 2xn. The equation (4)
has the solution T = n and ϕ(T ) = 2nn.

2.2. Seshadri Constant. Let X be a normal projective variety and L an ample Q-Cartier divisor on
X . Let Z ⊂ X be a nonsingular closed subvariety of X of codimension r. The Seshadri constant of
L at Z is defined as ϵ(L,Z) := sup{t ∈ R>0 | π∗L − tE is ample}, where π : BlZX → X is the
blowup of X along Z and E ∼= P(N∨

Z/X) is the exceptional divisor. When X = Pr × Z and Z is
identified with {p} × Z for a fixed p ∈ Pr, (BlZX,E) are the same as ((BlpPr)× Z,Ep × Z) where
Ep ∼= Pr−1 is the exceptional divisor of the blow up BlpPr → Pr. We see that ϵ(−KPr×Z , Z) = r+1.

The next proposition generalizes a result of [LZ18] to higher dimensional subvariety Z with trivial
normal bundle, which says there is a gap between r and r+1 for all the possible value of ϵ(−KX , Z).

Proposition 2.8. Suppose X is a Q-Fano variety of dimension n. If there exists a nonsingular
subvariety Z ⊂ X of codimension r ⩾ 2 with trivial normal bundle NZ/X = O⊕r

Z and ϵ(−KX , Z) >

r, then X ∼= Pr × Z.

Proof. We follow the argument as in [LZ18, Theorem 2]. For simplicity, we denote ϵ := ϵ(−KX , Z) >

r. Let π : X̂ := BlZX → X be the blowup of X along Z and E is the exceptional divisor. We de-
note B := π∗(−KX)− ϵE. From the definition of ϵ(−KX , Z), we know B is a nef divisor. We have
KX̂ = π∗KX+(r−1)E, soB−KX̂ = 2(π∗(−KX)− ϵ+r−1

2
E) is nef and big since (ϵ+r−1)/2 < ϵ.

Then by Kawamata’s basepoint-free theorem ([KM98, Theorem 3.3]), we know B is indeed semi-
ample. Then there exists a fibration Φ: X̂ → Y ⊆ P(H0(X̂, kB)) induced by the complete linear
series |kB| for some k ≫ 0 and Y is a closed subvariety. Next, let m be an integer such that mB is
Cartier. Note that

mB − E −KX̂ = (m+ 1)

(
π∗(−KX)−

mϵ+ r

m+ 1
E

)
is an ample divisor since (mϵ + r)/(m + 1) < ϵ. Then, by Kodaira’s vanishing theorem, we get
H1(X̂,mB − E) = 0. Therefore, the natural map H0(X̂,mB) → H0(E,mB|E) is surjective for
all m > 0 such that mB is Cartier. We conclude that Φ|E : E → Y is a closed embedding. Since
X̂ has klt singularites, then it has rational singularities ([KM98, Theorem 5.22]), so in particular
it is Cohen-Macaulay. Since B = −KX̂ + (r − 1 − ϵ)E ∼Φ,Q 0, we get −KX̂ ∼Φ,Q λE where
λ − r + 1 + ϵ > 1. By [LZ18, Lemma 8], we have Φ: X̂ → Y is not birational. Thus, Φ must be a
fiber type contraction.

Since we have already shown Φ|E : E → Y is a closed embedding, we conclude that Φ|E : E → Y

is in fact an isomorphism, so Y ∼= E ∼= P(N∨
Z/X)

∼= Z × Pr−1. The general fiber of Φ is a
smooth rational curve. By a similar argument as in [LZ18, Lemma 6], we can show Φ: X̂ → Y

is a smooth P1-fibration. Note that s = Φ|−1
E : Y → E gives a section of Φ, then there exists a

rank 2 vector bundle E over Y such that X̂ = PY (E). By [Har77, Proposition V.2.6], there exists
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an invertible sheaf L on Y and a surjective morphism E → L. We denote K = ker(E → L).
Then OY (−1) ∼= s∗NE/X̂

∼= L ⊗ K−1. We know that the choice of E is unique up to twisting of an
invertible sheaf. So we may assume K = OY , then L = OY (−1) ∼= p∗2OPr−1(−1) with the projection
p2 : Y → Pr−1 and we have the following short exact sequence

0 → OY → E → OY (−1) → 0.

By [Har77, Prop III.6.3], we have

Ext1(L,OY ) = H1(Y,L∨) =
⊕
i+j=1

H i(Pr−1,OPr−1(1))⊗Hj(Z,OZ) = 0,

so the short exact sequence actually splits. Therefore, E ∼= OY ⊕ OY (−1) and X̂ ∼= P(OY ⊕
OY (−1)) ∼= P(OPr−1 ⊕ OPr−1(−1)) × Z ∼= BlpPr × Z is isomorphic to Pr × Z blowup along
{p} × Z. So X ∼= Pr × Z. □

2.3. Minimal rational curves. Since the celebrated work of Mori introducing the bend-and-break
method for constructing rational curves on Fano manifolds ([Mor79]), the theory of rational curves
has been developed extensively and has found numerous applications in algebraic geometry, espe-
cially in the classification of Fano manifolds with special properties. Here we recall some basic
knowledge of rational curves and refer to [Kol96] for detailed expositions.

A free rational curve is represented by a morphism f : P1 → X that satisfies f ∗TX = ⊕n
i=1OP1(ai)

with ai ≥ 0. A free rational curve is called minimal (or standard) if

f ∗TX = OP1(2)⊕OP1(1)d−2 ⊕O⊕(n−d+1)

P1 .

Such a morphism f must be an immersion and its image f(P1) has at worst nodal singularities. We
will also be interested in its normal bundle:

Nf/X := f ∗TX/TP1 = O(1)⊕(d−2) ⊕O⊕(n−d+1).

Any Fano manifold always admits minimal rational curves, which can be obtained from the bend-
and-break process starting with a free rational curve (see [Kol96, IV.Theorem 2.10]). Denote by
RatCurvesn(X) the normalization of open subset of Ch(X) parametrizing integral rational curves.
An irreducible component M of RatCurvesn(X) is referred to as a family of rational curves on
X . The anticanonical degree deg(M) of the family M is defined to be −KX · C for any curve C
belonging to the family. This family M is equipped with a P1-bundle p : U → M and an evaluation
morphism q : U → X . The family M is a dominating family if the evaluation morphism q : U → X

is dominant (i.e. has a dense image). This is equivalent to the condition that a general rational
curve in M is free. A dominating family M is locally unsplit if, for a general point x ∈ X , the
subfamily Mx = p(q−1(x)) parametrizing curves through x is proper (i.e. compact). Note that M
is a dominating family of rational curves on X that has a minimal anticanonical degree, then M
is a dominating locally unsplit family. But not all dominating locally unsplit family has a minimal
anticanonical degree.
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Let M be a dominating locally unsplit family of rational curves. By Mori’s bend-and-break
argument, we know that for a general point x ∈ X , a general curve in Mx is minimal. In particular,
deg(M) ∈ {2, 3, · · · , n+1}. Indeed, if a general free rational curve C = [f ] in Mx is not minimal,
then there are at least two O(2) summands in the splitting of f ∗TX . We can then fix two points
on the curve C and bend-and-break rational curve into a non-integral (reducible) curve which would
contradict the locally unsplit property. Following [Miy04, CD15], we set

(6) lX := min{degM;M is a dominating locally unsplit family of rational curves on X}.

By the above discussion, it is easy to see that (see [CD15, Remark 4.2]):

lX = min{−KX · C;C ⊂ X is a free rational curve on X}

= min{−KX · C;C ⊂ X is a minimal rational curve on X}.(7)

Example 2.9. To prove our main results, we will need the following important results on classifica-
tion of Fano manifolds with dominating locally unsplit families of large anticanonical degrees.

(1) ([CMSB02]) lX = n+ 1 if and only if X ∼= Pn.
(2) ([Miy04, CD15, DH17]) lX = n if and only if X ∼= Qn or X is the blowup of Pn along

subvariety Y of degree dY ∈ {1, . . . , n} that is contained in a hyperplane.

Example 2.10 ([HM03]). On the other extreme, the condition lX = 2 is equivalent to the following
condition:

(1) There exists a minimal rational curve with trivial normal bundle.
(2) For a general point x ∈ X , there are only finitely many rational curves through x which have

minimal degree with respect to K−1
X .

(3) for a general point x ∈ X , there exists a rational curve which has degree 2 with respect to
K−1
X .

There are many examples of such Fano manifolds. For example, except for the projective space
P3 and 3-dimensional hyperquadric Q3, all Fano 3-folds of Picard number 1 satisfy this condition.
Hypersurfaces of Pn+1 of degree n or n+ 1 are also examples of such Fano manifolds when n ⩾ 3.

3. WARM-UP: CASE OF TRIVIAL NORMAL BUNDLES

In this section, we prove the following theorem, which is a special case of Theorem 1.1.

Theorem 3.1. Let X be a K-semistable Fano manifold that contains a rational curve with a trivial
normal bundle. Then (−KX)

n ⩽ 2nn and the equality holds if and only if X ∼= P1 × Pn−1.

The rest of this section is devoted to the proof of Theorem 3.1. We start with a proposition that
proves a more general version of estimate (1) by incorporating the δ-invariant.
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Proposition 3.2. Assume X is a n-dimensional Fano manifold, and Z ⊂ X is a codimension r

non-singular subvariety with trivial normal bundle NZ/X = O⊕r
Z , and we set d = (−KX)

n−r · Z,
then

(−KX)
n ⩽ δ(X)−r · (r + 1)r

(
n

r

)
· d = δ(X)−r · (−KPr×Z)

n.

Proof. Let π : X̂ := BlZX → X be the blowup of X along Z with the exceptional divisor E. First,
it is clear that the log discrepancy

AX(E) = 1 + coeffE(KX̂ − π∗KX) = 1 + (r − 1) = r.

For the simplicity of notation, set L = −KX . We can assume x ∈ Q since the volume function
volX̂(π

∗L − xE) is continuous. Then we take k ∈ N∗ sufficiently large such that kx ∈ Z>0. Note
that we have the exact sequence:

0 → H0(X, kL⊗ IxkZ ) → H0(X, kL) → H0(X, kL⊗OxkZ) → · · · ,

which implies:

h0(X, kL⊗ IxkZ ) ⩾ h0(X, kL)− h0(X, kL⊗OxkZ).

Note that the higher direct images Riπ∗OX̂ = 0 for i > 0. By the Leray spectral sequences, we get
H0(X̂, π∗(kL)− xkE) = H0(X, kL⊗ IxkZ ) and H0(X̂, π∗(kL)) = H0(X, kL). Thus,

volX̂(π
∗L− xE) = lim sup

k→+∞

h0(X, kL⊗ IxkZ )

kn/n!
⩾ Ln − lim sup

k→+∞

h0(X, kL⊗OxkZ)

kn/n!
.

For j ∈ Z⩾0, we use the exact sequence

0 → IjZ/I
j+1
Z → OX/Ij+1

Z → OX/IjZ → 0.

And H1(X, kL ⊗ (IjZ/I
j+1
Z )) = ⊕H1(Z,−kKZ) = 0 from Kodaira vanishing and the assumption

that normal bundle NZ/X is trivial. It is easy to prove by induction that:

h0(X, kL⊗OX/IxkZ ) = h0(X, kL⊗OX/Ixk−1
Z ) + h0(X, kL⊗ Ixk−1

Z /IxkZ )

=
xk−1∑
j=0

h0(X, kL⊗ IjZ/I
j+1
Z ).(8)

Using the assumption that NZ/X is trivial and Z is non-singular, by [Har77, Thm II. 8.24], we get:

IjZ/I
j+1
Z

∼= Symj(IZ/I2
Z) = Symj(N∨

Z/X) = O⊕(r−1+j
r−1 )

Z .

Then the right-hand-side of (8) is given by

xk−1∑
j=0

h0(Z,OX(kL)⊗ IjZ/I
j+1
Z ) =

xk−1∑
j=0

(
j + r − 1

r − 1

)
· h0(Z,−kKZ) =

(
r + xk − 1

r

)
· h0(Z,−kKZ).
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Then,

lim sup
k→+∞

h0(X, kL)⊗OxkZ

kn/n!
= lim sup

k→+∞

n!

r!(n− r)!
· (r + xk − 1)!

(xk − 1)! · kr
· h

0(Z,−kKZ)

kn−r/(n− r)!

=

(
n

r

)
(−KZ)

n−r · xr.(9)

We set d = (−KZ)
n−r = (−KX)

n−r · Z. So we get volX̂(π
∗L − xE) ⩾ Ln − d

(
n
r

)
xr. Since

E ∼= Z × Pr−1 and O(−E)|E = p∗2OPr−1(1), one can easily see that the right-hand side equals to the
top-intersection number

(π∗L− xE)n =
n∑
k=0

(π∗L)n−k · xk(−E)k

= (π∗L)n + (−1)r
(
n

r

)
dxr · (−1)r−1 = Ln − d

(
n

r

)
xr.

Moreover, we have:

S(−KX ;E) =
1

(−KX)n

∫ TX(E)

0

volX̂(π
∗(−KX)− xE) dx

⩾
1

(−KX)n

∫ ϵ

0

(
(−KX)

n − d

(
n

r

)
xr
)

dx

= ϵ− 1

(−KX)n

(
n

r

)
d · ϵr+1

r + 1
=

r

r + 1
ϵ,

where ϵ =
(
(−KX)

n/(
(
n
r

)
· d)
)1/r. Then,

δ(X) ⩽
AX(E)

S(−KX ;E)
⩽

r
r
r+1

ϵ
=

r + 1(
(−KX)n/(

(
n
r

)
· d)
)1/r .

Therefore, (−KX)
n ⩽ δ(X)−r(r + 1)r ·

(
n
r

)
· d = δ(X)−r · (−KPr×Z)

n. □

Lemma 3.3. Under the same notation as the above proposition, we set

(10) ΛZ(L) := {x ∈ R⩾0 | volX̂(π
∗L− xE) = (π∗L− xE)n}.

Then we have ϵ(L,Z) = max{t ∈ R⩾0 | x ∈ ΛZ(L) for allx ∈ [0, t]}.

Proof. The argument is similar with [Fuj18, Theorem 2.3(2)]. We denote

(11) γ = γZ(L) := max{t ∈ R⩾0 | x ∈ ΛZ(L) for allx ∈ [0, t]}.

When 0 ⩽ t ⩽ ϵ(L,Z), we have π∗L− tE is nef, then volX̂(π
∗L− tE) = (π∗L− tE)n. Therefore,

ϵ(L,Z) ⩽ γ. In particular, γ > 0. Now, in order to show ϵ(L,Z) ⩾ γ, it suffices to show for any
η > 0 sufficiently small such that γ − η ∈ Q>0 and π∗L− (γ − η)E is ample. Fix an δ ∈ Q>0 such
that π∗L− δE is ample. Take any t ∈ Q>0 satisfying t ⩽ min{1, (γ − η)/δ, η/(γ − δ)}. Then,

(π∗L− (γ − η)E)− t(π∗L− δE) = (1− t)

(
π∗L− γ − η − tδ

1− t
E

)
.
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We set xt := (γ − η − tδ)/(1 − t). We take sufficiently large k ∈ N∗ such that kxt ∈ Z>0. From
Kodaira’s vanishing theorem, we have H i(X, kL) = 0 for i ⩾ 1. Then the exact sequence is given
by

0 → H0(X, kL⊗ IkxtZ ) → H0(X, kL) → H0(X, kL⊗OkxtZ) → H1(X, kL⊗ IkxtZ ) → 0.

And H i(X, kL⊗ IkxtZ ) = H i−1(X, kL⊗ (OX/IkxtZ )) for i ⩾ 2. On the one hand, since xt ∈ ΛZ(L)

and by the equation (9),

lim sup
k→+∞

h1(X, kL⊗ IkxtZ )

kn/n!
= −Ln + volX̂(π

∗L− xtE) + lim sup
k→+∞

h0(X, kL⊗OkxtZ)

kn/n!
= 0.

Then, h1(X, kL⊗ IkxtZ ) = o(kn). On the other hand, for j ∈ Z⩾0, by the exact sequence

0 → IjZ/I
j+1
Z → OX/Ij+1

Z → OX/IjZ → 0.

We have H i(X, kL⊗ IjZ/I
j+1
Z ) = 0 for i ⩾ 1 and j ⩾ 1 since NZ/X is trivial. So we get

H i(X, kL⊗OX/Ij+1
Z ) ∼= H i(X, kL⊗OX/IjZ)

for all i ⩾ 1 and j ⩾ 1. Then, for i ⩾ 2,

hi(X, kL⊗ IkxtZ ) = hi−1(X, kL⊗ (OX/IkxtZ )) = hi−1(X, kL⊗ (OX/IZ)) = 0.

And the higher direct images Riπ∗OX̂ = 0 for i > 0, then by the Leray spectral sequence, we have
H i(X̂, π∗(kL) − kxtE) ∼= H i(X, kL ⊗ IxktZ ) for i ⩾ 0. In particular, we get hi(X̂, kL − kxtE) =

o(kn) for i ⩾ 1. Then by [dFKL07, Theorem A], we conclude that π∗L − (γ − η)E is ample. This
shows ϵ(L,Z) ⩾ γ. □

Proof of Theorem 1.5. Since X is assumed to be K-semistable, we know that δ(X) ≥ 1 by the
valuative criterion (Theorem 2.1). Without loss of generality, we assume the codimension r of Z in
X is positive. By the proof of Proposition 3.2, the equality (1) holds if and only if δ(X) = 1 and
volX̂(π

∗(−KX) − xE) = (π∗(−KX) − xE)n for all x ∈ [0, r + 1], so γZ(−KX) = r + 1 (see
(11)). Then by Lemma 3.3, we have ϵ(−KX , Z) = γZ(−KX) = r + 1. By Proposition 2.8, we get
X ∼= Z × Pr. □

Theorem 3.4. The second largest volume of n-dimensional K-semistable toric Fano manifold is 2nn

and the equality holds only if X ∼= P1 × Pn−1.

Proof. WhenX is a smooth toric Fano manifold, by the work of Chen-Fu-Hwang [CFH14, Corollary
2.5] which is partly based on the work of Araujo [Ara06], we know that there exists submanifold
Z ∼= Pn−r that is contained in X with trivial normal bundle. By Proposition 3.2 and δ(X) ⩾ 1, we
have (−KX)

n ⩽ (−KPr×Z)
n = (−KPr×Pn−r)n =

(
n
r

)
· (r + 1)r · (n − r + 1)n−r =: cr. By the

following lemma 3.5, for 2 ≤ r ≤ n − 1, cr ≤ 2nn with equality holds if and only if r = 2 or
r = n− 1 in which case X ∼= P1 × Pn−1. □

Lemma 3.5. The sequence cr :=
(
n
r

)
(r + 1)r(n− r + 1)n−r with 0 ≤ r ≤ n satisfies cr = cn−r and

c0 = (n+ 1)n > c1 = 2nn > c2 > · · · > c⌊n/2⌋.
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Proof. It is clear that cr = cn−r. We calculate:

cr+1

cr
=

(
r + 2

r + 1

)r+1

·
(

n− r

n− r + 1

)n−r
= ar+1/an−r

where ak = (k+1
k
)k = (1 + k−1)k is an strict increasing sequence for k ≥ 1 (that converges to e as

k → +∞). So we get cr+1/cr < 1 when r + 1 < n− r (or equivalently 2r + 1 < n). The statement
then follows easily. □

Proposition 3.6. Let X be a K-semistable Fano manifold. Assume that f : P1 → X is an immersed
rational curve with a non-empty subset of nodal points such that f ∗TX = O(2) ⊕ On−1. Then we
have an estimate of the volume (−KX)

n < 2nn. As a consequence, if there exists a minimal rational
curve with a trivial normal bundle on X and (−KX)

n = 2nn, then the minimal rational curve has
no nodal points and X must be isomorphic to P1 × Pn−1.

Proof. The last statement follows from the strict volume inequality and Theorem 1.5. So we just
need to prove the inequality (−KX)

n < 2nn. Denote the ideal sheaf of the nodal curve C = f(P1)

in X by I = IC . Consider the blow up µ : X̃ → X along C. By using the same argument as in the
proof of Proposition 3.2, we get the estimate:

vol(µ∗(−KX)− xE) ⩾ (−KX)
n − lim sup

k→+∞

h0(X,Lk ⊗OkxC)

kn/n!

⩾ (−KX)
n − lim sup

k→+∞

∑xk−1
y=0 h0(C, kL⊗ Iy/Iy+1)

kn/n!
.

Since C is a local complete intersection, its conormal sheaf N∨
C/X = I/I2 is locally free and

Iy/Iy+1 = Symy(N∨
C/X). So we get:

h0(C,Lk ⊗ Iy/Iy+1) = h0(C,Lk ⊗ Symy(I/I2)) ⩽ h0(P1,OP1(dk)⊗ Symy(f ∗(I/I2))).

There is an inclusion F := f ∗(I/I2) ↪→ N∨
f/X = (f ∗TX/TP1)∨. We know that deg(N∨

f/X) = 2−d
and deg(F) = deg(KX)−degωC = −d−2m+2 where d = −KX ·C. Since N∨

f/X is trivial, d = 2

and F = O(−a1)⊕O(−a2)⊕· · ·⊕O(−an−1) with a1 ≥ a2 ≥ · · · ≥ an−1 ≥ 0 and
∑n−1

i=1 ai = 2m.
It is then easy to get the estimate:

h0(C,Lk ⊗ Iy/Iy+1) ⩽ h0(P1,O(2k)⊗ Symy(O(−2)⊕O⊕(n−2)))(12)

or

h0(C,Lk ⊗ Iy/Iy+1) ⩽ h0(P1,O(2k)⊗ Symy(O(−1)⊕2 ⊕O⊕(n−3))).(13)

For the first case (12), we get:

xk−1∑
y=0

h0(C,Lk ⊗ Iy/Iy+1) ≤
xk−1∑
y=0

y∑
i=0

(2k − 2i+ 1)ay,i(14)
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where ay,i =
(
n−3+y−i
n−3

)
. If x ⩽ 1, then by using the explicit expression of binomial coefficient, the

right-hand-side of (14) is equal to b1kn/n!+O(kn−1) where b1 is given by the following integral (see
(19) for a derivation of a more complicated formula):

b1 = n!

∫ x

0

dt

∫ t

0

(2− 2z)
(t− z)n−3

(n− 3)!
dz =

2n!

(n− 2)!

∫ x

0

(1− z)(x− z)n−2dz

= 2nxn−1 − 2xn < 2nxn−1.

When x > 1, the right-hand-side of (14) splits into the sum:
∑k

y=0

∑y
i=0+

∑xk−1
y=k+1

∑k
i=0 and the

right-hand-side of (14) is equal to b2kn/n! +O(kn−1) with

b2 = (2n− 2) + n!

∫ x

1

dt

∫ 1

0

(2− 2z)
(t− z)n−3

(n− 3)!
dz

= (2n− 2) +
2n!

(n− 2)!

∫ 1

0

(1− z)((x− z)n−2 − (1− z)n−2)dz

=
2n!

(n− 2)!

∫ 1

0

u(x− 1 + u)n−2du+ (2n− 2)− (2n− 2)

= 2(nxn−1 − xn + (x− 1)n) < 2(n− 1)xn−1 + 2.

We set ψ = 2nxn−1 and

(15) ϕ(x) =

{
2nxn−1 if 0 ≤ x ≤ 1

2(n− 1)xn−1 + 2 if x > 1,

so that ϕ(x) < ψ(x). It is easy to check that (ϕ−1)′(V ) ≥ (ψ−1)′(V ) and the strict inequality
holds when V > 2n. So we can apply Lemma 2.4 to conclude that F ϕ(V ) ≥ Fψ(V ) and the strict
inequality holds for V > 2n. From Lemma 2.4 and Corollary 2.5, we get (−KX)

n ≤ (F ϕ)−1(n −
1) < (Fψ)−1(n− 1) = 2nn.

In the second case (13), we get:

xk−1∑
y=0

h0(C,Lk ⊗ Iy/Iy+1) ≤
xk−1∑
y=0

y∑
i=0

(2k − i+ 1)(i+ 1)

(
n− 4 + y − i

n− 4

)
.

Estimating as before, when x ⩽ 2, the right-hand-side of (14) is equal to c1kn/n! + O(kn−1). The
coefficient c1 is equal to:

c1 = n!

∫ x

0

dt

∫ t

0

(2− z)z
(t− z)n−4

(n− 4)!
dz

=
n!

(n− 3)!

∫ x

0

(2− z)z(x− z)n−3dz = 2xn−1(n− x) < 2nxn−1.
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When x ⩾ 2, the right-hand-side of (14) splits into the sum:
∑2k

y=0

∑y
i=0 +

∑xk−1
y=2k+1

∑2k
i=0 and the

right-hand-side of (14) is equal to c2kn/n! +O(kn−1) with the coefficient c2 is equal to:

c2 = 2n(n− 2) + n!

∫ x

2

dt

∫ 2

0

(2− z)z
(t− z)n−4

(n− 4)!
dz

= 2n(n− 2) +
n!

(n− 3)!

∫ 2

0

(2− z)z((x− z)n−3 − (2− z)n−3)dz

=
n!

(n− 3)!

∫ 2

0

(2− z)z(x− z)n−3dz

= 2nxn−1 − 2xn + (x− 2)n + n(x− 2)n−1 < (2n− 1)xn−1

< (2n− 1)xn−1 + 2n−1.

We set ψ(x) = 2nxn−1 and

(16) ϕ(x) =

{
2nxn−1 if 0 ≤ x ≤ 2

(2n− 1)xn−1 + 2n−1 if x ≥ 2.

It is easy to check that (ϕ−1)′(V ) ≥ (ψ−1)′(V ) and strict inequality holds for V > 2n · n. Then by
Lemma 2.4 we get F ϕ(V ) ≥ Fψ(V ) with strict inequality when V > 2n · n. So we get (−KX)

n ≤
(F ϕ)−1(n− 1) < (Fψ)−1(n− 1) = 2nn. □

Proof of Theorem 3.1. If X contains a rational curve with non-empty nodal points, then by Proposi-
tion 3.6, we have (−KX)

n < 2nn. So it suffices to consider the case when C is an embedded rational
curve, in which case the result follows immediately from Theorem 1.5. □

Proposition 3.7. Suppose X is a singular n-dimensional K-semistable toric Q-Fano variety. When
n = 2, then (−KX)

2 ⩽ 9
2
. When n ⩾ 3, then (−KX)

n ⩽ 16
27
(n + 1)n. In particular, we have

(−KX)
n < (−KP1×Pn)n = 2nn holds for all positive integer n ⩾ 2.

Proof. Suppose x ∈ X lies in the singular locus and (X, x) is a toric singularity. It was proved in
[MS24, Theorem 2] that if (X, x) is a n-dimensional Q-Gorenstein toric singularity, then

(1) If n = 2, then v̂ol(X, x) ⩽ 2;
(2) If n ⩽ 3, then v̂ol(X, x) ⩽ 16

27
nn.

By Liu’s local-to-global volume comparison ([Liu18]), we have (−KX)
n ⩽ (n+1

n
)n · v̂ol(X, x). Then

when n = 2, (−KX)
2 ⩽ (3

2
)2 · 2 = 9

2
< 2 · 22 = 8 = (−KP1×P1)2. When n ⩾ 3,

(−KX)
n ⩽ (

n+ 1

n
)n · 16

27
nn =

16

27
· (n+ 1)n < 2nn = (−KP1×Pn−1)n.

□

Theorem 3.8. The second largest volume of n-dimensional K-semistable toric Q-Fano varieties is
2nn and the equality holds only if X ∼= P1 × Pn−1.



16 CHI LI AND MINGHAO MIAO

Proof. WhenX is a smooth toric Fano manifold, this follows from Theorem 3.4. WhenX is a strictly
singular Q-Fano toric variety, this follows from Proposition 3.7. When the equality (−KX)

n = 2nn

holds, from Proposition 3.7, we know X must be nonsingular. Then by Theorem 3.4 again, we know
X ∼= P1 × Pn−1. □

Remark 3.9. We remark that the singular version of Theorem 1.1 (that is, consider all Q-Fano
varieties, not just smooth Fano manifolds) follows from ODP conjecture (Conjecture 2.3). Let X be
a K-semistable Q-Fano variety and x ∈ X be a singular point. Assume the ODP conjecture holds, by
the same argument of Proposition 3.7, we have (−KX)

n ⩽ (n+1
n
)n · v̂ol(X, x) ⩽ (n+1

n
)n ·2(n−1)n =

(n+1
n
)n · (n−1

n
)n · 2nn < 2nn. Since the inequality is strict, it is expected that the equality of Theorem

1.1 would hold only if X is a smooth Fano manifold.

We conclude this section by a convex-geometric application.

Corollary 3.10. Suppose P ⊆ Rn is a n-dimensional reflexive lattice polytope with barycenter at
0 ∈ Rn. Assume P is not unimodularly equivalent to (n + 1) times a standard simplex (n + 1)∆n,
then the volume of P with respect to the Lebesgue measure in Rn satisfies volRn(P ) ⩽ 2nn/n! and
the equality holds if and only if P is unimodularly equivalent to [0, 2]× (n∆n−1).

Proof. Here ∆n denote the standard n-dimensional simplex with vertices 0, e1, · · · , en where ei are
standard lattice basis of Zn for i = 1, · · · , n. And two convex bodies P and Q in Rn are called
unimodularly equivalent if there exists an affine lattice automorphism of Zn mapping P onto Q. Let
XP be the projective toric variety associated to a reflexive polytope P . Then XP is a Gorenstein
Fano variety ([CLS11, Theorem 8.3.4]). By the result of [WZ04, SZ12, BB13], we know that the
barycenter of P is zero if and only if XP is K-semistable. Since P is not unimodularly equivalent
to (n + 1)∆n, we have XP ≇ Pn, then Theorem 3.8 immediately implies (−KXP

)n ⩽ 2nn and the
equality holds only if XP

∼= P1 × Pn−1. Then the reflexive polytope P satisfies volRn(P ) ⩽ 2nn/n!

and P ∼= [0, 2]× (n∆n−1) up to unimodularly equivalent. □

4. VOLUME ESTIMATES AND MINIMAL RATIONAL CURVES

4.1. Proof of Theorem 1.4 and Theorem 1.1. The calculation in the previous section is based on
the test of K-stability via standard blow-ups. In this section, we prove Theorem 1.4 and Theorem
1.1 by considering the test of K-stability via weighted blow-ups along (Zariski open sets of) minimal
rational curves.

Proof of Theorem 1.4. Assume that f : P1 → X be minimal rational curve, or equivalently an im-
mersed rational curve that satisfies f ∗TX = O(2) ⊕ O(1)⊕(d−2) ⊕ O⊕(n−d+1) with 2 ≤ d ≤ n + 1

and d = f ∗(−KX) · P1 = (−KX) · f(P1). The (relative) normal bundle has the splitting:

Nf/X = f ∗TX/TP1 = O(1)⊕(d−2) ⊕O⊕(n−d+1).
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Correspondingly, we have the splitting of the conormal bundle:

N∨
f/X = O(−1)⊕(d−2) ⊕O⊕(n−d+1).

Set Z = f(P1) which is an irreducible curve with possible nodal singularities. Fix a regular point
x ∈ Z, there exists a Zariski open neighborhood U and coordinates {zi; i = 1, . . . , n} such that

(1) Z ∩ U = {z1 = · · · = zn−1 = 0};
(2) For any 1 ≤ i ≤ d − 2, dzi is a local generator of the i-th summand of O(−1)⊕(d−2) over

Z ∩ U ;
(3) For any d− 1 ≤ j ≤ n− 1, dzj is a local generator of the j-th summand of O⊕(n−d+1) over

Z ∩ U .

For any ℓ ∈ Z>0, we can define a divisorial valuation v = ordE: for any f ∈ O(U),

(17) v(f) = min{|I|+ ℓ|J |; f =
∑
I,J

aIJz
′Iz′′J , aIJ = aIJ(zn) ̸= 0}

where z′ = {z1, . . . , zd−2} (resp. z′′ = {zd−1, · · · , zn−1}), and z′I = zi11 · · · zid−2

d−2 for I = (i1, . . . , id−2) ∈
Nd−2 with |I| = i1 + · · · + id−2 (resp. z′′J = zj1d−1 · · · z

jn−d+1

n−1 for J = (j1, · · · , jn−d+1) ∈ Nn−d+1

with |J | = j1 + · · ·+ jn−d+1).

When restricted to U , the valuation v corresponds to the exceptional divisor E of the weighted
blowup of X ∩ U along Z ∩ U with weights (1, . . . , 1︸ ︷︷ ︸

d−2

, ℓ, · · · , ℓ︸ ︷︷ ︸
n−d+1

) (See [QR12] for more a general

set-up of weighted blowups). Set Ix = Ix(ordE) = {f ∈ OX ; v(f) ≥ x}. Then we have the exact
sequence:

0 → H0(X,Lk ⊗ Ixk) → H0(X,Lk) → H0(X,Lk ⊗OX/Ixk) → · · · ,

which implies:

vol(L− xE) ≥ Ln − lim sup
k→+∞

h0(X,Lk ⊗OX/Ixk)
kn/n!

.

By using the exact sequence:

0 → Iy/Iy+1 → OX/Iy+1 → OX/Iy → 0,

we get inductively the estimates:

h0(X,Lk ⊗OX/Ixk) ≤
xk−1∑
y=0

h0(X,Lk ⊗ Iy/Iy+1).(18)

For any [s] ∈ H0(X,Lk ⊗ Iy/Iy+1), we know that with respect to a local trivialization of Lk, the
section s is represented locally over U by a holomorphic function with the following expression
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modulo terms with |I|+ ℓ|J | > y,

s =
∑

|I|+ℓ|J |=y

aIJz
′Iz′′J =

⌊y/ℓ⌋∑
k=0

∑
|I|=y−ℓk,|J |=k

aIJz
′Iz′′J

=

⌊y/ℓ⌋∑
m=0

∑
|I|+|J |=y−(ℓ−1)⌊y/ℓ⌋+m(ℓ−1)

|I|=y−ℓ⌊y/ℓ⌋+mℓ
|J |=⌊y/ℓ⌋−m

aIJz
′Iz′′J .

Assume that W is another Zariski open set such that W ∩ Z is non-empty and has at most one nodal
point. In particular, there are at most two irreducible components of W ∩ Z. Fix one irreducible
component Z1 which is smooth, we can choose coordinates (after possibly shrinking W ) such that

(1) W ∩ Z1 = {w1 = · · · = wn−1 = 0}
(2) For any 1 ≤ i ≤ d − 2, dwi is a local generator of the i-th summand of O(−1)⊕(d−2) over

W ∩ Z1.
(3) For any d− 1 ≤ j ≤ n− 1, dwj is a local generator of the j-th summand of O⊕(n−d+1) over

W ∩ Z1.

Near U ∩W ∩ Z, the transition functions from z and w must be of the form:

zk = ak(wn)wk +R2, 1 ≤ k ≤ n− 1

where ak(wn) is a transition function of OP1(−1) for 1 ≤ k ≤ d − 2 and of OP1 for d − 1 ≤ k ≤
n − 1, and R2 consists of terms of degree at least 2 in w1, . . . , wn−1. So near W ∩ Z1, we have
s =

∑
|I|+|J |=y−(ℓ−1)⌊y/ℓ⌋ bIJ(wn)w

′Iw′′J + R where R are terms of (unweighted) total degree in
(w′, w′′) strictly greater than y − (ℓ − 1)⌊y/ℓ⌋. We can deal with the other possible component of
W ∩ Z using the same argument. So we see that s induces a well-defined section in H0(P1, Lk ⊗
Symy−ℓ⌊y/ℓ⌋(O(−1)⊕(d−2))⊗ Sym⌊y/ℓ⌋(O⊕(n−d+1))). This defines a linear map of vector spaces:

H0(X,Lk ⊗ Iy/Iy+1) → H0(P1, Lk ⊗ Symy−ℓ⌊y/ℓ⌋(O(−1)⊕(d−2))⊗ Sym⌊y/ℓ⌋(O⊕(n−d+1))),

whose kernel consists of elements s ∈ H0(X,Lk ⊗ Iy/Iy+1) that has expansion (m ≥ 1 now):

s =

⌊y/ℓ⌋∑
m=1

∑
|I|+|J |=y−(ℓ−1)⌊y/ℓ⌋+m(ℓ−1)

|I|=y−ℓ⌊y/ℓ⌋+mℓ
|J |=⌊y/ℓ⌋−m

aIJz
′Iz′′J ,

which by the same argument as above induces a section inH0(P1, Lk⊗Symy−ℓ⌊y/ℓ⌋+ℓ(O(−1)⊕(d−2))⊗
Sym⌊y/ℓ⌋−1(O⊕(n−d+1))). So we inductively get the estimate:

h0(X,Lk ⊗ Iy/Iy+1) ≤
⌊y/ℓ⌋∑
m=0

h0(P1,O(kd)⊗ Symy−ℓ⌊y/ℓ⌋+mℓ(O(−1)⊕(d−2))⊗ Sym⌊y/ℓ⌋−m(O⊕(n−d+1)))

≤
⌊y/ℓ⌋∑
m=0

h0(P1,O(kd)⊗ Symℓm(O(−1)⊕(d−2))⊗ Sym⌊y/ℓ⌋−m(O⊕(n−d+1))).
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For the last inequality, we used the facts that y − ℓ⌊y/ℓ⌋ ≥ 0 and O(−1) is negative. Then the
right-hand-side of (18) is bounded above by

Ik(x) :=
xk−1∑
y=0

⌊y/ℓ⌋∑
m=0

ay,mh
0(P1,O(kd− ℓm)),

where

ay,m =

(
d− 3 + ℓm

d− 3

)(
n− d+ ⌊y/ℓ⌋ −m

n− d

)
.

We will calculate the leading coefficient b1 = limk→+∞Ik(x)/k
n. First, we assume that x ≤ d. Then

we can expand:

Ik(x) =
xk−1∑
y=0

⌊y/ℓ⌋∑
m=0

(ℓm)d−3 +O((ℓm)d−4)

(d− 3)!

(⌊y/ℓ⌋ −m)n−d +O((⌊y/ℓ⌋ −m)n−d−1)

(n− d)!
(kd− ℓm+ 1)

=

 kn

(d− 3)!(n− d)!

xk−1∑
y=0

1

k

⌊y/ℓ⌋∑
m=0

1

k
(ℓ
m

k
)d−3(ℓ−1 y

k
− m

k
)n−d(d− ℓ

m

k
)

+O(kn−1).

As k → +∞, we see that Ik(x) = b1k
n/n! +O(kn−1) with b1 given by the integral:

n!

(d− 3)!(n− d)!

∫ x

0

dt

∫ t/ℓ

0

(ℓs)d−3(ℓ−1t− s)n−d(d− ℓs)ds

=
n!

(d− 3)!(n− d)!
ℓ−(n−d+1)

∫ x

0

dt

∫ t

0

(
zd−3(d− z)(t− z)n−d

)
dz

= ℓ−(n−d+1) n!

(d− 3)!(n− d+ 1)!

∫ x

0

zd−3(d− z)(x− z)n−d+1 dz

= ℓ−(n−d+1)xn−1 (dn− (d− 2)x) =: ϕ(x).(19)

It is easy to see that ϕ(x) is an increasing function when x ∈ [0, (n−1)d
(d−2)

] with ϕ(d) = ℓ−(n−d+1)dn(n−
d+ 2). In particular, ϕ(x) is strictly increasing when x ∈ [0, d] since d ≤ n+ 1.

Next, consider the case when x ⩾ d. Then we need to split the sum in (18) into two parts:

dk∑
y=0

⌊y/ℓ⌋∑
i=0

ay,ih
0(P1,O(kd− ℓi)) +

xk−1∑
y=dk+1

⌊dk/ℓ⌋∑
i=0

ay,ih
0(P1,O(kd− iℓ)).

Similar calculation as above shows that this sum equals b2kn/n! + O(kn−1) with b2 equal to C · I
where C = n!

(d−3)!(n−d)!ℓ
−(n−d+1) and I is equal to:∫ d

0

dt

∫ t

0

zd−3(t− z)n−d(d− z)dz +

∫ x

d

dt

∫ d

0

zd−3(t− z)n−d(d− z)dz

= C−1ϕ(d) +

∫ d

0

zd−3 1

n− d+ 1

(
(x− z)n−d+1 − (d− z)n−d+1

)
(d− z)dz

=
1

n− d+ 1

∫ d

0

zd−3(d− z)(x− z)n−d+1dz.
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We denote V = Ln = (−KX)
n. So we get the estimate vol(L − xE) ≥ V − ϕ(x) for any x ≥ 0

where

(20) ϕ(x) =

{
ℓ−(n−d+1)xn−1(dn− (d− 2)x) if 0 ≤ x ≤ d
ℓ−(n−d+1)n!

(d−3)!(n−d+1)!

∫ d
0
zd−3(d− z)(x− z)n−d+1 dz if x ≥ d.

Note that the function ϕ = ϕ(x) belongs to the class F considered in Lemma 2.4. In other words, it is
a continuous, piecewise smooth, strictly increasing function of x ∈ [0,∞) satisfying limx→0ϕ(x) = 0

and limx→+∞ϕ(x) = +∞. Set

Φ(x) =

∫ x

0

ϕ(t)dt =

{
ℓ−(n−d+1)xn

n+1
(d(n+ 1)− (d− 2)x) 0 ≤ x ≤ d

ℓ−(n−d+1)n!
(d−3)!(n−d+2)!

∫ d
0
zd−3(d− z)(x− z)n−d+2dz x ≥ d.

Set T = sup{x : V − ϕ(x) = 0}. If T ≤ d, then we get V = ϕ(T ) ≤ ϕ(d) = ℓ−(n−d+1)dn(n −
d+ 2) ≤ dn(n− d+ 2). Note that the number dn(n− d+ 2) is nothing but the volume of the Fano
hypersurface in Pn+1 of degree n− d+ 2 which is always less than 2nn if 2 < d < n+ 2.

So we can assume T ≥ d. The equation Φ(T ) = (T − A)ϕ(T ) from (4) with A = AX(E) =

(d− 2) + (n− d+ 1)ℓ becomes:

1

n− d+ 2

∫ d

0

zd−3(d−z)(T−z)n−d+2 dz = (T−(d−2)−(n−d+1)ℓ)

∫ d

0

zd−3(d−z)(T−z)n−d+1 dz.

Even though the explicit solution of T is not available, as ℓ→ +∞, the above equation can be written
as:

1

n− d+ 2
T n−d+2(1 +O(T−1)) = (T − (n− d+ 1)ℓ+O(1))T n−d+1(1 +O(T−1)).

So we get the asymptotic expression for its solution: T = T (ℓ) = (n − d + 2)ℓ + O(1). So we can
calculate that, up to O(ℓ−1), ϕ(T ) is given by:

ϕ(T ) +O(ℓ−1) = ℓ−(n−d+1) n!

(d− 3)!(n− d+ 1)!

∫ d

0

zd−3(d− z)T n−d+1dz

= ℓ−(n−d+1) n!

(d− 3)!(n− d+ 1)!

(∫ 1

0

td−3(1− t)dt

)
· dd−1ℓn−d+1(n− d+ 2)n−d+1

= (n− d+ 2)n−d+1 n!

(d− 1)!(n− d+ 1)!
dd−1 = vol(Pn−d+1 × Pd−1).

Letting ℓ→ +∞, by Corollary 2.5, we have thus proved vol(X) = (−KX)
n ≤ vol(Pd−1 × Pn−d+1)

and complete the proof of Theorem 1.4. □

Example 4.1. By using binomial expansion, one can get the following combinatorial expressions for
x ≥ d:

ϕ(x) = ℓ−(n−d+1)

n∑
j=d−1

(
n

j

)
· (j − d+ 2) · dj · (x− d)n−j,

Φ(x) = ℓ−(n−d+1)

n+1∑
j=d−1

(
n+ 1

j

)
j − d+ 2

n+ 1
dj · (x− d)n+1−j.
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When d = n + 1, the above expression becomes: ϕ(x) = (n + 1)n (for x ≥ d) which implies the
volume estimate vol(X) ≤ (n+ 1)n = vol(Pn).

When d = n, the above expressions become:

ϕ(x) = ℓ−1
(
n · nn−1 · (x− n) + 2nn

)
= ℓ−1nn(x+ 2− n),

Φ(x) =
ℓ−1

n+ 1

((
n+ 1

2

)
nn−1(x− n)2 + (n+ 1)2nn(x− n) + 3nn+1

)
=

ℓ−1nn

2

(
x2 − 2(n− 2)x+

n

(n+ 1)
(n− 1)(n− 2)

)
.

The equation (T − (n− 2)− ℓ)ϕ(T ) = Φ(T ) is asymptotically given by:

(T − ℓ+O(1))T (1 +O(T−1)) =
1

2
T 2(1 +O(T−1))

which implies T = 2ℓ+ O(1). So ϕ(T ) = ℓ−1nn(2ℓ+ O(1) + 2− n) −→ 2nn as ℓ → +∞ and we
get an estimate: vol(X) ≤ 2nn = vol(P1 × Pn−1) = vol(Qn).

Proof of Theorem 1.1. We use the notation lX from (6)-(7). If lX = n + 1, then as mentioned in
Example 2.9 X must be Pn, and if lX = n then X is either Qn or the blowup of Pn along a smooth
subvariety Y of degree dY ∈ {1, . . . , n} in a hyperplane. When dY ≥ 2, by Lemma 4.2 below we
know (−KBlY Pn)n < 2nn. When dY = 1, by Lemma 4.3 below we know that BlPn−2Pn is not a
K-semistable Fano manifold, so it is excluded. Thus we verified the Theorem in the case lX ≥ n.
When lX < n, there are minimal rational curves of degree d ∈ {2, . . . , n − 1}. For 2 < d < n − 1,
by Theorem 1.4 and Lemma 3.5, vol(X) ≤ vol(Pd−1 × Pn−d+1) < 2nn. When d = 2, by Theorem
3.1 we get vol(X) ≤ 2nn with equality if and only if X ∼= P1 × Pn−1. □

Lemma 4.2. Suppose X is the blowup of Pn along a subvariety Y of degree dY ∈ {1, · · · , n} that is
contained in a hyperplane (See Example 2.9). Then

(−KBlY Pn)n =

{
2nn if dY = 1
dY n

n−(n+1−dY )n

dY −1
=: VdY if 2 ≤ dY ≤ n.

Proof. Denote d = dY . The normal bundle of Y is given by NY/Pn = OY (1) ⊕ OY (d). Let H =

π∗OPn(1) be the pullback of a hyperplane section of Pn. Then,

(−KBlY Pn)n = ((n+ 1)H − E)n = (n+ 1)n +
n∑
k=2

(
n

k

)
(n+ 1)n−k · (−1)k(Hn−k · Ek)

= (n+ 1)n −
n∑
k=2

(
n

k

)
(n+ 1)n−k · (sk−2(NY/Pn) ·Hn−k|A)

= (n+ 1)n −
n∑
k=2

(
n

k

)
(n+ 1)n−k · (−1)k−2

(
k−2∑
i=0

di

)
· d,
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where sk−2(NY/Pn) denote the (k − 2)-th Segre class of normal bundle NY/Pn . If d = 1, then∑k−2
i=0 d

i = k − 1. By the combinatorial identity
(
n
k

)
(k − 1) = n

(
n−1
k−1

)
−
(
n
k

)
,

(−KBlPn−2Pn)n = (n+ 1)n −
n∑
k=2

(−1)k
[
n

(
n− 1

k − 1

)
−
(
n

k

)]
(n+ 1)n−k = 2nn.

If d ⩾ 2, then
∑k−2

i=0 d
i = (dk−1 − 1)/(d− 1). Then,

(−KBlY Pn)n = (n+ 1)n −
n∑
k=2

(−1)k
(
n

k

)
·
(
dk − d

d− 1

)
(n+ 1)n−k

=
1

d− 1
(dnn − (n+ 1− d)n) .

Note that by L’Hospital’s rule limdY →1VdY = 2nn and it is easy to check that VdY < 2nn for dY ≥
2. □

Lemma 4.3. Suppose π : X → Pn is the blowup of Pn along a subvariety Y ∼= Pn−2 of degree
dY = 1 contained in a hyperplane of Pn, then X is K-unstable.

Proof. Let E = π−1(Pn−2) be the exceptional divisor. And let H = π∗OPn(1) be the pullback of
a hyperplane section of Pn. Note that the nef cone is Nef(X) = R⩾0[H] + R⩾0[H − E]. Then the
divisor −KX − tE = (n+ 1)H − (1 + t)E is nef if and only if 0 ⩽ t ⩽ n. When 0 ⩽ t ⩽ n, by the
similar computation as in Lemma 4.2,

volX(−KX − tE) = ((n+ 1)H − (1 + t)E)n = (n+ 1)n −
n∑
k=2

(
n

k

)
(n+ 1)n−k(−1− t)k(k − 1)

= (n− t)n−1(2n+ (n− 1)t).

We see the pseudo-effective threshold TX(E) equals to the nef threshold n. Then,

S(−KX ;E) =
1

(−KX)n

∫ n

0

volX(−KX − tE)dt = 1 +
n− 1

2(n+ 1)
.

So AX(E) − S(−KX ;E) = 1 − (1 + n−1
2(n+1)

) = − n−1
2(n+1)

< 0. By the valuative criterion (Theorem
2.1), we conclude that X is K-unstable and destabilized by the exceptional divisor E. □

Remark 4.4. Note that X = BlPn−2Pn is a toric Fano variety, so one can also prove lemma 4.3 via
toric geometry. The minimal generators of the fan Σ ⊆ Rn is given by e1 = (1, 0 · · · , 0), · · · , en =

(0, · · · , 0, 1), e0 = (−1,−1, · · · ,−1), f = (1, 1, 0, · · · , 0). Here the ray generated by f corresponds
to the exceptional divisor E = π−1(Pn−2) by the cone-orbit correspondence. Then the moment
polytope with respect to −KX is given by

PX = {(x1, · · · , xn) ∈ Rn | x1 + x2 ≥ −1,
n∑
i=1

xi ≤ 1, xj ≥ −1 for j = 1, · · · , n}.

By calculus, one can compute the barycenter Bc(P ) = ( n−1
4(n+1)

, n−1
4(n+1)

,− 1
2(n+1)

, · · · ,− 1
2(n+1)

) ∈ Rn,
which does not coincide with the origin. Thus, X is K-unstable, so this gives another proof of Lemma
4.3. In fact, by the formula δ(X,−KX) = minρ⊂Σ(1)

1
⟨Bc(P ),uρ⟩+1

in [BJ20, Section 7], we know
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δ(X) = 2n+2
3n+1

< 1 and it is minimized at ρ = f = (1, 1, 0 · · · , 0). So the exceptional divisor E in
Lemma 4.3 is indeed the δ-minimizer of X .

As an immediate application of Theorem 1.1, we prove the ODP conjecture (Conjecture 2.3) for
Fano cones over K-semistable Fano manifolds.

Theorem 4.5. Suppose L = r−1(−KX) is an ample line bundle over a n-dimensional smooth K-
semistable Fano manifold X for some r ∈ N∗, then ODP conjecture (Conjecture 2.3) holds for the
affine cone C(X,L) := Spec(⊕+∞

k=0H
0(X, kL)) with the cone vertex o.

Proof. We denote π : BloC → C be the blowup of C along the cone vertex o. By the result of
[Li17, LL19], we know X is K-semistable if and only if the minimizer of normalized volume of
(C, o) is attained by the canonical valuation v = ordE , which is the divisorial valuation associated to
the exceptional divisor E = π−1(o) ∼= X . From [Kol13, Section 3.1], we know

KBloC + (1− r)E ∼Q 0 ∼Q π
∗(KC).

Then AC(ordE) = 1 + ordE(KBloC − π∗KC) = 1 + (r − 1) = r and vol(ordE) = Ln. Then

v̂ol(C, o) = AC(ordE)
n+1 · vol(v) = rn+1 · Ln = r(−KX)

n.

Let i(X) := max{r ∈ N∗ | −KX ∼Q rL for some ample line bundle L} be the Fano index of X .
Then the above argument shows that v̂ol(C, o) ⩽ i(X) · (−KX)

n. We know that for smooth Fano
manifold, the Fano index always satisfies i(X) ⩽ n+1 and i(X) = n+1 if and only if X ∼= Pn and
i(X) = n if and only if X ∼= Q ⊂ Pn+1 is a smooth quadric hypersurface ([KO73]). If X ∼= Pn and
r = i(Pn) = n+1, then (C(Pn,O(1)), o) ∼= (Cn, 0) is a smooth point, which is excluded in the ODP
conjecture. If r < i(Pn) = n + 1, then there exists some p ∈ Z>1 such that rp = i(Pn) = n + 1.
Then v̂ol(C(Pn, L), o) = r(−KPn)n = (n+ 1)n+1/p < 2nn+1. So we can assume X ≇ Pn. Then by
Theorem 1.1, we have (−KX)

n ⩽ 2nn and the equality holds if X ∼= P1 × Pn−1 or X is a smooth
quadric hypersurface Q. Combined with Kobayashi-Ochiai’s result i(X) ⩽ n, we get

v̂ol(C, o) ⩽ i(X) · (−KX)
n ⩽ 2nn+1.

The equality holds if and only if i(X) = n and (−KX)
n = 2nn, which implies (C, o) ∼= (C(Q,OQ(1)), o)

is the ODP singularity (the case whenX ∼= P1×Pn−1 is excluded since the Fano index i(P1×Pn−1) =

2). □

4.2. Examples and questions.

Example 4.6. Our consideration of weighted blowup is motivated by a special example of a weighted
blowup over the quadric hypersurface: X = Qn = {Z0Z1 + Z2Z3 + Z2

4 + · · ·+ Z2
n+1 = 0} ⊂ Pn+1

for n ≥ 3. Fix a minimal rational curve which is the line

C ∼= P1 = {Z1 = Z3 = Z4 = · · · = 0} = {[t : 0 : s : 0 : 0 : · · · : 0] : [t, s] ∈ P1} ⊂ Pn+1.
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On the affine chart U0 = {Z0 ̸= 0}, set ui = zi/z0 with i ̸= 0. Then the equations of X and C
become:

X : u1 + u2u3 + u24 + · · ·+ u2n+1 = 0 =⇒ u1 = −u2u3 − u24 − · · · − u2n+2,

C : u3 = u4 = · · · = un+1 = 0.

In particular, we choose coordinates u = {u2, u3, u4, · · · , un+1} as local coordinates on X . Simi-
larly, on the affine chart U1 = {Z2 ̸= 0}, if we set vj = zj/z2 with j ̸= 2. The local coordinate is
given by v = (v0, v1, v4 · · · , vn+1). The equations of X , C are given by:

X : v0v1 + v3 + v24 + · · ·+ v2n+1 = 0 =⇒ v3 = −v0v1 − v24 − · · · − v2n+1,

C : v1 = v4 = · · · = vn+1 = 0.

The conormal bundle of C \ {x} is generated by

{dv1 = −du3, dv4 = u−1
2 du4, · · · , dvn+1 = u−1

2 dun+1}

which shows in particular that N∨
C/X = O ⊕O(−1)⊕n−2.

Consider the C∗ action on Pn+1 with weights (0, 2, 0, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

) on the homogeneous coordinates.

The C∗ action preserves the quadric hypersurface and gives rise to a divisorial valuation whose
center on X is the line C. This divisorial valuation can also be obtained via a weighted blowup
along the line C. Precisely, in the u-coordinates, we perform the weighted blow along C ∩ U0 =

{u3 = u4 = · · · = un+1 = 0} with weights (0, 2, 1, . . . , 1). In the v coordinates, we also have the
weights (0, 2, 1, . . . , 1). The weighted blowup µ : X̂ → X in this example is globally defined and
the exceptional divisor E is isomorphis to a weighted projective P(2, 1, . . . , 1︸ ︷︷ ︸

n−2

)-bundle over P1. We

can calculate the volume function vol(−KX − xE) = nnvol(H − ξE) where ξ = x
n

. Interestingly
the situation turns out to be different for n = 3 and n ≥ 4. When n = 3, the nef threshold (Seshadri
constant) of H with respect to E coincides with the pseudo-effective threshold and is equal to 2. We
have the expression:

vol(−KX − xE) = 27 · vol(H − ξE) = 27 ·
(
2− 3

2
ξ +

1

2
ξ2
)
, 0 ≤ ξ ≤ 2.

When n ≥ 4, the nef threshold of H with respect to E is 1 while the pseudoeffective threshold of H
with respect to E is 2. The volume function consists of two smooth pieces:

vol(−KX − xE) = nnvol(H − ξE)(21)

= nn ·

{
2− n

2
ξn−1 + n−2

2
ξn, ξ = x

n
∈ [0, 1]

n
2
(2− ξ)n−1 − n−2

2
(2− ξ)n, ξ = x

n
∈ [1, 2].

In fact, this expression holds for any n ≥ 3, since when n = 3 the second piece and the first
piece connect smoothly and become one whole smooth piece. To get the above formula, we can first
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calculate the volume function before the nef threshold by calculating the intersection:

(µ∗H − ξE)n =
n∑
k=0

(
n

k

)
µ∗Hn−k · ξk(−E)k

= Hn + nξn−1π∗H · ξn−1(−E)n−1 + ξn(−E)n

= 2− n

2
ξn−1 + ξn

n− 2

2

where we used a weighted analogue of the usual intersection formula via Segre classes for projective
bundles. It is not surprising that the expression of this piece coincides with the piece in the expression
of (20) when x = nξ ≤ n. The second piece is more difficult to get. One way to get it is to use the fact
that the measure − 1

n!
dvol(H−tE) is the Duistermaat-Heckman measure of the previously mentioned

Hamiltonian S1 action (see [BHJ17]) and then use the symmetry of its density function around ξ = 1

in our case. We can also directly calculate the Duistermaat-Heckman measure of S1-action by using
a well-established localization/Fourier formula ([BGV92, 7.4]) and for the interest of the reader we
will provide such a derivation in appendix.

Example 4.7. Let X ⊂ Pn+1 be a Fano hypersurface of degree 1 ≤ b ≤ n. Then the minimal
rational curve is of splitting type O(1)n−b⊕Ob−1 so that d = n−b+2 (see [Kol96, Exercise V.4.4]).
The volume of X is given by Vd = dn(n− d+ 2) = (n+ 2− b)n · b. One can easily verify that Vd is
strictly smaller than vol(Pd−1 × Pn−d+1) except when b = 1 or b = 2.

Question 4.8. Is there a K-semistable Fano manifold X with vol(X) = vol(Pd−1 × Pn−d+1) that
contains a minimal rational curve of degree 3 ≤ d ≤ n− 1 but is not isomorphic to Pd−1 × Pn−d+1?

Our results imply that when d = n, there is just one such X , i.e. the quadric hypersurface Qn,
while when d = 2, there is no such X . Moreover, such an X must satisfy lX = d (see (7)).

We end this paper by finding the minimal possible anti-canonical volume of n-dimensional (K-
semistable) Fano manifolds. It is not a well-posed problem for general Q-Fano varieties. Even
assuming K-semistablity, there exists a sequence of K-semistable Q-Fano varieties with volume
(−KX)

n tends to zero (See [Jia20, Example 1.4(2)]), so it is in general not possible to determine
an optimal positive lower bound. When we restrict to n-dimensional smooth Fano manifold X , the
volume (−KX)

n is always a positive integer, so a priori (−KX)
n ⩾ 1.

Example 4.9. Suppose n ⩾ 2 is an integer. Assume a0 ⩽ a1 ⩽ · · · ⩽ an+1 are integers and we
consider a general degree d hypersurface Xd of weighted projective space P(a0, a1 · · · , an+1). Note
that Xd is a Fano variety if d <

∑n+1
i=0 ai. By the adjunction formula

(−KX)
n =

d · (
∑n+1

i=0 ai − d)n∏n+1
i=0 ai

.

If a0 = · · · = an−1 = 1, an = 2, an+1 = n+1 and d = 2n+2. Namely,Xd is a general degree 2n+2

hypersurface in P(1n, 2, n + 1). Then (−KX2n+2)
n = 1. By [IF00, Thm 8.1], we know that X2n+2 is

smooth when n is even. By [ST24, Thm 1.3], we know δ(X2n+2) ⩾ (n + 1)/2 > 1, so X2n+2 is a
smooth K-stable Fano manifold with minimal anti-canonical volume (−KX2n+2)

n = 1 for all even n.
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When n is odd, the general hypersurface X2n+2 ⊂ P(1n, 2, n+ 1) is singular. (After communicating
with K. Fujita, we find that this type of example already appears in [KSC04, Theorem 5.22].)

Example 4.10. Let Y be the double cover of Pn ramified along a degree 2n smooth hypersurface D.
Then by Hurwitz’s formula, KY = ϕ∗(KPn + 1

2
D). So (−KY )

n = deg(ϕ) · (−KPn − 1
2
D)n = 2. By

the result of [LZ22, Zhu21], we know K-stability of Y is equivalent to the K-stability of the log Fano
pair (Pn, 1

2
D). Since we assumeD is a smooth hypersurface, then the log Fano pair (Pn, (n+1

2n
−ε)D)

is klt, so it is uniformly K-stable by [ADL23, Theorem 2.10] for 0 < ε ≪ 1. Since D ∼Q −KPn , by
the interpolation of K-stability ([ADL24, Prop 2.13]), we conclude that (Pn, 1

2
D) is K-stable. Thus,

Y is a smooth K-stable Fano manifold with volume (−KY )
n = 2 for all dimensions n ⩾ 2. Note that

Y contains a degree 2 free-immersed rational curve with n− 1 nodes (see [Kol96, IV.2.12.3]).

We indeed have the following:

Proposition 4.11. The minimum of anticanonical volumes of n-dimensional Fano manifolds is equal
to 1 if n is even and is equal to 2 if n is odd. The minimum volume is obtained by K-stable Fano
manifolds.

This follows from Example 4.9, Example 4.10 and following interesting fact pointed out to us by
K. Fujita:

Fact 1. ([KSC04, Solution to Exercise 5.23, Page 217]) Let X be a smooth projective variety of odd
dimension n. Then the self-intersection number (−KX)

n is even.

Question 4.12. Classify all Fano manifolds that obtain the minimal volume.

APPENDIX: A PROOF OF THE FORMULA (21)

We calculate the Duistermaat-Heckman measure via the localization method. Let ω = ωFS denote
the restriction of the Fubini-Study metric of Pn+1 on X = Qn = {Z0Z1+Z2Z3+Z

2
4 + · · ·+Z2

n+1 =

0} ⊂ Pn+1 for n ≥ 3. The C∗ action on X is given by: for any λ ∈ C∗,

λ ◦ (Z0, Z1, Z2, Z3, Z4, . . . , Zn+1) = (Z0, λ
2Z1, Z2, λ

2Z3, λZ4, . . . , λZn+1).

The corresponding S1 action is a Hamiltonian with moment map given by:

µ([Z]) =
2|Z1|2 + 2|Z3|2 + |Z4|2 + · · ·+ |Zn+1|2

|Z0|2 + |Z1|2 + · · ·+ |Zn+1|2
.

We introduce the equivariant volume functional:

V (θ) =

∫
X

eiµ(z)ξ
ωn

n!
=

∫
R
eiθξ DH(ξ)

where DH(ξ) = µ∗
ωn

n!
is the Duistermaat-Heckman measure. As a consequence, the density function

of DH(ξ) is the Fourier transform of V (θ).
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The localization formula calculates the integral V (θ) via data on the fixed points sets (including
the values of moment map and equivariant Euler curvature forms of normal bundles) which consists
of three components in this case:

F0 = µ−1(0) ∼= P1 : [∗, 0, ∗, 0, . . . , 0],

F1 = µ−1(2) ∼= P1 : [0, ∗, 0, ∗, 0, . . . , 0],

F2 = µ−1(1) ∼= Qn−4 : [0, 0, 0, 0, Z4, . . . , Zn+1] with Z2
4 + · · ·Z2

n+1 = 0.

The contribution from F0 is given by:

V0(θ) :=

∫
P1

eω

((ω − iθ))n−2(−i2θ)
=

(−1)n+12π

2
((iθ)1−n + (n− 2)(iθ)−n).

We have the following useful formula: for any a ∈ R,

1

2π

∫
R

eiaθξ

(iθ)k
=

(a− ξ)k−1

2(k − 1)!
Sign(a− ξ).

So we can calculate the Fourier transform of V0(θ):

1

2π

∫
R
V0(θ)e

−iθξdθ =
1

4(n− 1)!
((n− 2)ξn−1 − (n− 1)ξn−2)Sign(−ξ)

=:
f(ξ)

2
Sign(−ξ).

The contribution from F2 is given by:

V2(θ) :=

∫
P1

e(ω+2iθ)

((ω + iθ))n−2(i2θ)
=

2π

2
e2iθ((iθ)1−n + (2− n)(iθ)−n).

Similar to above, the Fourier transform of V2(θ) is equal to:

1

2π

∫
R
V2(θ)e

−iθξdθ =
1

4(n− 1)!
(−(n− 2)(2− ξ)n−1 + (n− 1)(2− ξ)n−2)Sign(2− ξ)

=:
g(ξ)

2
Sign(2− ξ).

The contribution from F1 is given by:

V1(θ) :=

∫
Qn−4

e(ω+iθ)

(ω + iθ)2(ω − iθ)2
=

∫
Qn−4

eωeiθ

(ω2 + θ2)2

=

⌊n−4
2

⌋∑
k=0

(k + 1)

(n− 4− 2k)!

eiθ

(iθ)2k+4
.

The Fourier transform of V1(θ) is equal to:

1

2π

∫
R
V1(θ)e

−iθξdθ =

⌊n−4
2

⌋∑
k=0

(k + 1)

2(n− 4− 2k)!(2k + 3)!
(1− ξ)2k+3Sign(1− ξ).
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We claim that this is equal to −f(ξ)+g(ξ)
2

Sign(1− ξ) so that the Fourier transform is V (θ) is equal to:

ρ(ξ) =
f(ξ)

2
Sign(−ξ) + g(ξ)

2
Sign(2− ξ)− f(ξ) + g(ξ)

2
Sign(1− ξ)

=


−f(ξ) 0 ≤ ξ ≤ 1

g(ξ) 1 ≤ ξ ≤ 2

0 otherwise.

It is immediate to check that ρ(ξ) = − 1
n!

d
dξ
vol(H − ξE) by using the expression from (21), which

verifies the formula (21) after integration. To verify the claim, we calculate:

ξn−1 − (2− ξ)n−1 = (1− (1− ξ))n−1 − (1 + (1− ξ))n−1 =
n−1∑
k=0

(
n− 1

k

)
((−1)k − 1)(1− ξ)k

= −
⌊n−2

2
⌋∑

j=0

(
n− 1

2j + 1

)
(1− ξ)2j+1,

and finally verify the claimed identity:

−2(n− 1)!(f(ξ) + g(ξ)) = (n− 2)(ξn−1 − (2− ξ)n−1)− (n− 1)(ξn−2 − (2− ξ)n−2),

=

⌊n−2
2

⌋∑
j=0

(n− 2)

(
n− 1

2j + 1

)
(1− ξ)2j+1 −

⌊n−3
2

⌋∑
j=0

(n− 1)

(
n− 2

2j + 1

)
(1− ξ)2j+1

=

⌊n−2
2

⌋∑
j=0

(n− 1)!2j

(2j + 1)!(n− 2− 2j)!
(1− ξ)2j+1

= 2(n− 1)!

⌊n−4
2

⌋∑
k=0

k + 1

(n− 4− 2k)!(2k + 3)!
(1− ξ)2k+3.
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