Chapter 1

Superconnection

1.1 \mathbb{Z}_{2}-graded algebra

Definition 1.1.1. A is a \mathbb{C}-algebra, A is \mathbb{Z}_{2}-graded, if there is a splitting: $A=A_{+} \oplus A_{-}$, such that $A_{+} A_{+} \subset A_{+}, A_{-} A_{-} \subset A_{+}, A_{+} A_{-} \subset A-, A_{-} A_{+} \subset A_{-}$.
$A_{\text {even }}=A_{+}, A_{\text {odd }}=A_{-}$are called the even and odd part of A. The usual algebra is trivially \mathbb{Z}_{2}-graded with $A=A_{+}$.
Definition 1.1.2. for homogeneous elements $a, b \in A_{ \pm}$, the supercommutator is

$$
[a, b]=a b-(-1)^{\text {deg } a \cdot \operatorname{deg} b} b a, \quad \text { deg } a= \begin{cases}0, & a \in A_{+} \\ 1 . & a \in A_{-}\end{cases}
$$

we extend linearly to $A . a, b \in A$ is said to be supercommutative if $[a, b]=0$. Note that $\left[A_{+}, A_{+}\right] \subset A_{+},\left[A_{-}, A_{-}\right] \subset A_{+},\left[A_{+}, A_{-}\right] \subset A-,\left[A_{-}, A_{+}\right] \subset A_{-}$.

Proposition 1.1.1 (Generalized Jacobi Identity).

$$
\begin{gathered}
{[a,[b, c]]+(-1)^{\operatorname{deg} a(\operatorname{deg} b+\operatorname{deg} c)}[b,[c, a]]+(-1)^{\operatorname{deg} c(\operatorname{deg} a+\operatorname{deg} b)}[c,[a, b]]=0, \text { or equivalently }} \\
{[a,[b, c]]=[[a, b], c]+(-1)^{\operatorname{deg} a \cdot \operatorname{deg} b}[b,[a, c]] \text { (derivation property) }}
\end{gathered}
$$

Example 1.1.1. 1. E is a finite dimensional vector space. The exterior algebra: $\wedge^{*} E^{*}=$ $\wedge^{\text {even }} E^{*} \oplus \wedge^{\text {odd }} E^{*}$ is a commutative \mathbb{Z}_{2}-graded algebra, since $\omega \wedge \eta=(-1)^{\text {deg } \omega \cdot \operatorname{deg} \eta} \eta \wedge \omega$.
2. $\tau: E \longrightarrow E$ is an endomorphism, s.t. $\tau^{2}=i d$, then E is \mathbb{Z}_{2}-graded: $E=E_{+} \oplus E_{-}, \tau \mid E_{ \pm}= \pm 1$. $\operatorname{End}(E)$ is a \mathbb{Z}_{2}-graded algebra:

$$
\operatorname{End}(E)^{\text {even }}=\{A \in \operatorname{End}(E): A \tau=\tau A\}, \operatorname{End}(E)^{\text {odd }}=\{A \in \operatorname{End}(E): A \tau=-\tau A\}
$$

3. q is a nondegenerate quadratic form on E, the Clifford algebra is \mathbb{Z}_{2}-graded: $\alpha: C l(E, q) \longrightarrow C l(E, q)$ is the involution defined by $\alpha(v)=-v, \forall v \in E$.

Definition 1.1.3. A, B are \mathbb{Z}_{2}-graded algebra, $A \otimes B$ has a product:

$$
a \otimes b \cdot a^{\prime} \otimes b^{\prime}=(-1)^{\operatorname{deg} b \cdot \operatorname{deg} a^{\prime}} a a^{\prime} \otimes b b^{\prime}
$$

for homogeneous elements $a, a^{\prime} \in A, b, b^{\prime} \in B$. It's well defined and $A \otimes B$ becomes a \mathbb{Z}_{2}-graded algebra, denoted by $A \hat{\otimes} B$:

$$
(A \hat{\otimes} B)_{+}=\left(A_{+} \otimes B_{+}\right) \oplus\left(A_{-} \otimes B_{-}\right),(A \hat{\otimes} B)_{-}=\left(A_{+} \otimes B_{-}\right) \oplus\left(A_{-} \otimes B_{+}\right)
$$

Remark 1. If A, B are unitary $\left(1_{A} \in A, 1_{B} \in B\right)$, then A, B are embedded in $\hat{A \otimes B}$. We can identify a with $a \otimes 1_{B}$, and b with $1_{A} \otimes b$, then $a \cdot b=(-1)^{\operatorname{deg} a \cdot \operatorname{deg} b} b \cdot a$, so A and B are supercommutative in $A \hat{\otimes} B$.

Example 1.1.2. $\left(E_{1}, q_{1}\right),\left(E_{2}, q_{2}\right)$ are two vector spaces with nondegenerate quadratic forms. Let $E=E_{1} \oplus E_{2}, q=q_{1} \oplus q_{2}: q\left(\left(v_{1}, v_{2}\right)\right)=q_{1}\left(v_{1}\right)+q_{2}\left(v_{2}\right)$, then $C l(E, q)=C l\left(E_{1}, q_{1}\right) \hat{\otimes} C l\left(E_{2}, q_{2}\right)$.

Definition 1.1.4. assume $E=E_{+} \oplus E_{-}$is \mathbb{Z}_{2}-graded defined by involution $\tau . \forall A \in E n d(E)$, the supertrace of A is $\operatorname{Tr}_{s}(A)=\operatorname{Tr}(\tau A)$. In blocked matrix, $\tau=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$, if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then $\operatorname{Tr}_{s}(A)=\operatorname{Tr}(a)-\operatorname{Tr}(d)$.

Proposition 1.1.2. $\forall A, B \in \operatorname{End}(E), \operatorname{Tr}_{s}[A, B]=0$.
assume $(E, \tau),(F, \sigma)$ are two \mathbb{Z}_{2}-graded vector space, then $E \hat{\otimes} F=(E \otimes F, \tau \otimes \sigma)$ is a \mathbb{Z}_{2}-graded vector space. $\forall A \in \operatorname{End}(E), B \in \operatorname{End}(F)$, we have

$$
\operatorname{Tr}_{s}(A \otimes B)=\operatorname{Tr}(\tau A \otimes \sigma B)=\operatorname{Tr}(\tau A) \operatorname{Tr}(\sigma B)=\operatorname{Tr}_{s}(A) \operatorname{Tr}_{s}(B)
$$

Definition 1.1.5. E is a finit dimensional, we define the supertrace on the \mathbb{Z}_{2}-graded algebra $\wedge^{*} E^{*} \hat{\otimes} \operatorname{End}(E)$ (matrix of forms):

$$
\begin{aligned}
& \operatorname{Tr}_{s}: \wedge^{*} E^{*} \hat{\otimes} E n d(E) \longrightarrow \\
& \wedge^{*} E^{*} \\
& \omega \otimes A \mapsto \\
& \omega T_{s}(A)
\end{aligned}
$$

By the universal property of tensor product, this is well defined. For simplicity, we write ωA for $\omega \otimes A$. We have

$$
\left[\omega A, \omega^{\prime} A\right]=(-1)^{\operatorname{deg} A \cdot \operatorname{deg} \omega} \omega \omega^{\prime}\left[A, A^{\prime}\right]
$$

1.2 Superconnection

Definition 1.2.1. E is a finite dimensional \mathbb{Z}_{2}-graded complex vector bundle on the manifold M. A superconnection A is an odd differential operator acting on $\Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)$, which satisfies the Leibniz rule:

$$
A(\omega s)=d \omega \cdot S+(-1)^{\operatorname{deg} \omega} \omega \wedge A s
$$

Remark 2. $\wedge^{*} T^{*} M \hat{\otimes} E$ is a \mathbb{Z}_{2}-graded vector bundle, $\Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)$ is the set of E-valued forms which is naturally \mathbb{Z}_{2}-graded. Locally on an open set U, we choose a cotangent frame $\left\{e^{i}\right\}$ and a frame of $\left\{s_{\alpha}\right\}=\left\{s_{\lambda}^{+}\right\} \cup\left\{s_{\mu}^{-}\right\}$of $E=E_{+} \oplus E_{-}$, then locally $\tau \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)$ is:

$$
\tau=f_{i_{1}, \ldots, i_{r}}^{\alpha} e^{i_{1}} \wedge \ldots \wedge e^{i_{r}} \otimes s_{\alpha}, \tau_{i_{1}, \ldots, i_{r}}^{\alpha} \in C^{\infty}(U)
$$

$A \tau=g_{j_{1}, \ldots, j_{s}}^{\beta} e^{j_{1}} \wedge \ldots \wedge e^{j_{s}} \otimes s_{\beta}, g=D(f), D$ is a matrix of differential operators. τ is even iff locally it's the sum of $\omega^{\text {even }} \cdot s_{\lambda}^{+}$and $\omega^{\text {odd }} \cdot s_{\mu}^{-}$.

$$
\Gamma=\Gamma_{\text {even }} \oplus \Gamma_{o d d}=\Gamma\left(\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)_{\text {even }}\right) \oplus \Gamma\left(\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)_{\text {odd }}\right)
$$

By definition, $A\left(\Gamma_{\text {even }}\right) \subset \Gamma_{o d d}, A\left(\Gamma_{o d d}\right) \subset \Gamma_{\text {even }}$.
Example 1.2.1. ∇^{E} is a connection preserving the splitting $E=E_{+} \oplus E_{-}$, i.e. $\nabla^{E}\left(\Gamma\left(E_{ \pm}\right)\right) \subset \Gamma\left(E_{ \pm}\right)$.

Write $\nabla^{E}=\nabla^{E_{+}} \oplus \nabla^{E_{-}}$, or in blocked matrix: $\nabla^{E}=\left(\begin{array}{cc}\nabla^{E_{+}} & 0 \\ 0 & \nabla^{E_{-}}\end{array}\right)$
We extend ∇^{E} to act on $\Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)$ satisfying the Leibniz rule: $\nabla^{E}(\omega s)=d \omega \cdot s+$ $(-1)^{\operatorname{deg} \omega} \omega \wedge \nabla^{E} s$, Then ∇^{E} is a superconnection, since it increases the degree of forms by 1 , while keeps the degree of sections of the bundle E , thus odd.
let $D \in \Gamma\left(\operatorname{End}(E)^{\text {odd }}\right)$, i.e. $D_{x} \in \operatorname{End}\left(E_{x}\right)^{\text {odd }}$, in matrix $D=\left(\begin{array}{cc}0 & D_{-} \\ D_{+} & 0\end{array}\right)$, then $\nabla^{E}+D$ is a superconnection, since D preserves the degree of forms, and interchanges the even and odd part of E.

In particular, when $M=\{p t\}, E$ is a \mathbb{Z}_{2}-graded vector space, $D \in E n d(E)^{\text {odd }}$ is a superconnection.

Proposition 1.2.1. Any superconnection A can be written as $A=\nabla^{E}+B$, with $\nabla^{E}=\nabla^{E_{+}} \oplus \nabla^{E_{-}}$, and $B \in \Gamma(\mathcal{B})$, where $\mathcal{B}=\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}(E)$ is a bundle of algebras.
Proof. Let $B=A-\nabla^{E}$, then B is an odd operator on $\Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)$. $\forall f \in C^{\infty}(M)$, $s \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right)$,

$$
B(f s)=A(f s)-\nabla^{E}(f s)=d f \cdot s+f A s-\left(d f \cdot s+f \nabla^{E} s\right)=f\left(A-\nabla^{E}\right) s=f B s
$$

so B is $C^{\infty}(M)$ linear, i.e. tensorial.
Let $B s_{\alpha}=\theta_{\alpha}^{\beta} s_{\beta}, \theta_{\alpha}^{\beta} \in \Gamma\left(\wedge^{*} T^{*} U\right)$, define $\tilde{B}=\theta_{\alpha}^{\beta} s_{\alpha}^{*} \otimes s_{\beta} \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}(E)\right)$, where $\left\{s_{\alpha}^{*}\right\}$ is the dual basis of $\left\{s_{\beta}\right\}$, then \tilde{B} is independent of the chosen frame since B is tensorial.
conversely $\forall \tilde{B} \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E n d(E)\right), \tilde{B}$ acts naturally on $\Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} E\right):(\omega \otimes D) \cdot(\eta \otimes s)=$ $(-1)^{\operatorname{deg} D \cdot \operatorname{deg} \eta} \omega \wedge \eta \otimes D s$, this action is clearly C^{∞} linear. So we can identify B and \tilde{B}, and the proposition is proved.

Remark 3. if we choose local frame $\left\{s_{\lambda}^{+}\right\} \cup\left\{s_{\mu}^{-}\right\}$of E on U, then $E \cong \mathbb{C}^{n} \oplus \mathbb{C}^{m}$. The de Rham operator d is a connection on trivial bundles. By the proposition, every connection is locally of the form:

$$
A=d+B, B \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}\left(\mathbb{C}^{n} \oplus \mathbb{C}^{m}\right)\right)_{o d d}
$$

1.3 Chern-Weil theory for superconnections

Proposition 1.3.1. A is a superconnection, then $A^{2} \in \Gamma\left(\mathcal{B}_{\text {even }}\right)$.
recall that $\mathcal{B}=\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}(E)$.
Proof. Since A is odd, A^{2} is an even operator. $\forall f \in C^{\infty}(M)$,

$$
A^{2}(f s)=A(d f \cdot s+f \cdot A s)=d(d f) s-d f \wedge A s+d f \wedge A s+f A^{2} s=f A^{2} s
$$

so A^{2} is a tensor.
Definition 1.3.1. The curvature of a superconnection A is A^{2}. The Chern character of A is $\operatorname{ch}(A)=\varphi \operatorname{Tr}_{s}\left(e^{-A^{2}}\right) \in \Gamma\left(\wedge^{*} T^{*} M\right)$, where

$$
\begin{aligned}
\varphi: \wedge_{\mathbb{C}}^{*} T^{*} M & \longrightarrow \wedge_{\mathbb{C}}^{*} T^{*} M=\wedge^{*} T^{*} M \otimes \mathbb{C} \\
\alpha & \mapsto(2 \pi i)^{-\frac{\text { deg } \alpha}{2}} \alpha
\end{aligned}
$$

is the normalization endormorphism, which makes the definition agree with the Chern character of a complex vector bundle.
Theorem 1.3.1 (Quillen). $\operatorname{ch}(A)$ is a closed, even form. $[\operatorname{ch}(A)]=\operatorname{ch}\left(E_{+}\right)-\operatorname{ch}\left(E_{-}\right)$, $[c h(A)] \in H_{d R}^{\text {even }}(M)$ is the cohomological class represented by $\operatorname{ch}(A)$.
Proof. Take a local trivialization $E=E_{+} \oplus E_{-} \cong \mathbb{C}^{n} \oplus \mathbb{C}^{m}$, then $A=d+B$, where $B \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}\left(\mathbb{C}^{n} \oplus \mathbb{C}^{m}\right)\right)_{o d d}$

$$
\begin{aligned}
d \operatorname{Tr}_{s}\left(\exp \left(-A^{2}\right)\right) & =\operatorname{Tr}_{s}\left(d \exp \left(-A^{2}\right)\right)=\operatorname{Tr}_{s}\left[d, \exp \left(-A^{2}\right)\right] \\
& =\operatorname{Tr}_{s}\left[d+B, \exp \left(-A^{2}\right)\right]=\operatorname{Tr}_{s}\left[A, \exp \left(-A^{2}\right)\right]=0
\end{aligned}
$$

In the third equality, we use $\operatorname{Tr}_{s}\left[B, \exp \left(-A^{2}\right)\right]=0$: since $\exp \left(-A^{2}\right)$ is a tensor, the supertrace of supercommutator vanishes. The last equality follows from the Bianchi identity: $\left[A, A^{2}\right]=0$, which is trivial in this setting.

Remark 4. It's easy to see that, $\forall B \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}(E)\right),[A, B] \in \Gamma\left(\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}(E)\right)$.
Since A^{2} is even, $\exp \left(-A^{2}\right)$ is even. It is the sum of the form

$$
\text { even form } \otimes\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right) \text {, odd form } \otimes\left(\begin{array}{ll}
0 & * \\
* & 0
\end{array}\right)
$$

but $\operatorname{Tr}_{s}\left(\right.$ odd form $\left.\otimes\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)\right)=0$, so $\operatorname{Tr}_{s}\left(\exp \left(-A^{2}\right)\right)$ contains only even forms.
Next we want to prove $[\operatorname{ch}(\mathrm{A})]$ is independent of the superconnection. Let $\mathcal{A}=\{$ superconnection $\}$, \mathcal{A} is an affine space. Given $A_{0}, A_{1} \in \mathcal{A}$, let $A_{t}=(1-t) A_{0}+t A_{1}$. Define $\mathbb{A}=d t \frac{\partial}{\partial t}+A_{t}$, then \mathbb{A} is a superconnection on the vector bundle $\pi_{M}^{*} E \longrightarrow M \times[0,1]$, where $\pi_{M}: M \times[0,1] \longrightarrow M$ is the projection. $\mathbb{A}^{2}=A_{t}^{2}+d t \frac{\partial A_{t}}{\partial t}$,

$$
\operatorname{ch}(\mathbb{A})=\varphi \operatorname{Tr}_{s} \exp \left(-\left(A_{t}^{2}+d t \frac{\partial A_{t}}{\partial t}\right)\right)=\operatorname{ch}\left(A_{t}\right)+d t \beta_{t}
$$

β_{t} is an odd form on $M \times[0,1]$. We know that $\operatorname{ch}(\mathbb{A})$ is closed, so

$$
0=d \operatorname{ch}(\mathbb{A})=d_{M} \operatorname{ch}\left(A_{t}\right)+d t \frac{\partial}{\partial t} \operatorname{ch}\left(A_{t}\right)-d t d_{M} \beta_{t}=d t \frac{\partial}{\partial t} \operatorname{ch}\left(A_{t}\right)-d t d_{M} \beta_{t}
$$

so $\frac{\partial}{\partial t} \operatorname{ch}\left(A_{t}\right)=d \beta_{t}$ and

$$
\operatorname{ch}\left(A_{1}\right)-\operatorname{ch}\left(A_{0}\right)=\int_{0}^{1} \frac{\partial}{\partial t} \operatorname{ch}\left(A_{t}\right) d t=d \int_{0}^{1} \beta_{t} d t
$$

so $\left[\operatorname{ch}\left(A_{0}\right)\right]=\left[\operatorname{ch}\left(A_{1}\right)\right]$.
Thus we can choose any superconnection to compute $[\operatorname{ch}(A)]$. We let $A=\nabla^{E}=\left(\begin{array}{cc}\nabla^{E_{+}} & 0 \\ 0 & \nabla^{E_{-}}\end{array}\right)$, then

$$
\begin{aligned}
\operatorname{ch}(A) & =\left[\varphi \operatorname{Tr}_{s} \exp \left(-\nabla^{E, 2}\right)\right]=\left[\varphi \operatorname{Tr} \exp \left(-\nabla^{E_{+}, 2}\right)\right]-\left[\varphi \operatorname{Tr} \exp \left(-\nabla^{E_{-}, 2}\right)\right] \\
& =\left[\operatorname{Tr} \exp \left(\frac{\sqrt{-1}}{2 \pi} \nabla^{E_{+}, 2}\right)\right]-\left[\operatorname{Tr} \exp \left(\frac{\sqrt{-1}}{2 \pi} \nabla^{E_{-}, 2}\right)\right]=\operatorname{ch}\left(E_{+}\right)-\operatorname{ch}\left(E_{-}\right)
\end{aligned}
$$

Example 1.3.1. $M=\mathbb{C}, E=E_{+} \oplus E_{-}=\mathbb{C} \oplus \mathbb{C}, D_{z}=\left(\begin{array}{cc}0 & \bar{z} \\ z & 0\end{array}\right), \nabla^{E}=d . A_{t}=\nabla^{E}+\sqrt{t} D=$ $d+\sqrt{t} D$,

$$
A_{t}^{2}=d^{2}+\sqrt{t} d D+t D^{2}=\left(\begin{array}{cc}
t|z|^{2} & 0 \\
0 & t|z|^{2}
\end{array}\right)+\sqrt{t}\left(\begin{array}{cc}
0 & d \bar{z} \\
d z & 0
\end{array}\right)
$$

Since

$$
\begin{gathered}
\frac{1}{n!} \operatorname{Tr}_{s}\left(t|z|^{2}+\sqrt{t}\left(\begin{array}{cc}
0 & d \bar{z} \\
d z & 0
\end{array}\right)\right)^{n}=\frac{1}{n!} \frac{n \cdot(n-1)}{2}\left(t|z|^{2}\right)^{n-2} t \operatorname{Tr}_{s}\left(\begin{array}{cc}
d \bar{z} d z & 0 \\
0 & d z d \bar{z}
\end{array}\right)=-t \frac{\left(t|z|^{2}\right)^{n-2}}{(n-2)!} d z d \bar{z} \\
\operatorname{Tr} \exp \left(-A_{t}^{2}\right)=\sum_{n=0}^{\infty}(-1)^{n} \operatorname{Tr}_{s}\left(A_{t}^{2}\right)=-t \exp \left(-t|z|^{2}\right) d z d \bar{z} \\
\operatorname{ch}\left(A_{t}\right)=\varphi T r_{s} \exp \left(-A_{t}^{2}\right)=\frac{1}{2 \pi i} \cdot(-t) \exp \left(-t|z|^{2}\right) d z d \bar{z}=\frac{t}{\pi} \exp \left(-t|z|^{2}\right) d x d y=P_{\frac{1}{4 t}}(z) d x d y
\end{gathered}
$$

where $p_{t}(x, y)=\frac{1}{4 \pi t} \exp \left(-\frac{|x-y|^{2}}{4 t}\right)$ is the heat kernel of Laplace $\Delta=-\left(\frac{d^{2}}{d x^{2}}+\frac{d^{2}}{d y^{2}}\right)=-4 \frac{\partial^{2}}{\partial z \partial \bar{z}}$ on \mathbb{C}. $\alpha_{t}=\operatorname{ch}\left(A_{t}\right)$ has the following properties:

- $\int_{\mathbb{C}} \alpha_{t}=1$
- $\alpha_{t} \xrightarrow{t \rightarrow 0} 0, \alpha_{t} \xrightarrow{t \rightarrow \infty} \delta_{\{0\}}$, in distributional sense.

We see that: $\left[\alpha_{t}\right]=0=\operatorname{ch}\left(E_{+}\right)-\operatorname{ch}\left(E_{-}\right)($for trivial bundle $\mathrm{E}, \operatorname{ch}(E)=\operatorname{rank}(E)$), this gives no information. But for $t>0, \alpha_{t}$ represents the generator of $H_{c}^{*}(\mathbb{C})$, which is the compact supported cohomology(strictly, the forms are fast decaying). By Poincaré's duality,

$$
H_{c}^{*}\left(\mathbb{R}^{n}\right)=H^{n-*}\left(\mathbb{R}^{n}\right)= \begin{cases}\mathbb{R} & *=n \\ 0 & * \neq n\end{cases}
$$

The isomorphism $H_{c}^{n}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}$ is given by integration over \mathbb{R}^{n}.
Example 1.3.2 (Heat kernel method). H_{1}, H_{2} are Hilbert spaces, a closed linear operator with dense domain $P: H_{1} \longrightarrow H_{2}$ is Fredholm iff $\operatorname{dim} \operatorname{ker} P<\infty$, $\operatorname{dim} \operatorname{coker} P=\operatorname{dim} H_{2} / \operatorname{imP}<\infty$. We can prove that $i m P$ is closed, so coker $P \cong(i m P)^{\perp}=k e r P^{*}$, and

$$
\operatorname{Ind}(P)=\operatorname{dimker} P-\operatorname{dimcoker} P=\operatorname{dimker} P-\operatorname{dimker} P^{*}=\operatorname{dimker} P^{*} P-\operatorname{dimker} P P^{*}
$$

$P^{*} P$ and $P P^{*}$ have the same nonzero eigenvalues, and the corresponding eigenspaces are isomorphic:

$$
\begin{aligned}
E_{P^{*} P}(\lambda) & \longrightarrow E_{P P^{*}}(\lambda) \\
x & \mapsto P x \\
\frac{1}{\lambda} P^{*} y & \leftarrow y
\end{aligned}
$$

We can obtain the heat equation method:

$$
\begin{aligned}
\operatorname{Ind}(P) & =\operatorname{dimker} P^{*} P-\operatorname{dimkerP} P^{*}=\sum_{\lambda} e^{-t \lambda} \operatorname{dim} E_{P^{*} P}(\lambda)-\sum_{\lambda} e^{-t \lambda} \operatorname{dim} E_{P P^{*}}(\lambda) \\
& =\operatorname{Tr} e^{-t P^{*} P}-\operatorname{Tr} e^{-t P P^{*}}=\operatorname{Tr}_{s}\left(e^{-t D^{2}}\right)=\operatorname{ch}(D)
\end{aligned}
$$

where $D=\left(\begin{array}{cc}0 & P^{*} \\ P & 0\end{array}\right)$ is a superconnection on the infinite dimensional Hilbert bundle $H=H_{1} \oplus H_{2} \rightarrow p t$.
We can also use the transgression method to see this:

$$
\frac{\partial}{\partial t} \operatorname{Tr}_{s} e^{-t D^{2}}=-\operatorname{Tr}_{s}\left(D^{2} e^{-t D^{2}}\right)=-\frac{1}{2} \operatorname{Tr}_{s}\left([D, D] e^{-t D^{2}}\right)=-\frac{1}{2} \operatorname{Tr}_{s}\left[D, D e^{-t D^{2}}\right]=0
$$

so $T r_{s} e^{-t D^{2}}$ is a constant. Since $T r_{s} e^{-t D^{2}} \xrightarrow{t \rightarrow \infty} \operatorname{dimker} P^{*} P-\operatorname{dimker} P P^{*}=\operatorname{Ind} P$, the formula follows.

1.4 Chern-Simon class

E is a complex vector bundle, ∇^{E}, ∇^{E} are two connections, $R^{E}=\nabla^{E, 2}, R^{E}=\nabla^{\prime E, 2}$ are their curvatures. P is an invariant polynomial of $G L(n, \mathbb{C})$, i.e. P satisfies:

$$
P\left(T A T^{-1}\right)=P(A), \forall T \in G L(n, \mathbb{C}), A \in M_{n}
$$

$P\left(R^{E}\right)$ is closed and $\left.\left[P\left(R^{E}\right)\right)\right]$ does not depend on ∇^{E}, so

$$
P\left(R^{E}\right)-P\left(R^{E}\right)=d \alpha, \text { for some } \alpha \in \Omega^{\text {odd }}(M) / d \Omega^{\text {even }}(M)
$$

We can have a canonical way to construct α, which is called the Chern-Simon form.
As in the proof of Theorem, choose a curve $C_{t}=\left\{\nabla_{t}^{E}: t \in[0,1]\right\}$ connecting ∇^{E} and $\nabla^{\prime E}$ in \mathcal{A} which is the affine space of connections. $\nabla^{\mathbb{E}}=\nabla_{t}^{E}+d t \frac{\partial}{\partial t}$ is a connection on the bundle $\pi_{M}^{*} E$ over $M \times[0,1]$, where $\pi_{M}: M \times[0,1] \rightarrow M$ is the projection. The curvature $R^{\mathbb{E}}=\nabla^{\mathbb{E}, 2}=\nabla_{t}^{E, 2}+d t \frac{\partial \nabla_{t}^{E}}{\partial t}$.
$P: M_{n} \cong \mathbb{C}^{n^{2}} \rightarrow \mathbb{C}$ is a polynomial of n^{2} variables, we have the Taylor expansion:

$$
P(x+y)=\sum_{|\alpha| \leq \operatorname{deg} P} \frac{\partial^{\alpha} P(x)}{\alpha!} y^{\alpha}, \forall x, y \in \mathbb{C}^{n^{2}}
$$

Note that each term of $R^{\mathbb{E}}$ is a 2-form, which commutes with other forms. So we use the above formula to have:

$$
P\left(R^{\mathbb{E}}\right)=P\left(R_{t}^{E}+d t \frac{\partial}{\partial t} \nabla_{t}^{E}\right)=P\left(R_{t}^{E}\right)+d t<P^{\prime}\left(R_{t}^{E}\right), \frac{\partial}{\partial t} \nabla_{t}^{E}>
$$

where $P^{\prime}(x): \mathbb{C}^{n^{2}} \rightarrow \mathbb{C}$ is the total derivative at $x \in \mathbb{C}^{n^{2}}$. We know that $P\left(R^{\mathbb{E}}\right)$ is closed, so:

$$
0=d_{M \times[0,1]} P\left(R^{\mathbb{E}}\right)=d_{M} P\left(R_{t}^{E}\right)+d t \frac{\partial}{\partial t} P\left(R_{t}^{E}\right)-d t d_{M}<P^{\prime}\left(R_{t}^{E}\right), \frac{\partial}{\partial t} \nabla_{t}^{E}>
$$

so $\frac{\partial}{\partial t} P\left(R_{t}^{E}\right)=d<P^{\prime}\left(R_{t}^{E}\right), \frac{\partial}{\partial t} \nabla_{t}^{E}>$. Define

$$
\tilde{P}=\int_{0}^{1}<P^{\prime}\left(R_{t}^{E}\right), \frac{\partial}{\partial t} \nabla_{t}^{E}>d t
$$

then $d \tilde{P}=P\left(R^{E}\right)-P\left(R^{E}\right)$.
This is a case of integration along the fibre, see appendix. We write:

$$
\tilde{P}=\int_{C_{t}} P\left(R_{t}^{E}\right)=\int_{[0,1]} P\left(R^{\mathbb{E}}\right)
$$

Proposition 1.4.1. The class of \tilde{P} in $\Omega^{\text {odd }} / d \Omega^{\text {even }}$ does not depend on the path connecting ∇^{E} and $\nabla^{\prime E}$.

Proof. If $C_{t}^{\prime}=\left\{\nabla_{t}^{\prime E}\right\}$ is another path, let $\nabla_{s, t}^{E}=(1-s) \nabla_{t}^{E}+s \nabla_{t}^{\prime E}$, define $\nabla^{\mathcal{E}}=d s \frac{\partial}{\partial s}+d t \frac{\partial}{\partial t}+\nabla_{s, t}^{E}$. then $\nabla^{\mathcal{E}}$ is a connection on $\mathcal{E}=p_{1}^{*} E, p_{1}: M \times[0,1]^{2} \rightarrow M$ is the projection. The curvature:

$$
\begin{gathered}
R^{\mathcal{E}}=\nabla^{\mathcal{E}, 2}=\nabla_{s, t}^{E, 2}+d t \frac{\partial}{\partial t} \nabla_{s, t}^{E}+d s \frac{\partial}{\partial s} \nabla_{s, t}^{E}=\nabla_{s, t}^{E, 2}+d t\left((1-s) \frac{\partial}{\partial t} \nabla_{t}^{E}+s \frac{\partial}{\partial t} \nabla_{t}^{\prime E}\right)+d s\left(\nabla_{t}^{E}-\nabla_{t}^{E}\right) \\
\left.R^{\mathcal{E}}\right|_{s=0}=\nabla_{t}^{E, 2}+d t \frac{\partial}{\partial t} \nabla_{t}^{E}=\nabla^{\mathbb{E}, 2},\left.R^{\mathcal{E}}\right|_{s=1}=\nabla_{t}^{\prime E, 2}+d t \frac{\partial}{\partial t} \nabla_{t}^{\prime E}=\nabla^{\mathbb{E}^{\prime}, 2} \\
\left.R^{\mathcal{E}}\right|_{t=0}=\nabla^{E, 2},\left.R^{\mathcal{E}}\right|_{t=1}=\nabla^{E, 2}
\end{gathered}
$$

Note that $\left.R^{\mathcal{E}}\right|_{t=0},\left.R^{\mathcal{E}}\right|_{t=1}$ have no $d s$ term. Using the Stoke's Formula, we have:

$$
\begin{aligned}
d \int_{[0,1]^{2}} P\left(R^{\mathcal{E}}\right) & =\int_{[0,1]^{2}} d P\left(R^{\mathcal{E}}\right)-\left(\int_{I_{1}} P\left(\left.R^{\mathcal{E}}\right|_{s=0}\right)-\int_{I_{3}} P\left(\left.R^{\mathcal{E}}\right|_{s=1}\right)\right) \\
& =-\int_{[0,1]} P\left(R^{\mathbb{E}}\right)+\int_{[0,1]} P\left(R^{\mathbb{E}^{\prime}}\right)=\tilde{P}^{\prime}-\tilde{P}
\end{aligned}
$$

Given $\nabla^{E} \mathcal{Z}^{\prime E}$, by the above proposition, we have constructed a class in $\Omega^{\text {odd }} / d \Omega^{\text {even }}$. We denote it by $\tilde{P}\left(\nabla^{E}, \nabla^{\prime E}\right)$, called Chern-Simon form. It satisfies 3 properties:

1. $d \tilde{P}\left(\nabla^{E}, \nabla^{E}\right)=P\left(R^{E}\right)-P\left(R^{E}\right)$
2. $\tilde{P}\left(\nabla^{E}, \nabla^{E}\right)=0$ Just choose the constant path: $\nabla_{t}^{E} \equiv \nabla^{E}$.
3. $\tilde{P}\left(\nabla^{E}, \nabla^{E}\right)$ is functorial: if $f: N \rightarrow M$ is a dfferentiable mapping, then

$$
\tilde{P}\left(f^{*} \nabla^{E}, f^{*} \nabla^{E}\right)=f^{*} \tilde{P}\left(\nabla^{E}, \nabla^{E}\right)
$$

where $f^{*} \nabla^{E}, f^{*} \nabla^{E}$ is the induced connection on $F=f^{*} E$.
This is because: Choose a curve ∇_{t}^{E} connecting ∇^{E} and $\nabla^{E}, \nabla_{t}^{F}=f^{*} \nabla_{t}^{E}$ is a curve connecting $\nabla^{F}=f^{*} \nabla^{E}$ and $\nabla^{\prime F}=f^{*} \nabla^{E}$. Let $\mathbb{E}=\pi_{M}^{*} E, \nabla^{\mathbb{E}}=\nabla_{t}^{E}+d t \frac{\partial}{\partial t} ; \mathbb{F}=\pi_{N}^{*} F$, $\nabla^{\mathbb{F}}=\nabla_{t}^{F}+d t \frac{\partial}{\partial t}=(f \times i d)^{*} \nabla^{\mathbb{E}}$.

$$
\tilde{P}\left(f^{*} \nabla^{E}, f^{*} \nabla^{\prime E}\right)=\int_{[0,1]} P\left(R^{\mathbb{F}}\right)=\int_{[0,1]} P\left((f \times i d)^{*} R^{\mathbb{E}}\right)=f^{*} \int_{[0,1]} P\left(R^{\mathbb{E}}\right)=f^{*} \tilde{P}\left(\nabla^{E}, \nabla^{\prime E}\right)
$$

In fact, we have:
Proposition 1.4.2. The class $\tilde{P}\left(\nabla^{E}, \nabla^{E}\right)$ is uniquely defined by properties $1-3$
Proof. We need to check the uniqueness. Assume \tilde{P} satisfies the 3 properties. Choose any path ∇_{t}^{E} connecting $\nabla^{E}, \nabla^{\prime E}$. Let $\nabla^{\mathbb{E}}=\nabla_{t}^{E}+d t \frac{\partial}{\partial t}, \nabla_{0}^{\mathbb{E}}=\nabla^{E}+d t \frac{\partial}{\partial t}$ be connections on $\mathbb{E}=\pi_{M}^{*} E$. By property 1, we have $P\left(R^{\mathbb{E}}\right)-P\left(R^{\mathbb{E}}\right)=d \tilde{P}\left(\nabla_{0}^{\mathbb{E}}, \nabla^{\mathbb{E}}\right)$. Integrate this equality along the fibre, and use the Stoke's Formula:

$$
\begin{aligned}
\int_{[0,1]} P\left(R^{\mathbb{E}}\right) & =\int_{[0,1]} P\left(R_{0}^{\mathbb{E}}\right)+\int_{[0,1]} d \tilde{P}\left(\nabla^{\mathbb{E}_{0}}, \nabla^{\mathbb{E}}\right) \\
& =-d \int_{[0,1]} \tilde{P}\left(\nabla_{0}^{\mathbb{E}}, \nabla^{\mathbb{E}}\right)+\left.\tilde{P}\left(\nabla_{0}^{\mathbb{E}}, \nabla^{\mathbb{E}}\right)\right|_{t=1}-\left.\tilde{P}\left(\nabla_{0}^{\mathbb{E}}, \nabla^{\mathbb{E}}\right)\right|_{t=0}
\end{aligned}
$$

Since $\left.\nabla_{0}^{\mathbb{E}}\right|_{t=1}=\nabla^{E},\left.\nabla^{\mathbb{E}}\right|_{t=1}=\nabla^{E}$, by functoriality, $\left.\tilde{P}\left(\nabla_{0}^{\mathbb{E}}, \nabla^{\mathbb{E}}\right)\right|_{t=1}=\tilde{P}\left(\nabla^{E}, \nabla^{E}\right)$. Also $\left.\tilde{P}\left(\nabla_{0}^{\mathbb{E}}, \nabla^{\mathbb{E}}\right)\right|_{t=0}=\tilde{P}\left(\nabla^{E}, \nabla^{E}\right)=0$ by property 2 . So $\tilde{P}\left(\nabla^{E}, \nabla^{E}\right)-\int_{[0,1]} P\left(R^{\mathbb{E}}\right)$ is exact, that is what we require.
Example 1.4.1. λ is a line bundle, $c_{1}(\lambda)$ is the first Chern class, then $\tilde{c}_{1}\left(\nabla^{\lambda}, \nabla^{\prime \lambda}\right)=-\frac{\nabla^{\prime \lambda}-\nabla^{\lambda}}{2 \pi i}$ is the Chern-Simon class. This is because $d\left(-\frac{\nabla^{\prime \lambda}-\nabla^{\lambda}}{2 \pi i}\right)=\frac{i}{2 \pi} r^{\prime \lambda}-\frac{i}{2 \pi i} r^{\lambda}=c_{1}\left(\nabla^{\prime \lambda}\right)-c_{1}\left(\nabla^{\lambda}\right)$, and the other two properties are obvious.

Since $\{$ superconnections $\}$ is an affine space as $\{$ connections $\}$, everything we've done can be carried out on superconnections, so we have:

Proposition 1.4.3. The whole theory of Chern-Simon class extends to superconnections
Proposition 1.4.4. Let A_{t} be a curve of superconnections, then

$$
\frac{\partial}{\partial t} T r_{s} \exp \left(-A_{t}^{2}\right)=-d T r_{s}\left(\frac{\partial A_{t}}{\partial t} \exp \left(-A_{t}^{2}\right)\right)
$$

proof 1. Let $\mathbb{A}=A_{t}+d t \frac{\partial}{\partial t}$ be a superconnection on $\pi_{M}^{*} E$. By simple computation as example 1.3.1, we see that

$$
\operatorname{Tr}_{s} \exp \left(-\mathbb{A}^{2}\right)=\operatorname{Tr}_{s}\left(\exp \left(-A_{t}^{2}\right)\right)-d t \operatorname{Tr}\left(\frac{\partial A_{t}}{\partial t} \exp \left(-A_{t}^{2}\right)\right)
$$

We know that $T r_{s} \exp \left(-\mathbb{A}^{2}\right)$ is a closed even form on $M \times \mathbb{R}$, so

$$
\frac{\partial}{\partial t} \operatorname{Tr}_{s} \exp \left(-A_{t}^{2}\right)=-d T r_{s}\left(\frac{\partial A_{t}}{\partial t} \exp \left(-A_{t}^{2}\right)\right)
$$

proof 2.

$$
\begin{aligned}
\frac{\partial}{\partial t} \operatorname{Tr}_{s} \exp \left(-A_{t}^{2}\right) & =-\operatorname{Tr}_{s}\left(\frac{\partial A_{t}^{2}}{\partial t} \exp \left(-A_{t}^{2}\right)\right)=-\operatorname{Tr}_{s}\left(\left[A_{t}, \frac{\partial A_{t}}{\partial t} \exp \left(-A_{t}^{2}\right)\right]\right) \\
& =-\operatorname{Tr}_{s}\left(\left[A_{t}, \frac{\partial A_{t}}{\partial t} \exp \left(-A_{t}^{2}\right)\right]\right)=-d \operatorname{Tr}_{s}\left(\frac{\partial A_{t}}{\partial t} \exp \left(-A_{t}^{2}\right)\right)
\end{aligned}
$$

We used identities:

- $\frac{\partial A_{t}^{2}}{\partial t}=\frac{\partial A_{t}}{\partial t} A_{t}+A_{t} \frac{\partial A_{t}}{\partial t}=\left[A_{t}, \frac{\partial A_{t}}{\partial t}\right]$ (note both A_{t} and $\frac{\partial A_{t}}{\partial t}$ are odd)
- $d \operatorname{Tr}_{s}(B)=\operatorname{Tr}_{s}[A, B]$, for A a superconnection and $B \in \Gamma(\mathcal{B})$ (see the proof of theorem 1.3.1)

$$
\begin{gathered}
\text { When } A_{t}=\nabla^{E}+\sqrt{t} V, \nabla^{E}=\nabla^{E_{+}} \oplus \nabla^{E_{-}}, V=\left(\begin{array}{cc}
0 & V_{-} \\
V_{+} & 0
\end{array}\right) \in \Gamma\left(E n d(E)^{o d d}\right) \\
\frac{\partial}{\partial t} \operatorname{Tr}_{s} \exp \left(-A_{t}^{2}\right)=-d \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right)
\end{gathered}
$$

We want to integrate this equality on $[0, \infty)$.
Now assume $g^{E}=g^{E_{+}} \oplus g^{E_{-}}$is an Hermitian metric on E, ∇^{E} is a unitary connection, and V is self-adjoint, so $V_{-}=V_{+}^{*}$.
Proposition 1.4.5. $\alpha_{t}=\operatorname{ch}\left(A_{t}\right)$ is a real form.
Proof. We define an adjoint operator $*$ on $\mathcal{B}=\wedge^{*} T^{*} M \hat{\otimes} \operatorname{End}(E)$:

1. $\forall \omega \in \wedge_{\mathbb{C}}^{1} T^{*} M, \omega^{*}=-\bar{\omega}$
2. $\forall A \in \operatorname{End}(E), A^{*}$ is the adjoint of A
3. $\forall f, g \in \mathcal{B},(f \cdot g)^{*}=g^{*} \cdot f^{*}$.

This is well defined. Now $A_{t}^{2}=\nabla^{E, 2}+\sqrt{t} \nabla^{E} V+t V^{2} .\left(t V^{2}\right)^{*}=t V^{2}$, since V is self-adjoint. $\forall X \in T M, \nabla_{X} V$ is also self-adjoint, so $\left(\nabla^{E} V\right)^{*}=\left(e^{i} \nabla_{e_{i}}^{E} V\right)^{*}=\nabla_{e_{i}}^{E} V \cdot\left(-e^{i}\right)=e^{i} \nabla_{e_{i}}^{E} V=\nabla^{E} V$. Since ∇^{E} is unitary, $R^{E}(X, Y)=\nabla^{E, 2}(X, Y)$ is skew-Hermitian w.r.t. $g^{E}, \forall X, Y \in T M$, so

$$
\left(\nabla^{E, 2}\right)^{*}=\left(e^{i} \wedge e^{j} R^{E}\left(e_{i}, e_{j}\right)\right)^{*}=-R^{E}\left(e_{i}, e_{j}\right)\left(-e^{j}\right) \cdot\left(-e^{i}\right)=e^{i} \wedge e^{j} R^{E}\left(e_{i}, e_{j}\right)=\nabla^{E, 2}
$$

So we see $\left(A_{t}^{2}\right)^{*}=A_{t}^{2}$, also $\left(\exp \left(-A_{t}^{2}\right)\right)^{*}=\exp \left(-A_{t}^{2}\right)$. Note that $\forall \omega A \in \mathcal{B}_{\text {even }}$,

$$
(\omega A)^{*}=A^{*} \omega^{*}=A^{*}(-1)^{\operatorname{deg} \omega} \cdot(-1)^{\frac{\operatorname{deg} \omega \cdot(\operatorname{deg} \omega-1)}{2}} \bar{\omega}=(-1)^{\frac{\operatorname{deg} \omega \cdot(\operatorname{deg} \omega-1)}{2}} \bar{\omega} A^{*}
$$

so

$$
\overline{\operatorname{Tr}_{s}(\omega A)}=\operatorname{Tr}_{s}\left(\bar{\omega} A^{*}\right)=(-1)^{\frac{\operatorname{deg} \omega \cdot(\operatorname{deg} \omega-1)}{2}} \operatorname{Tr}_{s}\left((\omega A)^{*}\right)=\left\{\begin{array}{lll}
\operatorname{Tr}_{s}\left((\omega A)^{*}\right) & \text { deg } \omega \equiv 0 & \bmod 4 \\
-\operatorname{Tr}_{s}\left((\omega A)^{*}\right) & \text { deg } \omega \equiv 2 & \bmod 4 \\
0 & \text { otherwise }
\end{array}\right.
$$

So $\left(T r_{s} \exp \left(-A_{t}^{2}\right)\right)^{(4 k)}$ is real, and $\left(T r_{s} \exp \left(-A_{t}^{2}\right)\right)^{(4 k+2)}$ is purely imaginary, then it's clear $\varphi T r_{s} \exp \left(-A_{t}^{2}\right)=\operatorname{ch}\left(A_{t}\right)$ is real.

Remark 5. Similarly, $\forall \omega A \in \mathcal{B}_{\text {odd }},(\omega A)^{*}=(-1)^{\frac{\operatorname{deg} \omega \cdot(\operatorname{deg} \omega+1)}{2}} \bar{\omega} A^{*}$, so $\forall B \in \mathcal{B}_{\text {odd }}$ satisfying $B^{*}=B$, we have $\left(\operatorname{Tr}_{s}(B)\right)^{(4 k+1)}$ is purely imaginary, and $\operatorname{Tr}_{s}(B)^{(4 k+3)}$ is real, then $\frac{1}{\sqrt{2 \pi i}} \varphi \operatorname{Tr}_{s}(B)$ is real.
Proposition 1.4.6. Assume kerV has locally constant dimensions, then kerV is a smooth subbundle of E.

Proof. Since $k e r V$ has locally constant dimensions, $\forall x \in M, \exists \varepsilon>0$, and a neighborhood $U \ni x$, s.t. $\forall y \in U, V_{y}: E_{y} \rightarrow E_{y}$ has no nonzero eigenvalues in the disk $B(0, \varepsilon)=\{z \in \mathbb{C}:|z| \leq \varepsilon\}$. Let

$$
P^{k e r V}=\frac{1}{2 \pi i} \int_{\partial B(0, \varepsilon)} \frac{d \lambda}{\lambda-V}
$$

then $P^{k e r V}: E \rightarrow E$ is a smooth projection onto ker V. We have the direct sum:

$$
E=P^{k e r V}(E) \oplus\left(1-P^{k e r V}\right)(E)=k e r V \oplus(\operatorname{ker} V)^{\perp}=k e r V \oplus i m V
$$

Since $\operatorname{ker} V=\operatorname{ker} V_{+} \oplus \operatorname{ker} V_{-}$, and $\operatorname{dimker} V_{-}=\operatorname{dim}\left(i m V_{+}\right)^{\perp}=\operatorname{dim} E_{-}-\left(\operatorname{dim} E_{+}-\operatorname{dimker} V_{+}\right)$,

$$
\operatorname{dimker} V_{+}+\operatorname{dimker} V_{-}=\operatorname{dimker} V, \operatorname{dimker} V_{+}-\operatorname{dimker} V=\operatorname{dim} E_{+}-\operatorname{dim} E_{-}
$$

So dimker V_{+}, $\operatorname{dimker} V_{-}$is locally constant, by the proposition $\operatorname{ker} V_{ \pm}$is subbundles of $E_{ \pm}$.
Let $g^{k e r V}$ be the metric on $\operatorname{ker} V$ induced by g^{E}, and $\nabla^{k e r V}=P^{k e r V} \nabla^{E}$ be the induced connection on $\operatorname{ker} V$ by orthogonal projection, then

$$
\nabla^{k e r V}=P^{k e r V}\left(\nabla^{E_{+}} \oplus \nabla^{E_{-}}\right)=P^{k e r V_{+}} \nabla^{E_{+}} \oplus P^{k e r V_{-}} \nabla^{E_{-}}=\nabla^{k e r V_{+}} \oplus \nabla^{k e r V_{-}}
$$

Proposition 1.4.7. $\operatorname{ch}(E)=\operatorname{ch}(k e r V)$ in $H^{*}(M)$, where $\operatorname{ch}(E)=\operatorname{ch}\left(E_{+}\right)-\operatorname{ch}\left(E_{-}\right)$, $\operatorname{ch}(\operatorname{ker} V)=\operatorname{ch}\left(\operatorname{ker} V_{+}\right)-\operatorname{ch}\left(\operatorname{ker} V_{-}\right)$.

Proof. We have an exact sequence of vector bundles:

since we can take any connection to compute $\operatorname{ch}(E)$, we let

$$
\nabla^{E_{+}}=\nabla^{k e r V_{+}} \oplus \nabla^{\left(k e r V_{+}\right)^{\perp}}, \nabla^{E_{-}}=\nabla^{\left(k e r V_{-}\right)^{\perp}} \oplus \nabla^{k e r V_{-}}
$$

where $\nabla^{\left(k e r V_{+}\right)^{\perp}}=V_{+}^{*} \nabla^{\left(k e r V_{-}\right)^{\perp}}$, then

$$
\begin{aligned}
\operatorname{ch}(E) & =\operatorname{ch}\left(E_{+}\right)-\operatorname{ch}\left(E_{-}\right)=\left[\operatorname{ch}\left(\nabla^{E_{+}}\right)\right]-\left[\operatorname{ch}\left(\nabla^{E_{-}}\right)\right] \\
& =\left[\operatorname{ch}\left(\nabla^{\operatorname{ker} V_{+}}\right)\right]-\left[\operatorname{ch}\left(\nabla^{k e r V_{-}}\right)\right]
\end{aligned}
$$

Theorem 1.4.1. When $t \rightarrow+\infty$, we have asymptotic formula:

$$
\operatorname{ch}\left(A_{t}\right)=\operatorname{ch}\left(\nabla^{k e r V}\right)+O\left(\frac{1}{\sqrt{t}}\right)
$$

uniformly on compact sets.
Proof. We first compute $\nabla^{k e r V, 2}$. Consider the orthogonal splitting $E=k e r V \oplus(k e r V)^{\perp}, \nabla^{E}=$ $\nabla^{\text {split }}+A$, where $\nabla^{\text {split }}=\nabla^{k e r V} \oplus \nabla^{(k e r V)^{\perp}}$. In blocked matrix with respect to the new splitting, because ∇^{E} is unitary,

$$
\nabla^{E}=\left(\begin{array}{cc}
\nabla^{k e r V} & 0 \\
0 & \nabla^{(k e r V)^{\perp}}
\end{array}\right)+\left(\begin{array}{cc}
0 & -B^{*} \\
B & 0
\end{array}\right)
$$

Because $\forall s \in \Gamma(\operatorname{ker} V), X \in T M$,

$$
\left(\nabla_{X}^{E} V\right) s=\nabla_{X}^{E}(V s)-V\left(\nabla_{X}^{E} s\right)=-V\left(\nabla_{X}^{E} s\right) \in i m V
$$

$\nabla^{E} V$ is a 1-form with value in $\operatorname{End}(E)$, which maps $\operatorname{ker} V$ into $(\operatorname{ker} V)^{\perp}=i m V$, and $P^{(k e r V)^{\perp}} \nabla_{X}^{E} s=-V^{-1}\left(\nabla_{X}^{E} V\right) s$, where $V:(\operatorname{ker} V)^{\perp} \rightarrow i m V=(k e r V)^{\perp}$ is an isomorphism. So

$$
B(X)=P^{(k e r V)^{\perp}} \nabla_{X}^{E} \cdot P^{k e r V}=-V^{-1}\left(\nabla_{X}^{E} V\right) P^{k e r V}, B(X)^{*}=-P^{k e r V} \cdot \nabla_{X}^{E} V \cdot V^{-1}
$$

or in our sign rule

$$
B=V^{-1} \cdot\left(\nabla^{E} V\right) \cdot P^{k e r V}, B^{*}=-P^{k e r V} \nabla^{E} V \cdot V^{-1}
$$

so

$$
A \triangleq\left(\begin{array}{cc}
0 & -B^{*} \\
B & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & P^{k e r V} \nabla^{E} V \cdot V^{-1} \\
V^{-1} \nabla^{E} V & 0
\end{array}\right)
$$

$\nabla^{E, 2}=\nabla^{\text {split, } 2}+\nabla^{\text {split }} A+A^{2}$, since $\nabla^{\text {split }} A$ interchanges ker V and $(\operatorname{ker} V)^{\perp}$,

$$
\begin{aligned}
\nabla^{k e r V, 2} & =P^{k e r V} \nabla^{E, 2} P^{k e r V}-P^{k e r V} A^{2} P^{k e r V} \\
& =P^{k e r V}\left(\nabla^{E, 2}-\nabla^{E} V \cdot V^{-2} \cdot \nabla^{E} V\right) P^{k e r V}
\end{aligned}
$$

we next take the limit. $A_{t}^{2}=t V^{2}+\sqrt{t} \nabla^{E} V+\nabla^{E, 2} \in \Gamma\left(\mathcal{B}_{\text {even }}\right), \sqrt{t} \nabla^{E} V+\nabla^{E, 2}$ is nilpotent in \mathcal{B} because they contain Grassmannian variables. So the spectrum of A_{t}^{2} in \mathcal{B} is the same as $t V^{2}$. Since $t V^{2}$ is positive, $S p\left(A_{t}^{2}\right)=S p\left(t V^{2}\right) \subset \mathbb{R}_{+}$. We choose a contour C as in the figure and use the Cauchy integral formula:

$$
\exp \left(-A_{t}^{2}\right)=\frac{1}{2 \pi i} \int_{C} \frac{\exp (-\lambda) d \lambda}{\lambda-A_{t}^{2}}
$$

We can compute $\left(\lambda-A_{t}^{2}\right)^{-1}$ by the following
Lemma 1. $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ is a blocked matrix, then

$$
(\lambda I-M)^{-1}=\left(\begin{array}{cc}
\alpha & \alpha B(\lambda-D)^{-1} \\
(\lambda-D)^{-1} C \alpha & (\lambda-D)^{-1}\left(1+C \alpha B(\lambda-D)^{-1}\right)
\end{array}\right)
$$

where

$$
\alpha=\left(\lambda-A-B(\lambda-D)^{-1} C\right)^{-1}
$$

the proof is just computation.

$$
\begin{aligned}
A_{t}^{2}= & \left(\begin{array}{cc}
0 & 0 \\
0 & t V^{2}
\end{array}\right)+\sqrt{t}\left(\begin{array}{cc}
0 & P^{k e r V} \nabla^{E} V P^{(k e r V)^{\perp}} \\
P^{(k e r V)^{\perp}} \nabla^{E} V P^{k e r V} & P^{(k e r V)^{\perp} \nabla^{E} V P^{(k e r V)^{\perp}}}
\end{array}\right)+ \\
& \left(\begin{array}{cc}
P^{k e r V} \nabla^{E, 2} P^{k e r V} & P^{k e r V} \nabla^{E, 2} P^{(k e r V)^{\perp}} \\
P^{(k e r V)^{\perp}} \nabla^{E, 2} P^{k e r V} & P^{(k e r V)^{\perp}} \nabla^{E, 2} P^{(k e r V)^{\perp}}
\end{array}\right) \\
& =\left(\begin{array}{cc}
P^{k e r V} \nabla^{E, 2} P^{k e r V} & \sqrt{t} P^{k e r V} \nabla^{E} V P^{(k e r V)^{\perp}}+O(1) \\
\sqrt{t} P^{(k e r V)^{\perp}} \nabla^{E} V P^{k e r V}+O(1) & t V^{2}+O(\sqrt{t})
\end{array}\right)
\end{aligned}
$$

Using the lemma, we have

$$
\begin{aligned}
& \alpha_{t}=\left[\lambda-P^{k e r V} \nabla^{E, 2} P^{k e r V}-\left(\sqrt{t} P^{k e r V} \nabla^{E} V P^{(k e r V)^{\perp}}+O(1)\right)\left(\lambda-t V^{2}-O(\sqrt{t})\right)^{-1}\right. \\
& \quad\left(\sqrt{t} P^{\left.\left.(k e r V)^{\perp} \nabla^{E} V P^{k e r V}+O(1)\right)\right]^{-1}}\right. \\
&=\left(\lambda-P^{k e r V}\left(\nabla^{E, 2}-\nabla^{E} V V^{-2} \nabla^{E} V\right) P^{k e r V}\right)^{-1}+O\left(\frac{1}{\sqrt{t}}\right) \\
&=\left(\lambda-\nabla^{k e r V, 2}\right)^{-1}+O\left(\frac{1}{\sqrt{t}}\right)
\end{aligned}
$$

and estimates for other blocks:

$$
\begin{aligned}
& \begin{array}{ccccrccc}
\alpha & B & (\lambda-D)^{-1} & =O\left(\frac{1}{\sqrt{t}}\right), & (\lambda-D)^{-1} & (1+C & \alpha & B \\
\downarrow & \left.\downarrow-D)^{-1}\right)=O\left(\frac{1}{t}\right) \\
1 & \sqrt{t} & t^{-1} & & t^{-1} & \sqrt{t} & 1 & \sqrt{t} \\
& & t^{-1}
\end{array} \\
& (\lambda-D)^{-1} C \alpha=O\left(\frac{1}{\sqrt{t}}\right) \\
& \text { So }\left(\lambda-A_{t}^{2}\right)^{-1}=\left(\begin{array}{cc}
\left(\lambda-\nabla^{k e r V, 2}\right)^{-1} & 0 \\
0 & 0
\end{array}\right)+O\left(\frac{1}{\sqrt{t}}\right) \text {, and } \\
& \exp \left(-A_{t}^{2}\right)=\frac{1}{2 \pi i} \int_{C} \frac{\exp (-\lambda)}{\lambda-A_{t}^{2}} d \lambda=\frac{1}{2 \pi i} \int_{C} \frac{\exp (-\lambda)}{\lambda-\nabla^{\operatorname{ker} V, 2}} P^{k e r V}+O\left(\frac{1}{\sqrt{t}}\right) \\
& \operatorname{ch}\left(A_{t}\right)=\operatorname{ch}\left(\nabla^{k e r V}\right)+O\left(\frac{1}{\sqrt{t}}\right)
\end{aligned}
$$

as $t \rightarrow+\infty$, uniformly on compact sets of M.

Proposition 1.4.8.

$$
\operatorname{Tr}_{s}\left(\sqrt{t} V \exp \left(-A_{t}^{2}\right)\right)=O\left(\frac{1}{t}\right), \text { as } t \rightarrow+\infty
$$

Proof. Consider the projection $\pi: M \times(0, \infty) \rightarrow M, \nabla^{\mathbb{E}}=\nabla^{E}+d a \frac{\partial}{\partial a}$ is a connection on $\mathbb{E}=\pi^{*} E$. Let $\mathbb{A}_{t}=\nabla^{\mathbb{E}}+\sqrt{t} a V$ be a superconnection.

$$
\mathbb{A}_{t}^{2}=\nabla^{E, 2}+t a^{2} V^{2}+\sqrt{t} a \nabla^{E} V+d a \sqrt{t} V
$$

So

$$
\operatorname{Tr}_{s}\left(\exp \left(-\mathbb{A}_{t}^{2}\right)\right)=\operatorname{Tr}_{s}\left(\exp \left(-A_{t}(a)^{2}\right)\right)-d a \operatorname{Tr}_{s}\left(\sqrt{t} V \exp \left(-A_{t}(a)^{2}\right)\right)
$$

where $A_{t}(a)=\nabla^{E}+\sqrt{t} a V$.
Note $\operatorname{ker}(a V)=\pi^{*} \operatorname{ker} V$, by the above theorem, $\operatorname{Tr}_{s}\left(\exp \left(-A_{t}(a)^{2}\right)\right)=\operatorname{Tr}_{s}\left(\exp \left(-\nabla^{k e r V, 2}\right)\right)+O\left(\frac{1}{\sqrt{t}}\right)$, as $t \rightarrow+\infty$, so

$$
\operatorname{Tr}_{s}\left(\exp \left(-\mathbb{A}_{t}^{2}\right)\right)=\operatorname{Tr}_{s}\left(\exp \left(-\nabla^{k e r V, 2}\right)\right)-d a \operatorname{Tr}_{s}\left(\sqrt{t} V \exp \left(-A_{t}(a)^{2}\right)\right)+O\left(\frac{1}{\sqrt{t}}\right)
$$

On the other hand, by the theorem again,

$$
\operatorname{Tr}_{s}\left(\exp \left(-\mathbb{A}_{t}^{2}\right)\right)=\operatorname{Tr}_{s}\left(\exp \left(-\nabla^{k e r(a V), 2}\right)\right)+O\left(\frac{1}{\sqrt{t}}\right)=\operatorname{Tr}_{s}\left(\exp \left(-\nabla^{k e r V, 2}\right)\right)+O\left(\frac{1}{\sqrt{t}}\right)
$$

We used the fact: $\nabla^{k e r(a V)}=\pi^{*} \nabla^{k e r V}+d a \frac{\partial}{\partial a}$, and so $\nabla^{k e r(a V), 2}=\pi^{*} \nabla^{k e r V, 2}$. Comparing the above two equation, and note that $A_{t}(1)=A_{t}$, we see that

$$
\operatorname{Tr}_{s}\left(\sqrt{t} V \exp \left(-A_{t}^{2}\right)\right)=O\left(\frac{1}{\sqrt{t}}\right)
$$

By the above proposition, we have

$$
\frac{\partial}{\partial t} \operatorname{Tr}_{s} \exp \left(-A_{t}^{2}\right)=-d \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right)= \begin{cases}O\left(\frac{1}{t^{\frac{3}{2}}}\right) & \text { as } t \rightarrow+\infty \\ O\left(\frac{1}{\sqrt{t}}\right) & \text { as } t \rightarrow 0\end{cases}
$$

So we can integrate it from 0 to $+\infty$.
Definition 1.4.1. $\beta=\frac{1}{\sqrt{2 \pi i}} \int_{0}^{+\infty} \varphi \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right) d t$

Theorem 1.4.2. β is an odd real form and

$$
d \beta=\operatorname{ch}\left(\nabla^{E}\right)-\operatorname{ch}\left(\nabla^{k e r V}\right)
$$

Proof. By the Remark following proposition 1.4.5, β is an odd real form. By theorem 1.4.1 and proposition 1.4.4

$$
\begin{aligned}
\operatorname{Tr}_{s}\left(\exp \left(-\nabla^{k e r V, 2}\right)\right)-\operatorname{Tr}_{s}\left(\exp \left(-\nabla^{E, 2}\right)\right) & =\int_{0}^{\infty} \frac{\partial}{\partial t} \operatorname{Tr}_{s}\left(\exp \left(-A_{t}^{2}\right)\right) d t \\
& =-d \int_{0}^{\infty} \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right) d t
\end{aligned}
$$

Since $\varphi \circ d=\frac{1}{\sqrt{2 i \pi}} d \circ \varphi$,

$$
\varphi \operatorname{Tr}_{s}\left(\exp \left(-\nabla^{E, 2}\right)-\varphi \operatorname{Tr}_{s}\left(\exp \left(-\nabla^{k e r V, 2}\right)\right)=\frac{1}{\sqrt{2 i \pi}} d \int_{0}^{\infty} \varphi \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right) d t\right.
$$

i.e. $\operatorname{ch}\left(\nabla^{E}\right)-\operatorname{ch}\left(\nabla^{\operatorname{ker} V}\right)=d \beta$.

We will show β is a Chern-Simon class. First we generalize the definition.
Theorem 1.4.3. Given an exact sequence of vector bundles:

$$
E: 0 \longrightarrow E_{1} \xrightarrow{v_{1}} E_{2} \xrightarrow{v_{2}} \cdots \xrightarrow{v_{n-1}} E_{n} \longrightarrow 0
$$

and connections $\nabla^{E}=\left\{\nabla^{E_{i}}\right\}$ on $E=\left\{E_{i}, v_{i}\right\}$, there is a unique way to associate a class $\widetilde{c h}\left(\nabla^{E}\right)$ in $\Omega^{\text {odd }}(M) / d \Omega^{\text {even }}$, which satisfies 3 properties:

1. $\widetilde{d c h}(E)=\operatorname{ch}\left(\nabla^{E_{1}}\right)-\operatorname{ch}\left(\nabla^{E_{2}}\right)+\ldots+(-1)^{n-1} \operatorname{ch}\left(\nabla^{E_{n}}\right)=: \operatorname{ch}\left(\nabla^{E}\right)$
2. If the sequence $\left(E, \nabla^{E}\right)$ splits, $\widetilde{c h}\left(\nabla^{E}\right)=0$. " $\left.E, \nabla^{E}\right)$ splits" means:

$$
E: 0 \longrightarrow E_{1} \xrightarrow{v_{1}} E_{2}^{\prime} \oplus E_{2}^{\prime \prime} \xrightarrow{v_{2}} \cdots \xrightarrow{v_{n-1}} E_{n} \longrightarrow 0
$$

$$
\text { and } \nabla^{E_{i}}=\nabla^{E_{i}^{\prime}} \oplus \nabla^{E_{i}^{\prime \prime}}, \nabla^{E_{i}^{\prime \prime}}=v_{i}^{*} \nabla^{E_{i+1}^{\prime}}, \text { where } E_{i}^{\prime}=i m v_{i-1}=\operatorname{kerv}_{i}, E_{i}^{\prime \prime} \cong E_{i} / E_{i}^{\prime}
$$

3. $\widetilde{c h}\left(\nabla^{E}\right)$ is functorial.

Proof. Fix a splitting: $E_{i}=E_{i}^{\prime} \oplus E_{i}^{\prime \prime}, \nabla^{E_{i}, \text { split }}=\nabla^{E_{i}^{\prime}} \oplus \nabla^{E_{i}^{\prime \prime}}, \nabla^{E_{i}^{\prime \prime}}=v_{i}^{*} \nabla^{E_{i+1}^{\prime}}$. Let

$$
\alpha\left(\nabla^{E}\right)=\sum_{i=1}^{n}(-1)^{i-1} \widetilde{\operatorname{ch}}\left(\nabla^{E_{i}, s p l i t}, \nabla^{E_{i}}\right)
$$

where $\widetilde{c h}\left(\nabla^{E}, \nabla^{\prime E}\right)$ is the Chern-Simon class defined before(see propositin 1.4.2). We'll show $\alpha\left(\nabla^{E}\right)$ satisfies the 3 properties.

1. Since $\sum_{i=1}^{n}(-1)^{i-1} \operatorname{ch}\left(\nabla^{E_{i}, \text { split }}\right)=0$,

$$
\begin{aligned}
d \alpha\left(\nabla^{E}\right) & =\sum_{i=1}^{n}(-1)^{i-1} \widetilde{\operatorname{ch}}\left(\nabla^{E_{i}, \text { split }}, \nabla^{E_{i}}\right)=\sum_{i=1}^{n}(-1)^{i-1}\left(\operatorname{ch}\left(\nabla^{E_{i}}\right)-\operatorname{ch}\left(\nabla^{E_{i}, \text { split }}\right)\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1} \operatorname{ch}\left(\nabla^{E_{i}}\right)=\operatorname{ch}\left(\nabla^{E}\right)
\end{aligned}
$$

2. First consider another splitting of the kind: $E_{i}=E_{i}^{\prime} \tilde{\oplus} \tilde{E}_{i}^{\prime \prime}, \nabla^{E_{i}}=\nabla^{E_{i}^{\prime}} \tilde{\oplus} \nabla^{\tilde{E}_{i}^{\prime \prime}}, \nabla^{\tilde{E}_{i}^{\prime \prime}}=v_{i}^{*} \nabla^{E_{i}^{\prime}}$, i.e. the bundles have a new splitting $E_{i}=E_{i}^{\prime} \tilde{\oplus} E_{i}^{\prime \prime}$, but we use the fixed $\nabla^{E_{i}^{\prime}}$. They together determine the new splitting connections $\nabla^{E_{i}}=\nabla^{E_{i}^{\prime}} \tilde{\oplus} \nabla^{\tilde{E}_{i}^{\prime \prime}}$.

Claim 1. $\widetilde{c h}\left(\nabla^{E_{i}, \text { split }}, \nabla^{E_{i}}\right)=0$.
proof of the Claim. Let $\tilde{P}^{E_{i}^{\prime}}$ and $\tilde{P}^{E_{i}^{\prime \prime}}$ be the projection w.r.t this new splitting, we have isomorphisms

$$
\left(E_{i}^{\prime \prime}, \nabla^{E_{i}^{\prime \prime}}\right) \stackrel{\left.\tilde{P}^{\tilde{E}_{i}^{\prime \prime}}\right|_{E_{i}^{\prime \prime}}: E_{i}^{\prime \prime} \xlongequal{\leftrightarrows} \tilde{E}_{i}^{\prime \prime}}{\left.P^{E_{i}^{\prime \prime}}\right|_{\tilde{E}_{i}^{\prime \prime}}: \tilde{E}_{i}^{\prime \prime} \cong E_{i}^{\prime \prime}}\left(\tilde{E}_{i}^{\prime \prime}, \nabla^{\tilde{E}_{i}^{\prime \prime}}\right)
$$

So $\nabla^{E_{i}}=\nabla^{E_{i}^{\prime}} \tilde{\oplus}\left(P^{E_{i}^{\prime \prime}}\right)^{*}\left(\nabla^{E_{i}^{\prime \prime}}\right) . \forall s \in E, s=u+v=\tilde{u}+\tilde{v}$ is decompositions w.r.t the two splittings, we calculate

$$
\begin{aligned}
P^{E_{i}^{\prime}}\left(\nabla^{E_{i}^{\prime}} \tilde{\oplus}\left(P^{E_{i}^{\prime \prime}}\right)^{*}\left(\nabla^{E_{i}^{\prime \prime}}\right)\right) P^{E_{i}^{\prime}} s & =P^{E_{i}^{\prime}} \nabla^{E_{i}^{\prime}} \tilde{P}^{E_{i}^{\prime}} P^{E_{i}^{\prime}} s+P^{E_{i}^{\prime}}\left(P^{E_{i}^{\prime \prime}}\right)^{-1} \nabla^{E_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}} \tilde{P}^{\tilde{E}_{i}^{\prime \prime}} P^{E_{i}^{\prime}} s \\
& =\nabla^{E_{i}^{\prime}} P^{E_{i}^{\prime}} s \\
P^{E_{i}^{\prime \prime}}\left(\nabla^{E_{i}^{\prime}} \tilde{\oplus}\left(P^{E_{i}^{\prime \prime}}\right)^{*}\left(\nabla^{E_{i}^{\prime \prime}}\right)\right) P^{E_{i}^{\prime \prime}} s & =P^{E_{i}^{\prime \prime}} \nabla^{E_{i}^{\prime}} \tilde{P}_{i}^{E_{i}^{\prime}} P^{E_{i}^{\prime \prime}} s+P^{E_{i}^{\prime \prime}}\left(\left(P^{E_{i}^{\prime \prime}}\right)^{-1} \nabla^{E_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}}\right) \tilde{P}^{\tilde{E}_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}} s \\
& =\nabla^{E_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}} s \\
P^{E_{i}^{\prime \prime}}\left(\nabla^{E_{i}^{\prime}} \tilde{\oplus}\left(P^{E_{i}^{\prime \prime}}\right)^{*}\left(\nabla^{E_{i}^{\prime \prime}}\right)\right) P^{E_{i}^{\prime}} s & =P^{E_{i}^{\prime \prime}} \nabla^{E_{i}^{\prime}} \tilde{P}^{E_{i}^{\prime}} P^{E_{i}^{\prime}} s+P^{E_{i}^{\prime \prime}}\left(P^{E_{i}^{\prime \prime}}\right)^{-1} \nabla^{E_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}} \tilde{P}^{\tilde{E}_{i}^{\prime \prime}} P^{E_{i}^{\prime}} s=0 \\
P^{E_{i}^{\prime}}\left(\nabla^{E_{i}^{\prime}} \tilde{\oplus}\left(P^{E_{i}^{\prime \prime}}\right)^{*}\left(\nabla^{E_{i}^{\prime \prime}}\right)\right) P^{E_{i}^{\prime \prime}} s & =P^{E_{i}^{\prime}} \nabla^{E_{i}^{\prime}} \tilde{P}^{E_{i}^{\prime}} P^{E_{i}^{\prime \prime}} s+P^{E_{i}^{\prime}}\left(P^{E_{i}^{\prime \prime}}\right)^{-1} \nabla^{E_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}} \tilde{P}^{\tilde{E}_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}} s \\
& =\nabla^{E_{i}^{\prime}} \tilde{P}_{i}^{E_{i}^{\prime}} P_{i}^{E_{i}^{\prime}} s=: B
\end{aligned}
$$

In the above calculation, we use some identities, like

$$
\tilde{P}^{E_{i}^{\prime}} P^{E_{i}^{\prime}}=P^{E_{i}^{\prime}}, \tilde{P}^{E_{i}^{\prime \prime}} P^{E_{i}^{\prime}}=0, \tilde{P}^{\tilde{E}_{i}^{\prime \prime}} P^{E_{i}^{\prime \prime}}=P^{E_{i}^{\prime \prime}}, P^{E_{i}^{\prime}}\left(P^{E_{i}^{\prime \prime}}\right)^{-1}=P^{E_{i}^{\prime}} \tilde{P}^{\tilde{E}_{i}^{\prime \prime}}=0
$$

So with respect to the initial splitting $E_{i}=E_{i}^{\prime} \oplus E_{i}^{\prime \prime}$, we have

$$
\nabla^{E_{i}}=\left(\begin{array}{cc}
\nabla^{E_{i}^{\prime}} & 0 \\
0 & \nabla^{E_{i}^{\prime \prime}}
\end{array}\right)+\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right):=\nabla^{E_{i}, s p l i t}+D
$$

Let $\nabla_{t}^{E_{i}}=\nabla^{E_{i}, \text { split }}+t D$ be a curve connecting $\nabla^{E_{i}, \text { split }}$ and $\nabla^{E_{i}}$. It's easy to see that

$$
\operatorname{ch}\left(\nabla_{t}^{E_{i}}\right) \equiv \operatorname{ch}\left(\nabla^{E_{i}, s p l i t}\right)
$$

So $\widetilde{c h}\left(\nabla^{E_{i}, \text { split }}, \nabla^{E_{i}}\right)=0$.
Now we consider the general splitting $E_{i}=E_{i}^{\prime} \tilde{\oplus} \tilde{E}_{i}^{\prime \prime}, \tilde{\nabla}^{E_{i}}=\tilde{\nabla} E_{i}^{\prime} \tilde{\oplus} \tilde{\nabla}^{\tilde{E}_{i}^{\prime \prime}}, \tilde{\nabla}^{\tilde{E}_{i}^{\prime \prime}}=v_{i}^{*} \tilde{\nabla} E_{i+1}^{\prime}$. From the definition, we can see that

$$
\widetilde{c h}\left(\nabla^{E_{i}, s p l i t}, \tilde{\nabla}^{E_{i}}\right)=\widetilde{c h}\left(\nabla^{E_{i}, s p l i t}, \nabla^{E_{i}}\right)+\widetilde{c h}\left(\nabla^{E_{i}}, \tilde{\nabla}^{E_{i}}\right)
$$

By the above construction, we have

$$
\begin{aligned}
\widetilde{c h}\left(\nabla^{E_{i}}, \tilde{\nabla}^{E_{i}}\right) & =\widetilde{\operatorname{ch}}\left(\nabla^{E_{i}^{\prime}} \tilde{\oplus} \nabla^{\tilde{E}_{i}^{\prime \prime}}, \tilde{\nabla}^{E_{i}^{\prime}} \tilde{\oplus} \tilde{\nabla}^{\tilde{E}_{i}^{\prime \prime}}\right) \\
& =\widetilde{\operatorname{ch}}\left(\nabla^{E_{i}^{\prime}}, \tilde{\nabla}^{E_{i}^{\prime}}\right)+\widetilde{\operatorname{ch}}\left(v_{i}^{*} \nabla^{E_{i+1}^{\prime}}, v_{i}^{*} \tilde{\nabla}^{E_{i+1}^{\prime}}\right) \\
& =\widetilde{\operatorname{ch}}\left(\nabla^{E_{i}^{\prime}}, \tilde{\nabla}^{E_{i}^{\prime}}\right)+\widetilde{\operatorname{ch}}\left(\nabla^{E_{i+1}^{\prime}}, \tilde{\nabla}^{E_{i+1}^{\prime}}\right)
\end{aligned}
$$

Using the Claim,

$$
\begin{aligned}
\alpha\left(\tilde{\nabla}^{E}\right) & =\sum_{i=1}^{n}(-1)^{i-1} \widetilde{\operatorname{ch}}\left(\nabla^{E_{i}, \text { split }}, \tilde{\nabla}^{E_{i}}\right) \\
& \left.=\sum_{i=1}^{n}(-1)^{i-1} \widetilde{(c h}\left(\nabla^{E_{i}, s p l i t}, \nabla^{E_{i}}\right)+\widetilde{c h}\left(\nabla^{E_{i}}, \tilde{\nabla}^{E_{i}}\right)\right) \\
& =\sum_{i=1}^{n}(-1)^{i-1} \widetilde{\operatorname{ch}}\left(\nabla^{E_{i}}, \tilde{\nabla}^{E_{i}}\right) \\
& \left.=\sum_{i=1}^{n}(-1)^{i-1} \widetilde{(c h}\left(\nabla^{E_{i}^{\prime}}, \tilde{\nabla}^{E_{i}^{\prime}}\right)+\widetilde{c h}\left(\nabla^{E_{i+1}^{\prime}}, \tilde{\nabla}^{E_{i+1}^{\prime}}\right)\right) \\
& =0
\end{aligned}
$$

3. By the functoriality of $\widetilde{c h}\left(\nabla^{E}, \nabla^{\prime E}\right)$, this is clear.

So we have the existence. We prove the uniqueness. The proof is same as the proof of proposition 1.4.2.

Assume $\alpha\left(\nabla^{E}\right)$ is any class satisfying the 3 properties. Let ∇_{t}^{E} be any path connecting $\nabla^{E, \text { split }}=$ $\left\{\nabla^{E_{i}, \text { split }}\right\}$ and $\nabla^{E}=\left\{\nabla^{E_{i}}\right\}$. Let $\nabla^{\mathbb{E}}=\nabla_{t}^{E}+d t \frac{\partial}{\partial t}$, then $\left.\nabla^{\mathbb{E}}\right|_{t=0}=\nabla^{E, \text { split }},\left.\nabla^{\mathbb{E}}\right|_{t=1}=\nabla^{E}$, so

$$
\begin{aligned}
\int_{[0,1]} \operatorname{ch}\left(\nabla^{\mathbb{E}}\right) & =\int_{[0,1]} d \alpha\left(\nabla^{\mathbb{E}}\right) \\
& =-d \int_{[0,1]} \alpha\left(\nabla^{\mathbb{E}}\right)+\left.\alpha\left(\nabla^{\mathbb{E}}\right)\right|_{t=1}-\left.\alpha\left(\nabla^{\mathbb{E}}\right)\right|_{t=0} \\
& =-d \int_{[0,1]} \alpha\left(\nabla^{\mathbb{E}}\right)+\alpha\left(\nabla^{E}\right)
\end{aligned}
$$

Note that $\int_{[0,1]} \operatorname{ch}\left(\nabla^{\mathbb{E}}\right)$ is what we've constructed.
We can now show $\beta=\frac{1}{\sqrt{2 i \pi}} \int_{0}^{\infty} \varphi \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right) d t$ is a Chern-Simon class.
Theorem 1.4.4. We have an exact sequence of vector bundles

$$
0 \longrightarrow \operatorname{ker} V_{+} \longrightarrow E_{+} \xrightarrow{V_{+}} E_{-} \longrightarrow \operatorname{coker} V_{+} \cong \operatorname{ker} V_{-} \longrightarrow 0
$$

and corresponding connections $\nabla^{k e r V_{+}}, \nabla^{E_{+}}, \nabla^{E_{-}}, \nabla^{k e r V_{-}}$.
$\beta=-\widetilde{c h}$ in $\Omega^{\text {odd }} / d \Omega^{\text {even }}$.
Proof. By proposition 1.4.2, β is a real odd form, and

$$
d \beta=\operatorname{ch}\left(\nabla^{E}\right)-\operatorname{ch}\left(\nabla^{k e r V}\right)=-\left(\operatorname{ch}\left(\nabla^{k e r V_{+}}\right)-\operatorname{ch}\left(\nabla^{E_{+}}\right)+\operatorname{ch}\left(\nabla^{E_{-}}\right)-\operatorname{ch}\left(\nabla^{k e r V_{-}}\right)\right)
$$

The functorial property is easy. We need to prove β satisfies the 2 nd property. If the sequence splits, we assume:

$$
\nabla^{E_{+}}=\nabla^{k e r V_{+}} \oplus \nabla^{\left(k e r V_{+}\right)^{\perp}}, \nabla^{E_{-}}=\nabla^{k e r V_{-}} \oplus \nabla^{\left(k e r V_{-}\right)^{\perp}}, \nabla^{\left(k e r V_{+}\right)^{\perp}}=V_{+}^{*} \nabla^{\left(k e r V_{-}\right)^{\perp}}
$$

Under the splitting $E=E_{+} \oplus E_{-}=\operatorname{ker} V_{+} \oplus\left(\operatorname{ker} V_{+}\right)^{\perp} \oplus \operatorname{ker} V_{-} \oplus\left(\operatorname{ker} V_{-}\right)^{\perp}$, we have

$$
\nabla^{E}=\left(\begin{array}{cc}
\left(\begin{array}{cc}
\nabla^{k e r V_{+}} & 0 \\
0 & \nabla^{\left(k e r V_{+}\right)^{\perp}}
\end{array}\right) & 0 \\
& 0
\end{array}\left(\begin{array}{cc}
\nabla^{k e r V_{-}} & 0 \\
0 & \nabla^{\left(k e r V_{-}\right)^{\perp}}
\end{array}\right)\right)
$$

$$
\begin{aligned}
& V=\left(\begin{array}{c}
0 \\
\left(\begin{array}{cc}
0 & 0 \\
0 & V_{+}
\end{array}\right)
\end{array}\left(\begin{array}{cc}
0 & 0 \\
0 & V_{-}
\end{array}\right), \nabla^{E} V=\left(\begin{array}{cc}
0 \\
\left(\begin{array}{cc}
0 & 0 \\
0 & \nabla^{E} V_{+}
\end{array}\right)
\end{array} \begin{array}{cc}
0 & 0 \\
0 & \nabla^{E} V_{-}
\end{array}\right)\right)=0 \\
& A_{t}^{2}=\nabla^{E, 2}+\sqrt{t} \nabla^{E} V+t V^{2} \\
& =\left(\begin{array}{cc}
\left(\begin{array}{cc}
\nabla^{k e r V_{+}, 2} & 0 \\
0 & \nabla^{\left(k e r V_{+}\right)^{\perp}, 2+t V_{-}} V_{+}
\end{array}\right) & 0 \\
0 & \left(\begin{array}{cc}
\nabla^{k e r V_{-}, 2} & 0 \\
0 & \nabla^{\left(k e r V_{-}\right)^{\perp}, 2+t} V_{+} V_{-}
\end{array}\right)
\end{array}\right)
\end{aligned}
$$

So $\operatorname{Tr}_{s}\left(V \exp \left(-A_{t}^{2}\right)\right)=\operatorname{Tr}_{s}\left(\begin{array}{cc}0 & * \\ * & 0\end{array}\right)=0$, so $\beta=0$.
So β is indeed the Chern-Simon class of the sequence.

Chapter 2

Atiyah-Singer Family Index Theorem

2.1 Family Index Theorem

$X \longrightarrow M \xrightarrow{\pi} S$ is a fibration with compact fibre X of $\operatorname{dim} 2 l . T X$ (subbundle of $T M$) is even dimensional, orientable and spin. This is a global condition over $M . g^{T X}$ is a metric on $T X . E$ is a complex vector bundle on M with Hermitian metric g^{E} and unitary connection ∇^{E}. $S^{T X}=S_{+}^{T X} \oplus S_{-}^{T X}$ is spinor bundle of $T X, \operatorname{rank}\left(S^{T X}\right)=2^{\frac{d i m X}{2}}=2^{l} . \forall s \in S, D_{s}^{X}$ is the Dirac operator along the fibre X_{s} with twisting bundle $\left.E\right|_{X_{s}}$, which acts on $\Gamma\left(X_{s},\left.S^{T X} \otimes E\right|_{X_{x}}\right)$. $D_{s}^{X}=\left(\begin{array}{cc}0 & D_{-, s}^{X} \\ D_{+, s}^{X} & 0\end{array}\right)$ is self-adjoint, it's Fredholm. $\operatorname{Ind}\left(D_{+, s}^{X}\right)=\operatorname{dimker} D_{+, s}^{X}-\operatorname{dimker} D_{-, s}^{X} \in \mathbb{Z}$ does not depend on s by the homotopy invariance of the index. By Atiyah-Singer index theorem,

$$
\operatorname{Ind} D_{+, s}^{X}=\int_{X_{s}} \hat{A}(T X) \operatorname{ch}(E)
$$

The idea of family index is to see $\operatorname{In} d D_{+}^{X}$ as "vector bundle" on S, s.t. "rank" $\left(\operatorname{Ind} D_{+}^{X}\right)=$ classical index.
Suppose that $\operatorname{ker} D_{+}^{X}$ and $\operatorname{ker} D_{-}^{X}$ have constant dimensions, then one can prove easily that $\operatorname{ker} D_{ \pm, s}^{X}$ are the fibres of smooth vector bundles. Let $\mathcal{V}(M)$ denote the class of vector bundles on M, then we have

$$
\begin{aligned}
& \mathcal{V}(M) \longrightarrow \mathcal{V}(S) \\
& E \mapsto \\
& \operatorname{ker} D_{-}^{X} \ominus \operatorname{ker} D_{-}^{X}
\end{aligned}
$$

One of the purposes of topological K-theory is to make sense such a \ominus sign, the idea is analogous to the idea of extending natural numbers \mathbb{N} to integers \mathbb{Z}. But for vector bundles we must consider stable equivalent relations rather than equality.
Definition 2.1.1. $E, E^{\prime} \in \mathcal{V}(M), E \stackrel{s}{\sim} E^{\prime} \Leftrightarrow \exists F \in \mathcal{V}(M)$, s.t. $E \oplus F \cong E^{\prime} \oplus F$. E and E^{\prime} are called stable equivalent. Let $\mathcal{W}(M)=\mathcal{V}(M) / \stackrel{s}{\sim}$. Define a equivalent relation on $\mathcal{V}(M) \times \mathcal{V}(M)$:

$$
\left(E, E^{\prime}\right) \sim\left(F, F^{\prime}\right) \Leftrightarrow E \oplus F^{\prime}=E^{\prime} \oplus F \operatorname{in} \mathcal{W}(M) \Leftrightarrow \exists H \in \mathcal{V}(M), \text { s.t. } E \oplus F^{\prime} \oplus H=E^{\prime} \oplus F \oplus H
$$

The K-group of M is defined to be $K(M)=\left\{\left(E, E^{\prime}\right): E, E^{\prime} \in \mathcal{V}(M)\right\} / \sim$.
Remark 6. There are several equivalent definitions of $K(M)$. See ref.
If $E \stackrel{\mathcal{S}}{\sim} E^{\prime}$, then $\operatorname{ch}(E)=\operatorname{ch}\left(E^{\prime}\right)$. It's clear the map $c h: \mathcal{V}(M) \longrightarrow H^{*}(M)$ induces

$$
\text { ch }: K(M) \longrightarrow H^{*}(M)
$$

Assume again that $\operatorname{ker} D_{ \pm}^{X}$ are smooth vector bundles, (it's sufficient to assume constant dimensions) then

$$
\operatorname{Ind}\left(D_{+}^{X}\right)=\operatorname{ker} D_{+}^{X}-\operatorname{ker} D_{-}^{X} \in K(S)
$$

If the assumption is not verified, we can add a finite dimensional space, and find a surjective homomorphism $\tilde{D}_{+}: S_{+}^{T X} \oplus \mathbb{C}^{n} \rightarrow S_{-}^{T X}$, for which the assumption is verified, then

$$
\operatorname{Ind}\left(D_{+}^{X}\right)=\operatorname{Ind}\left(\tilde{D}_{+}\right)-\mathbb{C}^{n} \in K(S)
$$

Theorem 2.1.1 (Family Index Theorem).

$$
\operatorname{ch}\left(\operatorname{Ind}\left(D_{+}^{X}\right)\right)=\pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]
$$

in $H^{\text {even }}(S, \mathbb{Q})$, i.e. the diagram commutes:

Example 2.1.1. If S is a single point, $\mathcal{V}(S)=$ vector spaces, $K(S)=\mathbb{Z}, \operatorname{ch}(E \ominus F)=\operatorname{dim} E-\operatorname{dim} F$. We get the index theorem

$$
\operatorname{Ind}\left(D_{+}^{X}\right)=\int_{X} \hat{A}(T X) \operatorname{ch}(E)
$$

2.2 Consequences of the Family Index Theorem

Assume S is even dimensional, compact and spin and we have a given horizontal space $T^{H} M$ which is a subbundle of $T M$. So $T^{H} M \cong \pi^{*} T S, T M=T^{H} M \oplus T X \cong \pi^{*} T S \oplus T X$. Let $g^{T M}=g^{T X} \oplus \pi^{*} g^{T S}$. Then $T M$ is spin, and $S^{T M}=S^{T X} \hat{\otimes} \pi^{*} S^{T S}$. Since \hat{A} is multiplicative, we have $\hat{A}(T M)=\hat{A}(T X) \pi^{*} \hat{A}(T S)$. So

$$
\begin{align*}
\operatorname{Ind}\left(D_{+}^{M, E}\right) & =\int_{M} \hat{A}(T M) \operatorname{ch}(E)=\int_{M} \pi^{*}(\hat{A}(T S)) \hat{A}(T X) \operatorname{ch}(E) \\
& =\int_{S} \hat{A}(T S) \pi_{*}[\hat{A}(T X) \operatorname{ch}(E)] \stackrel{F . I . T}{=} \int_{S} \hat{A}(T S) \operatorname{ch}\left(\operatorname{Ind} D_{+}^{X}\right) \\
& =\operatorname{Ind}\left(D_{+}^{S, \operatorname{Ind} D_{+}^{X}}\right) \tag{2.1}
\end{align*}
$$

Claim 2. (2.1) is equivalent to family index theorem:
Proof. Let F be a vector bundle on $S,(2.1)$ is valid when $E \rightsquigarrow E \otimes \pi^{*} F$. By the same computation of (2.1)

$$
\operatorname{Ind}\left(D_{+}^{M, E \otimes \pi^{*} F}\right)=\int_{S} \hat{A}(T S) \operatorname{ch}(F) \pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]
$$

Note that $\operatorname{Ind}\left(D_{+}^{X, E \otimes \pi^{*} F}\right)=F \otimes \operatorname{Ind}\left(D_{+}^{X, E}\right)$, so by A-S index theorem,

$$
\operatorname{Ind} D_{+}^{S, \operatorname{Ind}\left(D_{+}^{X, E \otimes \pi^{*} F}\right)}=\int_{S} \hat{A}(T S) \operatorname{ch}(F) \operatorname{ch}\left(\operatorname{Ind} D_{+}^{X, E}\right)
$$

Since $\operatorname{ch}(F)$ generate the full $H^{\text {even }}(S, \mathbb{Q})$ as F varies, compare the above two equation, we have

$$
\hat{A}(T S) \pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]=\hat{A}(T S) \operatorname{ch}\left(\operatorname{Ind} D_{+}^{X, E}\right)
$$

Since $\hat{A}=1+\cdots$ is invertible in $H^{\text {even }}(S, \mathbb{Q})$, so

$$
\pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]=\operatorname{ch}\left(\operatorname{Ind} D_{+}^{X, E}\right)
$$

Remark 7. Atiyah-Singer proved the family index theorem by proving (2.1).

2.3 Adiabatic Limit

From now on, we assume $g_{\varepsilon}=g_{\varepsilon}^{T M}=g^{T X} \oplus \frac{1}{\varepsilon} \pi^{*} g^{T S}$, then $T^{H} M=(T X)^{\perp} \cong \pi^{*} T S$, and $\pi: M \rightarrow S$ is a Riemannian submersion. Let $\nabla^{T M, \varepsilon}$ denote the Levi-Civita connection of $g_{\varepsilon}^{T M}$, $\nabla^{T M, L}=\nabla^{T M, 1}$ denote the Levi-Civita connection of $g^{T M}=g^{T X} \oplus \pi^{*} g^{T S}=g_{1}^{T M}$.

We want to calculate the Dirac operator D_{ε}^{M} using the metric $g_{\varepsilon}^{T M}$.
Theorem 2.3.1. As $\varepsilon \rightarrow 0, \nabla^{T M, \varepsilon}=\left(\begin{array}{cc}\nabla^{T X} & * \\ 0 & \pi^{*} \nabla^{T S}\end{array}\right)+O(\varepsilon)=: \nabla^{T M, 0}+O(\varepsilon)$.
Proof. $\forall U \in T S, U^{H}$ denotes the lift of U to $T^{H} M$. If U is a smooth vector field on S, then U^{H} is a smooth vector field on M. Let φ_{t}, ψ_{t} be one-parameter transformation group generated by U and U^{H}, then $\varphi_{t} \circ \pi=\pi \circ \psi_{t}$, and $\psi_{t}: X_{s} \rightarrow X_{\varphi_{t}(s)}$ is a diffeomorphism. So if V is a smooth section of $T X$, then $\left[U^{H}, V\right] \in T X$.
By properties of connection, we can assume X is either vertical or $X=U^{H} \in T^{H} M$ in the following proof. We have defining equation of the Levi-Civita connection:

$$
\begin{equation*}
2\left\langle\nabla_{X} Y, Z\right\rangle=X\langle Y, Z\rangle+Y\langle Z, X\rangle-Z\langle X, Y\rangle+\langle Z,[X, Y]\rangle-\langle Y,[X, Z]\rangle-\langle X,[Y, Z]\rangle \tag{2.2}
\end{equation*}
$$

Using this formula, we calculate all possible cases:

1. Y, Z are vertical, X is vertical

$$
\left\langle\nabla_{X}^{T M, \varepsilon} Y, Z\right\rangle_{g^{T X}}=\left\langle\nabla_{X}^{T X} Y, Z\right\rangle_{g^{T X}}
$$

2. Y, Z are vertical, $X=U^{H}$ is horizontal

$$
\begin{aligned}
2\left\langle\nabla_{U^{H}}^{T M, \varepsilon} Y, Z\right\rangle_{g^{T X}} & =U^{H}\langle Y, Z\rangle_{g^{T X}}+\left\langle Z,\left[U^{H}, Y\right]\right\rangle_{g^{T X}}-\left\langle Y,\left[U^{H}, Z\right]\right\rangle_{g^{T X}} \\
& =2\left\langle\left[U^{H}, Y\right], Z\right\rangle+\left(L_{U^{H}} g^{T X}\right)(Y, Z) \\
& =2\left\langle\left[U^{H}, Y\right], Z\right\rangle+\left\langle\left(g^{T X}\right)^{-1} L_{U^{H}} g^{T X}(Y), Z\right\rangle
\end{aligned}
$$

So $P^{T X} \nabla_{U^{H}}^{T M, \varepsilon} Y=\left[U^{H}, Y\right]+\frac{1}{2}\left(\left(g^{T X}\right)^{-1} L_{U^{H}} g^{T X}\right) Y$.
3. $Y=V^{H}$ is horizontal, Z is vertical, X is vertical

$$
2\left\langle\nabla_{X}^{T M, \varepsilon} V^{H}, Z\right\rangle_{g^{T X}}=V^{H}\langle X, Z\rangle_{g^{T X}}-\left\langle\left[V^{H}, X\right], Z\right\rangle_{g^{T X}}-\left\langle X,\left[V^{H}, Z\right]\right\rangle_{g^{T X}}=\left(L_{V^{H}} g^{T X}\right)(X, Z)
$$

So $P^{T X} \nabla_{X}^{T M, \varepsilon} V^{H}=\frac{1}{2}\left(g^{T X}\right)^{-1}\left(L_{V^{H}} g^{T X}\right)(X)$.
4. $Y=V^{H}$ is horizontal, Z is vertical, $X=U^{H}$ is horizontal

$$
2\left\langle\nabla_{U^{H}}^{T M, \varepsilon} V^{H}, Z\right\rangle_{g^{T X}}=\left\langle P^{T X}\left[U^{H}, V^{H}\right], Z\right\rangle_{g^{T X}}
$$

So $P^{T X} \nabla_{U^{H}} V^{H}=\frac{1}{2} P^{T X}\left[U^{H}, V^{H}\right]$.
5. Y is vertical, $Z=W^{H}$ is horizontal, X is vertical

$$
2\left\langle\nabla_{X}^{T M, \varepsilon} Y, W^{H}\right\rangle_{\pi^{*} g^{T S}}=-\varepsilon\left(L_{W^{H}} g^{T X}\right)(X, Y)
$$

So $P^{T^{H} M} \nabla_{X}^{T M, \varepsilon} Y=O(\varepsilon)$.
6. Y is vertical, $Z=W^{H}$ is horizontal, $X=U^{H}$ is horizontal

$$
2\left\langle\nabla_{U^{H}}^{T M, \varepsilon} Y, W^{H}\right\rangle_{\pi^{*} g^{T S}}=-\varepsilon\left\langle Y, P^{T X}\left[U^{H}, W^{H}\right]\right\rangle_{g^{T X}}
$$

So $P^{T^{H} M} \nabla_{U^{H}}^{T M, \varepsilon} Y=O(\varepsilon)$
7. $Y=V^{H}, Z=W^{H}$ are horizontal, X is vertical

$$
2\left\langle\nabla_{X}^{T M, \varepsilon} V^{H}, W^{H}\right\rangle_{\pi^{*} g^{T S}}=-\varepsilon\left\langle X, P^{T X}\left[V^{H}, W^{H}\right]\right\rangle_{g^{T X}}
$$

So $P^{T^{H} M} \nabla_{X}^{T M, \varepsilon} V^{H}=O(\varepsilon)$.
8. $Y=V^{H}, Z=W^{H}$ are horizontal, $X=U^{H}$ is horizontal

$$
\left\langle\nabla_{U^{H}}^{T M, \varepsilon} V^{H}, W^{H}\right\rangle_{\pi^{*} g^{T S}}=\left\langle\nabla_{U}^{T S} V, W\right\rangle_{g^{T S}}
$$

So $P^{T^{H} M} \nabla_{U^{H}}^{T M, \varepsilon} V^{H}=\left(\nabla_{U}^{T S} V\right)^{H}$.
Write in matrix,

$$
\nabla^{T M, \varepsilon}=\left(\begin{array}{cc}
P^{T X} \nabla^{T M, \varepsilon} P^{T X} & P^{T X} \nabla^{T M, \varepsilon} P^{T^{H} M} \\
P^{T^{H} M} \nabla^{T M, \varepsilon} P^{T X} & P^{T^{H} M} \nabla^{T M, \varepsilon} P^{T^{H} M}
\end{array}\right)=\left(\begin{array}{cc}
\nabla^{T X} & * \\
O(\varepsilon) & \pi^{*} \nabla^{T S}+O(\varepsilon)
\end{array}\right)
$$

where $*=P^{T X} \nabla^{T M, \varepsilon} P^{T^{H} M}$ is determined by above calculations in cases 3 and 4 . The theorem is proved.

From above calculations in cases 1 and 2, we see that
Theorem 2.3.2. The connection $\nabla^{T X}=P^{T X} \nabla^{T M, \varepsilon} P^{T X}$ is characterized by the following two properties:

1. $\nabla^{T X}$ restricts to the Levi-Civita connection of $\left(X, g^{T X}\right)$ along the fibre X.
2. $\forall U \in T S, Y \in T X, \nabla_{U^{H}}^{T X} Y=\left[U^{H}, Y\right]+\frac{1}{2}\left(\left(g^{T X}\right)^{-1} L_{U^{H}} g^{T X}\right) Y$.

Remark 8. $\nabla^{T X}$ preserves the metric $g^{T X}$. In general, if ∇^{E} is any connection on an Hermitian vector bundle E, we can modify it to be metric preserving: $\nabla^{E}=\nabla^{E}+\frac{1}{2}\left(g^{E}\right)^{-1}\left(\nabla^{E} g^{E}\right)$.

$$
\begin{aligned}
X\left\langle s, s^{\prime}\right\rangle & =\left(\nabla_{X}^{E} g^{E}\right)\left(s, s^{\prime}\right)+\left\langle\nabla_{X}^{E} s, s^{\prime}\right\rangle+\left\langle s, \nabla_{X}^{E} s^{\prime}\right\rangle \\
& =\left\langle\frac{1}{2}\left(g^{E}\right)^{-1}\left(\nabla_{X}^{E} g^{E}\right) s, s^{\prime}\right\rangle+\left\langle s, \frac{1}{2}\left(g^{E}\right)^{-1}\left(\nabla_{X}^{E} g^{E}\right) s^{\prime}\right\rangle+\left\langle\nabla_{X}^{E} s, s^{\prime}\right\rangle+\left\langle s, \nabla_{X}^{E} s^{\prime}\right\rangle \\
& =\left\langle\nabla_{X}^{E} s, s^{\prime}\right\rangle+\left\langle s, \nabla_{X}^{E} s^{\prime}\right\rangle
\end{aligned}
$$

Let $\nabla^{\oplus}=\nabla^{T X} \oplus \pi^{*} \nabla^{T S}$ denote the splitting connection, we write

$$
S^{\varepsilon}=\nabla^{T M, \varepsilon}-\nabla^{\oplus}, S=\nabla^{T M, L}-\nabla^{\oplus}
$$

Proposition 2.3.1. Assume $\nabla^{T M, L}$ is the Levi-Civita connection of $g^{T M}$, and ∇ is a metric preserving connection with torsion T. Let $\nabla^{T M, L}=\nabla+S$, then

$$
\begin{equation*}
2\langle S(X) Y, Z\rangle=\langle T(X, Z), Y\rangle+\langle T(Y, Z), X\rangle-\langle T(X, Y), Z\rangle \tag{2.3}
\end{equation*}
$$

We first evaluate the torsion T of ∇^{\oplus}.
Proposition 2.3.2. 1. T takes value in $T X$;
2. T vanishes on $T X \times T X$;
3. $T\left(U^{H}, V^{H}\right)=-P^{T X}\left[U^{H}, V^{H}\right]$;
4. $T\left(U^{H}, A\right)=\frac{1}{2}\left(g^{T X}\right)^{-1}\left(L_{U^{H}} g^{T X}\right) A, U \in T S, A \in T X$.

The proof is straightforward computation. By above two proposition, we have the properties of S and S^{ε} :
Proposition 2.3.3. 1. $P^{T X} S^{\varepsilon}=P^{T X} S$
2. $P^{T^{H} M} S^{\varepsilon}=\varepsilon P^{T^{H} M} S$
3. $S(\cdot)$ maps $T X$ into $T^{H} M$
4. $\left\langle S\left(U^{H}\right) V^{H}, W^{H}\right\rangle=0$, for $U, V, W \in T S$

Proof. 1. by (2.3)
2. by (2.3) and properties 3,4 in proposition 2.3 .2
3. because $\nabla^{T X}=P^{T X} \nabla^{T M, L} P^{T X}=P^{T X} \nabla^{\oplus} P^{T X}$
4. by (2.3)

Remark 9. The proposition also follows from the proof of theorem (2.3.1), and the formula

$$
S^{\varepsilon}=\left(\begin{array}{cc}
0 & * \\
O(\varepsilon) & O(\varepsilon)
\end{array}\right)
$$

Theorem 2.3.3.

$$
\begin{equation*}
D_{\varepsilon}^{M}=D^{X}+\sqrt{\varepsilon} D^{H}-\frac{\varepsilon c\left(T^{H}\right)}{4} \tag{2.4}
\end{equation*}
$$

- D^{X} is the Dirac operator along the fibre: $D^{X}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}^{S^{T X} \otimes E},\left\{e_{i}\right\}$ is a orthonormal basis of $T X$.
- T^{H} is the HH component of $T: T^{H}\left(U^{H}, V^{H}\right)=-P^{T X}\left[U^{H}, V^{H}\right]$, and

$$
c\left(T^{H}\right)=\frac{1}{2}\left\langle T^{H}\left(f_{\alpha}^{H}, f_{\beta}^{H}\right), e_{i}\right\rangle c\left(f_{\alpha}\right) c\left(f_{\beta}\right) c\left(e_{i}\right)
$$

$\left\{f_{\alpha}\right\}$ is a orthonormal basis of TS.

- $D^{H}=c\left(f_{\alpha}\right)\left(\nabla_{f_{\alpha}^{H}}^{S^{T X} \otimes S^{T S} \otimes E}+k\left(f_{\alpha}\right)\right), k(U) \triangleq \frac{1}{2} \operatorname{div}^{X}\left(U^{H}\right)=\frac{1}{4} \operatorname{Tr}\left[\left(g^{T X}\right)^{-1} L_{U^{H}} g^{T X}\right]$

Proof.

$$
\begin{equation*}
D_{\varepsilon}^{M}=c\left(e_{i}\right) \nabla_{e_{i}}^{\varepsilon}+c\left(f_{\alpha}\right) \nabla_{\sqrt{\varepsilon} f_{\alpha}^{H}}^{\varepsilon} \tag{2.5}
\end{equation*}
$$

∇^{ε} is the induced connection on the spinor bundle $S^{T M}=S^{T X} \hat{\otimes} \pi^{*} S^{T S}$ by the Levi-Civita connection $\nabla^{T M, \varepsilon}$. Note that the Clifford multiplication doesn't change when rescaling the horizontal metric. We have $\nabla^{T M, \varepsilon}=\nabla^{T M}+S^{\varepsilon}$, and Lie algebra homomorphism:

$$
\begin{aligned}
\operatorname{so}(n) & \longrightarrow \operatorname{spin}(n) \subset C l_{n} \\
A & \mapsto \\
& \mapsto(A)=\frac{1}{4}\left\langle A e_{i}, e_{j}\right\rangle c\left(e_{i}\right) c\left(e_{j}\right)
\end{aligned}
$$

so we get
$\nabla^{\varepsilon}=\nabla^{S^{T X}}+\nabla^{S^{T S}}+\frac{1}{4}\left\langle S^{\varepsilon}(\cdot) e_{i}, e_{j}\right\rangle_{g_{\varepsilon}} c\left(e_{i}\right) c\left(e_{j}\right)+\frac{1}{4}\left\langle S^{\varepsilon}(\cdot) \sqrt{\varepsilon} f_{\alpha}^{H}, \sqrt{\varepsilon} f_{\beta}^{H}\right\rangle_{g_{\varepsilon}}+\frac{1}{2}\left\langle S^{\varepsilon}(\cdot) \sqrt{\varepsilon} f_{\alpha}^{H}, e_{i}\right\rangle_{g_{\varepsilon}} c\left(f_{\alpha}\right) c\left(e_{i}\right)$
$\nabla^{S^{T X}}$ and $\nabla^{S^{T S}}$ is the connection on spinors induced by $\nabla^{T X}$ and $\nabla^{T S}$. By (2.3), proposition 2.3.3, and propostion 2.3.2

- $\left\langle S^{\varepsilon}(\cdot) e_{i}, e_{j}\right\rangle_{g_{\varepsilon}}=0$
- $\left\langle S^{\varepsilon}(\cdot) \sqrt{\varepsilon} f_{\alpha}^{H}, \sqrt{\varepsilon} f_{\beta}^{H}\right\rangle_{g_{\varepsilon}}=\varepsilon\left\langle S(\cdot) f_{\alpha}^{H}, f_{\beta}^{H}\right\rangle$
$c\left(e_{i}\right) \cdot \frac{1}{4}\left\langle S\left(e_{i}\right) f_{\alpha}^{H}, f_{\beta}^{H}\right\rangle c\left(f_{\alpha}\right) c\left(f_{\beta}\right)=\frac{1}{8}\left\langle T\left(f_{\alpha}^{H}, f_{\beta}^{H}\right), e_{i}\right\rangle c\left(f_{\alpha}\right) c\left(f_{\beta}\right) c\left(e_{i}\right)$ $\left\langle S\left(f_{\gamma}^{H}\right) f_{\alpha}^{H}, f_{\beta}^{H}\right)=0$.
- $\left\langle S^{\varepsilon}(\cdot) \sqrt{\varepsilon} f_{\alpha}^{H}, e_{i}\right\rangle_{g_{\varepsilon}}=\sqrt{\varepsilon}\left\langle S(\cdot) f_{\alpha}^{H}, e_{i}\right\rangle$

$$
\begin{aligned}
& c\left(f_{\alpha}\right) \cdot \frac{1}{2}\left\langle S\left(f_{\alpha}^{H}\right) f_{\beta}^{H}, e_{i}\right\rangle c\left(f_{\beta}\right) c\left(e_{i}\right)=-\frac{1}{4}\left\langle T\left(f_{\alpha}^{H}, f_{\beta}^{H}\right), e_{i}\right\rangle c\left(f_{\alpha}\right) c\left(f_{\beta}\right) c\left(e_{i}\right) \\
& c\left(e_{i}\right) \cdot \frac{1}{2}\left\langle S\left(e_{i}\right) f_{\alpha}^{H}, e_{j}\right\rangle c\left(f_{\alpha}\right) c\left(e_{j}\right)=\frac{1}{4}\left(\left\langle T\left(f_{\alpha}^{H}, e_{j}\right), e_{i}\right\rangle-\left\langle T\left(e_{i}, f_{\alpha}^{H}\right), e_{j}\right\rangle\right) c\left(e_{i}\right) c\left(f_{\alpha}\right) c\left(e_{j}\right) \\
&=\sum_{i} \frac{1}{2}\left\langle T\left(f_{\alpha}^{H}, e_{i}\right), e_{i}\right\rangle c\left(f_{\alpha}\right)+\sum_{i \neq j} \cdots \\
&=\frac{1}{2}\left\langle T\left(f_{\alpha}^{H}, e_{i}\right), e_{i}\right\rangle c\left(f_{\alpha}\right) \\
&\left\langle T\left(f_{\alpha}^{H}, e_{i}\right), e_{i}\right\rangle=\left\langle\frac{1}{2}\left(g^{T X}\right)^{-1}\left(L_{f_{\alpha}^{H}} g^{T X}\right) e_{i}, e_{i}\right\rangle=\frac{1}{2} T r\left[\left(g^{T X}\right)^{-1} L_{f_{\alpha}^{H}} g^{T X}\right]
\end{aligned}
$$

Lemma 2. Let $d V_{X}$ be the volume element along the fibre, then

$$
d i v^{X}\left(U^{H}\right)=\frac{L_{U^{H}} d V_{X}}{d V_{X}}=\frac{1}{2} \operatorname{Tr}\left[\left(g^{T X}\right)^{-1} L_{U^{H}} g^{T X}\right]
$$

proof of the lemma. $\left\{e_{i}\right\}$ is an orthonormal basis of $T X,\left\{e^{i}\right\}$ is the dual basis. We calculate

$$
\begin{aligned}
& L_{U^{H}} d V_{X}=L_{U^{H}}\left(e^{1} \wedge \cdots \wedge e^{n}\right)=\sum_{i} e^{1} \wedge \cdots \wedge L_{U^{H}} e^{i} \wedge \cdots \wedge e^{n} \\
&= \sum_{i} e^{1} \wedge \cdots \wedge\left(\sum_{j}-\left\langle L_{U^{H}} e_{j}, e_{i}\right\rangle e^{j}\right) \wedge \cdots \wedge e^{n} \\
&=-\left(\sum_{i}\left\langle L_{U^{H}} e_{i}, e_{i}\right\rangle\right) d V_{X} \\
& \begin{aligned}
\operatorname{Tr}\left[\left(g^{T X}\right)^{-1} L_{U^{H}} g^{T X}\right] & =T r_{g^{T X}}\left(L_{U^{H}} g^{T X}\right)=\sum_{i}\left(L_{U^{H}} g^{T X}\right)\left(e_{i}, e_{i}\right) \\
& =\sum_{i}\left(U^{H}\left\langle e_{i}, e_{i}\right\rangle-\left\langle L_{U^{H}} e_{i}, e_{i}\right\rangle-\left\langle e_{i}, L_{U^{H}} e_{i}\right\rangle\right) \\
& =-2 \sum_{i}\left\langle L_{U^{H}} e_{i}, e_{i}\right\rangle
\end{aligned}
\end{aligned}
$$

Put the results together, finally we have

$$
\begin{aligned}
D_{\varepsilon}^{M} & =c\left(e_{i}\right) \nabla_{e_{i}}^{T X \otimes E}+\sqrt{\varepsilon} c\left(f_{\alpha}\right)\left(\nabla_{f_{\alpha}^{H}}^{S^{T X} \otimes S^{T S} \otimes E}+k(U)\right)-\frac{\varepsilon}{8}\left\langle T\left(f_{\alpha}^{H}, f_{\beta}^{H}\right), e_{i}\right\rangle c\left(f_{\alpha}\right) c\left(f_{\beta}\right) c\left(e_{i}\right) \\
& =D^{X}+\sqrt{\varepsilon} D^{H}-\frac{\varepsilon c\left(T^{H}\right)}{4}
\end{aligned}
$$

2.4 Levi-Civita Superconnection

Definition 2.4.1. $\forall s \in S, H_{s}=\Gamma\left(X_{s},\left.\left(S^{T X} \otimes E\right)\right|_{X_{s}}\right) . H_{s}=H_{s,+} \oplus H_{s,-}$.
H is an infinite dimensional \mathbb{Z}_{2}-graded vector bundle with L^{2} Hermitian metric .

Definition 2.4.2. $\forall U \in T S, f$ is a smooth section of H,

$$
\nabla_{U}^{H} f=\nabla_{U^{H}}^{S^{T X} \otimes E} f+\frac{1}{2} d i v^{X}\left(U^{H}\right) f=: \nabla_{U}^{\prime H} f+k(U) f
$$

Note that $\Gamma(S, H)=\Gamma\left(S, \Gamma\left(X,\left.S^{T X} \otimes E\right|_{X}\right)\right)=\Gamma\left(M, S^{T X} \otimes E\right)$
Proposition 2.4.1. ∇^{H} is a unitary connection H, whose curvature is a two form on the base with values in 1 st order differential operator along the fibre.

Proof. Let $U, U^{H}, \varphi_{t}, \psi_{t}$ be the same as in the beginning of proof of theorem (2.3.1). $\forall f, f^{\prime} \in \Gamma(H)$,

$$
\begin{aligned}
U\left\langle f, f^{\prime}\right\rangle_{H} & =U \int_{t}\left\langle f, f^{\prime}\right\rangle d V_{X}=\frac{d}{d t} \int_{\varphi_{t}(X)}\left\langle f, f^{\prime}\right\rangle d V_{\varphi_{t}(X)} \\
& =\int_{X} \frac{d}{d t} \psi_{t}^{*}\left(\left\langle f, f^{\prime}\right\rangle d V_{\varphi_{t}(X)}\right)=\int_{X}\left(U^{H}\left\langle f, f^{\prime}\right\rangle+\frac{L_{U^{H}} d V_{X}}{d V_{X}}\right) d V_{X} \\
& =\int_{X}\left(\left\langle\nabla_{U^{H}} f, f^{\prime}\right\rangle+\left\langle f, \nabla_{U^{H}} f^{\prime}\right\rangle+\operatorname{div}^{X}\left(U^{H}\right)\left\langle f, f^{\prime}\right\rangle\right) d V_{X} \\
& =\left\langle\nabla_{U}^{H} f, f^{\prime}\right\rangle_{H}+\left\langle f, \nabla_{U}^{H} f^{\prime}\right\rangle
\end{aligned}
$$

So ∇^{H} is unitary. Since $\nabla^{H}=\nabla^{\prime H}+k, \nabla^{H, 2}=\nabla^{H, 2}+d k$. So $\forall U, V \in \Gamma(T S)$,

$$
\begin{aligned}
R^{H}(U, V) & =\nabla_{U^{H}}^{S^{T X} \otimes E} \nabla_{V^{H}}^{S^{T X} \otimes E}-\nabla_{V^{H}}^{S^{T X} \otimes E} \nabla_{U^{H}}^{S^{T X} \otimes E}-\nabla_{[U, V]^{H}}^{S^{T X} \otimes E}+d k(U, V) \\
& =R^{S^{T X}}\left(U^{H}, V^{H}\right)+R^{E}\left(U^{H}, V^{H}\right)-\nabla_{P^{T X}}^{S_{\left[U^{H}, V^{H}\right]}^{T X} \otimes E}+d k(U, V)
\end{aligned}
$$

So R^{H} is a two form on the base S with value in 1 st order differential operator along the fibre.
By this proposition and $\Gamma\left(M, S^{T X} \hat{\otimes} S^{T S} \otimes E\right)=\Gamma\left(S, S^{T S} \hat{\otimes} H\right)$, we see D^{H} is just the Dirac operator on S with twisting bundle $\left(H,\langle\cdot, \cdot\rangle_{L^{2}}, \nabla^{H}\right)$.
Definition 2.4.3. The Levi-Civita superconnection on H is given by

$$
A=D^{X}+\nabla^{H}-\frac{c\left(T^{H}\right)}{4}
$$

$c\left(T^{H}\right)=\frac{1}{2}\left\langle T^{H}\left(f_{\alpha}^{H}, f_{\beta}^{H}\right), e_{i}\right\rangle f^{\alpha} f^{\beta} c\left(e_{i}\right)$.
Remark 10. Formally, this is obtained by changing Clifford variable $c\left(f_{\alpha}\right)$ in D^{M} to Grassman variable f^{α}. In fact, it's obtained by Getzler rescaling: in the expression of D_{ε}^{M}, we substitute:

$$
c\left(f_{\alpha}\right) \rightsquigarrow \frac{f^{\alpha} \wedge}{\varepsilon}-\varepsilon i_{f_{\alpha}}
$$

and let $\varepsilon \rightarrow 0$, then we get the Levi-Civita superconnection A.
We want to calculate the curvature of A. We use the Lichnerowicz formula for D_{ε}^{M} :

$$
\begin{equation*}
D_{\varepsilon}^{M, 2}=-\Delta_{\varepsilon}^{M}+\frac{K_{\varepsilon}^{M}}{4}+\mathcal{R}^{E} \tag{2.7}
\end{equation*}
$$

where $\Delta_{\varepsilon}^{M}=\left(\nabla_{e_{i}}^{\varepsilon}\right)^{2}+\varepsilon\left(\nabla_{f_{\alpha}}^{\varepsilon}\right)^{2}$ is the Bochner Laplacian, ∇^{ε} is given by equation (2.6). K_{ε}^{M} is the scalar curvature of $g_{\varepsilon}^{T M}$, and

$$
\mathcal{R}^{E}=\frac{1}{2} c\left(e_{i}\right) c\left(e_{j}\right) R^{E}\left(e_{i}, e_{j}\right)+\frac{\sqrt{\varepsilon}}{2} c\left(e_{i}\right) c\left(f_{\alpha}\right) R^{E}\left(e_{i}, f_{\alpha}^{H}\right)+\frac{\varepsilon}{2} c\left(f_{\alpha}\right) c\left(f_{\beta}\right) R^{E}\left(f_{\alpha}^{H}, f_{\beta}^{H}\right)
$$

The idea is to change Clifford variable $c\left(f_{\alpha}\right)$ to f^{α}, note that

- $\left(\sqrt{\varepsilon} c\left(f_{\alpha}\right)\right)^{2}=-\varepsilon \rightsquigarrow\left(f^{\alpha}\right)^{2}=f^{\alpha} \wedge f^{\alpha}=0$
- $\alpha \neq \beta, \sqrt{\varepsilon} c\left(f_{\alpha}\right) \sqrt{\varepsilon} c\left(f_{\beta}\right)=\varepsilon c\left(f_{\alpha}\right) c\left(f_{\beta}\right) \rightsquigarrow f^{\alpha} \wedge f^{\beta}$

So if the power of $\sqrt{\varepsilon}>(=)$ the length of Clifford variables, then the term is killed(survives). $\nabla^{T M, \varepsilon}=\nabla^{T M}+S^{\varepsilon}, \nabla^{T M, \varepsilon, 2}=\nabla^{T M, 2}+\nabla^{T M} S^{\varepsilon}+\left[S^{\varepsilon}, S^{\varepsilon}\right]$.

Definition 2.4.4.

$$
\alpha_{t}=\varphi T r_{s}\left(\exp \left(-A_{t}^{2}\right)\right)
$$

Theorem 2.4.1. 1. The α_{t} are real, even, closed forms on S.

$$
\left[\alpha_{t}\right]=\operatorname{ch}\left(\operatorname{Ind}\left(D_{+}^{X}\right)\right)
$$

2. As $t \rightarrow 0, \alpha_{t}=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]+O(\sqrt{t})$
3. If dimker $D_{ \pm}^{X}$ is locally constant, as $t \rightarrow \infty$,

$$
\alpha_{t}=\operatorname{ch}\left(\nabla^{\operatorname{ker} D^{x}}\right)+O\left(\frac{1}{\sqrt{t}}\right)
$$

$$
\nabla^{k e r D^{X}}=P^{k e r D^{X}} \nabla^{H} .
$$

Remark 11. 1. The theorem implies the family index theorem:

$$
\operatorname{ch}\left(\operatorname{Ind}\left(D_{+}^{X}\right)\right)=\left[\alpha_{t}\right]=\pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]
$$

2. the theorem asserts the following diagram commutes.

Chapter 3

Determinant Bundle

3.1 Finite Dimensional Case

Let \mathcal{C} denote the category of complex line(complex vector space of $\operatorname{dim} 1$) up to canonical isomorphism. For example

- \mathbb{C} denotes the canonical line. If λ has a canonical nonzero element $s \in \lambda$, then λ can be canonically identified with $\mathbb{C}: a \in \mathbb{C} \mapsto a s \in \lambda$.
- If λ, μ are complex lines, then canonically $\lambda \otimes \mu \cong \mu \otimes \lambda, a \otimes b \mapsto b \otimes a$. The operator \otimes is commutative, associative and has a neutral element:
$-\lambda \otimes \mathbb{C} \cong \lambda: s \otimes 1 \mapsto s$.
$-\lambda^{*} \otimes \lambda \cong \mathbb{C}$: choose any $s \neq 0 \in \lambda$, there is $s^{-1} \in \lambda^{*}$, s.t. $\left\langle s^{-1}, s\right\rangle=1 . s^{-1} \otimes s$ does not depend on s, so it's a canonical nonzero element in $\lambda^{*} \otimes \lambda$. We define $\lambda^{-1}=\lambda^{*}$.
Definition 3.1.1. E is a finite dimensional complex vector space

$$
\operatorname{det} E \triangleq \wedge^{m a x} E
$$

$\wedge^{\max } E$ means the elements of max degree in $\wedge^{*} E$.
Remark 12. More correctly, $\mathcal{C}=\{(\lambda, \pm)\}, \mathcal{V}=\{$ finite dimensional complex vector space $\}$.

$$
\widehat{\operatorname{det}}: \mathcal{V} \longrightarrow \mathcal{C}, \widehat{\operatorname{det}} E=\left(\operatorname{det} E,(-1)^{\operatorname{dim} E}\right)
$$

then $\widehat{\operatorname{det}}(E \oplus F)=\widehat{\operatorname{det}} E \hat{\otimes} \widehat{\operatorname{det}} F$, where $\lambda \hat{\otimes} \mu \cong \mu \hat{\otimes} \lambda$ is given by $a \hat{\otimes} b \mapsto(-1)^{\varepsilon_{\lambda} \varepsilon_{\mu}} b \hat{\otimes} a$.
Let $E: 0 \rightarrow E_{0} \xrightarrow{V} E_{1} \rightarrow 0, \lambda=\operatorname{det} E \triangleq\left(\operatorname{det} E_{0}\right)^{-1} \otimes \operatorname{det} E_{1} . V$ induces $\operatorname{det} V: \operatorname{det} E_{0} \rightarrow \operatorname{det} E_{1}$, so $\operatorname{det} V \in \lambda$.
Let E be a \mathbb{Z}_{2}-graded vector bundle with Hermitian metric $g^{E}=g^{E_{+}} \oplus g^{E_{-}}$, unitary connection $\nabla^{E}=\nabla^{E_{+}} \oplus \nabla^{E_{-}}$. We have the induced metric g^{λ} and unitary connection ∇^{λ}. Assume $V=$ $\left(\begin{array}{cc}0 & V_{-} \\ V_{+} & 0\end{array}\right)$ is self-adjoint and V_{+}is invertible. Let $\left\{e_{i}\right\}$ be an orthonormal basis of E_{+}

$$
\begin{aligned}
\left(\nabla_{X}^{\lambda}\left(\operatorname{det} V_{+}\right)\right)\left(e_{1} \wedge \cdots \wedge e_{n}\right) & =\nabla_{X}\left(V_{+}\left(e_{1}\right) \wedge \cdots \wedge\left(e_{n}\right)\right)-\operatorname{det} V_{+}\left(\sum_{i} e_{1} \wedge \cdots \wedge \nabla_{X}^{E} e_{i} \wedge \cdots \wedge e_{n}\right) \\
& =\sum_{i} V_{+}\left(e_{1}\right) \wedge \cdots \wedge\left(\nabla_{X}^{E_{-}}\left(V_{+}\left(e_{i}\right)\right)-V_{+}\left(\nabla_{X}^{E_{+}} e_{i}\right)\right) \wedge \cdots \wedge V_{+}\left(e_{n}\right) \\
& =\sum_{i} V_{+}\left(e_{1}\right) \wedge \cdots \wedge V_{+}\left(V_{+}^{-1} \nabla_{X} V_{+}\right)\left(e_{i}\right) \wedge \cdots \wedge V_{+}\left(e_{n}\right) \\
& =\operatorname{Tr}\left(V_{+}^{-1} \nabla_{X} V_{+}\right) \cdot \operatorname{det} V_{+}\left(e_{1} \wedge \cdots \wedge e_{n}\right)
\end{aligned}
$$

So in anticommutative sign rule

$$
\begin{equation*}
\nabla^{\lambda}\left(\operatorname{det} V_{+}\right)=-\left(\operatorname{det} V_{+}\right) \cdot \operatorname{Tr}\left(V_{+}^{-1} \nabla^{E} V_{+}\right) \tag{3.1}
\end{equation*}
$$

Note that

$$
V^{-1} \nabla^{E} V=\left(\begin{array}{cc}
0 & V_{+}^{-1} \\
V_{-}^{-1} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \nabla^{E} V_{-} \\
\nabla^{E} V_{+} & 0
\end{array}\right)=\left(\begin{array}{cc}
V_{+}^{-1} \nabla^{E} V_{+} & 0 \\
0 & V_{-}^{-1} \nabla^{E} V_{-}
\end{array}\right)
$$

So

$$
\begin{equation*}
\operatorname{Tr}\left(V_{+}^{-1} \nabla^{E} V_{+}\right)=\frac{1}{2} \operatorname{Tr}\left(V^{-1} \nabla^{E} V\right)+\frac{1}{2} \operatorname{Tr}_{s}\left(V_{-}^{-1} \nabla^{E} V\right) \tag{3.2}
\end{equation*}
$$

Since $\left(V_{+}^{-1} \nabla_{X}^{E} V_{+}\right)^{*}=\left(\nabla_{X}^{E} V_{-}\right) \cdot V_{-}^{-1}, \frac{1}{2} \operatorname{Tr}\left(V^{-1} \nabla_{X}^{E} V\right)$ is real, $\frac{1}{2} T r_{s}\left(V^{-1} \nabla_{X}^{E} V\right)$ is purely imaginary. Moreover, $\operatorname{Tr}\left(V^{-1} \nabla^{E} V\right)$ is exact: $\operatorname{det} V \in(\operatorname{det} E)^{*} \otimes \operatorname{det} E \cong \underline{\mathbb{C}}$ is a well defined function, so it's easy to see

$$
\begin{equation*}
\operatorname{Tr}\left(V^{-1} \nabla^{E} V\right)=\frac{d(\operatorname{det} V)}{\operatorname{det} V}=d \log |\operatorname{det} V|=2 d \log \left|\operatorname{det} V_{+}\right| \tag{3.3}
\end{equation*}
$$

Let r^{λ} be the curvature of ∇^{λ}, by formula (3.1),(3.2),(3.3)

$$
\begin{equation*}
r^{\lambda}=d \frac{\nabla^{\lambda} \operatorname{det} V_{+}}{\operatorname{det} V_{+}}=-d \operatorname{Tr}\left(V_{+}^{-1} \nabla^{E} V_{+}\right)=-\frac{1}{2} d \operatorname{Tr}_{s}\left(V^{-1} \nabla^{E} V\right) \tag{3.4}
\end{equation*}
$$

Lemma 3. $c_{1}(\operatorname{det} E)=\operatorname{ch}(E)^{(2)}=c_{1}(E)$
in definition 1.4.1, we defined

$$
\beta=\frac{1}{\sqrt{2 \pi i}} \int_{0}^{\infty} \varphi \operatorname{Tr}_{s}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right) d t
$$

where $A_{t}^{2}=\nabla^{E, 2}+\sqrt{t} \nabla^{E} V+t V^{2}$.
Note that $\frac{(-1)^{n}}{n!} T r_{s}\left(V\left(\sqrt{t} \nabla^{E} V+t V^{2}\right)^{n}\right)^{(1)}=\frac{(-1)^{n}}{(n-1)!} \sqrt{t} T r_{s}\left(V \nabla^{E} V\left(t V^{2}\right)^{n-1}\right)$,

$$
\begin{gathered}
\operatorname{Tr}\left(\frac{V}{2 \sqrt{t}} \exp \left(-A_{t}^{2}\right)\right)^{(1)}=-\frac{1}{2} \operatorname{Tr}_{s}\left(V\left(\nabla^{E} V\right) \exp \left(-t V^{2}\right)\right) \\
\beta^{(1)}=-\frac{1}{2 \pi i} \cdot \frac{1}{2} \int_{0}^{\infty} \operatorname{Tr}_{s}\left(V \nabla^{E} V \exp \left(-t V^{2}\right)\right) d t=\frac{\sqrt{-1}}{2 \pi} \cdot \frac{1}{2} \operatorname{Tr}_{s}\left(V^{-1} \nabla^{E} V\right)
\end{gathered}
$$

By formula (3.4)

$$
\begin{equation*}
d \beta^{(1)}=-\frac{\sqrt{-1}}{2 \pi} r^{\lambda}=-c_{1}(\operatorname{det} E)=-\operatorname{ch}(E)^{(2)} \tag{3.5}
\end{equation*}
$$

3.2 Determinant Bundle

We want to construct the determinant bundle λ of $\left\{H=H_{+} \oplus H_{-}, D_{+}^{X}\right\}$. If ker $D_{ \pm}^{X}$ has constant dimension, $\lambda \triangleq\left(\operatorname{det} \operatorname{ker} D_{+}^{X}\right)^{-1} \otimes\left(\operatorname{det} \operatorname{ker} D_{-}^{X}\right)$. In general cases, $\forall a>0$,

$$
U_{a} \triangleq\left\{s \in S \mid a \notin S p\left(D_{s}^{X, 2}\right)\right\}
$$

U_{a} is an open set on $S . \bigcup_{a>0} U_{a}$ is an open covering of S.
Definition 3.2.1. On $U_{a}, H^{<a}=\underset{\substack{\lambda \in S p\left(D^{X, 2}\right) \\ \lambda<a}}{ }$ (bundle of eigenvalue λ of $D^{X, 2}$).
We use other similar notations, like $H^{(0, a)}, D^{(0, a)}=\left.D^{X}\right|_{H^{(0, a)}}$, e.t..
Proposition 3.2.1. $H^{<a}$ is a finite dimensional smooth vector bundle on $U_{a} . H^{<a}=H_{+}^{<a} \oplus H_{-}^{<a}$.

Definition 3.2.2. On $U_{a}, \lambda^{<a}=\operatorname{det} H^{<a}=\left(\operatorname{det} H_{+}^{<a}\right)^{-1} \otimes \operatorname{det} H_{-}^{<a} . \lambda^{<a}$ is a smooth line bundle on U_{a}.

The idea is that we can't define $\operatorname{det} H=\left(\operatorname{det} H_{+}\right)^{-1} \otimes \operatorname{det} H_{-}$directly, but we can patch $\lambda^{<a}$ together to get a well defined line bundle.
Proposition 3.2.2. $\forall s \in U_{a}, \lambda_{s}^{<a} \cong\left(\operatorname{det} \operatorname{ker} D_{+}^{X_{s}}\right)^{-1} \otimes\left(\operatorname{det} \operatorname{ker} D_{-}^{X_{s}}\right)=$: $\operatorname{det} \operatorname{ker} D^{X_{s}}$. This is a canonical isomorphism.

Proof. We have an exact sequence:

Let $\sigma_{ \pm} \neq 0 \in \operatorname{det} \operatorname{ker} D_{ \pm}^{X_{s}}, \tau \neq 0 \in \operatorname{det} H_{+}^{(0, a)}$, define

$$
\begin{aligned}
& \operatorname{det} k e r D^{X} \cong \\
& \sigma_{+}^{-1} \otimes \sigma_{-} \mapsto \\
& \operatorname{Het} H^{<a} \\
&\left(\sigma_{+} \wedge \tau\right)^{-1} \otimes\left(\operatorname{det} D_{+}^{X} \tau \wedge \sigma_{-}\right)
\end{aligned}
$$

This isomorphism is independent of τ. In fact, $\operatorname{det} D_{+}^{(0, a)}=\tau^{-1} \otimes\left(\operatorname{det} D_{+}^{X} \tau\right)$ is a nonzero canonical section of $\operatorname{det} H^{(0, a)}$. So $\sigma_{+}^{-1} \otimes \sigma_{-} \mapsto\left(\sigma_{+}^{-1} \otimes \sigma_{-}\right) \cdot\left(\operatorname{det} D_{+}^{(0, a)}\right)$ is a canonical isomorphism from $\operatorname{det} k e r D^{X}$ to $\operatorname{det} H^{<a}=\left(\operatorname{det} k e r D^{X}\right) \otimes\left(\operatorname{det} H^{(0, a)}\right)$.
$\forall 0<a<b, a, b \notin S p\left(D^{X, 2}\right), H^{<b}=H^{<a} \oplus H^{(a, b)}, \operatorname{det} H^{<b}=\operatorname{det} H^{<a} \otimes \operatorname{det} H^{(a, b)} \cdot \operatorname{det} D_{+}^{(a, b)}$ is a canonical nonzero section of $\operatorname{det} H^{(a, b)}$, so we have a canonical isomorphism

$$
\begin{aligned}
& \varphi_{b}^{a}: \lambda^{<a} \longrightarrow \lambda^{<b} \\
& \sigma \mapsto \\
& \sigma \otimes\left(\operatorname{det} D_{+}^{(a, b)}\right)
\end{aligned}
$$

Since $D_{+}^{(a, c)}=D_{+}^{(a, b)} \oplus D_{+}^{(b, c)}, \operatorname{det} D_{+}^{(a, c)}=\operatorname{det} D_{+}^{(a, b)} \otimes \operatorname{det} D_{+}^{(b, c)} \in \operatorname{det} H^{(a, b)} \otimes \operatorname{det} H^{(b, c)}=\operatorname{det} H^{(a, c)}$. So $\varphi_{c}^{a}=\varphi_{c}^{b} \circ \varphi_{b}^{a}: \lambda^{<a} \rightarrow \lambda^{<b}$. We can define the determinant line bundle:

Definition 3.2.3. The determinant line bundle λ is the complex line bundle obtained by pasting $\left(\lambda^{<a}, U_{a}\right)$ together via the canonical isomorphisms $\left\{\varphi_{b}^{a}: \lambda^{<a} \rightarrow \lambda^{<b}\right\}$
Remark 13. If $\operatorname{ker} D_{ \pm}^{X}$ have constant dimension, then

$$
\lambda \cong \operatorname{det} \operatorname{ker} D^{X}
$$

Proposition 3.2.3. $c_{1}(\lambda)=\pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]^{(2)}$ in $H^{2}(S)$.
Proof. By the family index theorem, $\operatorname{ch}\left(\operatorname{Ind} D_{+}^{X}\right)=\pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]$ in $H^{2}(S)$. So $c_{1}(\lambda)=$ $c_{1}\left(\operatorname{det} \operatorname{ker} D^{X}\right)=c_{1}\left(\operatorname{det} \operatorname{Ind} D_{+}^{X}\right)=\operatorname{ch}\left(\operatorname{Ind} D_{+}^{X}\right)^{(2)}=\pi_{*}[\hat{A}(T X) \operatorname{ch}(E)]^{(2)}$.

We want to construct a metric on λ. First we have a induced metric $|\cdot|_{\lambda<a}$ on $\lambda<a$ by the metric of $H . \forall \sigma \in \lambda^{<a}$,

$$
\left|\varphi_{b}^{a}(\sigma)\right|_{\lambda<b}=\left|\sigma \otimes\left(\operatorname{det} D_{+}^{(a, b)}\right)\right|_{\lambda<b}=|\sigma|_{\lambda<a}\left|\operatorname{det}\left(D_{-}^{(a, b)} D_{+}^{(a, b)}\right)\right|_{H_{+}^{(a, b)}}^{\frac{1}{2}}
$$

We want to define $\|\cdot\|_{\lambda<a}=|\cdot|_{\lambda<a}\left|\operatorname{det} D_{+}^{(a, \infty)}\right|$, then
$\left\|\varphi_{b}^{a}(\sigma)\right\|_{\lambda<b}=\left|\varphi_{b}^{a}(\sigma)\right|_{\lambda<b}\left|\operatorname{det} D_{+}^{(b, \infty)}\right|=|\sigma|_{\lambda<a}\left|\operatorname{det} D_{+}^{(a, b)}\right|\left|\operatorname{det} D_{+}^{(b, \infty)}\right|=|\sigma|_{\lambda<a}\left|\operatorname{det} D^{(a, \infty)}\right|=\|\sigma\|_{\lambda<a}$
so the metric patch together. We have to make sense the meaning of $\left|\operatorname{det} D_{+}^{(a, \infty)}\right|$ in this infinite dimensional case.
$L=D_{-}^{X} D_{+}^{X}$ is a second order, elliptic, positive differential operator, we define

$$
\begin{equation*}
\zeta(s)=\operatorname{Tr}^{*}\left(L^{-s}\right)=\sum_{\lambda \in \operatorname{Sp}^{*}\left(D_{-}^{X} D_{+}^{X}\right)} \frac{1}{\lambda^{s}} \quad(\text { eigenvalue } 0 \text { excluded }) \tag{3.6}
\end{equation*}
$$

We have the result of Seeley:
Proposition 3.2.4. $\zeta(s)$ is holomorphic in $\left\{s \in \mathbb{C} \mid\right.$ Res $\left.>\frac{n}{2}\right\}$. It extends to a meromorphic function of $s \in \mathbb{C}$ with simple poles, which is holomorphic at $s=0$.

Proof. Use the Melin transform:

$$
\begin{gathered}
L^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t L} d t \\
\operatorname{Tr}^{*}\left(L^{-s}\right)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}^{*}\left(e^{-t L}\right) d t=\frac{1}{\Gamma(s)}\left(\int_{0}^{1}+\int_{1}^{\infty}\right)
\end{gathered}
$$

$\int_{1}^{+\infty} t^{s-1} \operatorname{Tr}^{*}\left(e^{-t L}\right) d t$ is uniformly convergent w.r.t s, so is holomorphic in $s \in \mathbb{C}$. When $t \rightarrow 0$, we have asymptotic expansion:

$$
\operatorname{Tr}\left(e^{-t D^{2}}\right)=\frac{A_{-\frac{n}{2}}}{t^{\frac{n}{2}}}+\cdots+A_{0}+A_{1} t \cdots+O\left(t^{k}\right)
$$

So

$$
\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1} \operatorname{Tr}^{*}\left(e^{-t L}\right) d t=\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s-1} \operatorname{Tr}\left(e^{-t L}\right) d t-\frac{1}{\Gamma(s+1)}(\operatorname{dim} \operatorname{ker} L)
$$

is holomorphic when $\operatorname{Re} s>\frac{n}{2}$.
We also define

$$
\zeta^{a}(s)=\operatorname{Tr}\left(L^{-s} P^{(a,+\infty)}\right)=\frac{1}{\Gamma(s)} \int_{0}^{+\infty} t^{s-1} \operatorname{Tr}\left(e^{-t L} P^{(a,+\infty)}\right) d t
$$

and $\zeta^{(a, b)}(s)=\operatorname{Tr}\left(L^{-s} P^{(a, b)}\right)$. Then $\forall 0<a<b, \zeta^{a}(s)=\zeta^{(a, b)}(s)+\zeta^{b}(s)$. Note that

$$
\frac{\partial \zeta^{(a, b)}}{\partial s}(0)=-\log \prod_{\substack{\lambda \in S p(L) \\ a<\lambda<b}} \lambda=-\log \operatorname{det} L^{(a, b)}=-2 \log \left|\operatorname{det} D_{+}^{(a, b)}\right|
$$

So $\left|\operatorname{det} D_{+}^{(a, b)}\right|=\exp \left(-\frac{1}{2} \frac{\partial \zeta^{(a, b)}}{\partial s}(0)\right)$. We define

$$
\left|\operatorname{det} D^{(a, \infty)}\right|=\exp \left(-\frac{1}{2} \frac{\partial \zeta^{a}}{\partial s}(0)\right),\left|\operatorname{det}^{*} D_{+}\right|=\exp \left(-\frac{1}{2} \frac{\partial \zeta}{\partial s}(0)\right)
$$

then

$$
\left|\operatorname{det} D_{+}^{(a, \infty)}\right|=\left|\operatorname{det} D^{(a, b)}\right|\left|\operatorname{det} D^{(b, \infty)}\right|,\left|\operatorname{det} D_{+}\right|=\left|\operatorname{det} D_{+}^{(0, a)}\right|\left|\operatorname{det} D^{(a,+\infty)}\right|
$$

Definition 3.2.4. $\|\cdot\|_{\lambda<a}=|\cdot|_{\lambda<a}\left|\operatorname{det} D_{+}^{(a, \infty)}\right|=|\cdot|_{\lambda<a} \exp \left(-\frac{1}{2} \frac{\partial \zeta^{a}}{\partial s}(0)\right)$.
Theorem 3.2.1. Under the canonical identification of λ with $\lambda^{<a}$ over U_{a}, the metric $\|\cdot\|_{\lambda<a}$ patch into a smooth metric $\|\cdot\|_{\lambda}$ on λ.
the next step is to construct a natural unitary connection ∇^{λ} on $\left(\lambda,\|\cdot\|_{\lambda}\right)$. First we assume $\operatorname{ker} D_{ \pm}^{X}$ have constant dimensions. In theorem ?? we see that

$$
d \tilde{\eta}=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]-\operatorname{ch}\left(\nabla^{\operatorname{ker} D^{X}}\right)
$$

so $d \tilde{\eta}^{(1)}=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]^{(2)}-c_{1}\left(\nabla^{\operatorname{det} \operatorname{ker} D^{X}}\right)$.

Definition 3.2.5. $\nabla^{\prime \lambda}=\nabla^{\operatorname{det} \operatorname{ker} D^{X}}-2 \pi i \tilde{\eta}^{(1)}$.
then

$$
c_{1}\left(\nabla^{\prime \lambda}\right)=c_{1}\left(\nabla^{\operatorname{det} \operatorname{ker} D^{X}}\right)+d \tilde{\eta}^{(1)}=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]^{(2)}
$$

Since $2 \pi i \tilde{\eta}^{(1)}$ is purely imaginary, $\nabla^{\prime \lambda}$ is unitary with respect to $|\cdot|_{\lambda}$. Let g, g^{\prime} be the metric associated with $\|\cdot\|_{\lambda},|\cdot|_{\lambda}$, and θ the connection form of $\nabla^{\prime \lambda}$, then

$$
\begin{aligned}
d g & =d\left(\frac{g}{g^{\prime}} g^{\prime}\right)=d\left(\frac{g}{g^{\prime}}\right) \cdot g^{\prime}+\frac{g}{g^{\prime}} d g^{\prime}=g \cdot d \log \frac{g}{g^{\prime}}+\frac{g}{g^{\prime}}\left(g^{\prime} \theta+g^{\prime} \bar{\theta}\right) \\
& =g\left(d \log \frac{g}{g^{\prime}}+\theta+\bar{\theta}\right)
\end{aligned}
$$

So if we let

$$
\begin{equation*}
\nabla^{\prime \prime \lambda}=\nabla^{\prime \lambda}+\frac{1}{2} d \log \frac{g}{g^{\prime}} \tag{3.7}
\end{equation*}
$$

then $\nabla^{\prime \prime \lambda}$ is unitary with respect to $\|\cdot\|_{\lambda}$.
In general case, we want to patch $\nabla^{\lambda^{<a}}$ together. Let $\nabla^{H^{<a}}$ be the orthogonal projection of ∇^{H} to $H^{<a}$, which is unitary, then $\lambda^{<a}$ has an induced connection $\nabla^{<a}$ which is unitary w.r.t. $\left.\left.\right|_{\cdot}\right|_{\lambda<a}$. $\forall \sigma \in \lambda^{<a}$

$$
\begin{aligned}
\nabla^{\lambda^{<b}}\left(\varphi_{b}^{a}(\sigma)\right) & =\nabla^{\lambda^{<b}}\left(\sigma \otimes \operatorname{det} D_{+}^{(a, b)}\right)=\nabla^{\lambda^{<a}} \sigma \otimes\left(\operatorname{det} D_{+}^{(a, b)}\right)+\sigma \otimes\left(\nabla^{\lambda^{(a, b)}} \operatorname{det} D_{+}^{(a, b)}\right) \\
& =\left(\nabla^{\lambda^{<a}} \sigma+\frac{\nabla^{\lambda^{(a, b)}} \operatorname{det} D_{+}^{(a, b)}}{\operatorname{det} D_{+}^{(a, b)}} \sigma\right) \otimes\left(\operatorname{det} D_{+}^{(a, b)}\right)
\end{aligned}
$$

From formula (3.1), we know that

$$
\begin{aligned}
\frac{\nabla^{\lambda^{(a, b)}}\left(\operatorname{det} D_{+}^{(a, b)}\right)}{\operatorname{det} D_{+}^{(a, b)}} & =-\operatorname{Tr}\left[\left(D_{+}^{(a, b)}\right)^{-1} \nabla^{H^{(a, b)}} D_{+}^{(a, b)}\right] \\
& =-\frac{1}{2} \operatorname{Tr}\left[\left(D^{(a, b)}\right)^{-1} \nabla^{H^{(a, b)}} D^{(a, b)}\right]-\frac{1}{2} \operatorname{Tr}_{s}\left[\left(D^{(a, b)}\right)^{-1} \nabla^{H^{(a, b)}} D^{(a, b)}\right]
\end{aligned}
$$

We want to define $\nabla^{\prime \lambda^{<a}}=\nabla^{\lambda^{<a}}-\operatorname{Tr}\left[\left(D_{+}^{(a, \infty)}\right)^{-1} \nabla^{H^{(a, \infty)}} D_{+}^{(a, \infty)}\right]$, then

$$
\begin{aligned}
\nabla^{\prime \lambda^{<b}}\left(\varphi_{b}^{a}(\sigma)\right) & =\left(\nabla^{\lambda^{<a}}-\operatorname{Tr}\left[\left(D_{+}^{(a, b)}\right)^{-1} \nabla^{H^{(a, b)}} D_{+}^{(a, b)}\right]-\operatorname{Tr}\left[\left(D_{+}^{(b, \infty)}\right)^{-1} \nabla^{H^{(b, \infty)}} D_{+}^{(b, \infty)}\right]\right) \sigma \otimes \operatorname{det} D_{+}^{(a, b)} \\
& =\left(\nabla^{\lambda^{<a}} \sigma-\operatorname{Tr}\left[\left(D_{+}^{(a, \infty)}\right)^{-1} \nabla^{H^{(a, \infty)}} D_{+}^{(a, \infty)}\right] \sigma\right) \otimes \operatorname{det} D_{+}^{(a, b)}=\varphi_{b}^{a}\left(\nabla^{\prime \lambda^{<a}} \sigma\right)
\end{aligned}
$$

So the connection $\left\{\nabla^{\prime<a}\right\}$ patch together. First, we introduce

Definition 3.2.6.

$$
\begin{aligned}
& \gamma_{t}^{a}=\int_{t}^{\infty} \operatorname{Tr}\left[e^{-s D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d s=-\operatorname{Tr}\left[e^{-t D^{2}} D^{-1} \nabla^{H} D \cdot P^{(a, \infty)}\right] \\
& \delta_{t}^{a}=\int_{t}^{\infty} \operatorname{Tr}_{s}\left[e^{-s D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d s=\operatorname{Tr}_{s}\left[e^{-t D^{2}} D^{-1} \nabla^{H} D \cdot P^{(a, \infty)}\right]
\end{aligned}
$$

similarly we can define $\gamma_{t}^{(a, b)}$ and $\delta_{t}^{(a, b)}$.
As $t \rightarrow 0$, we have asymptotic expansions:

$$
\begin{align*}
\gamma_{t}^{a}= & \int_{t}^{1}\left(\operatorname{Tr}\left[e^{-s D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right]+\sum_{-\frac{n}{2}}^{0} d A_{j} \cdot s^{j-1}\right) d s \\
& \quad+\int_{1}^{\infty} \operatorname{Tr}\left[e^{-s D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d s-\sum_{-\frac{n}{2}}^{-1} \frac{d A_{j}}{j}+\sum_{-\frac{n}{2}}^{-1} \frac{d A_{j}}{j} t^{j}+d A_{0} \cdot \log t \\
= & \sum_{-\frac{n}{2}}^{-1} d A_{j} \cdot \frac{t^{j}}{j}+d A_{0} \cdot \log t+\gamma_{0}^{a}+O(t) \tag{3.8}
\end{align*}
$$

$$
\delta_{t}^{a}=\delta_{0}^{a}+O(t)
$$

we have $\gamma_{t}^{b}=\gamma_{t}^{a}+\gamma_{t}^{(a, b)}, \delta_{t}^{b}=\delta_{t}^{a}+\delta_{t}^{(a, b)}$ and

$$
\begin{aligned}
\gamma_{0}^{(a, b)} & =-\operatorname{Tr}\left[D^{-1} \nabla^{H} D \cdot P^{(a, b)}\right]=-\operatorname{Tr}\left[\left(D^{(a, b)}\right)^{-1} \nabla^{H^{(a, b)}} D^{(a, b)}\right] \\
\delta_{0}^{(a, b)} & =\operatorname{Tr}_{s}\left[D^{-1} \nabla^{H} D \cdot P^{(a, b)}\right]=\operatorname{Tr}_{s}\left[\left(D^{(a, b)}\right)^{-1} \nabla^{H^{(a, b)}} D^{(a, b)}\right]
\end{aligned}
$$

So $\frac{\nabla^{\lambda^{(a, b)}}\left(\operatorname{det} D_{+}^{(a, b)}\right)}{\operatorname{det} D_{+}^{(a, b)}}=\frac{1}{2}\left(\gamma_{0}^{(a, b)}-\delta_{0}^{(a, b)}\right)$. If we let

$$
\nabla^{\prime \lambda^{<a}}=\nabla^{\lambda^{<a}}+\frac{1}{2}\left(\gamma_{0}^{a}-\delta_{0}^{a}\right)
$$

then $\nabla^{\prime \lambda^{<a}}$ will patch together. But it may not be unitary. By equation (3.7), we compute $d \log \frac{g}{g^{\prime}}=d\left(-\frac{\partial \zeta^{a}}{\partial s}(0)\right)$. Recall that

$$
\zeta^{a}(s)=\operatorname{Tr}\left(L^{-s} P^{(a, \infty)}\right)=\frac{1}{2} \operatorname{Tr}\left[\left(D^{2}\right)^{-s} P^{(a, \infty)}\right]=\frac{1}{2 \Gamma(s)} \int_{0}^{\infty} t^{s-1} \operatorname{Tr}\left[e^{-t D^{2}} P^{(a, \infty)}\right] d t
$$

so

$$
\begin{aligned}
d \zeta^{a}(s)= & -\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s} \operatorname{Tr}\left[e^{-t D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d t \\
= & -\frac{1}{\Gamma(s)} \int_{0}^{1} t^{s}\left(\operatorname{Tr}\left[e^{-t D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right]+\sum_{-\frac{n}{2}}^{0} d A_{j} \cdot t^{j-1}\right) d t \\
& \quad-\frac{1}{\Gamma(s)} \int_{1}^{\infty} t^{s} \operatorname{Tr}\left[e^{-t D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d t+\frac{1}{\Gamma(s)} \sum_{j=-\frac{n}{2}}^{-1} \frac{d A_{j}}{s+j}+\frac{d A_{0}}{\Gamma(s+1)}
\end{aligned}
$$

Note that $\Gamma(s)$ has simple pole at $s=0, \operatorname{Res}(\Gamma(s), 0)=1$, and $\left(\frac{1}{\Gamma(s)}\right)^{\prime}(0)=1$. By equation (3.8), we get

$$
\begin{aligned}
d\left[\frac{\partial \zeta^{a}}{\partial s}(0)\right]= & -\int_{0}^{1}\left(\operatorname{Tr}\left[e^{-t D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right]+\sum_{-\frac{n}{2}}^{0} d A_{j} \cdot t^{j-1}\right) d t \\
& \quad-\int_{1}^{\infty} \operatorname{Tr}\left[e^{-t D^{2}} \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d t+\sum_{j=-\frac{n}{2}}^{-1} \frac{d A_{j}}{j}-\Gamma^{\prime}(1) d A_{0} \\
= & -\gamma_{0}^{a}-\Gamma^{\prime}(1) d A_{0}
\end{aligned}
$$

δ_{0}^{a} is purely imaginary, so $\nabla^{\prime \prime \lambda^{<a}}=\nabla^{\lambda^{<a}}+\frac{1}{2}\left(\gamma_{0}^{a}-\delta_{0}^{a}\right)+\frac{1}{2} \Gamma^{\prime}(1) d A_{0}$ is unitary and can be patched together.
We will see whether it satisfies $c_{1}\left(\nabla^{\lambda}\right)=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]^{(2)}$, we know that as $t \rightarrow 0$, $\operatorname{ch}\left(A_{t}\right)=\varphi T r_{s} \exp \left(-A_{t}^{2}\right)=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]+O(\sqrt{t})$. So

$$
\begin{equation*}
\left[\varphi \operatorname{Tr}_{s} \exp \left(-A_{t}^{2}\right)\right]^{(2)}=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]^{(2)}+O(\sqrt{t}) \tag{3.9}
\end{equation*}
$$

Proposition 3.2.5.

$$
\begin{equation*}
\left[T r_{s} \exp \left(-A_{t}^{2}\right)\right]^{(2)}=\left[T r_{s} \exp \left(-\left(\sqrt{t} D^{X}+\nabla^{H}\right)^{2}\right)\right]^{(2)} \tag{3.10}
\end{equation*}
$$

Proof. Let $A_{t}^{l}=\sqrt{t} D^{X}+\nabla^{H}-\frac{l c\left(T^{H}\right)}{4 \sqrt{t}}$, then

$$
\frac{\partial}{\partial l}\left[\operatorname{Tr}_{s} \exp \left(-A_{t}^{l, 2}\right)\right]^{(2)}=-d \operatorname{Tr}_{s}\left[\frac{\partial A_{t}^{l}}{\partial l} \exp \left(-A_{t}^{l, 2}\right)\right]^{(1)}=d \operatorname{Tr}_{s}\left[\frac{c\left(T^{H}\right)}{4 \sqrt{t}} \exp \left(-A_{t}^{l, 2}\right)\right]^{(1)}=0
$$

Since $A_{t}^{1}=A_{t}, A_{t}^{0}=\sqrt{t} D^{X}+\nabla^{H}$, the proposition follows.

Proposition 3.2.6.

$\left[T r_{s} \exp \left(-\left(\sqrt{t} D^{X}+\nabla^{H}\right)^{2}\right)\right]^{(2)}=\left[\operatorname{Tr}_{s} \exp \left(-\left(\sqrt{t} D^{<a}+\nabla^{H^{<a}}\right)^{2}\right)\right]^{(2)}+\left[T r_{s} \exp \left(-\left(\sqrt{t} D^{(a, \infty)}+\nabla^{H^{(a, \infty)}}\right)^{2}\right)\right]^{(2)}$

Proof. We use the same transgression trick: Let $M^{a}=\nabla^{H}-\nabla^{H, \text { split }}$, where $\nabla^{H, \text { split }}=\nabla^{H^{<a}} \oplus \nabla^{H^{(a, \infty)}}$, and $\nabla_{l}^{H}=\nabla^{H, \text { split }}+l M^{a}$. Then

$$
\begin{aligned}
\frac{\partial}{\partial l}\left[\operatorname{Tr}_{s} \exp \left(-\left(\sqrt{t} D^{X}+\nabla_{l}^{H}\right)^{2}\right)\right]^{(2)} & =-d \operatorname{Tr}_{s}\left[M^{a} \exp \left(-\left(\sqrt{t} D^{X}+\nabla_{l}^{H}\right)^{2}\right)\right]^{(1)} \\
& =-d \operatorname{Tr}_{s}\left[M^{a} \exp \left(-t D^{X, 2}\right)\right]
\end{aligned}
$$

Clearly M^{a} interchanges $H_{ \pm}^{<a}$ and $H_{ \pm}^{(a, \infty)}$, while $\exp \left(-t D^{X, 2}\right)$ preserves the splitting $H_{ \pm}=H_{ \pm}^{<a} \oplus H_{ \pm}^{(a, \infty)}$, so $\operatorname{Tr}_{s}\left[M^{a} \exp \left(-t D^{X, 2}\right)\right]=0$. Since $\nabla^{H, \text { split }}$ verifies the proposition, so does ∇^{H}.

Now

$$
\begin{aligned}
\frac{\partial}{\partial t}\left[\operatorname{Tr}_{s} \exp \left(-\left(\sqrt{t} D^{(a, \infty)}+\nabla^{H^{(a, \infty)}}\right)^{2}\right)\right]^{(2)} & =-d \operatorname{Tr}_{s}\left[\frac{D^{(a, \infty)}}{2 \sqrt{t}} \exp \left(-\left(\sqrt{t} D^{(a, \infty)}+\nabla^{H^{(a, \infty)}}\right)^{2}\right)\right]^{(1)} \\
& =\frac{1}{2} d \operatorname{Tr}_{s}\left[D^{(a, \infty)} \nabla^{H^{(a, \infty)}} D^{(a, \infty)} \exp \left(-t D^{(a, \infty), 2}\right)\right] \\
& =\frac{1}{2} d \operatorname{Tr}_{s}\left[\exp \left(-t D^{2}\right) \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right]
\end{aligned}
$$

Since $a>0$, as $t \rightarrow+\infty,\left[T r_{s} \exp \left(-\left(\sqrt{t} D^{(a, \infty)}+\nabla^{H^{(a, \infty)}}\right)^{2}\right)\right]^{(2)}$ decays exponentially. So we have

$$
\begin{align*}
{\left[\operatorname{Tr}_{s} \exp \left(-\left(\sqrt{t} D^{(a, \infty)}+\nabla^{H^{(a, \infty)}}\right)^{2}\right)\right]^{(2)} } & =-\frac{1}{2} d \int_{t}^{\infty} \operatorname{Tr}_{s}\left[\exp \left(-s D^{2}\right) \nabla^{H} D \cdot D \cdot P^{(a, \infty)}\right] d s \\
& =-\frac{1}{2} d \delta_{t}^{a} \tag{3.12}
\end{align*}
$$

By formula (3.9),(3.10),(3.11),(3.12), we have

$$
\left[T r_{s} \exp \left(-A_{t}^{2}\right)\right]^{(2)}=\left[T r_{s} \exp \left(-\left(\sqrt{t} D^{<a}+\nabla^{H^{<a}}\right)^{2}\right)\right]^{(2)}-\frac{1}{2} d \delta_{t}^{a}
$$

Let $t \rightarrow 0$, we get

$$
\begin{equation*}
\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]^{(2)}=c_{1}\left(\nabla^{\lambda^{<a}}\right)-\frac{1}{2 \pi i} \frac{1}{2} d \delta_{0}^{a} \tag{3.13}
\end{equation*}
$$

Now we have $\nabla^{\prime \prime \lambda^{<a}}=\nabla^{\lambda^{<a}}+\frac{1}{2}\left(\gamma_{0}^{a}-\delta_{0}^{a}\right)+\frac{1}{2} \Gamma^{\prime}(1) d A_{0}$. Note that $\gamma_{0}^{a}=-d\left[\frac{\partial \zeta^{a}}{\partial s}(0)\right]-\Gamma^{\prime}(1) d A_{0}$ is exact, so

$$
\begin{equation*}
c_{1}\left(\nabla^{\prime \prime \lambda^{<a}}\right)=c_{1}\left(\nabla^{\lambda^{<a}}\right)-\frac{1}{2 \pi i} \cdot \frac{1}{2} d \delta_{0}^{a} \tag{3.14}
\end{equation*}
$$

So $\nabla^{\prime \prime \lambda^{<a}}$ is the connection we want:
Theorem 3.2.2. Let ${ }^{1} \nabla^{\lambda^{<a}}=\nabla^{\lambda^{<a}}+\frac{1}{2}\left(\gamma_{0}^{a}-\delta_{0}^{a}\right)+\frac{1}{2} \Gamma^{\prime}(1) d A_{0}$, then identifying λ with $\lambda^{<a}$ over U_{a}, the connection ${ }^{1} \nabla^{\lambda^{<a}}$ patch together into a connection ${ }^{1} \nabla^{\lambda}$ on λ, which is unitary w.r.t. the metric $\|\cdot\|$, and

$$
c_{1}\left({ }^{1} \nabla^{\lambda}\right)=\pi_{*}\left[\hat{A}\left(\nabla^{T X}\right) \operatorname{ch}\left(\nabla^{E}\right)\right]^{(2)}
$$

