YTD conjecture for generalized Kähler solitons and applications

Chi Li

Department of Mathematics, Rutgers University

Xiamen University, June 17, 2021
1. Generalized Kähler solitons on Fano varieties

2. Application to Ricci-flat Kähler cone metric (revisit the work of Apostolov-Calderbank-Jubert-Lahdili)
X a projective manifold. $L \to X$ an ample holomorphic line bundle.

Kähler metric $\omega = \sqrt{-1} \sum_{i,j} \omega_{i\bar{j}} dz_i \wedge d\bar{z}_j > 0$ in $2\pi \cdot c_1(L)$.

$T \cong (S^1)^r$, with Lie algebra $N_\mathbb{R}$, acts holomorphically on (X, L)

Hamiltonian action: ω is T-invariant and there exists a moment map:

$$m : X \to N_\mathbb{R}^\vee \cong \mathbb{R}^r, \quad \iota_\xi \omega = d\langle m, \xi \rangle$$

for any $\xi \in N_\mathbb{R}$.

Atiyah-Guillemin-Sternberg: the image $m(X)$ is a convex polytope (which can be recovered by algebraic data using weight decompositions).

Duistermaat-Heckman measure: $DH_T := m_*(\omega^n)$ does not depend on the Kähler form in the same Kähler class. \Rightarrow For any smooth function g on \mathbb{R}^r,

$$V_g := \int_X g(m) \omega^n = \int_P g(x) DH_T$$

is independent of $\omega \in [\omega]$.

Generalized Kähler solitons on Fano varieties
Fano manifolds

- X Fano: \(-K_X := \wedge^n T_{\text{hol}} X\) is ample, \(c_1(X) = c_1(-K_X) > 0\).
- Local holomorphic frame: \(\partial_z = \partial_{z_1} \wedge \cdots \wedge \partial_{z_n}, dz = dz_1 \wedge \cdots \wedge dz_n\).
- Hermitian metric on \(-K_X\) \(\leftrightarrow\) volume form

\[
h_\varphi = h_0 e^{-\varphi} \quad \leftrightarrow \quad \Omega_\varphi = |\partial_z|_{h_\varphi}^2 (\sqrt{-1})^n dz \wedge d\bar{z}.
\]

Chern curvature:

\[
\text{Ric}(\Omega_\varphi) = \text{Ric}(\Omega_0) + \sqrt{-1} \partial \bar{\partial} \varphi = \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi = \omega_\varphi \in 2\pi c_1(X).
\]

Space of Kähler potentials:

\[
\mathcal{H}(\omega_0) = \left\{ \varphi \in C^\infty(X); \quad \omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi > 0 \right\}.
\]

- holomorphic vector field \(v\) \(\rightarrow\) a canonical Hamiltonian function:

\[
\theta_v(\varphi) = -\frac{\iota_v \Omega_\varphi}{\Omega_\varphi} \quad \Rightarrow \quad \iota_v \omega_\varphi = \sqrt{-1} \bar{\partial} \theta_v(\varphi).
\]

If \(v = \frac{1}{2}(-J\xi - \sqrt{-1}\xi)\), \(\theta_v(\varphi)\) is real \(\leftrightarrow\) \(\xi\) is Killing w.r.t. \(\omega_\varphi\).
g-soliton equations

- Moment map of $T = (S^1)^r$ action with respect to ω_φ:

 $$m_\varphi : X \rightarrow N^\vee_R, \quad \langle m_\varphi, \xi \rangle = \theta_{v_\xi}(\varphi).$$

 $$v_\kappa = \frac{1}{2}(-J_\xi_\kappa - \sqrt{-1}\xi_\kappa): \kappa\text{-th generator of (C*)}^r$$

 $$m_\varphi = (\theta_{\kappa,0} + v_\kappa(\varphi))_{\kappa=1}^r : X \rightarrow \mathbb{R}^r.$$

- Let $g : P \rightarrow \mathbb{R} > 0$ be a smooth function. g-soliton equation:

 $$g(m_\varphi)(\omega_0 + \sqrt{-1}\partial\bar{\partial}\varphi)^n = e^{-\varphi}\Omega_0$$

 $$\iff \text{Ric}(\omega_\varphi) - \omega_\varphi = \sqrt{-1}\partial\bar{\partial}\log g(m_\varphi).$$

 Examples:

 - $g = \exp(\langle x, \xi \rangle)$: Kähler-Ricci soliton;
 - $g = 1$: Kähler-Einstein.
 - $g(x) = 1 + \langle x - \bar{x}, \xi \rangle$: Mabuchi soliton
 - $g = (c + \langle x, \xi \rangle)^{-n-2}$: Ricci-flat Kähler cone metric (Apostolov et al.)
Futaki invariant and Matsushima type result

- Set $g_\varphi := g(m_\varphi)$ and $f_\varphi = \log g_\varphi$. For any holomorphic vector field ν

 $$
 \text{Fut}_g(\nu) := \int_X \nu (-\log \frac{\omega_\varphi^n}{\Omega_\varphi} - f_\varphi) e^{g_\varphi} \omega_\varphi^n = -\int_X \theta_\nu(\varphi) g_\varphi \omega_\varphi^n.
 $$

 Fact: Fut_g does not depend on the choice of $\omega \in 2\pi c_1(L)$.

 \exists g-soliton in \implies $\text{Fut}_g \equiv 0$.

- There is a generalized Matsushima reductivity result:

 Theorem

 If (X, \mathbb{T}) admits a g-soliton, then the following group is reductive:

 $$
 \text{Aut}(X, \mathbb{T}) = \{ \sigma \in \text{Aut}(X); t \circ \sigma = \sigma \circ t \ \forall t \in \mathbb{T} \}.
 $$

 (1)

 This follows from the identity:

 $$
 \text{aut}(X, \mathbb{T}) \cong \{ \theta \in C^\infty(X, \mathbb{C})^T; (\Delta + \nabla f)\theta = -\theta \}.
 $$

 (2)
Toric case

- X: toric manifold: $\mathbb{T} \cong (\mathbb{C}^*)^n$ has an open orbit \iff moment polytope P
- X: toric Fano manifold \iff reflexive polytope $P \ni 0$

\[P : \ell_{n_i}(x) = \langle x, n_i \rangle \geq -1, \quad i = 1, \ldots, K. \]

- Holomorphic vector field $\iff \zeta \in \mathbb{R}^n$

\[\text{Fut}_g(\zeta) = \int_P \langle x, \zeta \rangle gdx = 0 \iff g\text{-weighted barycenter} = 0. \]

If $g = f(\langle x, \xi \rangle)$ for a strictly convex f, this determines ξ uniquely.

Examples: $f = \exp$ (KR soliton); $f = \frac{1}{(c+t)^d}$ for any $c > 0$ and $d > 0$.

Theorem (Han-L., a consequence of YTD theorem)

For toric manifolds, there exists a g-soliton iff the g-weighted barycenter$=0$.

- For Kähler-Ricci soliton this was proved by Wang-Zhu (2000).
Energy functionals and coercivity

- g-weighted functionals generalizing the unweighted case:

\[E_g(\varphi) = \frac{1}{V_g}\int_0^1 dt \int_X \varphi \omega^n_t, \quad \Lambda_g(\varphi) = \frac{1}{V_g} \int_X \varphi g_{\varphi_0} \omega^n_0 \]

\[I_g(\varphi) = \int_X \varphi (g_{\varphi_0} \omega^n_0 - g_{\varphi} \omega^n_0), \quad J_g(\varphi) = \Lambda_g(\varphi) - E_g(\varphi) \]

\[L(\varphi) = -\log \left(\int_X e^{-\varphi} \Omega_0 \right), \quad D_g(\varphi) = -E_g(\varphi) + L(\varphi) \]

\[M_g(\varphi) = \frac{1}{V_g} \int_X \log \frac{g_{\varphi} \omega^n_\varphi}{\Omega_0} g_{\varphi} \omega^n_\varphi - (I_g - J_g)(\varphi). \]

- Automorphisms: $\text{Aut}(X, \mathbb{T}) = \{ \sigma \in \text{Aut}(X); \sigma \cdot t = t \cdot \sigma, \forall t \in \mathbb{R} \}$

\hat{T}: maximal torus of $\text{Aut}(X, \mathbb{T})$; T: maximal compact torus of \hat{T}.

- F_g is reduced coercive if $\exists \gamma, C > 0$ s.t. $\forall \hat{T}$-invariant $\varphi \in \mathcal{H}(\omega_0)$

\[F_g(\varphi) \geq \gamma \cdot \inf_{\sigma \in \hat{T}} J_g(\sigma^* \omega_\varphi) - C. \]
Analytic criterion

Theorem (Han-L., generalize Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein)

The following are equivalent:

1. (X, \mathbb{T}) admits a g-soliton.
2. D_g is reduced coercive.
3. M_g is reduced coercive.

- $1 \rightarrow 2$: generalize the argument of Darvas-Rubinstein based on the convexity and uniqueness:
- $2 \rightarrow 3$: $D_g \leq M_g$.
- $3 \rightarrow 2$: A duality argument.
- $2 \rightarrow 1$: Variational argument

Theorem (Berndtsson, BBEGZ)

L is convex along geodesic segment in \mathcal{E}^1_g. It is affine iff the geodesic is generated by a holomorphic vector field that commutes with \mathbb{T}.

2 \rightarrow 3: $D_g \leq M_g$.
3 \rightarrow 2: A duality argument.
2 \rightarrow 1: Variational argument
\(\varphi \in L^1(\omega_0^n) \) is \(\omega_0 \)-psh if it is u.s.c. and \(\psi + \varphi \) is psh (\(\omega_0 = \sqrt{-1} \partial \bar{\partial} \psi \)).

\[
\text{PSH}(\omega_0) = \{ \varphi; \varphi \text{ is } \omega_0 \text{-psh} \}.
\]

Non-pluripolar product:

\[
(\omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi)^n = \lim_{j \to +\infty} (\omega_0 + \sqrt{-1} \partial \bar{\partial} \max\{\varphi, -j\})^n.
\]

\(g = \prod_{\kappa} (x_{\kappa} + c)^d_{\kappa} \) such that \(P + c(1, \ldots, 1) \in \mathbb{R}^r_{>0} \), then

\[
\int_X f g \varphi (\omega_0 + \sqrt{-1} \partial \bar{\partial} \varphi)^n = \int_X (f^T)^{[d]}(\sum_{\kappa} \theta_{\kappa}(\varphi) \omega_{FS, \kappa} + \omega_{\varphi})^{n+d}.
\]

General \(g \), find polynomials \(g_j \to g \) uniformly and set:

\[
\int_X f g \varphi \omega_\varphi^n = \lim_{j \to +\infty} \int_X f(g_j) \varphi \omega_\varphi^n.
\]
Fibration construction

- $P \to B$: hol. line bundle with Hermitian metric h_P; \tilde{P} circle bundle.
- $L \to X$: hol. line bundle with \mathbb{C}^*-action, S^1-invariant Hermitian metric h_L
- $(Y, F) = (P^* \times (X, L))/\mathbb{C}^* \to B$: associated holomorphic fibre bundle.
- Induced horizontal distribution and splitting $TY = \pi^* TB \bigoplus TX$.
- Induced Hermitian metric h_F on F whose Chern curvature at \tilde{P}:
 $$\sqrt{-1} \partial \bar{\partial} \log h_F = \pi^* (\theta_v \sqrt{-1} \partial \bar{\partial} \log h_P) + \sqrt{-1} \partial \bar{\partial} \log h_L.$$

The right-hand-side is considered as an equivariantly closed form on X.

- Example:
 - $(P \to B) = (\mathbb{P}^{d+1} \setminus \mathbb{P}_\infty \to \mathbb{P}^k)$, $\tilde{P} \simeq S^{2d+1}$, $\mathbb{P}^* = \mathbb{C}^{d+1} \setminus \{0\}$.
 - Curvature: $\theta_v(\varphi) \omega_{FS} + \omega_\varphi$.

 - $S^{[\tilde{d}]} = S^{2d_1+1} \times \cdots \times S^{2d_r+1} \to \mathbb{P}^{[\tilde{d}]} = \mathbb{P}^{d_1} \times \cdots \times \mathbb{P}^{d_r}$.

 - $(X^{[\tilde{d}]}, L^{[\tilde{d}]}) = S^{[\tilde{d}]} \times (S^1)^r (X, L) \to \mathbb{P}^{[\tilde{d}]}$.

 - Curvature: $\sum_{\kappa=1}^r \theta_\kappa(\varphi) \omega_{FS, \mathbb{P}^{d_\kappa}} + \omega_\varphi$.

Generalized Kähler solitons on Fano varieties
Define:

\[E^1 = \left\{ \varphi \in \text{PSH}(\omega_0) ; \int_X |\varphi| \omega^n_\varphi < +\infty \right\}, \quad \text{(Guedj-Zeriahi)} \]

\[E^1_g = \left\{ \varphi \in \text{PSH}(\omega_0)^T ; \int_X |\varphi| g_\varphi \omega^n_\varphi < +\infty \right\} = (E^1)^T. \]

Strong topology: \(\varphi_j \to \varphi \) in strong topology iff it converges in \(L^1 \) and \(E_g(\varphi_j) \to E_g(\varphi) \) iff

\[\varphi_j \to \varphi \text{ in } L^1, \quad \sup \varphi_j \to \sup \varphi, \quad I_g(\varphi, \varphi_j) \to 0. \]

Theorem (generalized version of Berman-Boucksom-Eyssidieux-Guedj-Zeriahi)

For any constant \(C > 0 \), the following subset is compact in strong topology:

\[\left\{ \varphi \in E^1_g ; \int_X \log \frac{g_\varphi \omega^n_\varphi}{\Omega_0} g_\varphi \omega^n_\varphi < C, \sup \varphi = 0 \right\}. \]
Let $X \rightarrow \mathbb{P} = \mathbb{P}^{N_m-1}$ be the \mathbb{T}-equivariant Kodaira embedding via $|mL|$.

$\sigma(s) = \exp(s\zeta), s \in [0, +\infty)$: one parameter subgroup of $GL(N_m, \mathbb{C})$.

Limit scheme: $[\mathcal{X}_0] = \lim_{s \rightarrow +\infty} \sigma(s) \circ [X]$ and induced test configuration:

$$
\begin{align*}
\mathcal{X} &= \{(z, t) \in \mathbb{P}^{N_m-1} \times \mathbb{C}; z \in \sigma(-\log |t|^2) \circ X\} \\
\mathcal{L} &= (p_1^* \mathcal{O}_\mathbb{P}(1))^{1/m}.
\end{align*}
$$

Path in $\mathcal{H}(\omega_0)$: $\Phi = \{\varphi(s)\}$ with $\varphi(s) = \frac{1}{m} \log \frac{|\sigma(s) \cdot Z|^2}{|Z|^2}$.

For $\xi \in \mathbb{N}_\mathbb{R}$, twist $(\mathcal{X}, \mathcal{L}) \rightarrow (\mathcal{X}_\xi, \mathcal{L}_\xi) \Longleftrightarrow \sigma \cdot \exp(s\xi)$.

σ commutes with $\mathbb{T} \rightarrow \mathbb{T} \times \mathbb{C}^*$ acts on $(\mathcal{X}_0, \mathcal{L}_0)$ and hence on $V_m = H^0(\mathcal{X}_0, mL_0)$ with weight decomposition:

$$
V_m = \bigoplus_{\alpha} V_{m,\alpha} = \bigoplus_{\alpha \in \mathbb{Z}^r} \bigoplus_{i \in \mathbb{Z}} V_{m,\alpha}(\lambda_i^{(m,\alpha)}).
$$
Non-Archimedean functionals

\[E_{g}^{\text{NA}} = \frac{1}{V_{g}} \lim_{m \to +\infty} \frac{n!}{m^{n}} \sum_{\alpha, i} \lambda_{i}^{(m, \alpha)} \frac{g(\alpha)}{m} = \frac{1}{V_{g}} \int_{\mathcal{X}_{0}} \theta_{\zeta} g_{\varphi} \omega_{\varphi}^{n} \]

\[\Lambda_{g}^{\text{NA}} = \lim_{m \to +\infty} \max_{\alpha, i} \frac{\lambda_{i}^{(m, \alpha)}}{m} = \sup_{\mathcal{X}_{0}}(\theta_{\zeta}), \quad \theta_{\zeta} = \frac{1}{m} \frac{\sum_{\alpha, i} \lambda_{i}^{(m, \alpha)} |s_{i}^{(m, \alpha)}|^{2}}{\sum_{\alpha, i} |s_{i}^{(m, \alpha)}|^{2}} \]

\[J_{g}^{\text{NA}} = \Lambda_{g}^{\text{NA}} - E_{g}^{\text{NA}} \]

\[L^{\text{NA}} = \text{lct}(\mathcal{X}, -(K_{\mathcal{X}} + \mathcal{L}); \mathcal{X}_{0}) - 1 \]

\[= \sup \{ c; (\mathcal{X}, -K_{\mathcal{X}} - \mathcal{L} + (c + 1)\mathcal{X}_{0}) \text{ is sub-log-canonical} \} \]

\[D_{g}^{\text{NA}} = -E_{g}^{\text{NA}} + L^{\text{NA}}. \]

Theorem (Generalized slope formula, proof uses fibration construction)

For each \(F \in \{ E_{g}, J_{g}, D_{g} \} \), we have the identity:

\[F^{\text{NA}}(\mathcal{X}, \mathcal{L}) = \lim_{s \to +\infty} \frac{F(\varphi(s))}{s}. \]
(\mathcal{X}, \mathbb{T}) is reduced uniformly g-Ding stable if there exists $\gamma > 0$ such that for any $\tilde{\mathbb{T}}$-equivariant test configuration $(\mathcal{X}, \mathcal{L})$:

$$D^\text{NA}_g(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot J^\text{NA}_{g, \tilde{\mathbb{T}}}(\mathcal{X}, \mathcal{L})$$

where

$$J_{g, \tilde{\mathbb{T}}}(\mathcal{X}, \mathcal{L}) = \inf_{\xi \in \tilde{\mathbb{N}}_\mathbb{R}} J^\text{NA}_g(\mathcal{X}_\xi, \mathcal{L}_\xi).$$

It is g-(Ding)-polystable if $D^\text{NA}(\mathcal{X}, \mathcal{L}) \geq 0$ and equality holds iff it is induced by a holomorphic vector field.

Theorem (Liu-Xu-Zhuang, Blum-Liu-Xu-Zhuang)

$(\mathcal{X}, \mathbb{T})$ is reduced uniformly g-Ding-stable if and only if it is polystable with respect to $\tilde{\mathbb{T}}$.
Theorem (Generalizing K. Fujita and L., based on L. -Xu)

\((X, \mathbb{T})\) is reduced uniformly g-Ding stable if and only if it is so for special test configurations (the central fibre is a normal Fano variety).

The proof uses Minimal Model Program and the fibration construction.

- \(X^\text{div}_Q\): set of divisorial valuations. \(v = \text{ord}_E \in X^\text{div}_Q\).
- \(A_X(v)\): log discrepancy of valuation; \(S_g(v) = \frac{1}{V_g} \int_0^{+\infty} \text{vol}_g(F_v^t) dt\).

Theorem (Han-L., generalizing Fujita and L.)

\((X, \mathbb{T})\) is reduced uniformly stable if and only if there exists \(\delta > 1\) such that for any \(\mathbb{T}\)-invariant valuation \(v \in X^\text{div}_Q\), there exists a \(\xi \in \tilde{N}_\mathbb{R}\) such that

\[A_X(v_\xi) - \delta \cdot S_g(v_\xi) \geq 0.\]

Proved by studying filtration associated to the valuation \(v = r(\text{ord}_{X_0})\).
Yau-Tian-Donaldson conjecture

Theorem (Han-L. , generalization of Berman-Boucksom-Jonsson, L.)

\((X, \mathbb{T})\) admits a g-soliton metric if and only if \((X, \mathbb{T})\) is reduced uniformly g-Ding stable over special test configurations.

\[\implies\] Analytic criterion + slope formula

\[\iff\] Proof by contradiction. Suppose that \(M_g\) is not reduced coercive.

- Take a destabilizing sequence and construct a destabilizing geodesic ray, based on convexity and compactness
- Blow up multiplier ideal sheaf to construct test configurations
- Approximate slopes of energy functional by non-Archimedean functionals of test configurations and get a contradiction.

Problem: Prove partial \(C^0\)-estimates for the Bakry-Emery Ricci curvature tensor \(Ric(\omega_{\varphi}) + \sqrt{-1}\partial\bar{\partial}f_{\varphi}\) under appropriate assumptions.
log Fano case

- X: projective normal variety; D: an effective Weil divisor satisfying: $-(K_X + D)$ is \mathbb{Q}-Cartier and ample.

(X, D) has klt singularities if for any $v = \text{ord}_E \in X^{\text{div}}_\mathbb{Q}$, $A(X, D)(v) = \text{ord}_D(K_{X'} / X) + 1$ where E is an ordinary divisor on $X' \to X$.

- **Example 1**: Orbifold (X, D), for any $p \in X$, \exists a neighborhood U s.t.

$$ U \cong D / \Gamma, \quad D = \sum_i (1 - d_i^{-1}) D_i $$

where Γ is a finite group that acts linearly on U and D_i is the set of points with non-trivial stabilizers isomorphic to \mathbb{Z}_{d_i}.

- **Example 2**: (S, Δ) is log Fano variety, $-(K_S + \Delta) = \gamma L$ with $\gamma > 0$, then the cone singularity $(X = \text{Spec}(\bigoplus_m H^0(S, mL)), D = \text{Spec}(\bigoplus_m H^0(\Delta, mL)))$ is klt.

Theorem (Han-L.)

(X, D, \mathbb{T}) admits a g-soliton iff it is reduced uniformly g-Ding stable.
Choose resolution of singularities \(\mu : Y \to X \) with SNC exceptional divisors \(\{E_i\} \). There exist \(\beta_i = A(X,D)(E_i) > 0 \) and a positive perturbation \(P = \mu^*L - \sum \theta_iE_i \):

\[
-K_{X'} - \sum \left(1 - \beta_i + \frac{\epsilon}{1 + \epsilon} \theta_i\right)E_i = \mu^*(-K_X - D) - \frac{\epsilon}{1 + \epsilon} \sum \theta_iE_i
\]

\[
-(K_{X'} + B_\epsilon) = L_\epsilon = \frac{1}{1 + \epsilon} (\mu^*L + \epsilon P) > 0.
\]

Idea to overcome the difficulty caused by singularities: carry out the construction on \((X', B_\epsilon) \) and let \(\epsilon \to 0 \).

- Construct a destabilizing geodesic ray.
- Use multiplier ideals of perturbed sub-geodesic rays to construct destabilizing test configurations of \((X', B_\epsilon) \).
- Use valuative criterion to prove the uniform stability of \((X', B_\epsilon) \).
- Prove uniform convergence estimates as \(\epsilon \to 0 \) to get contradiction.
Kähler cone metric

- $Y = \text{Spec}(R)$: affine variety isolated singularity $o \in Y$.

- $\hat{T} \cong (\mathbb{C}^*)^{r+1}$-action \Rightarrow Weight decomposition: $R = \sum_{\hat{\alpha} \in \mathbb{Z}^{r+1}} R_{\hat{\alpha}}$.

- \hat{T}-invariant Radius function: $r : Y \to \mathbb{R}_{\geq 0}$, $S = \{r = 1\}$.

 Kähler form: $\hat{\omega} = \sqrt{-1} \partial \bar{\partial} r^2$, $\hat{\omega}(\cdot, J\cdot) = dr^2 + r^2 g_S$.

- Reeb vector field: $J(r \partial_r) \in \hat{N}_{\mathbb{R}}^+ = \left\{ \xi \in \hat{N}_{\mathbb{R}}; \langle \hat{\alpha}, \hat{\xi} \rangle > 0 \right\}$ (Reeb cone).

 - Quasi-regular: $\hat{\xi} \in \mathcal{N}_{\mathbb{Q}}^+$. $\langle v_{\hat{\xi}} \cong \mathbb{C}^* \text{ and } Y/\langle v_{\hat{\xi}} \rangle = (X, D) \text{ is an orbifold}.$

 - Regular: if $\langle v_{\xi} \rangle$ acts freely on Y^*. $Y/\langle v_{\xi} \rangle$ is a projective manifold.

 - Irregular: $\hat{\xi} \not\in \mathcal{N}_{\mathbb{R}}^+$. $\langle v_{\hat{\xi}} \rangle \cong (\mathbb{C}^*)^d$ for $d > 1$ (main interest).

Application to Ricci-flat Kähler cone metric, (revisit the work of Apostolov-Calderbank-Jubert-Lahdili)
Ricci-flat Kähler cone (Martelli-Sparks-Yau)

- s: no-where vanishing section of $|mK_Y|$, \mathbb{T}-equivariant: $t \circ s = t^\alpha s$.

 Canonical volume form: $dV_Y = \left(\sqrt{-1}^{m(n+1)^2} s \wedge \bar{s}\right)^{1/m}$.

- Ricci-flat Kähler cone equation:
 \[
 (\sqrt{-1} \partial \bar{\partial} r^2)^{n+1} = dV_Y \iff \text{Ric}(\hat{\omega}) = 0.
 \]

Normalization of Reeb vector fields:
\[
\mathcal{L}_{r \partial_r} dV_Y = 2(n+1)dV_Y \iff \mathcal{L}_{v_{\xi}} s = (n+1)s
\]

- Regular example:
 X a Fano manifold. h_{KE}: a KE Hermitian metric on $-K_X$.

 Then $r = h_{KE}^{\frac{1}{n+1}}$ is a radius function of Ricci-flat Kähler cone on
 $Y = \text{Spec} \left(\bigoplus_{m \in \mathbb{N}} H^0(X, mL) \right)$ for any $L = \gamma^{-1}(-K_X)$ with $\gamma > 0$.

 For example, $X = \mathbb{P}^n$, $L = \frac{1}{n+1}(-K_X)$, $Y = \mathbb{C}^{n+1}$.

Application to Ricci-flat Kähler cone metric, (revisit the work of Apostolov-Calderbank-Jubert-Lahdili)
• Sasaki manifold $S = \{ r = 1 \}$. CR structure $\mathcal{D} = JT_R S \cap T_R S$

Contact form: $\eta = -Jd \log r$ determined by:

$$\eta(\hat{\xi}) = 1, \quad \eta|_{\mathcal{D}} = 0.$$

Kähler form: $\hat{\omega} = \sqrt{-1} \partial \bar{\partial} r^2 = d(r^2 \eta) = r^2 d\eta + 2r dr \wedge \eta$.

$\hat{\omega}^{n+1} = 2(n + 1)r^{2n+1} dr \wedge (d\eta)^n \wedge \eta$.

$dV_S = dV_{\hat{\xi}} = \iota_{\partial_r} dV_Y \longrightarrow dV_Y = r^{2n+1} dr \wedge dV_S$.

• Rewrite the Ricci-flat equation:

$$(\sqrt{-1} \partial \bar{\partial} r^2)^{n+1} = dV_Y \iff (d\eta)^n \wedge \eta = dV_S.$$
Deformation of Reeb vector fields

- For \(\hat{\xi} \in \hat{N}_R^+ \), set \(\mathcal{R}\hat{\xi} = \left\{ r = r_0 e^{\phi/2} \right\} \).

- Fix a reference \(\hat{\chi} \in \hat{N}_R^+ \) and a radius function \(r_0 \) with respect to \(\hat{\chi} \).

\[
\hat{\xi} \in \hat{N}_R^+ \rightarrow r := r_0 \hat{\xi} \in \mathcal{R}\hat{\xi}
\]

\[
J(r \partial_r) = \hat{\xi}, \quad S = \{ r = 1 \} = \{ r_0 = 1 \}.
\]

Transformation of Reeb vector fields and contact forms:

\[
\hat{\xi} = \eta(\hat{\xi}) \hat{\chi} + \xi^h \quad \Rightarrow \quad \begin{cases}
\eta = \eta_{r_0} = \eta_0(\hat{\xi})^{-1} \eta_0 \\
r \partial_r = \eta(\hat{\xi}) r_0 \partial_{r_0} + J(\xi^h).
\end{cases}
\]

- Ricci-flat equation to \(g \)-soliton (Apostolov et al. via Tanaka-Webster):

\[
(d\eta)^n \wedge \eta = dV_S \quad \Leftrightarrow \quad \eta_0(\hat{\xi})^{-n-1}(d\eta_0)^n \wedge \eta_0 = \eta_0(\hat{\xi})dV_{\hat{\chi}} \\
\Leftrightarrow \quad \eta_0(\hat{\xi})^{-n-2}(d\eta_0)^n \wedge \eta_0 = dV_{\hat{\chi}}.
\]

Application to Ricci-flat Kähler cone metric, (revisit the work of Apostolov-Calderbank-Jubert-Lahdili)
Reduce to g-soliton equation on Fano orbifolds

- \((X, D) = Y/\langle \nu_\hat{\chi} \rangle\): Fano orbifold and an orbifold l.b. \(L \to X\) satisfying:

\[-(K_X + D) = L.\]

The no-vanishing section of \(|K_Y|\) and \(dV_Y\):

\[s = dz \wedge dw, \quad dV_Y = (\sqrt{-1})^{n^2+1} dz \wedge d\bar{z} \wedge dw \wedge d\bar{w}.\]

- \(r = r_0 e^{\varphi/2}\): radius function w.r.t. \(\hat{\chi}\) ↔ orbifold metric \(h = h_0 e^{-\varphi}\) on \(-K_X\).

\(\eta = (\bar{\partial} - \partial) \log h\): connection form, \(\text{Ker}(\eta)\) is the horizontal distribution.

\[(d\eta)^n \wedge \eta = \omega^n \wedge d\psi, \quad dV_\hat{\chi}^S = \nu_{\partial_r} dV_Y|_S = 2d\psi \wedge \Omega_\varphi.\]

\(v_\hat{\xi} = (n+1)w_\partial w + v_\hat{\xi} = (n+1)w_\partial w + \theta v_\xi w_\partial w + v_\xi^h \quad \Rightarrow \quad \eta(\hat{\xi}) = 1 + \frac{\theta v_\xi}{n+1}.\]

\[\eta(\hat{\xi})^{-n-2}(d\eta)^n \wedge \eta = dV_\hat{\chi}^S \quad \iff \quad (n + 1 + \theta v_\xi)^{-n-2} \omega^n_\varphi = e^{-\varphi} \Omega_0.\]
Stability of affine cones vs. weighted stability

- \mathcal{Y}: a special test configuration of Y.
 \((\mathcal{X}, \mathcal{D}) := \mathcal{Y}_0/\langle v_\hat{\chi} \rangle\) a special TC of \((X, D)\)

Volume of $\hat{\xi} = \frac{1}{n+1} \hat{\chi} + \xi \in \hat{N}_\mathbb{R}^+(\mathcal{Y}_0)$:

$$\text{vol}(\hat{\xi}) = \lim_{p \to +\infty} \frac{\dim \mathbb{C} R/\{\text{wt} \hat{\xi} \geq p\}}{p^{n+1}/(n+1)!} = \int_{\mathbb{R}} \frac{-d\text{vol}(\mathcal{F}^{(t)}_{\hat{\xi}})}{(1 + t)^{n+1}}$$

$$= \int_{\mathcal{X}_0} \frac{\omega^n}{(1 + \theta v_\xi)^{n+1}} = \int_{P_0} \frac{\text{DH}_\mathcal{F}(\mathcal{X}_0)}{(1 + \langle x, \xi \rangle)^{n+1}}.$$

- As a consequence, with $g = (1 + \langle x, \xi \rangle)^{-n-2}$ and $\text{Fut}_\xi \equiv 0$, we have:

$$D^\text{NA}(\mathcal{Y}) = \frac{1}{V_g} D_\zeta \text{vol}(\hat{\xi}) = \frac{1}{V_g} \int_{\mathcal{X}_0} \frac{-\theta_\zeta \omega^n}{(1 + \theta v_\xi)^{n+2}}$$

$$= D^\text{NA}_g(\mathcal{X}, \mathcal{D}, \mathcal{L}).$$

Stability of Y (Collins-Székelyhidi) \iff g-Ding stability of (X, D)
The YTD theorem for toric g-solitons (Theorem 2) implies

Theorem (Futaki-Ono-Wang)

A toric affine variety with isolated singularity admits a Ricci-flat Kähler cone.

- An irregular example: $X = \text{Bl}_p \mathbb{P}^2$. Y: cone $C(X, -K_X)$.
 - P: the trapezoid; moment cone of Y is the standard cone over P.
 - Reeb cone: spanned by $\langle -1, -1, 1 \rangle, \langle 1, 1, 1 \rangle, \langle 1, 0, 1 \rangle, \langle 0, 1, 1 \rangle$.
 - (normalized) Reeb vector field $\hat{\xi} = (a, b, 1)$.

\[
\text{vol}(\hat{\xi}) = \text{vol} \left(C^* \cap \{ \langle x, \hat{\xi} \rangle \leq 1 \} \right) = \int_P \frac{dx}{(ax_1 + bx_2 + 1)^3}
\]

obtains the minimum at $a = b = \frac{4 - \sqrt{13}}{3} = a^*$

$\Rightarrow \exists g$-soliton with $g = (a^*(x_1 + x_2) + 1)^{-3}

\Rightarrow \exists$ Ricci-flat Kähler cone metric with Reeb vector field given by $3 \cdot (a^*, a^*, 1)$.

Application to Ricci-flat Kähler cone metric, (revisit the work of Apostolov-Calderbank-Jubert-Lahdili)
Thanks for your attention!