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Abstract. This is largely an exposition article that expands the author’s talk at the Xi-
amen International Conference on Geometric Analysis in June 2021. We first survey the
author’s joint work with Jiyuan Han on the Yau-Tian-Donaldson (YTD) conjecture for
g-weighted Kähler-Ricci solitons (or g-solitons). We then review recent works of Apostolov-
Canderbank-Jubert-Lahdili which establish a connection between a particular g-soliton
equation with Ricci-flat Kähler cone metrics (or equivalently Sasaki-Einstein metrics). The
main interest in this connection is the transformation of a possibly irregular Sasaki-Einstein
metric to a particular g-soliton equation on any quasi-regular quotient. We will revisit
this transformation by understanding how the corresponding transversal complex Monge-
Ampère equations are transformed under the deformation of Reeb vector fields. Finally
we explain how this PDE/pluripotential point of view allows one to combine the version
of YTD conjecture for g-solitons proved in [48], the algebraic result from [16, 73] and the
discovery in [1, 2] to prove the YTD conjecture for general Fano cones.
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1. Yau-Tian-Donaldson conjecture for g-soliton equations

In the first part, we first review the pluripotential theory for g-soliton equations as developed
in [13, 48]. Our main contribution in this aspect is to use a fibration construction to study
and extend the previous well-established theory to the g-soliton setting. We then sketch the
proof of the Yau-Tian-Donaldson conjecture for g-solitons on general log Fano pairs.

1.1. g-soliton equations. Let X be an n-dimensional Fano manifold. In other words,
X is a projective manifold satisfying that −KX := ∧nT holX is an ample line bundle. In
particular, X is a Kähler manifold. For simplicity of notation, we also denote −KX by L.
Fix a reference Hermitian metric h0 on L such that its Chern curvature −

√
−1∂∂̄ log h0 = ω0

is a Kähler form. Any other Hermitian metric metric on L is of the form hϕ := h0e
−ϕ for some

function ϕ on X. Its Chern curvature is equal to −
√
−1∂∂̄ log hϕ = ω0 +

√
−1∂∂̄ϕ =: ωϕ.

ωϕ1 = ωϕ2 iff
√
−1∂∂̄(ϕ2 − ϕ1) = 0 iff ϕ2 − ϕ1 is a real constant.

A function ϕ is called ω0-plurisubharmonic if ϕ is upper semicontinuous and ϕ+ψ is plurisub-
harmonic for any local potential ψ of ω0. The set of all ω0-psh functions will be denoted by
PSH(ω0). The space of smooth strictly ω0-psh functions (or called Kähler potentials) will be
denoted by

H := H(L) = H(X,L) =
{
ϕ ∈ C∞(X);ω0 +

√
−1∂∂̄ϕ > 0

}
. (1)

Any Hermitian metric hϕ can be considered as a volume form as follows. Choose any local
holomorphic coordinate chart {z1, . . . , zn}. Set s = dz1∧· · ·∧dzn, s∗ = ∂z1∧· · ·∧∂zn ∈ −KX .
It is easy to verify the following volume does not depend on the choice of holomorphic
coordinates:

Ωϕ := |s∗|2hϕ(
√
−1)n

2

s ∧ s̄ = Ω0e
−ϕ. (2)

For any holomorphic vector field v on X, denote by Lv the Lie derivative with respect to v
and set

θv(ϕ) := −LvΩϕ

Ωϕ

= −LvΩ0

Ω0

+ v(ϕ) =: θv,0 + v(ϕ) (3)

where θv,0 = θv(0). Then θv = θv(ϕ) satisfies the identity
√
−1∂̄θv(ϕ) = ιv(ω0 +

√
−1∂∂̄ϕ) = ιvωϕ (4)

where ιv is the contraction with respect to v. In local coordinates this is saying that vi(ωϕ)ij̄ =
∂z̄jθv. If Im(v) is furthermore a Killing vector field with respect to ω = ωϕ, then θv is a real
valued function and the identity (4) is equivalent to the identity

ι2Im(v)ω = −ιξω = dθv (5)

where ξ = −2Im(v). Sometimes we will also write θv as θξ.
Let T denote the r-dimensional real torus (S1)r and let T ∼= (C∗)r be its complexification.
Assume that T ∼= (C∗)r acts on X biholomorphically. There is a canonical action of T
on −KX induced by the pushforward of tangent vectors. Denote by H(−KX)T the set of
T -invariant metrics in H(−KX). Fix h0e

−ϕ ∈ H(−KX)T .
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Denote by NR ∼= Rr the Lie algebra of (S1)r, and by MR ∼= Rr the dual of NR. For any
κ ∈ {1, . . . , r}, let ξκ ∈ NR be the standard generator of the κ-th factor of (S1)r. Then ξκ is
a Killing vector field. Denote vκ = 1

2
(−Jξκ −

√
−1ξκ). By the above discussion, there exists

real valued function θκ satisfying ιξκωϕ = dθκ(ϕ). If we set θκ = θvκ,0, then

θκ(ϕ) = θκ,0 + vκ(ϕ) = θκ,0 −
1

2
dϕ(Jξk). (6)

The action of (S1)r on (X,ωϕ) becomes Hamiltonian and the associated moment map is
given by:

mϕ : X −→ MR ∼= Rr

mϕ(z) = (θ1(ϕ), · · · , θr(ϕ)) = (θκ(ϕ))κ∈{1,...,r} .

We will denote by P the image of mϕ. By Atiyah-Guillemin-Sternberg theorem, P is a
convex polytope which does not depend on the choice of ωϕ = ω0 +

√
−1∂∂̄ϕ > 0. Moreover,

the pushforward measure (mϕ)∗ω
n
ϕ is a Radon measure that does not depend on the choice

of ϕ ∈ H(L). We will call it the Duistermaat-Heckmann measure and denote it by DHT (L).
Let g : P → R be a smooth positive function which we can assume to the restriction of a
smooth function on MR. We will be interested in the following equation for ϕ ∈ H(−KX)T

which we call the g-weighted Kähler-Ricci (KR) soliton 1, or just g-soliton equation:

g(mϕ)(ω0 +
√
−1∂∂̄ϕ)n = e−ϕΩ0. (7)

The integral of the left-hand-side does not depend on ϕ ∈ H(L):

Vg :=

∫
X

g(mϕ)(ω0 +
√
−1∂∂̄ϕ)n =

∫
P

g(x)DHT (L). (8)

For simplicity of notation, we will write gϕ = g(mϕ) = g(θ1(ϕ), · · · , θr(ϕ)). It is also
convenient to introduce

fϕ = log gϕ, Hϕ = log
Ωϕ

ωnϕ
. (9)

Then (7) can be re-written as the equation:

log
Ωϕ

(ω0 +
√
−1∂∂̄ϕ)n

− log gϕ = constant, i.e. Hϕ − fϕ = constant . (10)

It will be useful to consider the following equivalent form of the equation (10):

(∆ϕ + vf,ϕ)(Hϕ − fϕ) = 0 (11)

where the ∆ϕ = ωij̄ϕ ∂i∂j̄ is the Laplace operator of ωϕ and vf,ϕ is given by:

vf,ϕ =
∂fϕ
∂z̄j

ωij̄ϕ ∂i =
∑
κ

∂f

∂θκ

∂θκ(ϕ)

∂z̄j
ωij̄ϕ ∂i =

∑
κ

fκ(mϕ)vκ. (12)

Note also that the equation (7) is equivalent to the tensorial equation:

Ric(ωϕ)− ωϕ =
√
−1∂∂̄ log gϕ. (13)

The g-soliton equation, or more generally, the weighted extremal metrics in an equivariant
setting, seems to first appear in Tian’s work in [86] generalizing the Kähler-Ricci soliton
equation. There are many following works in related equations, see for example [79, 57]).

1It was called generalized Kähler-Ricci soliton in [48]
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Our work, which deals with the general g-soliton equation, is partly inspired by the work
of Berman-Witt-Nyström in [13] which studies the Kähler-Ricci soliton equation from the
variational point of view.

Remark 1.1. The study of g-soliton equations can be put in a more general framework
of weighted extremal metrics introduced by Lahdili ([59, 60]) (see also [53, 54]). However,
the complete existence theory in particular the Yau-Tian-Donaldson conjecture seems to be
established only for general g-solitons. See also [2].

The following examples of g-soliton equations show that the general equation (7) include
several interesting classes of (canonical) Kähler metrics on Fano manifolds. Our discussion
in this article will mainly be around the Yau-Tian-Donaldson conjecture for these metrics.

(1) (Kähler-Einstein metrics) T = {e} and g = 1. This is the Kähler-Einstein case
and is well-understood thanks to the works of Tian, Berman, Chen-Donaldson-Sun
and others (see [85, 5, 27, 88]).

(2) (Kähler-Ricci soliton) ϕ ∈ H(−KX) is a (shrinking) Kähler-Ricci soliton on (X,T)
if there exists a holomorphic vector field v = vξ with ξ ∈ NR such that ωϕ satisfies

Ric(ωϕ)− ωϕ = Lvωϕ.

It is well-known that KR solitons give rise to self-similar solutions to the Kähler-Ricci
flow. By using Lvωϕ = dιvωϕ =

√
−1∂∂̄θv(ϕ), the above equation is equivalent to

the following equation

(ω0 +
√
−1∂∂̄ϕ)n = eθv(ϕ)−ϕΩ0. (14)

This is a special case of (7) when g(x) = e〈x,ξ〉 = e`ξ(x) where v = vξ and for simplicity
of notation, we set:

`ξ(x) = 〈x, ξ〉. (15)

The Kähler-Ricci soliton equation was studied extensively in works of Tian-Zhu and
others (see [89, 90, 25]).

(3) (Mabuchi soliton) ϕ is called a Mabuchi soliton if there exists a holomorphic vector
field v = vξ with ξ ∈ NR such that

Ric(ωϕ)− ωϕ =
√
−1∂∂̄ log(1 + θv(ϕ)− θv)
⇐⇒ (1 + θv(ϕ)− θv) (ω0 +

√
−1∂∂̄ϕ)n = e−ϕΩ0. (16)

where θv = 1∫
X ωn

∫
X
θvω

n. It is known that solution ϕ to this equation is the critical

point to the Ricci-Calabi functional (see [94])

ϕ 7→
∫
X

(eH̄ϕ − 1)2ωnϕ

where H̄ϕ = Hϕ − log( 1
V1

∫
X
eHϕωnϕ). The equation (16) is a special case of (7)

when g(x) = 1 + 〈x − x, ξ〉 where x = 1
V1

∫
P
xDHT (−KX) is the barycenter of the

Duistermaat-Heckman measure DHT (L) over P .
The Mabuchi soliton equation was introduced in [76, 77] and has been recently

further studied in [94] for the toric case which motivates many other works (see
[51, 72, 78, 95]).
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(4) (Ricci-flat Kähler cone metric) This quite un-expected example is due to the
works in [1, 2]. Because −KX is ample, there is an affine cone over X given by
Y := Spec (

⊕
mH

0(X,−mKX)). We will explain in section 2.4 the existence of a
Ricci-flat Kähler cone metric on the cone Y with the Reeb vector field induced by
ξ ∈ NR is equivalent to the solvability to the following equation:

Ric(ωϕ)− ωϕ = −(n+ 2)
√
−1∂∂̄ log(n+ 1 + θv(ϕ))

⇐⇒ 1

(n+ 1 + θv(ϕ))n+2
(ω0 +

√
−1∂∂̄ϕ)n = e−ϕΩ0

where v = vξ = 1
2
(−Jξ −

√
−1ξ) with ξ ∈ NR. This is (7) when

g(x) =
1

(n+ 1 + 〈x, ξ〉)n+2
=

1

(n+ 1 + `ξ(x))n+2
. (17)

The constant n + 1 comes from a natural normalization, and, by rescaling (which
corresponds to adding a constant to ϕ), it can be changed to other positive constant
without affecting the solvability of the equation.

1.2. Generalized Futaki invariant and Matsushima type result. Fox any ϕ ∈ H(−KX)T ,

set Hϕ = log Ωϕ
(ω0+

√
−1∂∂̄ϕ)n

which satisfies the identity Ric(ωϕ) − ωϕ =
√
−1∂∂̄Hϕ. For any

holomorphic vector field v, define the g-weighted Futaki invariant as:

Futg(v) =

∫
X

v(Hϕ − log gϕ)gϕω
n
ϕ. (18)

Note that in the case of Kähler-Ricci solitons this is nothing but Tian-Zhu’s modified Futaki
invariant. The basic result is then:

Theorem 1.2. Futg does not depend on the choice of ϕ ∈ H(−KX)T . Moreover, if there is
a g-soliton, then Futg(v) = 0 for any holomorphic vector field v.

By appropriate integration by parts, Futaki invariant can written into two useful forms:
(1): Recall that Lve

−ϕ is the Lie derivative of the volume form e−ϕ with respect to v. We
have:

Futg(v) =

∫
X

v

(
log

Ωϕ

ωnϕ
− log gϕ

)
gϕω

n
ϕ

=

∫
X

LvΩϕ

Ωϕ

gϕω
n
ϕ − Lv(gϕω

n
ϕ) = −

∫
X

θv(ϕ)gϕω
n
ϕ. (19)

It is straightforward to verify that the last integral does not depend on the choice of ϕ ∈ HT .
Assume that v = vζ = 1

2
(−Jζ −

√
−1ζ) such that [ζ, ξ] = 0 for any ξ ∈ T . Then ζ and T

together generates a possibly bigger torus T ′. We can choose a T ′-invariant metric ϕ ∈ H(L)
and get a moment map from X to t′∗ (the dual of the Lie algebra of T ′). Then the Futaki
invariant can then be expressed as an integral with respect to the associated Duistermaat-
Heckman measure on t′∗. In particular, if we choose v = vκ, then we get the necessary
vanishing condition for the existence of g-solitons:∫

X

θv(ϕ)gϕω
n
ϕ =

∫
P

xκg(x)DHT (−KX) = 0. (20)
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A special class of g-soliton satisfies g(x) = b(`ξ) where b is a smooth function over R and
`ξ = 〈x, ξ〉. In this situation, let a be a primitive function of b, i.e. a′ = b and define a
function on NR

ξ 7→
∫
P

a(x)DHT (−KX) =: V(ξ) (21)

where a(x) = a(`ξ(x)). The vanishing condition (20) becomes the condition that ξ is the
critical point of V(ξ). If we assume that a is moreover strictly convex (resp. strictly concave),
or equivalently that b is strictly increasing (resp. strictly decreasing), then V(ξ) is also
strictly convex (resp. strictly concave) over NR. So the critical point of V(ξ) is unique if it
exists.
(2): The following form is useful later for integration to get g-Mabuchi functional. Set
fϕ = log gϕ and

Futg(v) = −
∫
X

θv(∆ϕ + f i∂i)(Hϕ − fϕ)gϕω
n
ϕ. (22)

We have the following Matsushima type result (which can also be proved by using the second
uniqueness statement of Theorem 1.10). We should point out that there is such type of result
in [59] in the more general setting of weighted extremal metrics.

Theorem 1.3. If we set

Aut(X,T) = {σ ∈ Aut(X);σ · t = t · σ for any t ∈ T}, (23)

then its identity component Aut0(X,T) is reductive.

Proof. Let aut(X,T) be the Lie algebra of Aut(X,T). Assume that ω = ωϕ is a g-soliton.

We just need to prove the following identity: under the correspondence v 7→ θv = −LvΩϕ
Ωϕ

,

aut(X,T) ∼= {θ ∈ C∞(X,C)T ; (∆ + vf + 1)θ = 0} (24)

where vf = vf,ϕ =
∑

κ fκvκ (see (12)). Indeed, note that when θ is T -invariant, vf (θ) =
Re(vf )(θ) and hence ∆ + vf + 1 is a real operator over C∞(X,C)T , whose kernel is the
complexification of the real subspace which corresponds to Killing vector fields that commute
with T-action. To see the identity (24) we can first calculate by using the g-soliton equation
Rkī = ωkī + fkī to get:

((∆ + vf + 1)θ)ī = (θ +
∑
j

(θjj̄ + fjθj̄))ī = θī +
∑
j

(θj̄ī,j − θj̄Rjī + fjīθj̄ + fjθj̄ī)

=
∑
j

(θj̄ī,j + fjθj̄ī).

Now multiplying both sides by θ̄i and integrating by parts with respect to the measure efωn,
we get: ∫

X

∑
i

((∆ + vf + 1)θ)īθ̄ie
fωn =

∫
X

∑
i,j

θj̄īθ̄ije
fωn.

We get θj̄ī = 0 if and only if (∆ + vf + 1)(θ) is a constant. This happens if and only if
(∆ + vf + 1)(θ) = 0 because:∫

X

(∆ + vf + 1)θefωn =

∫
X

θefωn = 0
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by the vanishing of g-weighted Futaki invariant. �

1.3. Energy functionals. We first define functionals on H(ω0)T . For any ϕ ∈ H(ω0)T ,
define:

Eg(ϕ) =
1

Vg

∫ 1

0

dt

∫
X

ϕ̇gϕω
n
ϕ =

1

Vg

∫ 1

0

dt

∫
X

ϕgtϕω
n
tϕ

where ϕ(t) is a smooth path connecting 0 and ϕ in H(ω0)T , hence the second identity. Note
that Eg satisfies the monotonicity:

ϕ1 ≤ ϕ2 =⇒ Eg(ϕ1) ≤ Eg(ϕ2). (25)

One can show that Eg is well defined: it does not depend on the path. Moreover we define
the following functionals:

Ig(ϕ) =
1

Vg

∫
X

ϕ(g0ω
n
0 − gϕωnϕ)

Λg(ϕ) =
1

Vg

∫
X

ϕg0ω
n
0

Jg(ϕ) = Λg(ϕ)− Eg(ϕ)

(Ig − Jg)(ϕ) = Eg(ϕ)− 1

Vg

∫
X

ϕgϕω
n
ϕ.

We will denote by E, I,J the above functional when g = 1.

Lemma 1.4. (i) There exists C1 = C1(n, g) > 0 such that C−1
1 F ≤ Fg ≤ C1F for any

F ∈ {I,J, I− J}.
(ii) Ig(ϕ) ≥ 0. Moreover Ig(ϕ) = 0 if and only if ϕ− ϕ0 is a constant.

(iii) There exists C2 = C2(n, g) > 0 such that C−1
2 Jg ≤ Ig − Jg ≤ C2Jg.

(iv) For any t ∈ [0, 1], we have the inequality:

Jg(tu) ≤ t1+C−1
2 Jg(u). (26)

(v) There exists C = C(X,L) such that

Λg(ϕ) ≤ supϕ ≤ Λg(ϕ) + C. (27)

One can prove (i) first and then deduce (i) ⇒ (ii) by using the well-known property for I,J.
With (ii) proved, (iii) follows by integrating the differential inequality:

d

dt
Jg(tu) =

1

Vg

∫
X

u(ωn0 − ωntu) =
1

t
Ig(tu) ≥ 1

C2t
Jg(tu).

The first inequality in (v) is obviously true. The second one can be proved using Hartogs’
theorem for ω0-plurisubharmonic functions (see [48, Lemma 13]).
The g-soliton are critical points of two important functionals Dg and Mg over H(L). First
define Dg:

L(ϕ) = − log

(
1

Vg

∫
X

e−ϕΩ0

)
Dg(ϕ) = −Eg(ϕ) + L(ϕ).



WEIGHTED KÄHLER-RICCI SOLITONS AND RICCI-FLAT KÄHLER CONE 8

Next define Mg. Recall that the fixed T -invariant reference metric h0 on −KX is considered
as a volume form Ω0 on X. Set:

H(dν) :=

∫
X

log
dν

Ω0

dν

Vg

Hg(ϕ) := H(gϕω
n
ϕ)

Mg(ϕ) := Hg(ϕ)− (Ig − Jg)(ϕ)

= H(gϕω
n
ϕ) +

1

Vg

∫
X

ϕgϕω
n
ϕ − Eg(ϕ).

In the above formula, if one replace Ω0 by another smooth volume form Ω, then one gets
new functionals which differ from the above ones by uniformly bounded quantities.
The following calculation shows that, similar to the original definition of Mabuchi functional,
Mg can be viewed as an integration of the g-weighted Futaki invariant (in the form given in
(22))

−
∫
X

ϕ̇(∆ϕ + vf,ϕ)(Hϕ − fϕ)gϕω
n
ϕ

= −
∫
X

(Hϕ − fϕ)((∆ϕ + vf,ϕ)ϕ̇)gϕω
n
ϕ

= − d

dt

∫
X

(Hϕ − fϕ)gϕω
n
ϕ +

∫
X

(
d

dt
(Hϕ − fϕ)

)
gϕω

n
ϕ

=
d

dt

∫
X

log
gϕω

n
ϕ

Ωϕ

gϕω
n
ϕ −

∫
X

ϕ̇gϕω
n
ϕ −

d

dt

∫
X

gϕω
n
ϕ

=
d

dt

∫
X

log
gϕω

n
ϕ

Ω0

gϕω
n
ϕ +

d

dt

∫
X

ϕgϕω
n
ϕ −Vg ·

d

dt
Eg(ϕ)

= Vg ·
d

dt
(Hg − (Ig − Jg)) = Vg ·

d

dt
Mg(ϕ).

For the first identity, vf,ϕ is the vector field defined in (12) and we used the fact that ∆ϕ+vf,ϕ
is self-adjoint with respect to the volume form gϕω

n
ϕ = efϕωnϕ. For the 3rd equality, we used

the identities:(
d

dt
(Hϕ − fϕ)

)
gϕω

n
ϕ =

(
d

dt
log

Ωϕ

gϕωnϕ

)
gϕω

n
ϕ = −ϕ̇gϕωnϕ −

d

dt
(gϕω

n
ϕ).

For the fourth equality, we used that fact that
∫
X
gϕω

n
ϕ = Vg does not depend on ϕ ∈ H.

For each of F ∈ {I,J, I − J,D,M}, Fg(ϕ + c) = Fg(ϕ) for any constant c ∈ R. So we can
write F(ωϕ) for F(ϕ).

1.4. Analytic criterion. Let p1 : X × [0, 1]×S1 → X be the projection. For any ϕ0, ϕ1 ∈
H(ω0)T , the geodesic between them is a bounded p∗1ω0-psh function Φ on X× [0, 1]×S1 that
is the unique solution to the following degenerate complex Monge-Ampère equation.

(p∗1ω0 +
√
−1∂∂̄Φ)n+1 = 0, Φ|{i}×S1 = ϕi, i = 0, 1. (28)

Note that Φ is automatically S1×T -invariant, It is now known that Φ ∈ C1,1(X× [0, 1]×S1)
([26, 30]). A basic property we need is:

Lemma 1.5. Eg is affine along any geodesic segment.
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If we set f(s) = Eg(ϕ(s)) for s ∈ [0, 1] × S1, then the above statement follows from the
formula: √

−1∂∂̄f(s) = (p1)∗
(
gΦ(p∗1ω0 +

√
−1∂∂̄Φ)n+1

)
where gΦ(z, s) = gϕ(s).
To use the variational approach, we need to adapt the pluripotential theory to the setting
of g-Monge-Ampère measure. Recall that ϕ ∈ PSH(ω0) means that ϕ is ω0-psh: ϕ + ψ is a
plurisubharmonic function for any local potential function ψ of ω0. For any ϕ ∈ PSH(ω0), we
also say that hϕ = h0e

−ϕ is a psh Hermitian metric. By Bedford-Taylor theory, the Monge-
Ampère measure (ω0 +

√
−1∂∂̄ϕ)n is well-defined for any bounded function ϕ ∈ PSH(ω0).

For general ϕ ∈ PSH(ω0) one can define the non-pluripolar Monge-Ampère measure:

(ω0 +
√
−1∂∂̄ϕ)n := lim

j→+∞
1{ϕ>−j}

(
ω0 +

√
−1∂∂̄max{ϕ,−j}

)n
. (29)

Define the space E(ω0) of potentials with full mass:

E = E(ω0) =

{
ϕ ∈ PSH(ω0);

∫
X

(ω0 +
√
−1∂∂̄ϕ)n =

∫
X

ωn0

}
E1 = E1(ω0) =

{
ϕ ∈ E(ω0);

∫
X

|ϕ|(ω0 +
√
−1∂∂̄ϕ)n < +∞

}
.

We will also denote E(L) = {hϕ = h0e
−ϕ;ϕ ∈ E(ω0)} and E1(L) = {hϕ;ϕ ∈ E1(ω0)}. In our

present setting with T-action, we denote by E1(ω0)T (resp. E1(L)T ) the space of T -invariant
functions from E1(ω0) (resp. T -invariant Hermitian metrics hϕ ∈ E1(L)).
We will first discuss a fibration construction which is well-known in the framework of equi-
variant cohomology (Appendix A and also [39]). This construction will be used to define
g-Monge-Ampère measure for singular psh potentials. It is also used to prove the slope for-
mula and the monotonicity along MMP in the work [48]. There is a further application in
the study of weighted-extremal metrics in [2].

Fibration construction: Let S2k+1 → Pk be the Hopf fibration. For ~d = (k1, . . . , kr) ∈ Nr,

set P[~d] = Pk1 × · · ·Pkr and S[~d] = S2k1+1 × · · ·S2kr+1. Let S[~d] → P[~d] be the (S1)r-principal

bundle and (X [~d], L[~d]) = (X,L) ×(S1)r S[~d] → P[~d] be the associated fibre bundle with the

natural projection π : X [~d] → P[~d]. Any T -invariant function lifts to become a T -invariant

function on X [~d]. Moreover for any T -invariant Hermitian metric h = h0e
−ϕ on L, there is a

Hermitian metric h[~d] = h
[~d]
0 e
−ϕ[~d]

on L[~d]. Note that there is a canonical ample line bundle

H [~d] over P[~d] which is the product of hyperplane bundles of each Pdκ and is equipped with

the canonical Fubini-Study metric denoted by h
~d
FS. Choosing c � 1 and pulling back the

Fubini-Study metric h
~[d]
FS, h[~d] ⊗ (h

[~d]
FS)⊗c is a psh metric on L[~d] ⊗ π∗(H [~d])⊗c. If h is smooth

psh metric, then by the formula (120) the Hermitian metric h[~d] ⊗ (h
[~d]
FS)⊗c is also smooth

psh Hermitian metric ω
[~d],c
0 . By taking decreasing approximating sequence, we know this psh

preserving property is still true for singular psh Hermitian metrics.

For any ~d ∈ Nr and g = g~d =
∏

κ(θκ + c)dκ , we can define gϕω
n
ϕ = g(mϕ)(ω0 +

√
−1∂∂̄ϕ)n:

for any test smooth function f , set fT =
∫
T
f(σ · z)dσ where dσ is the Haar measure on T

and define ∫
X

f · gϕωnϕ :=
n!

(n+ d)!

∫
X[~d]

(fT )[~d] · (ω[~d],c +
√
−1∂∂̄ϕ[~d])n+d, (30)
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where the right-hand-side is defined using he non-pluripolar product as in (29). This allows
us to define gϕω

n
ϕ as a signed measure when g is polynomial. If g is continuous function on

P , by Stone-Weierstrass theorem, we can find a sequence of polynomials gj that converges
to g uniformly on P . We then define:

gϕω
n
ϕ = lim

j→+∞
(gj)ϕω

n
ϕ. (31)

In other words, for any f ∈ C0(X), define:∫
X

fgϕω
n
ϕ = lim

j→+∞

∫
X

f · (gj)ϕωnϕ. (32)

One can verify that the limit of right-hand-side indeed exists and is bounded by C‖f‖C0 .
The Riesz representation theorem defines gϕω

n
ϕ uniquely. It is useful to note that:∣∣∣∣∫

X

f · (gj)ϕωnϕ −
∫
X

fgϕω
n
ϕ

∣∣∣∣ ≤ C‖gj − g‖C0 · ‖f‖C0 . (33)

This is clear for smooth ϕ. For general ϕ, it follows by using smooth approximation of ϕ
using functions from H(ω0).

Remark 1.6. Another way to define gϕω
n
ϕ was given in [13] by using a more complicated

process. Our definition seems more natural and more adapted to the pluripotential analysis
in both the Archimedean and non-Archimedean settings.

With the above definition, we can define the g-weighted version of finite energy space of
Guedj-Zeriahi:

Eg = Eg(ω0) = {ϕ ∈ PSH(ω0)T ;

∫
X

gϕω
n
ϕ = Vg}

E1
g = E1

g (ω0) = {ϕ ∈ Eg(ω0);

∫
X

|ϕ|ωnϕ < +∞}.

Because both g and g−1 are bounded, it is easy to see that gϕω
n
ϕ and ωnϕ is absolutely

continuous with respect to each other. As a consequence, Eg = (E)T and E1
g = (E1)T . Note

that when g = g~d as before, then ϕ ∈ E1
g if and only if ϕ[~d] ∈ E1(ω

[~d],c
0 ).

One key property of the g-Monge-Ampère measure is the continuity under decreasing se-
quences: if ϕk is a decreasing sequences of ω0-psh functions that converges pointwise to
ϕ ∈ (E1)T , then

lim
k→+∞

gϕkω
n
ϕk

= gϕω
n
ϕ. (34)

If g = g~d, this is the corresponding property in E1(ω
[~d],c
0 ) proved in [9]. For general g, this

can be proved using approximation by polynomials and using (33).
For two ϕi, i = 0, 1 ∈ E1, there exists a unique geodesic segment Φ connecting ϕ1 and ϕ2,
which can be constructed using the following approximation process. First by Demailly’s
regularization result, there exists ϕi,m ∈ H such that ϕi,m decreases to ϕi. Let Φi,m be the
geodesic segment connecting ϕi,m, i = 0, 1. Then Φi,m decreases to Φ. If ϕi, i = 0, 1 are
T -invariant, then Φ is also T -invariant. Moreover along Φ = {ϕ(s)}, Eg(s) is also affine with
respect to s.

Definition 1.7. Define the strong topology on (E1)T : ϕj converges to ϕ strongly if ϕj con-
verges to ϕ weakly and Eg(ϕj) converges to Eg(ϕ).
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The same argument as used in [9] (where g = 1) shows:

Proposition 1.8. ϕj converges to ϕ strongly if and only if
∫
X
ϕjω

n
0 →

∫
X
ϕωn0 and Ig(ϕj, ϕ)→

0. Moreover in this case, ωϕj converges to ωϕ weakly.

We can replace the first condition by supϕj → supϕ and the second condition by I(ϕj, ϕ)→
0. So we see that the above strong topology coincides with the original strong topology
defined by using Eg (or Ig) studied in [9]. Similar discussion also shows that the functional
Fg for F ∈ {E,Λ, I,J} is continuous under the strong topology of E1

g . We also have an
important compactness result:

Theorem 1.9 ([9]). The set of metrics {ϕ ∈ E1
g ; Hg(ϕ) ≤ C <∞, supϕ = 0} is compact in

strong topology.

The following results summarize the variational characterization of g-solitons. The proof
uses pluripotential techniques and is a direct generalization of the works in [9, 14].

Theorem 1.10 ([9, 13, 48]). (1) infϕ∈E1
g
Dg(ϕ) = infϕ∈E1

g
Mg(ϕ).

(2) Dg and Mg is convex along geodesic segments in E1
g . Moreover, Dg is affine along the

geodesic segment if and only if the geodesic segment is generated by a one parameter
subgroup in Aut(X,T).

(3) The following conditions are equivalent:
(i) ϕ ∈ E1

g is a smooth g-soliton metric.
(ii) ϕ obtains the minimum of Dg.

(iii) ϕ obtains the minimum of Mg.
(4) g-soliton forms ωϕ are unique up to the action of Aut0(X,T) (see (23)). Moreover

if T̃ is a maximal torus of Aut0(X,T) and T̃ is a maximal compact torus of T̃ , then

T̃ -invariant g-soliton forms ωϕ are unique up to the action by T̃.

We briefly explain the first statement. By using Jensen’s inequality, one gets easily

Hg(ϕ) +
1

Vg

∫
X

ϕgϕω
n
ϕ ≥ L(ϕ)

which implies Mg(ϕ) ≥ Dg(ϕ). Conversely, for any ϕ ∈ E1
g , there exists ψ satisfying

gψ(
√
−1∂∂̄ψ)n = Ω0e

−ϕ. Then by setting dν = Vg · Ω0∫
X Ω0

, we get L(ϕ) = Hg(ψ), Eg(ϕ) =

(Ig − Jg)(ψ), so Dg(ϕ) = Mg(ψ) ≥ inf Dg(ϕ).
For the second statement, the characterization of affine-ness of L was proved in [9] based
on Berndtsson’s uniqueness result in [14]. The extra information of commutativity with T
follows from the following fact in symplectic geometry. If (X,ω) is a symplectic manifold and
ξ1, ξ2 are two Hamiltonian vector fields with Hamiltonian functions θ1 and θ2 respectively.
Then [ξ1, ξ2] = 0 if and only if ξ1(θ2) = 0.
The special role of maximal torus in the last statement was first observed in [64] and also in
[60].

Definition 1.11. Assume F ∈ {D,M}. Fg is reduced coercive, if there exist γ > 0, C > 0
such that for any ϕ ∈ E1

g we have:

Dg(ϕ) ≥ γ · Jg,T̃(ϕ)− C (35)

where
Jg,T̃(ϕ) = inf

σ∈T̃
Jg(σ

∗ωϕ). (36)
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Note that in general σ∗ωϕ = σ∗ω0 + σ∗
√
−1∂∂̄ϕ 6= ω0 +

√
−1∂∂̄σ∗ϕ = ωσ∗ϕ.

By appropriate regularization process, one can show that reduced coercivity over E1
g is equiv-

alent to the coercivity over HT , i.e. the inequality (35) holds true for any ϕ ∈ HT .

Theorem 1.12. The following conditions are equivalent:

(i) There exists a g-soliton metric on X.
(ii) Dg is reduced coercive over E1

g .

(iii) Mg is reduced coercive E1
g .

We sketch the proof of (i)⇒ (ii) by essentiall following Darvas-Rubinstein’s argument ([32])
which depends on the uniqueness result from Theorem 1.10. We can assume that ϕ0 is a
g-soliton metric. Suppose that Dg is not reduced coercive. Then for any j > 0 there exists
ϕj ∈ HT such that Dg(ϕj) ≤ j−1 infσ∈T̃ Jg,T̃(ϕj)− j. We can assume that ϕj satisfies:

Jg(ϕj) = Jg,T̃(ϕj) = inf
σ∈T̃

Jg(σ
∗ωϕj), supϕj = 0.

Then we have 0 ≤ Dg(ϕj) ≤ j−1Jg(ϕj) − j which implies that Jg(ϕj) ≥ j2 → +∞. This
implies Sj := −Eg(ϕj) = Jg(ϕj) +O(1)→ +∞. Let {ϕj(s)}s∈[0,Sj ] be the geodesic segment
connecting ϕ0 and ϕj. Then by the convexity of Dg along geodesic segment. We get:

Dg(ϕj(s)) ≤
Sj − s
Sj

Dg(ϕ0) +
s

Sj
Dg(ϕj) ≤

s

Sj
j−1.

We know that ϕj(s) converges weakly to ϕ∞(s). It is known that Dg is lower semicontinuous
with respect to the weak convergence, we know that Dg(ϕ∞(s)) = 0. This implies ϕ∞(s) ∈
(E1)T̃ is a g-soliton metric. So ωϕ∞(s) = σ(s)∗ωϕ0 for some σ(s) ∈ T̃ by Theorem 1.10.4.
Moreover ϕj(s) then converges to ϕ∞(s) strongly and Φ∞ = {ϕ∞(s)} becomes a geodesic
ray which then satisfies J′∞g,T(Φ) = 1 (see [65, Proof of Proposition 6.2]). But this contradicts

the condition that ϕ∞(s) are in the same orbit of T̃.

1.5. Stability of (X,T).

Definition 1.13. (1) A T-equivariant test configuration consists of the data (X ,L, ζ)
that satisfies the following conditions:
(i) π : X → C is a flat family of projective varieties, and L is a π-semiample Q-line

bundle. For each t ∈ C \ {0}, (Xt,Lt) ∼= (X,L).
(ii) ζ is a holomorphic vector field that generates an effective C∗-action on X such

that π is C∗-equivariant satisfying π∗(ζ) = −t∂t. Moreover ζ lifts to a linear
action on L.

(iii) There are fibrewise T-action that commutes with the C∗-action.
(iv) There is an (C∗ × T)-equivariant isomorphism (X ,L)×C C∗ = (X,L)× C∗.

(2) A test configuration (X ,L) is special if X0 is a Q-Fano variety and L ∼C −KX/C.
(3) For any T-equivariant test configuration (X ,L) and ξ ∈ NR, we define the ξ-twist of

(X ,L) as the data (X ,L, ζ + ξ), which is also denoted simply by (Xξ,Lξ).

Two test configurations (Xi,Li), i = 1, 2 are equivalent if there exists a model X ′ equipped
with C∗-equivariant morphisms pi : X ′ → Xi such that p∗1L1 = p∗2L2.
A test configuration is called dominant if there exists a birational morphism X → X ×C =:
XC. We will identify equivalent test configurations. By resolution of singularities, any test
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configuration is equivalent to a dominant test configuration so that without loss of generality,
we can always assume that a given test configuration is dominant.
It is convenient to view test configuration from two different points of view

(1) For m � 1, there exists a (T × C∗)-equivariant birational morphism fm : X →
PNm−1 × C such that f ∗mH = mL where Nm = h0(X,mL). The holomorphic vector
field ζ is identified with the generator of a one parameter C∗-subgroup of PGL(Nm,C)

which can be diagonalized as diag{λ(m)
1 , . . . , λ

(m)
Nm
}. Choose a T×S1-invariant smooth

Hermitian metric on L. For our purpose, one will just choose e−ϕ to be the pull back
of the 1/m-th root of Fubini-Study metric on the hyperplane bundle on PNm−1.

(2) For any test configuration (X ,L), there exists an equivalent test configuration (X ′,L′)
with dominant morphism ρ : X ′ → X × C which is obtained by blowing up a flag
ideal on X ×C and L′ = ρ∗LC +

∑
i biFi where Fi are irreducible components of X ′0.

Assume the test configuration (X ,L) has the central fibre (X0,L0). Define non-Archimedean
functionals:

ENA(X ,L) =
1

V

∫
X0

θζ(ϕ)(ω0 +
√
−1∂∂̄ϕ)n =

1

V
lim

m→+∞

n!

mn

∑
i

λ
(m)
i

m
(37)

=
L̄·n+1

(n+ 1)V
. (38)

ENA
g (X ,L) =

1

Vg

∫
X0

θζ(ϕ)gϕω
n
ϕ =

1

Vg

lim
m→+∞

n!

mn

∑
α,i

g(
α

m
)
λ

(m,α)
i

m
. (39)

Note that if X0 is a Fano manifold (or more generally a Q-Fano variety, i.e. if X is special),
then ENA

g (X ,L) = −V−1
g Futg(ζ) on the central fibre X0 (see (19)).

When g =
(
n
~d

)∏
κ x

dκ
κ , we can use the fibration construction to express:

ENA
g (φ) =

1

Vg

(L̄[~d])·n+d+1 · n!

(n+ d+ 1)!

For general g and a sequence gj converging to g uniformly, we have:

ENA
g (X ,L) = lim

j→+∞
ENA
gj

(X ,L).

Furthermore, one can define:

ΛNA
g (X ,L) = ΛNA(X ,L) = lim

m→+∞
max
i

{
λ

(m)
i

m

}
JNA
g (X ,L) = ΛNA

g (X ,L)− ENA
g (X ,L)

lct(X , KX + L;X0) = sup{t; (X ,−(KX + L) + tX0) is sub-log-canonical }
LNA(X ,L) = lct(X ,−(KX + L);X0)− 1.

Now assume that (X ,L) is a T-equivariant test configuration.

Let T̃ be a maximal torus of Aut(X,T) (see (23)). Set ÑZ = Homalg(C∗, T̃) and ÑQ = ÑZ⊗Z
Q. The following definition generalizes the definitions introduced by Tian and Donaldson.
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Definition 1.14. (1) (X,T) is called reduced uniformly g-weighted Ding-stable (or just

g-weighted stable) if there exists γ > 0 such that for any T̃-equivariant test configu-
ration (X ,L),

DNA
g (X ,L) ≥ γ · JNA

g,T̃(X ,L)

where JNA
T̃ (X ,L) = infξ∈ÑQ

J(Xξ,Lξ).

(2) For any reductive subgroup G of Aut(X,T), (X,T) is called G-equivariantly g-weighted
Ding-polystable if DNA

g ≥ 0 and DNA
g (X ,L) = 0 if and only if (X ,L) is a product test

configuration.
(3) (X,T) is called g-weighted Ding-polystable, if for any T-equivariant normal test con-

figuration (X ,L), DNA
g (X ,L) ≥ 0 and DNA

g (X ,L) = 0 if and only if (X ,L) is a
product test configuration.

For any reductive subgroup of Aut(X,T), one can define G-uniform stability following [50]

(see also [64]). For simplicity of exposition, here we only consider the case when G = T̃ and
use the terminology of reduced uniform stability as in [97]. We refer to the survey [96] for
developments in recent study of K-stability.

Theorem 1.15. A Fano manifold (X,T) is reduced uniformly g-weighted stable if and only
if it is reduced uniformly g-weighted stable for special test configurations.

Sketch of proof. This is proved by using the Minimal Model Program (MMP) and calculate
the variation of DNA−εJNA

T . We only give a sample of calculation. For any test configuration
(X ,L), there is a process developed in [70] that modify the (X ,L) to become a special test

configuration (X s,Ls). We consider simple case when (X ,X0 =
∑d

i=1Ei) has log canonical
singularities and L relatively ample. Then we can run the MMP with rescaling by setting
Lt := KX+tL

t−1
. Here we only show that over short time interval the difference DNA − εJNA

decreases . The long time behavior and the effect of twisting require more arguments and
calculation. However the following calculation is typical in the proof (see [41, 48]). Assume
that −KX − L =

∑
i eiEi with e1 ≥ e2 ≥ · · · ≥ ed.

−KX − Lt =
t

t− 1
(−KX − L) =

t

t− 1

∑
i

eiEi

LNA(X ,Lt) = − t

t− 1
e1 − 1,

d

dt
LNA =

1

(t− 1)2
e1.

L̇t =
d

dt
Lt = −KX + L

(t− 1)2
=

1

(t− 1)2

∑
i

eiEi

d

dt
ENA
g =

1

(t− 1)2

∑
i

ei

∫
Ei

gϕω
n
ϕ

d

dt
ΛNA
g =

1

(t− 1)2

∑
i

ei

∫
ρ∗Ei

gψ(
√
−1∂∂̄ψ)n

d

dt
(DNA

g − εJNA
g ) =

d

dt

(
LNA − (1− ε)ENA

g − εΛNA
g

)
=

1

(t− 1)2

∑
i

(e1 − ei)
(

(1− ε)
∫
Ei

gϕω
n
ϕ + ε

∫
ρ∗Ei

gψ(
√
−1∂∂̄ψ)n

)
≥ 0.

�
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In the algebraic study of K-stability, one needs to consider more general data than test con-
figurations. One such generalization is filtrations of section rings of −KX . Such a filtration
gives rise to a sequence of test configurations. For Fano varieties, it turns out that it suf-
fices to consider filtrations associated valuations. We will only use divisorial valuations in
this note although more general quasi-monomial valuations do play an important role in the
recent study. A divisor over X is an ordinary irreducible divisor E on a projective variety
X ′ that has a birational morphism to X. By resolution of singularities, we can assume that
X ′ is smooth. Then the order of vanishing along E defines a functional ordE on the field
C(X) of rational functions on X. Any functional on C(X) of the form c · ordE with c ∈ Q>0

is called a divisorial valuation. The set of divisorial valuations will be denoted by Xdiv
Q .

There are two invariants of a divisorial valuation which play important roles in the study
of K-stability. The first one is the log discrepancy defined by the formula AE(c · ordE) =
c · (ordX(KX′/X) + 1). The second one is defined as (see (141), (145))

Sg(v) =
1

Vg

∫ +∞

0

volg(µ
∗L− tE)dt. (40)

We will not give detailed discussion of the use of valuations, but just give some hint of its
importance. There is a compactification of Xdiv called the Berkovich space and denoted by
Xan. It is a non-Archimedean analytic space and is a compactification of Xdiv

Q which is in turn
dense in Xan. One also has a non-Archimedean line bundle Lan. Now any test configuration
defines a non-Archimedean metric on Lan. Equivalent test configurations define the same
metric. For us it suffices to know that such non-Archimedean metric can be represented
by a function on Xdiv

Q which is the relative non-Archimedean potential with respect to the
trivial metric (defined by the trivial test configuration) on Lan. More precisely, for any test
configuration (X ,L) which dominates the trivial test configuration by ρ : X → X×C =: XC,
we set:

φ(v) = φ(X ,L) = G(v)(L − ρ∗LC). (41)

One important consequence of this point of view is the following valuative formula for the
LNA invariant:

LNA(X ,L) = inf
v∈Xdiv

Q

(AX(v) + φ(v)). (42)

This is a variation (or a global analogue) of the well-known valuative formula for log canonical
thresholds. We can state a valuative criterion for the reduced uniform g-weighted stability.

Theorem 1.16 ([64, 48]). (X,T) is reduced uniformly g-weighted stable if and only if there

exists δ > 1 such that for any T̃-invariant divisorial valuation v, there exists ξ ∈ ÑQ such
that

AX(vξ)− δ · Sg(vξ) ≥ 0 (43)

where vξ is defined in (150).

Proof. Assume that X is reduced uniformly g-weighted stable. Then Futg ≡ 0 on ÑQ.
Choose any v ∈ Xdiv

Q and let Fv be the associated filtration. Then

inf
ξ∈ÑQ

[
DNA
g − γJNA

g )((Fv)ξ)
]

= inf
ξ∈ÑQ

[
(DNA

g − γJNA
g )(Fvξ)

]
≥ 0.

Now we have AX(vξ) ≥ LNA(Fvξ), ENA
g (Fvξ) = Sg(vξ) and

JNA
g (Fvξ) ∼ JNA(Fvξ) ∼ S(vξ) ∼ Sg(vξ) (44)
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where ∼ means the ratio of two quantities are uniformly bounded (independent of v and ξ).
The second inequality is proved by K. Fujita. So there exists C > 0 such that

inf
ξ∈NR

[AX(vξ)− (1 + Cγ)Sg(vξ)] ≥ inf
ξ∈ÑQ

[
(DNA

g − γJNA
g )((Fv)ξ)

]
≥ 0.

For the other direction, there are two approaches. The first approach is by using the above
theorem 1.15. For a special test configuration (X ,−KX ), let v = r(ordX0) ∈ Xdiv

Q be the
restriction of ordX0 to C(X). Then F := F(X ,−KX ) = Fv(−AX(v)). Then

DNA
g (X ,−KX ) = −ENA

g (F) = −ENA
g (Fv(−AX(v)))

= AX(v)− ENA
g (Fv) = AX(v)− Sg(v)

= AX(vξ)− Sg(vξ) + Futg(ξ).

The theorem then follows easily. The second approach uses the inequality (146) and is also
used in the proof of Theorem 1.24.

�

We now have the following fundamental result:

Theorem 1.17 ([73, 16]). (X,T) is reduced g-weighted stable iff (X,T) is T̃-equivariantly
g-weighted Ding-polystable, iff (X,T) is g-weighted Ding-polystable.

The rough idea to prove this is to look for the minimizer of the functional δT(v) = supξ∈ÑR

AX(vξ)

Sg(vξ)
.

Using deep MMP techniques and recently developed boundedness results, one can show that
the minimizer v∗ is quasi-monomial (see [15]). The question is then reduced to a finite gen-
eration problem for the quasi-monomial valuation v∗. This has been resolved in [16] based
the important work [73].

1.6. Yau-Tian-Donaldson conjecture. A psh ray Φ = {ϕ(s)}[0,+∞) is a geodesic ray if
for any s1, s2 ∈ [0,+∞), Φ|[s1,s2] is a geodesic segment between ϕ(s1) and ϕ(s2). It is known
that both sup(ϕ(s)− ϕ0) and Eg(ϕ(s)) is affine with respect to s. Any geodesic ray defines
a non-Archimedean metric on LNA which is represented by a function on Xdiv

Q defined as:

ΦNA(v) = −G(v)(Φ), for any v ∈ Xdiv
Q (45)

where G(v) is the Gauss extension of v and G(v)(Φ) is the generic Lelong number with
respect to G(v) (see the paragraph after Theorem D.2 for more details).
Because L is relatively ample, there always exists locally bounded psh Hermitian metrics on
L which we call the psh ray.

Theorem 1.18 ([82]). Fix a reference metric ϕ0 ∈ H(L). For any test configuration (X ,L),
there exists a unique geodesic ray emanating from ϕ0.

The following result connects the Archimedean and non-Archimedean functionals.

Theorem 1.19. For any test configuration (X ,L), let Φ = {ϕ(s)} be any locally bounded
psh ray induced by a locally bounded psh Hermitian metric on L. Then we have the following
slope formula: for any F ∈ {Eg, Ig,Jg,Λg,L},

F′∞(Φ) = lim
s→+∞

F(ϕ(s))

s
= FNA(X ,L). (46)

Applying this theorem to both sides of the inequality (26), we get its non-Archimedean
version.
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Corollary 1.20. Let (X ,L) be any test configuration. For any t ∈ (0, 1], we have the
inequality:

JNA
g (X , tL+ (1− t)LC) ≤ t−C3JNA

g (X ,L). (47)

The following is a version of the Yau-Tian-Donaldson conjecture.

Theorem 1.21 ([48], see also [51]). (X,T) admits a g-soliton if and only if (X,T) is reduced
uniformly g-weighted stable.

Sketch of proof. We just need to show that Mg is T̃-coercive. Assuming not, then for any
fixed ε > 0 there exists a sequence of ϕj satisfying:

supϕj = 0, Jg(ϕj) = inf
σ∈T̃

Jg(σ
∗ωϕj), Mg(ϕj) ≤ εJg(ϕj)− j.

Because Mg = Hg − (Ig − Jg) ≥ −C2Jg (since Hg(ϕ) ≥ 0), we get:

Jg(ϕj) = −Eg(ϕj) +O(1)→ +∞.
Set Sj = −Eg(ϕj) → +∞ and let {ϕj(s)}s∈[0,Sj ] be geodesic segment connecting ϕ0 to ϕj.
By using the convexity of Mabuchi functional and the compactness results in Theorem 1.9,
we can extract strongly convergent sequence and construct a geodesic ray Φ = {ϕ(s)}s∈[0,+∞)

satisfying (see [32, 11, 65])

inf
ξ∈NR

J′∞g (Φξ) = 1, M′∞
g (Φ) ≤ ε

where Φξ = {ϕξ(s)}s∈[0,+∞) with h0e
−ϕξ(s) = exp(sξ)∗(h0e

−ϕ(s)). This implies

L′∞(Φ) ≤ D′∞g (Φ) + E′∞g (Φ) ≤M′∞
g (Φ)− 1 ≤ −1 + ε. (48)

The idea due to Berman-Bouksom-Jonsson is now to approximate the geodesic ray by a
sequence of test configurations by blowing up multiplier ideal sheaves. Let J (mΦ) be the
multiplier ideal sheaf. Let µm : Xm → X be the blow up of J (mΦm) with exceptional divisor
Em. Set Lm = µ∗mLC− 1

m+m0
Em. Then by the global generation property of multiplier ideals,

one can prove that Lm is globally generated. So (X ,Lm) is a test configuration of (X,L).
Moreover

lim
m→+∞

φm(v) = −G(v)(Φ) = ΦNA(v), for any v ∈ Xdiv
Q . (49)

Next we want to approximate the slopes by non-Archimedean quantities of test configura-
tions. First by Demailly’s result (Theorem D.1), Φm ≥ Φ, where Φm is the geodesic rays
associated to (Xm,Lm). This implies (Φm)ξ ≥ Φξ for any ξ ∈ ÑR where Φξ = {σξ(s)∗ϕ(s)},
and

ENA
g ((φm)ξ) = E′∞g ((Φm)ξ) ≥ E′∞g (Φξ), ΛNA

g ((φm)ξ) = Λ′∞g ((Φm)ξ) ≥ Λ′∞g (Φξ) (50)

where φm = φ(Xm,Lm) represents (the non-Archimedean metric associated to) the test config-
uration (Xm,Lm). To compare the L quantities, we use the following formula similar to (42)
(see (158)) which is proved by Berman-Boucksom-Jonsson using the valuative description of
multiplier ideals and Theorem D.2 (whose proof uses the strong openness conjecture proved
by Guan-Zhou).

L′∞(Φ) = inf
v∈Xdiv

Q

(AX(v) + ΦNA(v)). (51)

Moreover by using the valuative description of multiplier ideals it is easy to prove:

lim
m→+∞

LNA(Xm,Lm) = L′∞(Φ). (52)
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By reduced uniform stability, we know that there exists ξm ∈ ÑR such that

0 ≤ (−ENA
g + LNA − γ(ΛNA

g − ENA
g ))((φm)ξ).

So we can estimate as follows:

LNA(φm) ≥ γΛNA
g ((φm)ξm) + (1− γ)ENA

g ((φm)ξm)

≥ γΛ′∞g (Φξm) + (1− γ)E′∞g (Φξm)

= γJ′∞g (Φξm) + E′∞g (Φξm)

= γ · 1 + E′∞g (Φ) + Futg(ξm)

= γ − 1.

By letting m→ +∞, we get L′∞(Φ) ≥ γ − 1. This contradicts (48) when ε < γ. �

As an application of this theorem, one can recover the existence results in the toric case as
first proved in [91] (see also [8]). Moreover combining Theorem 1.21 and Theorem 1.17, we
indeed get the polystable version of Yau-Tian-Donaldson conjecture.

Remark 1.22. It is natural to ask whether one can use the original proof in [27, 88] to
prove the YTD conjecture. This requires to prove compactness and partial C0-estimates for
the Ricci form Ric(ω)+

√
−1∂∂̄f . In the case of ordinary Kähler-Ricci soliton, this has been

studied first in [92, 56] and later in [33]. However there are technical difficulties (pointed out
by Feng Wang). For example, because one wants to control the Riemann geometry by using
the full Bakry-Emery Ricci tensor Ric + ∇2f , in general it is non-trivial to deal with the
extra term Re(∇̄∇̄f) (which vanishes for ordinary Kähler-Ricci solitons).

1.7. Log Fano case. A log pair (X,D) consists a projective normal variety and a Weil
divisor such that KX + D is Q-Cartier. We say that (X,D) is log Fano if the Q-Cartier
divisor −(KX + D) is ample and (X,D) has klt singularities. Given any pair (X,D), we
can choose a log resolution of singularities µ : X ′ → X such that µ is an isomorphism over
the simple normal crossing locus of (X,D) and supp(µ−1((X,D)sing) ∩ µ−1

∗ D) has simple
normal crossings, where (X,D)sing is the non-simple-normal-crossing locus. We then have
an identity:

KX′ = µ∗(KX +D) +
∑
i

aiEi. (53)

Define A(X,D)(Ei) = ai + 1. (X,D) is klt if A(X,D)(Ei) > 0. It is known that this holds true
if and only if A(X,D)(v) > 0 for any v ∈ Xdiv

Q .
Examples of (local) klt singularities include orbifold singularities and log Fano cones.

Example 1.23. (1) If X is smooth projective, and D is an effective divisors. Then (X,D)
has klt singularities if and only if J (D) = OX where J (D) is the multiplier ideal of D. If D
has simple normal crossings, then this is equivalent to that the coefficients of D lie in (0, 1).
(2) (X,D) is an orbifold if for any p ∈ X there exists a neighborhood U of p such that
U ∼= Cn/Γ where Γ is a finite group acting on Cn linearly, and D =

∑
k(1 − d

−1
k )Dk where

Dk is the locus of points with stabilizer Zdk . Any orbifold pair (X,D) has klt singularities.
(2) Let (S,∆) be a log Fano pair and assume L = −γ−1(KS + ∆) for some γ ∈ Q>0 is a line
bundle. Set X = Spec(

⊕
mH

0(S,mL)) and D = Spec (
⊕

mH
0(∆,mL)). Then (local) pair

(X,D) has klt singularities.
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The pluripotential analysis can be extended to the log Fano case. When g = 1, this was
studied in detail in [9]. The Yau-Tian-Donaldson conjecture was established in [48].

Theorem 1.24. (X,D,T) admits a g-soliton metric if and only if (X,D,T) is reduced
uniformly g-weighted stable.

The main technical difficulty to carry over the proof in the smooth case to the singular case
is that the multiplier ideal approximation in the singular case is not so well-behaved. In
particular, Demailly’s result from Theorem D.1 is not true in the singular case. So the key
idea to overcome this is to use a perturbation method. This was introduced and developed
in [67, 68, 64]. A rough sketch of the proof of Theorem 1.24 is given as follows.

(1): Assume that Mg is not G-coercive. There exists a destabilizing geodesic ray Φ =
{ϕ(s)}s∈[0,+∞) satisfying:

D′∞g (Φ) ≤M′∞
g (Φ) ≤ 0, inf

ξ∈NR
J′∞g (Φξ) ≥ 1, sup

X
ϕ(s) = 0. (54)

(2): Because the resolution of singularities is a composition of blowups along smooth
centers, there exists Eθ =

∑
k θkEk with θk ≥ 0 such that H := µ∗(−KX − D) − Eθ is

semiample. Set Bε =
∑

k(−ak + ε
1+ε

θkEk). Then we can rewrite the identity (53) as:

−KX′ −Bε = −KX′ +
∑
k

akEk −
ε

1 + ε
Eθ = µ∗(−KX −D)− ε

1 + ε
Eθ

=
1

1 + ε
(µ∗(−KX −D) + εH) =: Lε.

For fixed 0 < ε � 1 ∈ Q, consider the subgeodesic ray Φε = Φ+εψH
1+ε

over Lε where ψH is a
fixed smooth psh Hermitian metric on P . For m� 1 sufficiently divisible, p∗1Lε⊗J (X ′,mΦε)
is globally generated. Construct test configurations (X ′m,Bε,m,Lε,m) of (X ′, Lε) by blowing
up the multiplier ideal J (X ′,mΦε). Set

Lε,m = π′∗mp
′∗
1 Lε −

1

m
Eε,m. (55)

Consider the associated non-Archimedean quantities:

LNA
(X′,Bε)(φε) = inf

v∈Xdiv
Q

(A(X′,Bε)(v)−G(v)(Φε))

LNA
(X′,Bε)(φm,ε) = inf

v∈Xdiv
Q

(A(X′,Bε)(v) + φm,ε(v)).

One can show that: for any ξ ∈ NR and F ∈ {E,Λ},

FNA
g (φm,ε,ξ) ≥ F′∞g (Φε,ξ), lim

ε→+∞
F′∞g (Φε,ξ) = F′∞g (Φξ).

We also have the convergence:

lim
m→+∞

LNA
(X′,Bε)(φm,ε) = LNA

(X′,Bε)(φε), lim
m→+∞

LNA
(X′,Bε)(φε) = L′∞(Φ). (56)

(3): Another key estimate we need is

Lemma 1.25. Let v ∈ (Xdiv
Q )T for a T-invariant divisorial valuation. Assume that A(X,D)(v) ≥

δ · Sg(v) for some κ > 0. There exists δ′ > 1 independent of ε and v such that A(X′,Bε)(v) ≥
δ′ · Sg,Lε(v) for any ε sufficiently small.
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Proof. By possibly doing further blowing-ups and rescaling invariance of the statement, we
can assume that v = ordF where F is an ordinary T-invariant divisor on X ′. We set

fε(v) =
A(X′,Bε)(v)

Sg,Lε (v)
and f0(v) =

A(X,D)(v)

Sg(v)
. We estimate:

fε(v)

f0(v)
=

A(X′,Bε)(v)

A(X,D)(v)

Vg

Vg,Lε

∫ +∞
0

volg(µ
∗L− tF )dt∫ +∞

0
volg(Lε − tF )dt

.

The first factor can be estimated as follows:

A(X′,Bε)(v)

A(X,D)(v)
=

AX′(v)− v(Bε)

AX′(v)− v(B0)
=
AX′(v)− v(B0)− ε

1+ε
v(Eθ)

AX′(v)− v(B0)

= 1− ε

1 + ε

(
AX′(v)− v(B0)

v(Eθ)

)−1

≥ 1− ε

1 + ε
(lct(X ′, B0;Eθ))

−1
.

The right-hand-side does not depend on v and approaches 1 as ε → 0. The second ratio
Vg

Vg,Lε
, which does not depend on v, approaches 1 as ε → 0. This can be seen using the

analytic expression of integration over the underlying space in (8). We estimate the third
ratio by simply estimating the integrand:

volg(Lε − tF ) = volg(µ
∗L− ε

1 + ε
Eθ − tF ) ≤ volg(µ

∗L− tF )

because Eθ is effective. So the third ratio is always greater than 1. The statement follows
easily. �

(4): For any k ∈ Z>0, there exists vk such that:

L′∞(Φ) ≤ AX(vk) + ΦNA(vk) < L′∞(Φ) + k−1. (57)

By the valuative criterion in Theorem 1.16 which also holds in the log Fano case, there exists
ξk ∈ ÑR such that AX(vk,ξk) ≥ δSg(vk,ξk).
Moreover, for a fixed k and for any β > 0, there exist ε0,m0 such that for any ε < ε0 and
m ≥ m0:

max
{∣∣A(X′,Bε)(vk)− AX(vk)

∣∣ , |φε,m(vk)− ΦNA(vk)| ,
∣∣LNA(φm,ε)− L′∞(Φ)

∣∣} < β. (58)

With the above estimates, we can perturb the earlier argument to complete the contradiction:

LNA(φε,m) + 3β + k−1 ≥ L′∞(Φ) + 2β + k−1

≥ AX(vk) + ΦNA(vk) + 2β ≥ A(X′,Bε)(vk) + φε,m(vk)

= A(X′,Bε)(vk) + φε,m(vk) = A(X′,Bε)(vk,ξk) + φε,m,−ξk(vk,ξk) ( by (152))

≥ δ′Sg,Lε(vk,ξk) + φε,m,−ξk(vk,ξk) ≥ δ′ · ENA
g,Lε(δ

′−1φm,−ξk) (by (146))

≥ (−δ′ · JNA
g (δ′−1φε,m,−ξk) + JNA

g (φvk,ξk)) + δ′ · ENA
g,Lε(φε,m,−ξk)

≥ (1− δ′−1/C2)JNA
g,Lε(φε,m,−ξk) + δ′ · ENA

g,Lε(φε,m,−ξk)

= (1− δ′−1/C2)ΛNA
g,Lε(φε,m,−ξk) + δ′−1/C2ENA

g,Lε(φε,m,−ξk)

≥ (1− δ′−1/C2)Λ′∞g,Lε(Φε,−ξk) + δ′−1/C2E′∞g,Lε(Φε,−ξk)

= (1− δ′−1/C2)J′∞g,Lε(Φε,−ξk) + E′∞g,Lε(Φε,−ξk).
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Letting m→ +∞ and then ε→ 0, one gets:

L′∞(Φ) +O(k−1) ≥ (1− δ′−1/C2)J′∞g (Φ−ξk) + E′∞g (Φ−ξk)

≥ (1− δ′−1/C2)J′∞g (Φ−ξk) + E′∞g (Φ)

≥ −δ′−1/C2 .

Letting k → +∞, we get contradiction to (48) as long as−1+ε < −δ′−1/C2 i.e. ε < 1−δ′−1/C2 .

2. Application of g-soliton equations to Kähler Ricci-flat cone metrics

In this section, we first revisit the recent works of Apostolov et al. in [1, 2, 3]. They dis-
covered a connection between a particular g-soliton equation and Sasaki-Einstein metrics.
This connection goes roughly as follows. Each Sasaki manifold has a CR and contact struc-
ture, and an associated Tanaka-Webster connections which coincides with the Levi-Civita
connection. The change of Reeb of vector field in the Reeb cone changes the associated
Tanaka-Webster connection. The transformation formula for the Ricci curvature of the
Tanaka-Webster connection, which was well-known in the CR literature (for example from
[55, 2]), implies that Sasaki-Einstein metrics can be described as a g-soliton in the tensorial
form on a quasi-regular quotient. Here we will understand their work via a different point
of view by considering (transversal) Monge-Ampère equation that is equivalent to the Ricci-
flat Kähler cone equation on affine varieties. We will see that this approach is in some way
simpler and shows immediately that, more generally, g-soliton equations for different Reeb
vector fields are related to each other. Finally we discuss how to combine this transforma-
tion and the Yau-Tian-Donaldson conjecture for g-solitons to derive the Yau-Tian-Donaldson
conjecture for polarized Fano cones.

2.1. Kähler Ricci-flat cone metric. We will first review the Ricci-flat Kähler cone metric
following the work of Martelli-Sparks-Yau in [74]. Assume that Y is an affine variety with an

isolated singularity o ∈ Y . Assume that there exists an effective torus action by T̂ ∼= (C∗)r+1

and o ∈ Y is the only fixed point. Assume that Y = SpecC(R). Set M̂Z = Homalg(T̂,C∗)
and N̂Z = Homalg(C∗, T̂). The T̂-action corresponds to a weight decomposition:

R =
⊕
α̂∈M̂Z

Rα̂.

N̂Z is isomorphic to Zr+1. Set N̂Q = N̂Z ⊗ Q ∼= Qr+1, N̂R = N̂Z ⊗ R ∼= Rr+1. N̂R can be

identified with the Lie algebra of the compact torus T̂ := (S1)r+1 ⊂ T̂. For each ξ̂ ∈ N̂R,

there is an associated real holomorphic vector field (still denoted by ξ̂) and a holomorphic

(1, 0)-vector field vξ̂ = 1
2
(−Jξ̂ −

√
−1ξ̂) where J is the complex structure on Y ∗ := Y \ {o}.

We define the Reeb cone as follows:

N̂+
R = {ξ̂ ∈ N̂R; 〈α̂, ξ̂〉 > 0 for any α̂ 6= 0 with Rα̂ 6= 0}. (59)

Any ξ̂ ∈ N̂+
Q = N̂+

R ∩ N̂Q is called quasi-regular. Otherwise it is called irregular. For any

quasi-regular ξ̂ ∈ N̂+
Q , vξ̂ generates a subgroup 〈vξ̂〉 ∼= C∗ ⊂ T̂. The quotient of Y/〈vξ̂〉 is an

orbifold (X,D) equipped with an orbifold line bundle L such that R =
⊕

mH
0(X, bmLc).

Definition 2.1. We say that a T̂ -invariant function r : X → R>0 is a radius function if
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(1) ω̂ =
√
−1∂∂̄r2 is a Kähler cone metric on Y with radius function r. In other words,

if we set G = 1
2
ω̂(·, J ·) then G is a Riemannian metric on Y ∗ = Y \ {o} that is

isometric to dr2 + r2gS where S = {r = 1} and gS = G|S.

(2) There exists ξ̂ ∈ N̂+
R such that J(r∂r) = ξ̂. We say that r is a radius function for ξ̂.

Define a distribution D on Y ∗ = Y \ {o} by D = R{r∂r, J(r∂r)}⊥. By using the identity
Lr∂rG = 2rG and Lξ̂G = 0, one easily verifies that D satisfies:

Lr∂rD ⊆ D, Lξ̂D ⊆ D. (60)

Define a 1-form on Y ∗ by:

η := ηr = −Jd log r = −1

2
r−2Jdr2 (61)

Then η is uniquely determined by the condition:

η(r∂r) = 0, η(ξ̂) = 1, η|D = 0. (62)

We have the identity:

ω̂ =
√
−1∂∂̄r2 = −1

2
dJdr2 = d(r2η) = 2rdr ∧ η + r2dη. (63)

From this formula, one can also recover the associated Riemann metric on Y ∗ by using the
data {ξ̂, η, r}:

G|D =
1

2
r2dη(·, J ·), G(ξ̂,D) = 0 = G(Jξ̂,D), (64)

G(ξ̂, ξ̂) = r2 = G(Jξ̂, Jξ̂), G(ξ̂, J ξ̂) = 0. (65)

For any ζ̂ ∈ N̂R, there is a decomposition ζ̂ = η(ζ̂)ξ̂ + ζh with ζh ∈ D. Because [r∂r, ζ̂] =

0 = [ξ̂, ζ̂], by using (60) we easily get

r∂r(η(ζ̂)) = 0 = ξ̂(η(ζ̂)), [ξ̂, ζh] = 0. (66)

Moreover, we have the identity

d(r2η(ζ̂)) = dιζ̂(r
2η) = Lζ̂(r

2η)− ιζ̂(d(r2η)) = −ιζ̂ω̂. (67)

Note that (67) is equivalent to the condition that f = r2η(ζ̂) satisfies:

ξ̂(f) = 0 and df |D = −ιζ̂hω̂|D. (68)

By (67) we have a moment map for the T̂ -action with respect to ω̂.

µ = µr : Y ∗ −→ N̂∗R

satisfying

〈µ, ζ̂〉 = r2η(ζ̂) = −1

2
Jdr2(ζ̂). (69)

It is known that the image of µ is a convex rational polyhedral cone C∗ ⊂ MR. Moreover,
the dual cone

C = {ζ̂ ∈ NR; 〈ŷ, ζ̂〉 > 0 for all ŷ ∈ C∗}
is the same as the Reeb cone (see [28, 3]). In other words, ζ̂ ∈ N+

R if and only if η(ζ̂) > 0.

Set DHT = µ∗(ω̂
n+1) and DHξ̂,S

T = (µ|S)∗((dη)n ∧ η). Then we have the identity:

DHT = (n+ 1)`n
ξ̂
d`ξ̂ ∧DHξ̂,S

T . (70)



WEIGHTED KÄHLER-RICCI SOLITONS AND RICCI-FLAT KÄHLER CONE 23

Indeed, choosing any continuous function f(ŷ) of compact support, we get:∫
C∗
f(ŷ)µ∗(2(n+ 1)r2n+1dr ∧ (dη)n ∧ η) =

∫
Y

f(µ(q))2(n+ 1)r2n+1dr ∧ (dη)n ∧ η

= (n+ 1)

∫
Y

f(µ(q))d〈µ(q), ξ̂〉n+1 ∧ (dη)n ∧ η

= (n+ 1)

∫
C∗
f(ŷ)`n

ξ̂
d`ξ̂ ∧DHξ̂,S

T .

The manifold S = {r = 1} has an induced Sasaki structure (η, ξ̂,D). We will sometimes

emphasize this Sasaki structure by writing S ξ̂. Because η(ξ̂) = 1, its image µ(S) is given by:

Pξ̂ =
{
ŷ ∈ C∗; 〈ŷ, ξ̂〉 = 1

}
which is a cross section of the cone C∗ with normal vector ξ̂. We then have the identity:

vol(S) := vol(S ξ̂) =

∫
S

(dη)n ∧ η =

∫
Pξ̂

DHξ̂,S
T

=
1

(n+ 1)!

∫
Y

e−r
2

(
√
−1∂∂̄r2)n+1 =

1

n!

∫
C∗
e−`ξ̂`n

ξ̂
d`ξ̂ ∧DHξ̂,S

T . (71)

From now on, we also assume that Y is Q-Gorenstein. T̂ naturally acts on mKY for m
sufficiently divisible. Assume that s ∈ |mKY | is a T̂-equivariant nowhere vanishing section.
It defines a volume form on X:

dVY = (
√
−1

m(n+1)2

s ∧ s̄)1/m. (72)

Definition 2.2. We say that a radius function r is a radius function of a Ricci-flat Kähler
cone metric on X if it satisfies an equation:

(
√
−1∂∂̄r2)n+1 = dVY . (73)

More generally, if g is a positive function on Pξ̂, we can consider the general g-soliton type
equation:

g(ηr)(
√
−1∂∂̄r2)n+1 = dVY . (74)

The fact that the radius funtion of a Ricci-flat Kähler cone metric indeed satisfies (73)
follows from the maximal principle, because the logrithmic of ratio of both sides is a bounded
pluriharmonic since it is invariant under r∂r.
Note that in this case we have the identity Lr∂rdVY = 2(n + 1)dVY which is equivalent to
the identity (note that dVY is T -invariant) Lvξs = m(n + 1)s. So it is natural to introduce
the following set of normalized Reeb vectors:

N̄+
R = {ξ ∈ N̂+

R ;Lvξs = m(n+ 1)s}. (75)

By [62], this is equivalent to AY (wtξ̂) = n+ 1 where wtξ̂ is the valuation associated to ξ̂.

We can write the equation (73) as an equation on the Sasaki manifold S = {r = 1}. By a
direct calculation, we get:

√
−1∂∂̄r2 = −1

2
dJdelog r2

= −1

2
d
(
elog r2

Jd log r2
)

= d(elog r2

η)

= r2dη + dr2 ∧ η = r2dη + 2rdr ∧ η.
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So we get the volume form:

ω̂n+1 = (
√
−1∂∂̄r2)n+1 = 2(n+ 1)r2n+1(dη)n ∧ η. (76)

On the other hand, if we set dVS = dV ξ̂
S = 2−1ιr∂rdVY , then

dVY = 2r2ndr ∧ dV ξ̂
S .

Then the equation (73) and (74) are equivalent respectively to the equations on S = {r = 1}:

(dη)n ∧ η = dV ξ̂
S (77)

g(η)(dη)n ∧ η = dV ξ̂
S . (78)

The more general equation (78) can be viewed as a transversal g-soliton equation. When χ̂ is
quasi-regular, we will calculate more explicitly in section 2.4 to see that the above equation
is equivalent to a g-soliton equation on the quotient orbifold.

2.2. Deformation of Reeb vector fields. Fix a reference χ̂ ∈ N̂+
R and choose a radius

function r0 with respect to χ̂. Set η0 = −Jd log r0, S0 = {r0 = 1}.
For any ξ̂ ∈ N̂+

R , there exists a unique radius function r such that Jr∂r = ξ̂ and S = {r = 1}.
We will also denote this radius function by rξ̂0 and call it the deformation of r0 with respect

to ξ̂. Such deformation of radius function was studied in ([49], [3]) and gives an equivalent
description of the type I deformation of Sasaki structure as discussed in [22, section 3]. This

radius function r = rξ̂0 can be defined implicitly in the following way. For any q ∈ Y ∗, let

γq(t) be the integral curve of Jξ̂ with initial condition q. In other words, d
dt
γq(t) = Jξ̂ and

γq(0) = q. Then r0 changes according to:

d

dt
log r0 = d log r0 · Jξ̂ = −η0(ξ̂) < 0. (79)

So there exists a unique t∗ = t∗(q) such that r0(γq(t∗(q))) = 1. Because Ĵ ξ̂ = −r∂r, so we
get

log r(γq(t))− log r(q) = −t. (80)

We then define r(q) = rξ̂0(q) = et∗(q). Using the fact that (q, t) 7→ r0(γq(t)) is a smooth
function and r0 is strictly increasing with respect to t, by implicit function theorem we know
that r is a smooth function of q ∈ Y ∗.
Recall that ξ̂ ∈ N̂+

R is of the form ξ̂ = fχ̂ + ξh with f = η0(ξ̂) > 0 and ξh ∈ D. By (62),
we have η = ηr = f−1η0, which implies that (dη)n ∧ η = f−n−1(dη0)n ∧ η0. The Riemannian
metric G = 1

2

√
−1∂∂̄r2(·, J ·) associated to η is then given by:

G|D =
1

2
f−1dη0(·, J ·) = f−1 G0|D , G(ξ̂,D) = 0, G(ξ̂, ξ̂) = 1. (81)

In particular, r2 is strictly plurisubharmonic on Y ∗.
Moreover

r∂r = −J(ξ̂) = −fJ(χ̂) + J(ξh) = f · r0∂r0 − J(ξh). (82)

We get ιr∂rdVY |S = fιr0∂r0dVY
∣∣
S

= fdV χ̂
S . So we see that η = ηr satisfies (77) if and only if

η0 = ηr0 satisfies the equation:

η0(ξ̂)−n−2(dη0)n ∧ η0 = dV χ̂
S . (83)
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More generally, η satisfies (78) if and only if η0 satisfies the equation:

η0(ξ̂)−n−2g
(
η0(ξ̂)−1η0

)
(dη0)n ∧ η0 = dV χ̂

S , (84)

Equivalently if we let g0 be the positive function defined on Pχ̂ by the formula:

g0(ŷ) = 〈ŷ, ξ̂〉−n−2g

(
ŷ

〈ŷ, ξ̂〉

)
, (85)

then (84) is the same as:

g0 (η0) (dη0)n ∧ η0 = dV χ̂
S . (86)

In other words, for any two Reeb vector fields, ξ̂, χ̂, we can always transform g-soliton
equation for ξ̂ into the g0-soliton equation for χ̂.

Remark 2.3. As emphasized earlier, such transformation of Ricci-flat Kähler cone equation
to g-soliton equation was originally discovered in [1, 2] by using transformation formula for
curvature tensors of Tanaka-Webster connections. Here we are offering a different PDE
point of view.

For any other ξ̂ ∈ N̂+
R , there is a projection `−1

ξ̂
: Pχ̂ → Pξ̂ given by ŷ 7→ ŷ

〈ŷ,ξ̂〉 . The following

proposition means that the Duistermaat-Heckman measure on C∗ does not depend on ξ̂ ∈ C∗.

Proposition 2.4. We have the identities:

DHξ̂,S
T = (`−1

ξ̂
)∗

(
`−n−1

ξ̂
DHχ̂,S

T

)
. (87)

Moreover, DHξ̂
T = DHχ̂

T over C∗.

Proof. Over S = {r0 = 1} = {r = 1}, we have:

η = η0(ξ̂)−1η0, (dη)n ∧ η|S = η0(ξ̂)−n−1 (dη0)n ∧ η0|S .

For any q ∈ S, 〈µ(q), ζ̂〉 = η(ζ̂) = η0(ξ̂)−1η0(ζ̂) = η0(ξ̂)−1〈µ0(q), ζ̂〉. So µ|S = η0(ξ̂)−1µ0|S =(
1

`ξ̂(ŷ)
ŷ
)
◦ µ0|S. We can then verify (87) by choosing any test continuous function v(y) over

Pξ̂, and calculating:∫
Pξ̂

v(y)µ∗((dη)n ∧ η) =

∫
S

v(µ(q))(dη)n ∧ η

=

∫
S

v(η0(ξ̂)−1µ0(q))η0(ξ̂)−n−1(dη0)n ∧ η0

=

∫
Pχ̂

v
(
`−1

ξ̂
ŷ
)
`−n−1

ξ̂
(µ0)∗((dη0)n ∧ η0). (88)
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We verify the last statement by choosing any test continuous function v(ŷ) with compact
support over C∗, and calculating as follows:∫

C∗
v(ŷ)DHξ̂

T =

∫
C∗
v(ŷ)`n

ξ̂
d`ξ̂ ∧DHξ̂,S

T =

∫
Pξ̂

(∫ +∞

0

v(ty)tndt

)
DHξ̂,S

T

=

∫
Pχ̂

(∫ +∞

0

v(t`−1

ξ̂
y)tndt

)
`−n−1

ξ̂
DHχ̂,S

T

=

∫
Pχ̂

(∫ +∞

0

v(t`−1

ξ̂
y)(`−1

ξ̂
t)nd(`−1

ξ̂
t))

)
DHχ̂,S

T

=

∫
Pχ̂

(∫ +∞

0

v(tx)tndt

)
DHχ̂,S

T

=

∫
C∗
v(x̂)DHχ̂

T .

�

2.3. Transveral Kähler deformation. Fix a reference radius function r0 with respect to
χ̂ as above. If r is another radius function for χ̂. Then r = r0e

ϕ/2 for a T̂ -invariant function
ϕ that also satisfies r∂r(ϕ) = 0. Set

Rχ̂(r0) =
{
ϕ; rϕ := r0e

ϕ/2 is a radius function for χ̂
}
.

Lemma 2.5. (µϕ)∗(
√
−1∂∂̄r2

ϕ)n+1 does not depend on ϕ ∈ Rχ̂(r0).

Proof. Choose any test function f that decays exponentially with respect to `χ̂ = 〈·, χ̂〉:
|f | ≤ C1e

−C2`χ̂ . Set r = rt = r0e
tϕ. Denote by µ = µt be the moment map associated to√

−1∂∂̄r2. Choose a basis ξ̂1, . . . , ξ̂r+1 of NR so that µ = (µ(ξ̂1), . . . , µ(ξ̂r+1) = (θ̂κ, . . . , θ̂κ)

satisfies θ̂κ = −1
2
Jd(r2)(ξ̂κ) = −1

2
Jξ̂κ(r

2) (see (69)). Set u = d
dt
r2 = r2ϕ. Then d

dt
θ̂κ =

−1
2
Jξ̂κ(u) and

d

dt
f(µ) =

∑
κ

fκ(−
1

2
Jξ̂κ)(u) = −1

2
Jζ(u)

where ζ = −fκξ̂κ . On the other hand, df = d(f(µ)) =
∑

κ fκdθ̂κ =
∑

κ fκιξ̂κ(
√
−1∂∂̄r2) =

ιζ(
√
−1∂∂̄r2). So we get:

d

dt

∫
C∗
f(ŷ)µ∗(

√
−1∂∂̄r2)n+1 =

d

dt

∫
Z

f(µ)(
√
−1∂∂̄r2)n+1

=

∫
Z

−1

2
Jζ(u)(

√
−1∂∂̄r2)n+1 + f(µ)

√
−1∂∂̄u ∧ (n+ 1)(

√
−1∂∂̄r2)n

=

∫
Z

−1

2
Jζ(u)(

√
−1∂∂̄r2)n+1 +

1

2
df(µ) ∧ Jdu ∧ (n+ 1)(

√
−1∂∂̄r2)n

=
1

2

∫
Z

−Jζ(u)(
√
−1∂∂̄r2)n+1 + ιζJdu ∧ (

√
−1∂∂̄r2)n+1 = 0.

Because f is arbitrary test function (with exponential decay), the statement follows easily.
�
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For χ̂ (resp. ξ̂) in N̂+
R , denote by Rχ̂ (resp. Rξ̂) the set of smooth radius function for χ̂

(resp. ξ̂). We thus get a map:

d : Rχ̂ → Rξ̂ (89)

r0e
ϕ/2 7→ (r0e

ϕ/2)ξ̂ = rξ̂0e
ϕξ̂/2. (90)

Set rϕ = r0e
ϕ/2 and Sϕ = {rϕ = 1}. Fix any point q ∈ Sϕ. Assume that γq(t) is the integral

curve of Jξ̂ with initial condition q as above. Then again there exists a unique t∗ = t∗(q) ∈ R
such that p = q(t∗(q)) ∈ S0 = S. In other words, r0(p) = 1 = rξ̂0(p). Then we have the

identity rξ̂ϕ(q) = rξ̂0(p)e
ϕξ̂(q)

2 = e
ϕξ̂(q)

2 = et∗(q). Consider the function f(q, t) = r0(γq(t)). Then

by (80), f(q,−ϕξ̂(q)
2

) = 1 or equivalently log f(q,−ϕξ̂(q)
2

) = 0. Now let ϕ(t) be a curve of
potentials satisfying ϕ(0) = 0. Set q(t) = expp(−ϕ

2
r0∂r0) so that rϕ(q(t)) = 1. Then

log f(q(t),−ϕ(t)ξ̂(q(t))

2
) = 0. (91)

Note that q(0) = expp(0) = p, q̇(0) = − ϕ̇(0)
2
r0∂r0 , ϕ(0)ξ̂ = 0ξ̂ ≡ 0. Taking derivative of (91)

with respect to t at t = 0, we get:

0 = d log r0(− ϕ̇
2
r0∂r0)− d log r0(

ϕ̇ξ̂

2
Jξ̂) = − ϕ̇

2
+ η0(ξ̂)

ϕ̇ξ̂

2

which gives us the useful identity discovered in [3, Lemma 2.17]:

ϕ̇ξ̂ =
ϕ̇

η0(ξ̂)
. (92)

This is useful by comparing the functionals in the variational approach. The comparison for
(transversal) Mabuchi functional was proved in [3, Lemma 4.4]. Here we show a correspond-
ing result for the cone version of Ding functional. More precisely, we know that the solution

to (78) is the critical point of the following Dξ̂
g-functional over Rξ̂(r) (see [29, 69]):

Dξ̂
g(ϕ) = −Eξ̂

g(ϕ) + Lξ̂(ϕ). (93)

where

Eξ̂
g(ϕ) =

1

V̂ξ̂
g(n+ 1)!

∫ 1

0

dt

∫
Y

ϕ · g(ηtϕ)e−r
2
tϕ(
√
−1∂∂̄r2

tϕ)n+1,

V̂ξ̂
g =

1

(n+ 1)!

∫
Y

g(η)e−r
2

(
√
−1∂∂̄r2)n+1 =

∫
S

g(η)(dη)n ∧ η,

Lξ̂(ϕ) = − 1

n+ 1
log

(∫
Y

e−r
2
ϕdVY

)
.

Proposition 2.6. Set ξ̃ = ξ̂ − χ̂. Assume that the following vanishing holds true:

Futξ̂g(ξ̃) :=

∫
Y

η(ξ̃)g(η)e−r
2

(
√
−1∂∂̄r2)n+1 = 0. (94)

Then for any ϕ ∈ Rχ̂(r0), we have:

Eξ̂
g(ϕ

ξ̂) = Eχ̂
g0

(ϕ), Lξ̂(ϕξ̂) = Lχ̂(ϕ). (95)
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Proof. For Eg, similar to [3], we use its infinitesimal variational formula to calculate:

Vξ̂
g ·

d

dt
Eξ̂
g(ϕ

ξ̂)

∣∣∣∣
t=0

=

∫
Y

ϕ̇ξ̂g(η)e−r
2

(
√
−1∂∂̄r2)n+1 = (n+ 1)!

∫
S

ϕ̇ξ̂g(η)(dη)n ∧ η

= (n+ 1)!

∫
S

ϕ̇

η0(ξ̂)
g

(
η0

η0(ξ̂)

)
η0(ξ̂)−n−1(dη0)n ∧ η0

= Vχ̂
g0
· d
dt

Eχ̂
g0

(ϕ)

∣∣∣∣
t=0

.

So we just need to verify that Vξ̂
g = Vχ̂

g0
to get the identity for Eg. This is where the

vanishing condition is used. Indeed, because η(ξ̃) = η(ξ̂ − χ̂) = 1 − 1

η0(ξ̂)
, the vanishing

condition implies:

Vξ̂
g = Vξ̂

g −
∫
S

η(ξ̃)g(η)(dη)n ∧ η =

∫
S

1

η0(ξ̂)
g

(
η0

〈, ξ̂〉

)
η0(ξ̂)−n−1(dη0)n ∧ η0

=

∫
S

g0(η0)(dη0)n ∧ η0 = Vχ̂
g0
.

For L, we have (with dV ξ̂
S = 2−1ι∂rdVY ):∫
Y

e−r
2

dVY = n!

∫
S

dV ξ̂
S = n!

∫
S

η0(ξ̂)dV χ̂
S .

We claim that the last integral is equal to
∫
S
dV χ̂

S . To see this, recall that ξ̂ is normalized by

the condition L−Jξ̂dVY = 2(n+ 1)dVY . On the other hand, we know that dVY = r2n+1
0 dr0 ∧

dV χ̂
S = r2(n+1)d log r0 ∧ dVS. So by using product formula for Lie derivatives and Cartan’s

formula, we get:

2(n+ 1)dVY = 2(n+ 1)r2n+1
0 (−Jξ̂(r0))d log r0 ∧ dVS + r

2(n+1)
0 d(−Jξ̂(log r0)) ∧ dVS

+r
2(n+1)
0 d log r0 ∧ L−Jξ̂dVS.

Contracting both sides with r0∂r0 and by using the r0-independence of η0(ξ̂) = −Jξ̂(log r0)
we get the identity on S = {r0 = 1}:

2(n+ 1)dVS = 2(n+ 1)η0(ξ̂)dVS + L−JξhdVS (96)

where ξh = ξ̂ − η0(ξ̂)χ̂ ∈ D so that Jξh ∈ D is tangent to S. Integrating both sides on S
proves the claim. �

2.4. Reduction to g-soliton equation on orbifolds. We assume that χ̂ ∈ N+
Q is quasi-

regular and let r be a radius function for χ̂. 2 Let (X,D) = Y/〈vχ̂〉 and L be as the induced
orbifold line bundle with the canonical projection π : L → X. Let L∗ denote the dual
orbifold line bundle of L. Then there is analytic contraction morphism L∗ → Y from the
total space of L∗ such that L∗ \X ∼= Y \ {o}. The function r induces a T -invariant orbifold

2Since in this subsection, we do not deform the Reeb vector field. All data (radius functions, contact
forms) in this subsection are for the fixed Reeb vector field χ̂. So the notation in this section is different
with the previous section.
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Hermitian metric on L∗. Conversely any T -invariant orbifold smooth Hermitian metric with
positive Chern curvature on L∗ induces smooth radius function on Y ∗.
In the following calculation, we assume that L is an ordinary line bundle. For orbifold line
bundles, we just need to calculate the same calculation on uniformization charts. Note that
there is a well-understood condition for the smoothness of the total space of orbifold line
bundle in terms of local data of (X,D) (see [58] and [23, Theorem 4.7.5]). Fix a smooth
orbifold smooth Hermitian metric h0 on L which is induced by a smooth radius function
r0 for χ̂. Then the orbifold Hermitian metric induced by r on L∗ can be written as h0e

ϕ

which satisfies ω = ωϕ > 0. Assume that s is the local trivializing holomorphic section. Set
a = |s|2h0

eϕ which satisfies
√
−1∂∂̄ log a = ω = ω0 +

√
−1∂∂̄ϕ. Let w be a linear coordinate

along the fibre of L∗. We consider h := a|w|2 as a function on L∗. Then there exists β > 0
such that r2 = hβ and r∂r = 2β−1Re(w∂w). It is straightforward to calculate that:

ω̂ :=
√
−1∂∂̄r2 = β2hβ

√
−1∂ log h ∧ ∂̄ log h+ βhβω.

So we get:

ω̂n+1 = (
√
−1∂∂̄r2)n+1 = (n+ 1)βn+2r2(n+1)

√
−1∂ log h ∧ ∂̄ log h ∧ ωn.

Note that ∂ log h = a−1∂a + w−1dw and the wedge product on the right-hand-side can be
calculated:

√
−1∂ log h ∧ ∂̄ log h ∧ ωn =

√
−1dw ∧ dw̄
|w|2

∧ ωn =
2d|w| ∧ d arg(w)

|w|
∧ ωn

= β−1 2d(a1/2|w|)β ∧ d(arg(w))

(a1/2|w|)β
∧ ωn = β−1 2dr ∧ dψ

r
∧ ωn

where we set ψ = arg(w). So we get the identity (see (76)):

(
√
−1∂∂̄r2)n+1 = 2(n+ 1)βn+1r2n+1dr ∧ dψ ∧ ωn = 2(n+ 1)r2n+1(dη)n ∧ η

where the contact form η is given by:

η = −Jd log r = −β
2
Jd log h = β

√
−1

2
(∂̄ − ∂) log h

= β

√
−1

2
(a−1(∂̄a− ∂a) + w̄−1dw̄ − w−1dw) = β

(
dψ − 1

2
Jd log a

)
. (97)

So we get dη = β
√
−1∂∂̄ log h = βω and the identity:

(dη)n ∧ η = βnωn ∧ η = βn+1ωn ∧ dψ. (98)

In particular, ∫
S

(dη)n ∧ η = βn+12π

∫
X

ωn = (n+ 1)−n−1 · 2πγ
∫
X

(γω)n. (99)

From now on, we assume furthermore that Y is Q-Gorenstein and there exists a T-equivariant
nowhere vanishing section s ∈ |mKY |. In this case we say that Y is a Fano cone. Let
(X,D) = Y/〈vχ̂〉 and L be the same as before. By [58, 40-42], we know that in this case,
there is an identity−(KX+D) = γL for some γ > 0. Choosem� 1 sufficiently divisible such
that −m(KX +D) is Cartier. Assume that w is a linear variable along the fibre of L∗. Then
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formally we can write down a nowhere vanishing section s ∈ |mKZ | as s = dz⊗m ∧ (dw)mγ

so that

dVY = (
√
−1

m(n+1)2

s ∧ s̄)1/m = (
√
−1)n

2+1dz ∧ dz̄ ∧ dwγ ∧ dw̄γ.
Moreover Lw∂ws = (mγ)s. Assume now that r is a radius function satisfying Lr∂rdVY =
(n+ 1)dVY . Then since r∂r = β−1(w∂w + w̄∂w̄),

(n+ 1)dVY = Lr∂rdVY = Lβ−1(w∂w+w̄∂w̄)dVY = β−1γdVY (100)

which implies β = γ
n+1

. Moreover we have:

ιr∂rdVY = β−1ιw∂w+w̄∂w̄(
√
−1)n

2+1dz ∧ dz̄ ∧ dwγ ∧ dw̄γ

= β−1γ2(
√
−1)n

2+1dz ∧ dz̄|w|2(γ−1)(wdw̄ − w̄dw)

= β−1γ2(
√
−1)n

2

dz ∧ dz̄ ∧ 2(a|w|2)γa−γdψ

= 2β−1γ2r2(n+1) ∧ dψ ∧ Ωγϕ.

Here Ωγϕ = Ω0e
−γϕ where Ω0 is the volume form induced by h0.

If v is any holomorphic vector field on X, then the unique horizontal lifting of v to L is given
by:

vh :=
∑
i

vi∂i − v(log a)w∂w,

which satisfies η(vh) = 0. Set

θv = −Lve
−γϕ

e−γϕ
. (101)

which satisfies ιv(γω) =
√
−1∂̄θv. The canonical holomorphic lifting of v is then given by:

ṽ = vh + θvγ
−1w∂w =

∑
i

vi∂i − v(log a)w∂w + θvγ
−1w∂w (102)

By (97), η(w∂w) = −β
√
−1
2

. Since βγ−1 = 1
n+1

,, we get η(ṽ) = −
√
−1

2(n+1)
θv and is equivalent

to the identity η(ξ̃) = θv
n+1

where v = vξ. If ξ̂ = χ̂+ ξ̃ ∈ N̂R, then

η(ξ̂) = 1 +
θvξ
n+ 1

. (103)

In particular ξ̂ ∈ N̂+
R if and only if 1 +

θvξ
n+1

> 0. So we get

Proposition 2.7. With the above notation, the equation (86) is equivalent to the following
Monge-Ampère equation on X:

(n+ 1 + θvξ(ϕ))−n−2g

(
(1 +

θvξ
n+ 1

)−1η

)
(ω0 +

√
−1∂∂̄ϕ)n = Ωγϕ (104)

where η = (η(χ̂), η(ξ̃κ)κ=1,...,r) = (1, θκ
n+1

) (with respect to a basis {χ̂, ξ̃κ;κ = 1, . . . , r}).
In particular, corresponding to Ricci-flat Kähler cone metrics (with g = 1), the equation (83)
is equivalent to the following equation:

(n+ 1 + θvξ(ϕ))−n−2(ω0 +
√
−1∂∂̄ϕ)n = Ω0e

−γϕ. (105)
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We summarize our process for transforming Ricci-flat Kähler cone equation into the last
equation into the following diagram:

(73) on Y
OO

��

oo // (77) on S ξ̂
OO

��
(105) on (X,D) oo // (83) on Sχ̂

(106)

2.5. Stability of Fano cones vs. g-weighted stability of Fano orbifolds. We explain
in this subsection that the stability of Fano cones is equivalent to the g-weighted stability
of any quasi-regular quotients. In terms of K-stability of Fano cones, which was defined by
Collins-Székelyhidi, this connection was already pointed out in [3, 2] when the test configu-
rations has smooth ambient spaces. Here we will use the Ding-stability study in [69] to deal
with the general case. We refer to [69] for terminology used in the following discussion.

Assume that (Y, ξ̂) is a polarized Fano cone with an effective action by T̂. A test configuration

(Y , ξ̂; ζ) of Y consists of a T-equivariant flat family of affine varieties π : Y → C with an
extra C∗-action generated by ζ which commutes with the T-action such that π becomes
C∗ ∼= 〈vζ〉-equivariant. For simplicity of notation, we just denote the test configuration by
Y . We always assume that Y is normal and Q-Gorenstein. Y is called special if (Y ,Y0) has
plt singularities.
Let χ̂ be a quasi-regular Reeb vector and let (X,D) be the quotient Y/〈vχ̂〉. Then Y/〈vχ̂〉 =
(X ,D, γL = −(KX + D)) is a (an anti-canonical) test configuration of (X,D,−(KX + D))
where L is an induced orbifold bundle considered as a Q-Weil divisor, and ζ projects to be
a holomorphic vector field on X generating a C∗-action. Conversely any test configuration
(X ,D,L) induces a test configuration of Y , which is obtained directly by using the extended
Rees algebra of the filtration F = F(X ,L) associated to the test configuration (see (134)):

Y = SpecC[t]

(⊕
m∈Z

⊕
λ∈Z

t−λFλRm

)
. (107)

From this description, we see that Y can be obtained by taking fiberwise cones over X with
respect to the Q-Weil divisor L (see [58]). In this correspondence, special test configurations
of Y correspond to special test configurations of (X,D).

Let T̂′ be the torus generated by T̂ and ζ. Then in general Y0 admits T̂′-action which
corresponds to a decomposition R′ =

⊕
α∈Zr+1 R′α where R′ is now the coordinate ring of Y0.

Its volume is defined as:

vol(ξ̂) = lim
λ→+∞

dimC
⊕

α,〈α,ξ̂〉<λR
′
α

λn+1/(n+ 1)!
. (108)

Assume that ξ̂ and ζ are normalized by the condition

n+ 1 = AY0(ξ̂) :=
1

m

Lvξ̂s
′

s′
, 0 =

Lζs
′

s′
(109)

for a T̂′-equivariant nowhere vanishing section s′ ∈ |mKY0| (see [69, 2.2] for this notation).
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Theorem 2.8. With the above notation, for any ξ̂ = χ̂ + ξ̃ ∈ N̂+
R , we have the following

volume formula:

vol(ξ̂) =
γ

(2π)n

∫
X0

(n+ 1 + θξ)
−n−1(γω)n. (110)

Proof. Assume that −(KX0 + D0) = γL0 and β = γ
n+1

. Then χ̂ = β−1w∂w and wtχ̂ =

β−1wtw∂w . So if ξ̂ = χ̂+ ξ̃, then the filtration associated to the weight valuation is given by:

Fλwtξ̂
Rm = FλRm =

⊕
α

{
Rm,α; 〈α, ξ〉+mβ−1 ≥ λ

}
. (111)

This is the shift of the filtration induced by the (real) holomorphic vector field ξ over X0:

F̃λRm =
⊕
{Rm,α; 〈α, ξ〉 ≥ λ}. (112)

By [63, 4.1] (see also [71]), we have the volume formula:

vol(ξ̂) =

∫
R

−dvol(F (λ))

tn+1
=

∫
R

−dvol(F̃ (t−β−1))

tn+1

=

∫
R

−dvol(F̃ (t))

(β−1 + t)n+1
=

1

(2π)n

∫
X0

((n+ 1)γ−1 + γ−1θξ)
−n−1ωn

=
1

(2π)n
γ

∫
X0

(n+ 1 + θξ)
−n−1(γω)n.

Here we used the fact that (2π)n
(
−dvol(F̃ (t))

)
= (γ−1θξ)∗ω

n (see Theorem B.3). Note that

although the formula in [64, 4.1] deals with the case of irreducible normal varieties. One
can apply this formula for normalization of each irreducible components as explained in [69,
Lemma 2.11]. �

We can also derive this formula by using the contact forms associated to smooth radius

functions as follows. Let r = rξ̂ be a smooth radius function for ξ̂. Then we have the
identity (see (71)):

vol(ξ̂) =
1

(n+ 1)!(2π)n+1

∫
Y0

e−r
2

(
√
−1∂∂̄r2)n+1

=
1

(2π)n+1

∫
{r=1}

(dη)n ∧ η =
1

(2π)n+1
vol(S ξ̂). (113)

Indeed, it is easy to verify this identity when ξ̂ is quasi-regular (see (99)). It is true for any

ξ̂ ∈ N̂+
R because both sides depend continuously on ξ̂. Now we can derive (110) as follows:

vol(S) =

∫
{r=1}

(dη)n ∧ η =

∫
{r0=1}

η0(ξ̂)−n−1(dη0)n ∧ η0

= 2π

∫
X0

(1 +
1

n+ 1
θv)
−n−1βn+1ωn = 2πγ

∫
X0

(n+ 1 + θv)
−n−1(γω)n.
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Taking derivative in (110) with respect to ξ̂ and using the normalization in (109) we get the
identity (see [69, Definition A.1] and also [93]):

−ENA(Y) =
AY0(ξ̂)

n+ 1
· Dζvol(ξ̂)

vol(ξ̂)
=
AY0(ξ̂)

vol(ξ̂)

γ

(2π)n

∫
X0

−θζ
(n+ 1 + θv)n+2

(γω)n

= −C(g, ξ̂) · ENA
g (X ,D, γL)

for g = (n+ 1 + 〈x, ξ〉)−n−2 (see (39)) and C(g, ξ̂) =
γ·AY0

(ξ̂)Vg

(2π)nvol(ξ̂)
. Now we add the assumption

that Dξ̃vol(ξ̂) = 0 which is necessary for (Y, ξ) to be semistable by [74, 28, 71]. Then we get:∫
X0

θξ
(n+ 1 + θξ)n+2

(γω)n = 0 (114)

which implies

(n+ 1)Vg =

∫
X0

n+ 1

(n+ 1 + θξ)n+2
(γω)n =

∫
X0

1

(n+ 1 + θξ)n+1
(γω)n =

(2π)n

γ
vol(ξ̂).

So we get C(g, ξ̂) =
(2π)n+1AY0

(ξ̂)

n+1
= 1 and hence:

ENA(Y) = ENA
g (X ,D,L). (115)

On the other hand, by construction we easily have:

LNA(Y) := lct(Y ;Y0)− 1 = lct(X , D,−(KX +D + γL))− 1 = LNA(X ,D,L). (116)

This can be verified analytically by using [5] and [69, Proposition A.14]. In other words, the
negative of both sides are equal to the Lelong number of the following function define on C:

f(t) = − log

(∫
Yt
e−r

2
t dVYt

)
= − log

∫
Xt

Ωγϕt + constant

where {ϕt; t ∈ C} is a psh Hermitian metrics on LC that extends to be a locally bounded
psh Hermitian metric on L, and r2

t = (h0e
ϕt)γ/(n+1). A more direct way to see (116) is as

follows. Let s be a local generator of KY (if mKY is Cartier with a local generator s′, then
we can formally choose s = s′1/m). Let µY : Ỹ → Y be the weighted blowup associated to
the valuation wtχ̂. Then µ∗Ys = s ∧ dwγ where s is a local generator of KX + D and w is a
linear coordinate along the fibre of L. Now both sides of (116) are then given by:

sup
{
α; |t|−2(α+1)(s ∧ s̄)1/m is locally integrable

}
= sup

{
α; |t|−2(α+1)(s ∧ s̄)1/m is locally integrable for all local generator s

}
.

Note that (115)-(116) are nothing but non-Archimedean version of (95). Combining them
gives us the identity (see [69, Definition A.1]):

DNA(Y) = −ENA(Y) + LNA(Y)

= −ENA
g (X ,D,L) + LNA(X ,D,L) = DNA

g (X ,D,L).

In this way, we get that the (poly)stability of the affine cone Y (for special test configura-
tions in the sense of Collins-Székelyhidi, or for more general Q-Gorenstein test configura-
tions as defined in [69]) is equivalent to g-Ding-(poly)stability of the quasi-regular quotient
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(X,D). So the Yau-Tian-Donaldson for the g-soliton equation on (X,D) implies the Yau-
Tian-Donaldson conjecture for the Ricci-flat Kähler cone metric on Y by using the following
relations:

stability for Y
OO

��

oo // g-weighted stability for (X,D)
OO

��
Ricci-flat Kähler cone metric on Y oo // g-soliton on (X,D)

This is clear when Y has an isolated singularity in which case (X,D) is an orbifold. Note
that we have the fact that any weak g-soliton metric on (X,D) is orbifold smooth which
then gives rise to smooth Ricci-flat Kähler cone metric by the previous discussion. This
application of results from [48] was already pointed out in [2].
For a general Fano cone Y with not necessarily isolated singularity, we can still use the
above process to deduce the existence of a weak g-soliton potential on (X,D) from the
(poly)stability of Y , which then induces a weak Ricci-flat Kähler cone potential on Y . By
a weak Ricci-flat Kähler cone potential, we mean a locally bounded function on Y that is
a smooth radius function over Y reg and satisfies the Ricci-flat Kähler cone equation in the
pluripotential sense. In other words we indeed get the following theorem, which generalizes
the result of Collins-Székelyhidi in [29] (see also [6] for singular toric case) . Since all
ingredients in the proof have been ready, we only sketch its proof, which is a technical
refinement of the isolated singularity case.

Theorem 2.9. For any polarized Fano cone (Y, ξ̂), there exists a (weak) Ricci-flat Kähler

cone potential if and only if (Y, ξ̂) is Ding-polystable, if and only if any quasiregular quotient
is g-weighted polystable (where g is equal to (n+1+〈·, ξ〉)−n−2 as above). Moreover it suffices
to test these stability condition over special test configurations.

Sketch of proof. It suffices to prove the direction of stability to existence since the other
direction has been proved in [29, 69] for stability of Y and for (X,D) in [48]. We have
explained that Ding-polystability of Y is equivalent to the g-weighted Ding-polystability of
(X,D), which by Theorem 1.17 is equivalent to reduced uniformly g-weighted stability and
can be tested over special test configurations by [48, 70]. By Theorem 1.24, we get a weak
g-soliton potential. Moreover by combining the orbifold resolution process in [66] with the
proof of [48, Proposition 32], we know that the weak g-soliton potential is globally bounded
(see [48, Corollary 31]) and is smooth on the orbifold locus Xorb of (X,D). By the orbifold
locus, we mean the quotient of Y reg by the C∗-action generated by vχ̂. In particular, the
coefficients of D around any point p ∈ Xorb is of the form 1−d−1 ∈ [1

2
, 1) for some d ≥ 2. As

mentioned above, it has been well-understood how to characterize the smoothness of Y ∗ along
π−1(p) for any p ∈ Xorb using the local data of (X,D) (see [58] and [23, Theorem 4.7.5]).
As a consequence, over Y reg we have a smooth radius function r0 induced by the orbifold
smooth g-soliton potential. In the following paragraph, we will argue that the deformation

r = rξ̂0 of r0 over Y reg with respect to ξ̂ is still well-defined. The assumption that r0 satisfies
the g-soliton equation implies that r satisfies the Ricci-flat Kähler cone equation over Y reg

by the same reason as in the isolated singularity case (see the diagram (106)). Moreover we
will argue that r can be extended to become a locally bounded psh function that solves the
Ricci-flat Kähler cone equation globally over Y .
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Fix an equivariant embedding of Y into CN and let r̃0 (resp. r̃) be a smooth radius function

of CN with respect to χ̂ (resp. ξ̂). For any a < b ∈ R>0, define the subset U := Ua,b = {q ∈
Y reg; a < r̃0(q) < b} and its closure Ū which is an open subset of Y . The g-soliton relative
potential is then equal to the logarithmic of r2

0/r̃
2
0 and is known to be globally bounded. So

r0 is uniformly bounded over Ū . Recall that the deformation r(q) = rξ̂0(q), for any q ∈ U ,

is obtained by first solving the integral curve γq(t) of Jξ̂ with the initial condition q and
then solving r0(γq(t∗)) = 1 to get r(q) = et∗(q) (see 2.2). Because Y reg is invariant under
the (C∗)r action, any such integral curve γq(t) stays in Y reg for all time. We claim that the

derivative dr0/dt along an integral curve γq(t), which is equal to −η0(γq(t))(ξ̂) by (79), is
negative and uniformly bounded away from 0. This implies that γq(t) will hit the smooth
subset {r0 = 1}∩Y reg in uniformly bounded time (which can be either positive or negative),
which in turn implies that r is a well-defined smooth function on U and is indeed uniformly
bounded over U . 3 r is then a radius function for ξ̂ and satisfies the Ricci-flat Kähler cone
equation over U by the same reason as in the isolated singularity case. Now because Ū \ U
is an analytic subset of complex co-dimension at least 2, the uniformly bounded strictly psh
function r2 over U extends to be a bounded plurisubharmonic function over Ū that satisfies
the Ricci-flat Kähler cone equation globally on Ū . Moreover because of the rescaling property

of r, we can write r = r̃eϕ
ξ̂/2 for a uniformly bounded function ϕξ̂ on Y ∗. Now because a, b

are arbitrary and also r(q) converges to 0 as q converges to the vertex, we conclude that r
satisfies the Ricci-flat Kähler cone equation globally over Y .
Finally the uniform negativity of −η0(γq(t))(ξ̂) claimed above comes from the fact that ξ̂ is in
the interior of the Reeb cone and the image of η0(Y reg) is contained in the moment polytope
of X. This latter containment property follows from the fact that the g-soliton potential can
be globally approximated by smooth quasi-psh potentials which converge smoothly over the
orbifold locus of (X,D) (again by using [66, 48] together). �

Remark 2.10. We are informed by Chenyang Xu that there is a work in progress by Kai
Huang which aims to prove a valuative criterion for the stability of Fano cones without using
the correspondence with g-weighted stability.

Appendix A. Chern curvature of associated holomorphic line bundle

We calculate the Chern curvature of the holomorphic line bundles over a fibre bundle that
arises as the associated bundle to a holomorphic principal C∗- bundle. See [39] for a discussion
involving only the connections.
Let P → B be (the total space of) a holomorphic line bundle over a complex manifold B.
We denote the complement of the zero section of P by P ∗, which is a holomorphic principal
C∗-bundle. Assume P is equipped with a smooth Hermitian metrics hP . Let P̄ → B
the associated unit circle bundle which is a principal S1-bundle over B. Let L → X be
holomorphic line bundle with a holomorphic C∗-action and an S1-invariant Hermitian metric
h. Consider the associated space (Y, F ) := (P ∗ × (X,L))/C∗ where C∗-acts on P ∗ × (X,L)
by the action

t ◦ (y, (x, s)) = (y · t−1, t ◦ x, t ◦ s). (117)

3The uniformly boundedness of r over U can also be derived using the uniformly boundedness of r0 using
the fact that {r = 1} ∩ Y reg = {r0 = 1} ∩ Y reg and then using the rescaling property of r with respect to

Jξ̂ = −r∂r.
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Then Y is a holomorphic fibre bundle over B and F → Y is a holomorphic line bundle
equipped with a Hermitian metric induced by the metric hF . We will calculate the Chern
curvature form of this metric as follows. Fix a point b∗ ∈ U . First we choose a local nowhere
vanishing holomorphic section σ (resp. s) of P (resp. L) over a small open set U ⊂ B (resp.
over an open subset V ⊂ X). The holomorphic trivialization over U × V ⊂ B ×X can be
chosen to be s′ = σ · s. Set t(b) := log |σ(b)|hP and r(b) = |σ(b)|hP . The Hermitian norm of
the induced metric is equal to

|s′|2hF = ||σ|hP ◦ s|
2
hL

= | exp(t(b)) ◦ s(x)|2hL(et◦x). (118)

Choose local holomorphic coordinates {bi} over U , and local holomorphic coordinates {xα}
over V . We have a local holomorphic parametrization σ : U × V → Y . Set

u(t, x) = log | exp(t) ◦ s(x)|2hL , f(b, x) := u(t(b), x) = log |s′|2hF . (119)

We need to calculate the following form:

∂∂̄f = fij̄dbi ∧ db̄j + fiβ̄dbi ∧ dx̄β + fαj̄dxα ∧ db̄j + fαβ̄dxα ∧ dx̄β.

Note that:

fi = utti, fij̄ = utttitj̄ + uttij̄, fiβ̄ = utβ̄ti, fαβ̄ = uαβ̄.

Fix any point b∗ ∈ U . We first assume that σ satisfies ti := (∂bit)(b∗) = 0. This corresponds
to the assumption that σ is horizontal to the first order at b∗ and hence σ∗(∂bi) is horizontal
at point σ(b∗, x). Then at points σ(b∗, x), we get

∂∂̄f(b∗) = ut(b∗)tij̄dbi ∧ db̄j + uαβ̄dxα ∧ dx̄β

=
1√
−1

[(r(b∗)
∗θ)ωP + r(b∗)

∗ωL] .

In particular, if r(b∗) = 1 then at point b∗, we have
√
−1∂∂̄ log |s′|2hF = θωP + ωL (120)

with respect to the splitting TY = TY h ⊕ TY v into horizontal and vertical parts.
For general σ, choose λ ∈ O∗B(U) with λ(b∗) = 1 such that σ̃ = σ · λ−1

t̃i(b∗) := (∂bi t̃)(b∗) = 0 (121)

where t̃ = log |σ̃|hP = − log |λ| + log |σ|hP , i.e. t(b) = t̃(b) + log |λ(b)|. Then at point b∗, we
have:

λbi = ∂bi log λ = ∂bi log |λ|2 = 2∂bi log |σ|hP = 2ti.

So at (b∗, x),

∂bi = σ∗(∂bi) = (σ̃ · λ)∗ (∂bi) = σ̃∗(∂bi) + σ̃∗(λbiv) = ∂hbi + 2tiv

where v =
∑

α θ
α∂α is the generator of the C∗-action. So we get the identity:

fij̄ = (r(b)∗θ)(ωP )ij̄ + 4titj̄|v|2r(b)∗ωL ,
fiβ̄ = 2ti(r(b)

∗ωL)(v, ∂x̄β); fαβ̄ = (r(b)∗ωL)αβ̄.
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Appendix B. Moment map associated to torus actions

Set T̂ = (C∗)r+1 and T = (S1)r+1 ⊂ T̂. Assume that T̂ acts on CN linearly with weights

w1, . . . , wN ∈ Zr+1. Let Y = Spec(R̂) be a T̂-invariant affine variety in CN . The T̂-action

corresponds to a weight decomposition R̂ =
⊕

α R̂α. Choose a Hermitian inner product on

CN that is T̂ -invariant and set ω̂ =
√
−1
∑

i dZi ∧ dZ̄i. Then the moment map is given by

〈µ(Z), ξ̂〉 =
∑
i

〈wi, ξ̂〉|Zi|2. (122)

Theorem B.1 (see [4, 84]). Assume that Y is irreducible. Then the image of the moment

map µ(Y ) =: P̂ is a polyhedral cone that is the closure of the set

{α; R̂α 6= 0}.

There is a one-to-one correspondence between T̂ -orbits and the facets of P̂ .
In general if Y =

∑
k Yk the irreducible decomposition of Y , then µ(Y ) is the union of

polyhedral cones µ(Yk).

Let χ̂ ∈ N̂+
R be a quasi-regular element and let (X,D) = Y //〈vχ̂〉 as the GIT quotient. Then

Y becomes an orbifold cone over (X,D). In other words, there exists an orbifold line bundle

L̂ which can be considered as a Q-divisor over X such that

R̂ =
⊕
m

H0(X, bmLc). (123)

Choose M � 1 such that L := ML̂ is a genuine line bundle. We can also assume that L is
very ample and set PN−1 = P(H0(X,L)). Let T ∼= (C∗)r. There is then an effective T-action

on PN and X is an T-invariant subvariety. R = R̂(M) is the M -th Veronese subalgebra of R̂
and is generated in degree 1.
Set Rm = H0(X,mL) and R =

⊕
mRm. The T-action gives rise to a weight decomposition:

Rm =
⊕
α

Rm,α, R(X,L) =
⊕
m,α

Rm,α (124)

where Rm,α = {s ∈ Rm; t ◦ s = tαs}. Assume that {si} is a basis compatible with the weight
decomposition. Then we can choose a T -invariant Fubini-Study metric:

ω =
√
−1∂∂̄ log

∑
i

|si|2. (125)

The moment map is then given by:

m(ξ) =

∑
i〈αi, ξ〉|si|2∑

i |si|2
. (126)

The following is the projective version of the convexity theorem of Atiyah-Guillemin-Sternberg.

Theorem B.2 (see [4, 84]). Assume that X is irreducible.

(1) The image of the moment map is a polyhedral polytope P , called the moment polytope.
Moreover there is a one-to-one correspondence between the T-orbit and the facets of
P . The vertex of P consists of the images of T-fixed points on X.
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(2) Let {α(m)
i } denote the set of weights such that R

m,α
(m)
αi

6= 0. Then the moment polytope

P is the closure of the set W :=

{
α

(m)
i

m
;m ∈ N

}
.

Define the measure m∗(ω
n) and the weight measure:

νm =
n!

mn

∑
i

dimRm,α · δ α
m
. (127)

We also need:

Theorem B.3. As m→ +∞, νm converges weakly to (2π)−nm∗(ω
n).

By Stone-Weierstrass theorem, it suffices to prove that for any polynomial
∏

κ(xκ+ c)dκ over
the moment polytope P with P + c(1, . . . , 1) ∈ Rr

>0 there is a convergence:

lim
m→+∞

n!

mn

∑
α

∏
κ

(
〈 α
m
, ξκ〉+ c

)dκ
dimRm,α = (2π)−n

∫
X

∏
κ

θdκκ ω
n. (128)

This can be proved by using the equivariant Riemann-Roch theorem in the same way as used
in [39] (see also [18]). A different argument based on spectral analysis of Toeplitz operator
was given in [13, Proposition 4.1].

Choose a basis {ê0, ê1, . . . , êr−1} for N̂Z such that ê0 ∈ R+χ̂ and let {ê∗0, ê∗1, . . . , êr} be the

corresponding dual basis. Then NZ = N̂Z/Zê0 is spanned by {ē1, . . . , ēr} where ēi is the
image of êi under the canonical projection. We have an isomorphism:

N̂Z
∼=−→ Z⊕NZ

k · ê0 +
∑
i

aiêi 7→ (k,
∑
i

aiēi).

We have the dual map

Z⊕MZ
∼=−→ M̂Z

(m,α) 7→ m · ê∗0 +
∑
i

αi(ēi)ê
∗
i .

ê∗i is located in the hyperplane `ê0 = 0. The moment cone P̂ is the cone over M · ê∗0 + P .

Appendix C. Filtrations

Assume that L is an ample line bundle or an orbifold line bundle over X. Set Rm =
H0(X,mL) and Nm = dimCH

0(X,mL) = L·n

n!
mn +O(mn−1).

Definition C.1. A filtration FR• of the graded C-algebra R =
⊕+∞

m=0 Rm consists of a
family of subspaces {FxRm}x of Rm for each m ≥ 0 satisfying:

• (decreasing) FxRm ⊆ Fx
′
Rm, if x ≥ x′;

• (left-continuous) FxRm =
⋂
x′<xFx

′
Rm;

• (multiplicative) FxRm · Fx
′
Rm′ ⊆ Fx+x′Rm+m′, for any x, x′ ∈ R and m,m′ ∈ Z≥0;

• (linearly bounded) There exist e−, e+ ∈ Z such that Fme−Rm = Rm and Fme+Rm = 0
for all m ∈ Z≥0.
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Given any filtration {FxRm}x∈R and m ∈ Z≥0, the successive minima on Rm is the decreasing
sequence

λ(m)
max = λ

(m)
1 ≥ · · · ≥ λ

(m)
Nm

= λ
(m)
min

defined by:

λ
(m)
j = max

{
λ ∈ R; dimCFλRm ≥ j

}
.

Denote F (λ) := F (λ)R =
⊕+∞

k=0FmλRm and define

vol
(
F (λ)

)
= vol

(
F (λ)R

)
:= lim sup

k→+∞

dimCFmλH0(X,mL)

mn/n!
. (129)

Proposition C.2 ([17], [18, Corollary 5.4]). (1) The Radon measure

n!

mn

∑
j

δ
m−1λ

(m)
j

= − d

dλ

(
n!

mn
dimCFmλH0(X,mL)

)
dλ

converges weakly as m→ +∞ to the Radon measure:

DH(F) := −d vol
(
F (λ)

)
= − d

dλ
vol
(
F (λ)

)
dλ.

(2) The support of the measure DH(F) is given by supp(DH(F)) = [λmin, λmax] with

λmin := λmin(F) := inf
{
t ∈ R; vol

(
F (λ)

)
< L·n

}
; (130)

λmax := λmax(F) := lim
m→+∞

λ
(m)
max

m
= sup

m≥1

λ
(m)
max

m
. (131)

Remark C.3. The limit in the (131) exists because {λ(m)
max}m∈Z>0 is superadditive in the

sense that λ
(m+m′)
max ≥ λ

(m)
max + λ

(m′)
max , by the multiplicative property of filtrations in Definition

C.1.

Example C.4. (1) Any divisorial valuation also defines a filtration.

FλvRm = {s ∈ Rm; v(s) ≥ λ} (132)

where v(s) := v(f) if s = f · e with f ∈ O∗X and e is a nowhere vanishing local
holomorphic section of L.

(2) Any normal test configuration (X ,L) defines a filtration:

Fλ(X ,L)Rm := {s ∈ Rm; t−dλes̄ ∈ H0(X ,mL)} (133)

where the meromorphic section s̄ is the pull back of s under the equivariant isomor-
phism X \X0

∼= X×C∗. There is a more concrete description. Assume X0 =
∑

i biEi
and choose an equivalent dominant test configuration (X ′,L′) with the birational mor-
phism ρ : X ′ → X × C that satisfies L′ = ρ∗LC +D. Then we get:

Fλ(X ,L)Rm = {s ∈ Rm; r(ordEi)(s) +m · ordEi(D) ≥ dλebi} . (134)

where r(ordEi) is the restriction of the valuation ordEi to the function field C(X).
An important case is when (X ,−KX ) is a test configuration of (X,−KX = L). In

other words, we assume that X is normal and −KX is semiample. We then have the
identity:

ordEi(D) = −aX×C(Ei) = −(aX(r(Ei)) + bi) = −biA(b−1
i r(ordEi)). (135)
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We can then set vEi = b−1
i r(ordEi) to get the identity:

Fλ(X ,L)Rm = {s ∈ Rm; vEi(s)− A(vEi)m ≥ dλe} . (136)

Any filtration FR• can be “approximated” by a sequence of test configurations defined
as follows. Choose e− and e+ as in the definition C.1. For convenience, we can choose
e+ = dλmax(FR)e ∈ Z. Set e = e+ − e− and define (fractional) ideals:

I(m,x) := IF(m,x) := Image (FxRm ⊗OZ(mL)→ OZ) ; (137)

Ĩm := ĨFm := IF(m,me+)t
−me+ + IF(m,me+−1)t

1−me+ + · · ·
· · ·+ IF(m,me−+1)t

−me−−1 +OZ · t−me− ; (138)

Im := IF(e+)
m = ĨFm · tme+ = IF(m,me+) + IF(m,me+−1)t

1 + · · ·
· · ·+ IF(m,me−+1)t

me−1 + (tme) ⊆ OZC . (139)

Let µm : X̌m → X × C be the normalized blowup of Im with µ∗mIm = OXm(−Em). Set
Lm = µ∗mLC − 1

m
Em. For any v ∈ Xdiv

Q , set:

φF(v) = lim
m→+∞

− 1

m
G(v)(Ĩm) = lim

m→+∞
φ(X̌m,Ľm)(v)

Assume T ∼= (C∗)r acts on X effectively. Let MZ = Homalg(T,C∗) be the weight lattice.
Assume that F is a T-equivariant test configuration. Then for any m ∈ N and λ ∈ R, there
is a weight decomposition

Rm = H0(X,mL) =
⊕
α∈MZ

Rm,α, FλRm =
⊕
α∈MZ

(FλRm)α (140)

where FλRm = {s ∈ Rm; t · s = tαs}. Let g be a positive smooth function on the moment
polytope P as before. For each t ∈ R, define a volume function:

volg(F (λ)) = lim
m→+∞

n!

mn

∑
α

g(
α

m
) dimC(F tmRm)α. (141)

Let {λ(m,α)
j } be the successive minima of Rm,α:

λ
(m,α)
j = max{λ; dimFλRm,α ≥ j}. (142)

Consider the measure:

νgm =
∑
α,i

g(
α

m
)δ

λ
(m,α)
j
m

. (143)

As m→ +∞, νgm converges to the measure −dvolg(F (λ)). Define:

ENA
g (F) =

1

Vg

n!

mn
lim

m→+∞

∑
α,i

g(
α

m
)
λ

(m,α)
j

m
=

1

Vg

∫
R
λ(−dvolg(F (λ)))

= λgmin(F) +
1

Vg

∫
λgmin(F)

volg(F (λ))dλ

where λgmin(F) = inf
{
λ; volg(F (λ)) < Vg

}
. Note that this is monotone with respect to F :

F1 ≤ F2 =⇒ ENA
g (F1) ≤ ENA

g (F2). (144)
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Here by F1 ≤ F2 we mean that Fλ1Rm ≤ Fλ2Rm for any λ ∈ R and m ∈ N.

Example C.5. For any divisorial valuation v ∈ Xdiv
Q with associated filtration Fv, we have

ENA
g (Fv) =

1

Vg

∫ +∞

0

volg(F (λ)
v )dλ =: Sg(v). (145)

Lemma C.6. For any test configuration (X ,L) with associated non-Archimedean metric
φ = φ(X ,L) and for any divisorial valuation v ∈ Xdiv

Q , we have the inequality:

φ(v) + Sg(v) ≥ ENA
g (φ). (146)

Proof. Let F = F(X ,L) be the filtration associated to (X ,L). Set a = φ(v). Then we get

φ(v) + Sg(v) = a+ ENA
g (Fv) = ENA

g (F(a)) (147)

where F(a)λRm = Fλ−aRm. By the monotonicity of ENA
g , we just need to show that FλRm ⊆

Fλ−amv Rm. For any s ∈ FλRm, t−dλes̄ extends across X0. Without loss of generality, we can
assume that there is a dominating morphism ρ : X → X ×C with L = ρ∗LC +D. Then we
get the wanted inequality easily:

v(s) = G(v)(s̄) = G(v)(t−dλes̄) + dλe ≥ G(v)(D) + dλe = −ma+ dλe ≥ λ−ma.

�

Moreover one can define non-Archimedean functionals for filtrations:

ΛNA
g (F) = λmax(F)

JNA
g (F) = ΛNA

g (F)− ENA
g (F)

LNA(F) = lim
m→+∞

LNA(X̌m, Ľm)

DNA
g (F) = −ENA

g (F) + LNA(F).

Theorem C.7. Let F ∈ {E,Λ,J,L,D}.
(1) For a test configuration (X ,L) with associated filtration in (134), FNA

g (F(X ,L)) =

FNA
g (X ,L).

(2) In general, for any filtration, we have:

lim
m→+∞

FNA
g (X̌m, Ľm) = FNA

g (F). (148)

We define the twist of filtrations:

(Fλξ Rm)α = Fλ−〈α,ξ〉Rm,α. (149)

This generalizes the twist of test configurations because we have Fλ(Xξ,Lξ)Rm = (Fλ(X ,L))ξRm.

If v ∈ Xdiv
Q be a T -invariant valuation, then for any ξ ∈ NR, there is a twist vξ: if f =∑

α fα ∈ OX satisfying fα ∈ OX and t ◦ fα = tαfα, then

vξ(f) = min
α
{v(fα) + 〈α, ξ〉}. (150)

which defines a non-Archimedean metric φ = φ(X ,L). For any ξ ∈ NQ, we have a twist
(Xξ,Lξ) which also defines a non-Archimedean metric which we denote by φξ. Moreover for
any v ∈ Xdiv

Q and ξ ∈ NQ, there exists a twist vξ. We have a useful identity:



WEIGHTED KÄHLER-RICCI SOLITONS AND RICCI-FLAT KÄHLER CONE 42

Theorem C.8 ([64]). For any filtration F and any ξ ∈ NQ, we have:

ENA
g (Fξ) = ENA

g (F) + Futg(ξ). (151)

For any φ = φ(X ,L) for any test configuration (X ,L) and any v ∈ Xdiv
Q we have the identity:

AX(v−ξ) + φξ(v−ξ) = AX(v) + φ(v) (152)

where φξ = φ(Xξ,Lξ). As a consequence, we get LNA(F) = LNA(Fξ).

Theorem C.9 ([64]). For any v ∈ Xdiv
Q and any ξ ∈ NQ, we have the identity:

Fvξ = (Fv)ξ(bξ) (153)

where bξ = AX(vξ)− AX(v). Moreover we have the identity:

AX(vξ)− Sg(vξ) = AX(v)− Sg(v) + Futg(ξ). (154)

Appendix D. Multiplier ideal sheaf

Let ϕ be a psh function on a domain U ⊂ Cn. Then define the m-th multiplier ideal sheaf:

J (mϕ)(U) = {f ∈ O(U);

∫
U

|f |2e−mϕdVCn < +∞}. (155)

Take an orthonormal basis {f (m)
i ; i ∈ N} of J (mϕ) and set:

ϕm =
1

m
log
∑
i

|f (m)
i |2. (156)

Then by using Ohsawa-Takegoshi extension theorem, Demailly proved

Theorem D.1. There exists constants C1 > 0 such that for any m ∈ N and any z ∈ U

ϕ(z)− C1

m
≤ ϕm(z). (157)

Moreover ϕm converges to ϕ pointwise and in L1
loc topology on U as m→ +∞.

More generally, on a projective manifold X for any psh Hermitian metric h0e
−ϕ on a line

bundle L, one can define multiplier ideal sheaf. Boucksom-Favre-Jonsson gave a valuative de-
scription of multiplier ideals, which can be strengthened by using Demailly’s strong openness
conjecture proved by Guan-Zhou:

Theorem D.2. f ∈ J (mϕ) if and only if there exists ε > 0 such that AX(v) + v(f)− (1 +
ε)v(ϕ) > 0 for any v ∈ Xdiv

Q .

Here v(ϕ) is called the generic Lelong number of ϕ with respect to v: if v = ordE for a
smooth divisor E on Y → X. Then v(ϕ) = sup{C > 0;ϕ ≤ C log |z1|2 + O(1)} where z1 is
any local coordinate satisfying E = {z1 = 0}.
Now let Φ be a psh ray which is a psh Hermitian metric on p∗1(−KX). Let v ∈ Xdiv

Q , G(v)
be the Gauss extension which is the unique C∗-invariant valuation on X × C satisfying
G(v)(t) = 1 and G(v)|C(X) = v. By using this valuative description, Berman-Boucksom-
Jonsson derives a valuative formula for L′∞(Φ):

L′∞(Φ) = inf
v∈Xdiv

Q

(AX(v)−G(v)(Φ)). (158)

Multiplier ideals satisfy the important a (Nadel) vanishing and a global generation property.
The version we need is the following
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Theorem D.3. Let p1 : X ×B1 → X be the projection. Assume that p∗1L is equipped with a
singular psh Hermtian metric h = p∗1h0e

−Φ such that the Lelong number of Φ is zero outside
X × {0}. Let J (mΦ) be the multiplier ideal sheaf of h. Then there exists m0 > 1 such that
for any m ∈ N, OX×C((m+m0)p∗1L)⊗ J (mΦ) is globally generated.

This can be proved by using Siu’s proof of global generation in [83]. See also [61, Corollary
11.2.13] for a corresponding result in the algebraic case. With this result, Berman-Boucksom-
Jonsson constructed test configurations to approximate geodesic rays: set µm : Xm → X×C
the blowup of J (mΦ) and Lm = p∗1LC− 1

m+m0
Em where µ∗mJ (mΦ) = OXm(−Em). We have

the inequality:

w(J (mΦ)) ≤ w(mΦ) ≤ w(J (mΦ)) + A(v). (159)

The first inequality follows from (157) and the second inequality follows from Theorem D.2.
This easily implies, with φm = φ(Xm,Lm)

lim
m→+∞

φm(v) = −G(v)(Φ) =: ΦNA(v) for any v ∈ Xdiv
Q (160)

and

lim
m→+∞

LNA(φm) = inf
v∈Xdiv

Q

(AX(v)−G(v)(Φ)) = L′∞(Φ). (161)

Finally we sketch the proof of the second convergence in (56). Recall that:

fε := LNA
(X′,Bε)(φε) = inf

v∈Xdiv
Q

hε(v) (162)

where

hε(v) = A(X′,Bε)(v)−G(v)(Φε)

= AX′(v)− v(B0)− ε

1 + ε
v(Eθ)−

1

1 + ε
G(v)(Φ).

We need to show that limε→0 fε = f0. Note that hε → h0 as ε → 0. Because J (Φ) is
co-supported in X ×{0}, there exists k ≥ 1 such that tk ∈ J (Φ). So by Theorem D.2, there

exists τ > 0 such that AX′×C(G(v))−(1+τ)G(v)(Φ)+k > 0 which implies G(v)(Φ) ≤ A(v)+k
1+τ

.

So we get Then we can estimate: for any v ∈ Xdiv
Q ,

hε(v) = AX′(v)− v(B0)−G(v)(Φ) +
ε

1 + ε
G(v)(Φ)

≤ h0(v) +
ε

1 + ε

A(v) + k

1 + τ
.

Now the key is to show that the infimum in (162) can be taken over the set of v ∈ Xdiv
Q with

AX′(v) uniformly bounded (with the bound independent of ε). This can be proved by using
Theorem D.2 again. The lower bound of hε by h0 can be proved similarly.
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