Restricted volumes and K-stability

Chi Li

Department of Mathematics, Purdue University

November 18, 2020
(1) Conjecture on 1st RR coefficients of big line bundles
(2) YTD conjectures and non-Archimedean geometry
X : d-dimensional normal projective variety
L : a line bundle. Its volume is defined as:

$$
\operatorname{vol}(L)=\limsup _{m \rightarrow+\infty} \frac{h^{0}(X, m L)}{m^{d} / d!}
$$

Example: If L is ample (or just nef), then $\operatorname{vol}(L)=L^{d}$.

Theorem

The following conditions are equivalent:
(1) $\operatorname{vol}(L)>0$.
(2) \exists a decomposition into \mathbb{Q}-divisors $L=A+E$ where A is ample and E is effective.
(3) $\kappa(X, L)=d$.

Definition: L is big if one of the above conditions are satisfied.

- Volume only depends on the numerical class of line bundles/divisors:

$$
L_{1} \equiv L_{2} \Longrightarrow \operatorname{vol}\left(L_{1}\right)=\operatorname{vol}\left(L_{2}\right)
$$

$N^{1}(X)=\operatorname{Div}(X) / \operatorname{Num}(X):$ Néron-Severi group.

Theorem

The function $\xi \mapsto \operatorname{vol}(\xi)$ on $N^{1}(X)_{\mathbb{Q}}$ extends uniquely to a continuous function $\mathrm{vol}: N^{1}(X)_{\mathbb{R}} \rightarrow \mathbb{R}$.

- $\operatorname{vol}(\lambda \xi)=\lambda^{d} \operatorname{vol}(\xi)$ for any $\lambda>0$.
- If $\mu: Y \rightarrow X$ is birational, then $\operatorname{vol}\left(\mu^{*} L\right)=\operatorname{vol}(L)$.
- Volume increases in effective directions: $\operatorname{vol}(\xi) \leq \operatorname{vol}(\xi+e)$ if $e \in N^{1}(X)_{\mathbb{R}}$ is effective.

Theorem

Let L be a big line bundle on $X . \forall \epsilon>0, \exists$ a projective birational morphism $\mu: Y \rightarrow X$ and a decomposition $\mu^{*} L=A+E$ in $N^{1}(Y)_{\mathbb{Q}}$ with A ample and E effective such that:

$$
\operatorname{vol}_{Y}(A)>\operatorname{vol}_{X}(L)-\epsilon
$$

Corollary (limsup is lim)

$$
\operatorname{vol}(L)=\lim _{m \rightarrow+\infty} \frac{h^{0}(X, m L)}{m^{d} / d!}
$$

Theorem (movable intersection number)

Let L be a big line on X. Let $\mathfrak{b}(|m L|)$ be the base ideal of $|m L|$. Let $\mu_{m}: X_{m} \rightarrow X$ be the (resolution of the) normalized blow-up of $\mathfrak{b}(|m L|)$ with exceptional divisor E_{m}. Then

$$
\operatorname{vol}(L)=\lim _{m \rightarrow+\infty}\left(\mu_{m}^{*} L-\frac{1}{m} E_{m}\right)^{d}=:\left\langle L^{d}\right\rangle
$$

Let $V \subset X$ be a subvariety of dimension r. Restricted volume:

$$
\operatorname{vol}_{X \mid V}(L)=\limsup _{m \rightarrow+\infty} \frac{\operatorname{dim}_{\mathbb{C}} \operatorname{Im}\left(H^{0}(X, m L) \rightarrow H^{0}(V, m L)\right)}{m^{r} / r!} .
$$

If L is ample (or just nef), then $\operatorname{vol}_{X \mid V}(L)=L^{r} \cdot V$.
Base locus: $\quad \mathbf{B}(L)=\bigcap_{m} \operatorname{Bs}(|m L|)_{\text {red }}$ (not invariant on numerical class)
Augmented base locus:

$$
\mathbf{B}_{+}(L)=\bigcap_{L=A+E} \operatorname{Supp}(E)
$$

$B_{+}(L)$ depends only on numerical class of L.

Theorem (ELMNP)

(1) If $V \nsubseteq \mathbf{B}_{+}(L)$, then vol $_{X \mid V}(L)>0$.
(3) $\operatorname{vol}_{X \mid V}(L)$ depends only on the numerical equivalence class of L.

- $B_{+}(L)$ is the union of all positive dimensional subvarieties V such that $\operatorname{vol}_{X \mid V}(L)=0$.

Assume that $V \nsubseteq \mathbf{B}(L)$. Let $\mu_{m}: X_{m} \rightarrow X$ be a resolution of the base ideal $\mathfrak{b}_{m}=\mathbf{B}(|m L|)$. We have decomposition:

$$
\mu_{m}^{*}|m L|=\left|M_{m}\right|+E_{m} .
$$

Let \tilde{V}_{m} be the strict transform of V. The asymptotic intersection number of L and V :

$$
\left\|L^{r} \cdot V\right\|:=\limsup _{m \rightarrow+\infty} \frac{M_{m}^{r} \cdot \tilde{V}_{m}}{m^{r}}
$$

Theorem (Generalized Fujita approximation theorem, ELMNP)
If $V \nsubseteq \mathbf{B}_{+}(L)$, then

$$
\operatorname{vol}_{X \mid V}(L)=\left\|L^{r} \cdot V\right\|
$$

Theorem (Positive intersection product, Boucksom-Favre-Jonsson)

\forall big class $\xi, \exists\left\langle\xi^{d-1}\right\rangle \in N^{1}(X)^{*}$ satisfying: for any $\gamma \in N^{1}(X)$,

$$
\left.\frac{d}{d t}\right|_{t=0} \operatorname{vol}(\xi+t \gamma)=d\left\langle\xi^{d-1}\right\rangle \cdot \gamma
$$

Theorem (BFJ)

If V is a prime divisor, then $\operatorname{vol}_{X \mid V}(L)=\left\langle L^{d-1}\right\rangle \cdot V=\left\|L^{r-1} \cdot V\right\|$.
$\forall \operatorname{big} \xi \in N^{1}(X)$ and $1 \leq p \leq d$, BFJ defined a positive intersection product (where $\mathfrak{X}=\lim _{\pi} X_{\pi}$ (ranges over blowups $\pi: X_{\pi} \rightarrow X$) is the Riemann-Zariski space):

$$
\left\langle\xi^{p}\right\rangle=\sup \left\{\beta^{p} ; \beta \in C N^{1}(\mathfrak{X}) \text { nef and } \beta \leq \xi\right\} \in N^{p}(\mathfrak{X}) .
$$

Example: $\left\langle\xi^{d}\right\rangle \in N^{d}(\mathfrak{X}) \cong \mathbb{R}$ is the volume;
$\langle\xi\rangle \in N^{1}(\mathfrak{X})$ is the collection of positive part of the divisorial Zariski decompositions of $\pi^{*} \xi$ (Nakayama, Boucksom) $\left\{P\left(\pi^{*} \xi\right)\right\}_{\pi}$
Example: Let V be a prime divisor. If $\mu_{m}: X_{m} \rightarrow X$ is the (resolution of the) normalized blowup of $\mathfrak{b}(|m L|)$, then

$$
\left\langle L^{d-1}\right\rangle \cdot V=\lim _{m \rightarrow+\infty}\left(L_{m}^{d-1}\right) \cdot \mu_{m}^{*} V=\sup _{\mu^{*} L=A+E} A^{d} \cdot \mu^{*} V
$$

- If L is ample, then by Hirzebruch-Riemann-Roch formula:

$$
h^{0}(m L)=L^{d} \frac{m^{d}}{d!}+\frac{1}{2} K_{X} \cdot L^{d-1} \frac{m^{d-1}}{(d-1)!}+O\left(m^{d-2}\right)
$$

This is still true if L is big and nef by Fujita's vanishing theorem.

- In general if L is big, we only have $h^{0}(m L)=\operatorname{vol}(L) \frac{m^{d}}{d!}+O\left(m^{d-1}\right)$. Cutkosky-Srinivas constructed a 3-fold example such that $h^{0}(m L)$ is a polynomial of degree 3 in $\left[m\left(2-\frac{\sqrt{3}}{3}\right)\right]$.
- If L admits a rational Zariski decomposition $L=P+N$, then $h^{0}(m L)=h^{0}(\lfloor m P\rfloor)$ is polynomial with 1st coefficient given by $K_{X} \cdot P^{d}$.

Definition

For any big line bundle L, define $\mathfrak{r}_{1}(X, L):=\mathfrak{r}_{1}(X, L)=\left\langle\mathcal{L}^{d-1}\right\rangle \cdot K_{X}$.

Lemma

If $\mu: Y \rightarrow X$ is any birational morphism, we have $\mathfrak{r}_{1}(X, L)=\mathfrak{r}_{1}\left(Y, \mu^{*} L\right)$.

I would like to propose the following conjecture

Conjecture

For any big line bundle L over a (smooth) projective variety, there exists a sequence of birational morphism $\mu_{m}: X_{m} \rightarrow X$ and a decomposition $\mu^{*} L=L_{m}+E_{m}$ with L_{m} ample and E_{m} effective such that

$$
\lim _{m \rightarrow+\infty} L_{m}^{d}=\operatorname{vol}(L), \quad \text { and } \quad \lim _{m \rightarrow+\infty} \mathfrak{r}_{1}\left(L_{m}\right)=\mathfrak{r}_{1}(L)
$$

Lemma

If L admits a birational Zariski decomposition, i.e. if there exists a birational morphism $\mu: Y \rightarrow X$ such that $\mu^{*} L$ admits a Zariski decomposition, then the above conjecture is true. In particular, if X is toric (or more generally spherical variety), then the conjecture is true.

- Nakayama: there are examples of big line bundles which do not have birational Zariski decomposition.

Definition

A test configuration of (X, L) is the following data:

- A flat family of projective varieties $\pi: \mathcal{X} \rightarrow \mathbb{C}$ with a \mathbb{C}^{*}-action such that π is \mathbb{C}^{*}-equivariant.
- A semiample \mathbb{Q}-line bundle \mathcal{L} such that \mathbb{C}^{*} lifts to act on \mathcal{L}.
- There is a \mathbb{C}^{*}-equivariant isomorphism $\mathcal{X} \times \mathbb{C} \mathbb{C}^{*} \cong X \times \mathbb{C}^{*}$.

Equivalent data:

- $m \in \mathbb{N}$ and an embedding $X \rightarrow \mathbb{P}\left(H^{0}(X, m L)^{*}\right) \cong \mathbb{P}\left(\mathbb{C}^{N_{m}-1}\right)$.
- A one parameter \mathbb{C}^{*}-subgroup $\exp (s \eta) \in \operatorname{PGL}\left(N_{m}, \mathbb{C}\right)$
- Limit in the Hilbert scheme: $\left[\mathcal{X}_{0}\right]=\lim _{s \rightarrow+\infty}[X]$.
- $(\mathcal{X}, \mathcal{L})=\left(X \times \mathbb{C}^{*} \cup \mathcal{X}_{0}, m^{-1} H_{\mathbb{P}_{m}-1}\right) \subset \mathbb{P}^{N_{m}-1} \times \mathbb{C}$

Set $(\overline{\mathcal{X}}, \overline{\mathcal{L}})=(\mathcal{X}, \mathcal{L}) \cup(X, L) \times\{\infty\}:$ the natural compactification.

- \mathcal{X} is dominating if there is a \mathbb{C}^{*}-equivariant birational morphism $\rho: \mathcal{X} \rightarrow X \times \mathbb{C}$. By resolution of singularities, we can always achieve this.

Definition: For any test configuration $(\mathcal{X}, \mathcal{L})$, define:

$$
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}^{\log } \cdot \overline{\mathcal{L}}^{\cdot n}+\frac{\underline{S}}{n+1} \overline{\mathcal{L}}^{\cdot n+1}
$$

where $K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}^{\log }=K_{\mathcal{X}}+\left(\mathcal{X}_{0}\right)_{\text {red }}-\pi^{*}\left(K_{\mathbb{P}^{1}}+\{0\}\right), \underline{S}=\frac{n c_{1}(X) \cdot L^{\cdot n-1}}{L^{\cdot n}}$.

- Base change $\left(\mathcal{X}^{\prime}, \mathcal{L}^{\prime}\right):=(\mathcal{X}, \mathcal{L}) \times_{\mathbb{C}, t \mapsto t^{t}} \mathbb{C}$ with reduced central fibre s.t.

$$
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=\frac{1}{b} \mathbf{M}^{\mathrm{NA}}\left(\mathcal{X}^{\prime}, \mathcal{L}^{\prime}\right)=\frac{1}{b}\left(K_{\overline{\mathcal{X}}^{\prime} / \mathbb{P}^{1}} \cdot \overline{\mathcal{L}}^{\prime \cdot n}+\frac{\underline{S}}{n+1} \overline{\mathcal{L}}^{\prime \cdot n+1}\right)
$$

- Translational invariance:

$$
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=\mathbf{M}^{\mathrm{NA}}\left(\mathcal{X}, \mathcal{L}+c \mathcal{X}_{0}\right)
$$

- If \mathcal{X}_{0} is smooth and \mathcal{L} is relative ample, $\mathbf{M}^{\text {NA }}$ reduces to the Futaki invariant Fut (η) of central fibre (an obstruction to the existence of constant scalar curvature Kähler (cscK) metrics).

Non-Archimedean J functional of a test configuration:

$$
\mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=\overline{\mathcal{L}} \cdot L_{\mathbb{P}^{1}}^{n+1}-\frac{1}{n+1} \overline{\mathcal{L}}^{\cdot n+1}>0 \quad \text { if }(\mathcal{X}, \mathcal{L}) \text { non-trivial }
$$

Definition

(X, L) is uniformly K-stable if $\exists \gamma>0$ s.t. for any test configuration $(\mathcal{X}, \mathcal{L})$,

$$
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot \mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})
$$

Conjecture (Uniform version of Yau-Tian-Donaldson (YTD) conjecture)

Assume Aut $(X, L)_{0}$ is discrete. There exists a constant scalar curvature Kähler (cscK) metrics in $c_{1}(L)$ if and only if (X, L) is uniformly K-stable.

There is a version when $\operatorname{Aut}(X, L)_{0}$ is not discrete.

- The direction: cscK \Longrightarrow uniform K-stability is known.
- YTD conjecture is known to hold when X is Fano and $L=-K_{X}$, even for all singular Fano varieties (Tian, Berman, Chen-Donaldson-Sun, Berman-Boucksom-Jonsson, L.-Tian-Wang, Hisamoto, L., ...).
- K-stability for Fano varieties is an active subject in algebraic geometry...

A model of (X, L) is the same data as a test configuration except that we don't require \mathcal{L} to be semiample.
For any model $(\mathcal{X}, \mathcal{L})$, choose $c \gg 1$ such that $\overline{\mathcal{L}}_{c}=\overline{\mathcal{L}}+c X_{0}$ is a big line bundle over $\overline{\mathcal{X}}$. Define non-Archimedean functionals (independent of $c \gg 1$):

$$
\begin{aligned}
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) & =\left\langle\overline{\mathcal{L}}_{c}^{n}\right\rangle \cdot K_{\overline{\mathcal{X}}^{\log }}^{\mathbb{P}^{1}}+\frac{\underline{S}}{n+1}\left\langle\overline{\mathcal{L}}_{c}^{n+1}\right\rangle \\
\mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) & =\left\langle\overline{\mathcal{L}}_{c}\right\rangle \cdot L_{\mathbb{P}^{1}}^{n}-\frac{1}{n+1}\left\langle\overline{\mathcal{L}}_{c}^{n+1}\right\rangle .
\end{aligned}
$$

Theorem (L. '20, based on many people's works)

If (X, L) is uniformly K-stable for all models, i.e. $\exists \gamma>0$ such that $\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot \mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})$ for all models, then (X, L) admits a cscK metric.

If Conjecture 1 is true, then we can remove the words "for all models" and get YTD conjecture 2, because we can then find a sequence of test configurations ($\mathcal{X}_{m}, \mathcal{L}_{m}$) such that (up to base change):

$$
\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=\lim _{m \rightarrow+\infty} \mathbf{M}^{\mathrm{NA}}\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right), \quad \mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L})=\lim _{m \rightarrow+\infty} \mathbf{J}^{\mathrm{NA}}\left(\mathcal{X}_{m}, \mathcal{L}_{m}\right)
$$

- $\left(X^{\mathrm{NA}}, L^{\mathrm{NA}}\right):($ Berkovich) analytification w.r.t. to the trivially valued field \mathbb{C}.
- Points of X^{NA} : real valuations on functional fields of subvarieties.
- $X_{\mathbb{Q}}^{\text {div }}$: set of divisorial valuations on $\mathbb{C}(X)$, dense in $X^{\text {NA }}$.
- smooth PSH metrics on $L^{\text {NA }} \longleftrightarrow$ (equiv. classes of) test configurations They are represented by relative (non-Archimedean) potential $(G(v)$ is the Gauss extension $\left.X_{\mathbb{Q}}^{\text {div }} \rightarrow(X \times \mathbb{C})_{\mathbb{Q}}^{\text {div }}\right)$

$$
\left(\phi_{\mathcal{L}}-\phi_{\text {triv }}\right)(v)=G(v)\left(\mathcal{L}-\rho^{*} L_{\mathbb{C}}\right)
$$

- non-Archimedean Monge-Ampere measure (by Chambert-Loir): assume $\mathcal{X}_{0}=\sum_{i} b_{i} E_{i}, x_{i}=b_{i}^{-1} r\left(\operatorname{ord}_{E_{i}}\right)$ where r is the restriction of valuations via embedding $\mathbb{C}(X) \rightarrow \mathbb{C}(X \times \mathbb{C})$.

$$
\mathrm{MA}^{\mathrm{NA}}\left(\phi_{\mathcal{L}}\right)=\sum_{i} b_{i}\left(\mathcal{L}^{n} \cdot E_{i}\right) \delta_{x_{i}}
$$

- Mixed Monge-Ampere measure for several line bundles defined similarly.
- $\mathbf{M}^{\text {NA }}$ has a decomposition: for any test configuration $(\mathcal{X}, \mathcal{L})$

$$
\mathbf{M}^{\mathrm{NA}}\left(\phi_{\mathcal{L}}\right)=K_{\overline{\mathcal{X}} / X_{\mathbb{P} 1}} \cdot \overline{\mathcal{L}}^{n}+\rho^{*} K_{X} \cdot \overline{\mathcal{L}}^{n}+\frac{\underline{S}}{n+1} \overline{\mathcal{L}}^{n+1}
$$

- non-Archimedean entropy

$$
\begin{aligned}
K_{\bar{X} / X_{\mathbb{P} 1}}^{\log } \cdot \overline{\mathcal{L}}^{n} & =\sum_{i}\left(A_{X_{\mathbb{C}}}\left(E_{i}\right)-1\right) E_{i} \cdot \overline{\mathcal{L}}^{n}=\sum_{i} A_{x}\left(b_{i}^{-1} r\left(E_{i}\right)\right) b_{i}\left(\mathcal{L}^{n} \cdot E_{i}\right) \\
& =\int_{X^{\mathrm{NA}}} A_{x}(x) \mathrm{MA}^{\mathrm{NA}}(\phi)
\end{aligned}
$$

$A_{X \times \mathbb{C}}\left(E_{i}\right)=\operatorname{ord}_{E_{i}}\left(K_{\mathcal{X} / X_{\mathbb{C}}}\right)+1$ is the log discrepancy of E_{i}, similar for $A_{X}(\cdot)$.

- Non-Archimedean Monge-Ampère energy:

$$
\begin{aligned}
\overline{\mathcal{L}}^{n+1} & =\sum_{i=0}^{n+1}\left(\overline{\mathcal{L}}^{k+1} \cdot L_{\mathbb{P}^{1}}^{n-k}-\overline{\mathcal{L}}^{k} \cdot L_{\mathbb{P}^{1}}^{n-k+1}\right)=\sum_{0}^{n+1}\left(\overline{\mathcal{L}}-L_{\mathbb{P}^{1}}\right) \cdot \overline{\mathcal{L}}^{k} \cdot L_{\mathbb{P}^{1}}^{n-k} \\
& =\sum_{k=0}^{n+1} \int_{X^{\mathrm{NA}}}\left(\phi_{\mathcal{L}}-\phi_{\text {triv }}\right) \mathrm{MA}^{\mathrm{NA}}\left(\phi_{\mathcal{L}}^{[k]}, \phi_{\text {triv }}^{[n-k]}\right)=(n+1) \mathrm{E}^{\mathrm{NA}}(\mathcal{L}) .
\end{aligned}
$$

Boucksom-Favre-Jonsson defined Monge-Ampère measure for any continuous PSH metric, which is a non-Archimedean analogue of Bedford-Taylor's theory in classical pluripotential theory. They also solved non-Archimedean Monge-Ampère equations, as a non-Archimedean analogue of Calabi-Yau's theorem.
\bullet models \Longrightarrow continuous PSH metrics on $L^{\text {NA }}: \mu: \mathcal{X}_{m} \rightarrow \mathcal{X}$ blowup of $\mathfrak{b}(|m \mathcal{L}|)$ with exceptional divisor $E_{m}, \mathcal{L}_{m}=\mu_{m}^{*} \mathcal{L}-\frac{1}{m} E_{m}$

$$
\phi_{\mathcal{L}}=\lim _{m \rightarrow+\infty} \phi_{\mathcal{L}_{m}} .
$$

- Monge-Ampère measure for big models (L. '20):

$$
\mathrm{MA}^{\mathrm{NA}}\left(\phi_{\mathcal{L}_{c}}\right)=\sum_{i} b_{i}\left(\left\langle\mathcal{L}_{c}^{n}\right\rangle \cdot E_{i}\right) \delta_{x_{i}}
$$

- Non-Archimedean Mabuchi functional of models:

$$
\begin{aligned}
\mathbf{M}^{\mathrm{NA}}\left(\phi_{\mathcal{L}}\right) & =\int_{X^{\mathrm{NA}}} A_{X}(x) \mathrm{MA}^{\mathrm{NA}}(\phi)+\left(\mathbf{E}^{K_{X}}\right)^{\mathrm{NA}}(\phi)+\underline{S} \mathbf{E}^{\mathrm{NA}}(\phi) \\
& =\left\langle\overline{\mathcal{L}}_{c}^{n}\right\rangle \cdot K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}^{\log }+\frac{\underline{S}}{n+1}\left\langle\overline{\mathcal{L}}_{c}^{n+1}\right\rangle \\
& =\mathfrak{r}_{1}\left(\overline{\mathcal{L}}_{c}\right)+\frac{\underline{S}}{n+1} \operatorname{vol}\left(\overline{\mathcal{L}}_{c}\right)+2 L^{n}
\end{aligned}
$$

Archimedean Mabuchi functional: $e^{-\varphi}$ a PSH metric on $L \rightarrow X$

$$
\mathbf{M}(\varphi)=\int_{X} \log \frac{\left(\operatorname{dd}^{\mathrm{c}} \varphi\right)^{n}}{\omega_{0}^{n}} \omega_{0}^{n}+\mathbf{E}^{R i c\left(\omega_{0}\right)}(\varphi)+\underline{S} \mathbf{E}(\varphi) .
$$

- For any $\phi=\phi_{\mathcal{L}}$ there exists a unique geodesic rays $\Phi=\{\varphi(s)\}$ in the space of positively curved Hermitian metrics such that $\Phi_{\mathrm{NA}}=\phi$ where $\left(\Phi_{\mathrm{NA}}-\phi_{\text {triv }}\right)(v)=G(v)(\Phi)$ is the Lelong number with respect to any divisorial valuation v.

Conjecture

For any (continuous) metric $\phi=\phi_{\mathcal{L}}$ associated to models, we have:

$$
\lim _{s \rightarrow+\infty} \frac{\mathbf{M}(\varphi(s))}{s}=\mathbf{M}^{\mathrm{NA}}(\phi) .
$$

This is true for $\left(\mathbf{E}^{K X}\right)^{\mathrm{NA}}$ and \mathbf{E}^{NA}. It's known that LHS \geq RHS (L.). The conjecture for the entropy part is known for test configurations. The conjecture is again implied by Conjecture 1 !

Thanks for your attention!

