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Volume of line bundles

X : d-dimensional normal projective variety
L : a line bundle. Its volume is defined as:

vol(L) = lim sup
m→+∞

h0(X ,mL)

md/d!

Example: If L is ample (or just nef), then vol(L) = Ld .

Theorem

The following conditions are equivalent:

1 vol(L) > 0.

2 ∃ a decomposition into Q-divisors L = A + E where A is ample and E is
effective.

3 κ(X , L) = d .

Definition: L is big if one of the above conditions are satisfied.
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Properties of volume functional

• Volume only depends on the numerical class of line bundles/divisors:

L1 ≡ L2 =⇒ vol(L1) = vol(L2).

N1(X ) = Div(X )/Num(X ): Néron-Severi group.

Theorem

The function ξ 7→ vol(ξ) on N1(X )Q extends uniquely to a continuous function
vol : N1(X )R → R.

• vol(λξ) = λdvol(ξ) for any λ > 0.

• If µ : Y → X is birational, then vol(µ∗L) = vol(L).

• Volume increases in effective directions: vol(ξ) ≤ vol(ξ + e) if e ∈ N1(X )R is
effective.
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Fujita’s approximation theorem (from Lazarsfeld’s book)

Theorem

Let L be a big line bundle on X . ∀ε > 0, ∃ a projective birational morphism
µ : Y → X and a decomposition µ∗L = A + E in N1(Y )Q with A ample and E
effective such that:

volY (A) > volX (L)− ε.

Corollary (limsup is lim)

vol(L) = lim
m→+∞

h0(X ,mL)

md/d!
.

Theorem (movable intersection number)

Let L be a big line on X . Let b(|mL|) be the base ideal of |mL|. Let
µm : Xm → X be the (resolution of the) normalized blow-up of b(|mL|) with
exceptional divisor Em. Then

vol(L) = lim
m→+∞

(
µ∗mL−

1

m
Em

)d

=: 〈Ld〉.
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Restricted volume (Tsuji, Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa)

Let V ⊂ X be a subvariety of dimension r . Restricted volume:

volX |V (L) = lim sup
m→+∞

dimC Im(H0(X ,mL)→ H0(V ,mL))

mr/r !
.

If L is ample (or just nef), then volX |V (L) = Lr · V .

Base locus: B(L) =
⋂
m

Bs(|mL|)red (not invariant on numerical class)

Augmented base locus: B+(L) =
⋂

L=A+E

Supp(E).

B+(L) depends only on numerical class of L.

Theorem (ELMNP)

1 If V 6⊆ B+(L), then volX |V (L) > 0.

2 volX |V (L) depends only on the numerical equivalence class of L.

3 B+(L) is the union of all positive dimensional subvarieties V such that
volX |V (L) = 0.
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Fujita approximation result for restricted volume

Assume that V 6⊆ B(L). Let µm : Xm → X be a resolution of the base ideal
bm = B(|mL|). We have decomposition:

µ∗m|mL| = |Mm|+ Em.

Let Ṽm be the strict transform of V . The asymptotic intersection number of L
and V :

‖Lr · V ‖ := lim sup
m→+∞

M r
m · Ṽm

mr
.

Theorem (Generalized Fujita approximation theorem, ELMNP)

If V 6⊆ B+(L), then
volX |V (L) = ‖Lr · V ‖.
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Restricted volume as derivative of volumes, after Boucksom-Favre-Jonsson

Theorem (Positive intersection product, Boucksom-Favre-Jonsson)

∀ big class ξ, ∃ 〈ξd−1〉 ∈ N1(X )∗ satisfying: for any γ ∈ N1(X ),

d

dt

∣∣∣∣
t=0

vol(ξ + tγ) = d〈ξd−1〉 · γ

Theorem (BFJ)

If V is a prime divisor, then volX |V (L) = 〈Ld−1〉 · V = ‖Lr−1 · V ‖.

∀ big ξ ∈ N1(X ) and 1 ≤ p ≤ d , BFJ defined a positive intersection product
(where X = lim←−π Xπ (ranges over blowups π : Xπ → X ) is the Riemann-Zariski space):

〈ξp〉 = sup{βp;β ∈ CN1(X) nef and β ≤ ξ} ∈ Np(X).

Example: 〈ξd〉 ∈ Nd(X) ∼= R is the volume;
〈ξ〉 ∈ N1(X) is the collection of positive part of the divisorial Zariski
decompositions of π∗ξ (Nakayama, Boucksom) {P(π∗ξ)}π
Example: Let V be a prime divisor. If µm : Xm → X is the (resolution of the)
normalized blowup of b(|mL|), then

〈Ld−1〉 · V = lim
m→+∞

(Ld−1
m ) · µ∗mV = sup

µ∗L=A+E
Ad · µ∗V .
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Riemann-Roch problem

• If L is ample, then by Hirzebruch-Riemann-Roch formula:

h0(mL) = Ld m
d

d!
+

1

2
KX · Ld−1 md−1

(d − 1)!
+ O(md−2).

This is still true if L is big and nef by Fujita’s vanishing theorem.

• In general if L is big, we only have h0(mL) = vol(L)md

d!
+ O(md−1).

Cutkosky-Srinivas constructed a 3-fold example such that h0(mL) is a

polynomial of degree 3 in [m(2−
√

3
3

)].

• If L admits a rational Zariski decomposition L = P + N, then
h0(mL) = h0(bmPc) is polynomial with 1st coefficient given by KX · Pd .

Definition

For any big line bundle L, define r1(X , L) := r1(X , L) = 〈Ld−1〉 · KX .

Lemma

If µ : Y → X is any birational morphism, we have r1(X , L) = r1(Y , µ∗L).
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A conjecture on the 1st Riemann-Roch coefficients

I would like to propose the following conjecture

Conjecture

For any big line bundle L over a (smooth) projective variety, there exists a
sequence of birational morphism µm : Xm → X and a decomposition
µ∗L = Lm + Em with Lm ample and Em effective such that

lim
m→+∞

Ld
m = vol(L), and lim

m→+∞
r1(Lm) = r1(L).

Lemma

If L admits a birational Zariski decomposition, i.e. if there exists a birational
morphism µ : Y → X such that µ∗L admits a Zariski decomposition, then the
above conjecture is true. In particular, if X is toric (or more generally spherical
variety), then the conjecture is true.

• Nakayama: there are examples of big line bundles which do not have
birational Zariski decomposition.
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Test configurations of polarized manifolds (Tian, Donaldson)

Definition

A test configuration of (X , L) is the following data:

A flat family of projective varieties π : X → C with a C∗-action such that
π is C∗-equivariant.

A semiample Q-line bundle L such that C∗ lifts to act on L.

There is a C∗-equivariant isomorphism X ×C C∗ ∼= X × C∗.

Equivalent data:

m ∈ N and an embedding X → P(H0(X ,mL)∗) ∼= P(CNm−1).

A one parameter C∗-subgroup exp(sη) ∈ PGL(Nm,C)

Limit in the Hilbert scheme: [X0] = lims→+∞[X ].

(X ,L) = (X × C∗ ∪ X0,m
−1HPNm−1 ) ⊂ PNm−1 × C

Set (X̄ , L̄) = (X ,L) ∪ (X , L)× {∞} : the natural compactification.
• X is dominating if there is a C∗-equivariant birational morphism
ρ : X → X × C. By resolution of singularities, we can always achieve this.
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Non-Archimedean Mabuchi functional

Definition: For any test configuration (X ,L), define:

MNA(X ,L) = K log

X̄/P1 · L̄·n +
S

n + 1
L̄·n+1

where K log

X̄/P1 = KX + (X0)red − π∗(KP1 + {0}), S = nc1(X )·L·n−1

L·n .

• Base change (X ′,L′) := (X ,L)×C,t 7→tb C with reduced central fibre s.t.

MNA(X ,L) =
1

b
MNA(X ′,L′) =

1

b

(
KX̄ ′/P1 · L̄′·n +

S

n + 1
L̄′·n+1

)
.

• Translational invariance:

MNA(X ,L) = MNA(X ,L+ cX0).

• If X0 is smooth and L is relative ample, MNA reduces to the Futaki invariant
Fut(η) of central fibre (an obstruction to the existence of constant scalar
curvature Kähler (cscK) metrics).
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Yau-Tian-Donaldson conjecture

Non-Archimedean J functional of a test configuration:

JNA(X ,L) = L̄ · Ln+1
P1 −

1

n + 1
L̄·n+1 > 0 if (X ,L) non-trivial

Definition

(X , L) is uniformly K-stable if ∃γ > 0 s.t. for any test configuration (X ,L),

MNA(X ,L) ≥ γ · JNA(X ,L).

Conjecture (Uniform version of Yau-Tian-Donaldson (YTD) conjecture)

Assume Aut(X , L)0 is discrete. There exists a constant scalar curvature Kähler
(cscK) metrics in c1(L) if and only if (X , L) is uniformly K-stable.

There is a version when Aut(X , L)0 is not discrete.

• The direction: cscK =⇒ uniform K-stability is known.
• YTD conjecture is known to hold when X is Fano and L = −KX , even for all
singular Fano varieties (Tian, Berman, Chen-Donaldson-Sun,
Berman-Boucksom-Jonsson, L.-Tian-Wang, Hisamoto, L., ...).
• K-stability for Fano varieties is an active subject in algebraic geometry...
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An existence result towards YTD conjecture

A model of (X , L) is the same data as a test configuration except that we don’t
require L to be semiample.
For any model (X ,L), choose c � 1 such that L̄c = L̄+ cX0 is a big line
bundle over X̄ . Define non-Archimedean functionals (independent of c � 1):

MNA(X ,L) = 〈L̄n
c〉 · K log

X̄/P1 +
S

n + 1
〈L̄n+1

c 〉

JNA(X ,L) = 〈L̄c〉 · Ln
P1 −

1

n + 1
〈L̄n+1

c 〉.

Theorem (L. ’20, based on many people’s works)

If (X , L) is uniformly K-stable for all models, i.e. ∃γ > 0 such that
MNA(X ,L) ≥ γ · JNA(X ,L) for all models, then (X , L) admits a cscK metric.

If Conjecture 1 is true, then we can remove the words “for all models” and get
YTD conjecture 2, because we can then find a sequence of test configurations
(Xm,Lm) such that (up to base change):

MNA(X ,L) = lim
m→+∞

MNA(Xm,Lm), JNA(X ,L) = lim
m→+∞

JNA(Xm,Lm).
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Non-Archimedean interpretation

• (XNA, LNA): (Berkovich) analytification w.r.t. to the trivially valued field C.

• Points of XNA: real valuations on functional fields of subvarieties.

• Xdiv
Q : set of divisorial valuations on C(X ), dense in XNA.

• smooth PSH metrics on LNA ←→ (equiv. classes of) test configurations
They are represented by relative (non-Archimedean) potential (G(v) is the
Gauss extension Xdiv

Q → (X × C)divQ )

(φL − φtriv)(v) = G(v)(L − ρ∗LC).

• non-Archimedean Monge-Ampere measure (by Chambert-Loir): assume
X0 =

∑
i biEi , xi = b−1

i r(ordEi ) where r is the restriction of valuations via
embedding C(X )→ C(X × C).

MANA(φL) =
∑
i

bi (Ln · Ei )δxi .

• Mixed Monge-Ampere measure for several line bundles defined similarly.
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Intersection numbers via Non-Archimedean integrals (Boucksom-Jonsson)

• MNA has a decomposition: for any test configuration (X ,L)

MNA(φL) = KX̄/XP1
· L̄n + ρ∗KX · L̄n +

S

n + 1
L̄n+1.

• non-Archimedean entropy

K log

X̄/XP1
· L̄n =

∑
i

(AXC(Ei )− 1)Ei · L̄n =
∑
i

AX (b−1
i r(Ei ))bi (Ln · Ei )

=

∫
XNA

AX (x)MANA(φ)

AX×C(Ei ) = ordEi (KX/XC) + 1 is the log discrepancy of Ei , similar for AX (·).

• Non-Archimedean Monge-Ampère energy:

L̄n+1 =
n+1∑
i=0

(L̄k+1 · Ln−k
P1 − L̄k · Ln−k+1

P1 ) =
n+1∑

0

(L̄ − LP1 ) · L̄k · Ln−k
P1

=
n+1∑
k=0

∫
XNA

(φL − φtriv)MANA(φ
[k]
L , φ

[n−k]
triv ) = (n + 1)ENA(L).
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Extension to models

Boucksom-Favre-Jonsson defined Monge-Ampère measure for any continuous
PSH metric, which is a non-Archimedean analogue of Bedford-Taylor’s theory
in classical pluripotential theory. They also solved non-Archimedean
Monge-Ampère equations, as a non-Archimedean analogue of Calabi-Yau’s
theorem.

• models =⇒ continuous PSH metrics on LNA: µ : Xm → X blowup of
b(|mL|) with exceptional divisor Em, Lm = µ∗mL − 1

m
Em

φL = lim
m→+∞

φLm .

• Monge-Ampère measure for big models (L. ’20):

MANA(φLc ) =
∑
i

bi (〈Ln
c〉 · Ei )δxi .

• Non-Archimedean Mabuchi functional of models:

MNA(φL) =

∫
XNA

AX (x)MANA(φ) + (EKX )NA(φ) + SENA(φ).

= 〈L̄n
c〉 · K log

X̄/P1 +
S

n + 1
〈L̄n+1

c 〉

= r1(L̄c) +
S

n + 1
vol(L̄c) + 2Ln.
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Non-Archimedean vs Archimedean

Archimedean Mabuchi functional: e−ϕ a PSH metric on L→ X

M(ϕ) =

∫
X

log
(ddcϕ)n

ωn
0

ωn
0 + ERic(ω0)(ϕ) + SE(ϕ).

• For any φ = φL there exists a unique geodesic rays Φ = {ϕ(s)} in the space
of positively curved Hermitian metrics such that ΦNA = φ where
(ΦNA − φtriv)(v) = G(v)(Φ) is the Lelong number with respect to any
divisorial valuation v .

Conjecture

For any (continuous) metric φ = φL associated to models, we have:

lim
s→+∞

M(ϕ(s))

s
= MNA(φ).

This is true for (EKX )NA and ENA. It’s known that LHS≥RHS (L.). The
conjecture for the entropy part is known for test configurations. The conjecture
is again implied by Conjecture 1!
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Thanks for your attention!
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