Restricted volumes and K-stability

Chi Li

Department of Mathematics, Purdue University

November 18, 2020

https://www.math.purdue.edu/~li2285/notes/movable.pdf

2 YTD conjectures and non-Archimedean geometry

Volume of line bundles

- X : d-dimensional normal projective variety
- L: a line bundle. Its volume is defined as:

$$\operatorname{vol}(L) = \limsup_{m \to +\infty} \frac{h^0(X, mL)}{m^d/d!}$$

Example: If L is ample (or just nef), then $vol(L) = L^d$.

Theorem

The following conditions are equivalent:

- **1** vol(L) > 0.
- **2** \exists a decomposition into \mathbb{Q} -divisors L = A + E where A is ample and E is effective.
- (X,L) = d.

Definition: *L* is big if one of the above conditions are satisfied.

• Volume only depends on the numerical class of line bundles/divisors:

$$L_1 \equiv L_2 \Longrightarrow \operatorname{vol}(L_1) = \operatorname{vol}(L_2).$$

 $N^1(X) = \text{Div}(X)/\text{Num}(X)$: Néron-Severi group.

Theorem

The function $\xi \mapsto \operatorname{vol}(\xi)$ on $N^1(X)_{\mathbb{Q}}$ extends uniquely to a continuous function $\operatorname{vol}: N^1(X)_{\mathbb{R}} \to \mathbb{R}$.

- $\operatorname{vol}(\lambda\xi) = \lambda^d \operatorname{vol}(\xi)$ for any $\lambda > 0$.
- If $\mu: Y \to X$ is birational, then $\operatorname{vol}(\mu^* L) = \operatorname{vol}(L)$.
- Volume increases in effective directions: $vol(\xi) \le vol(\xi + e)$ if $e \in N^1(X)_{\mathbb{R}}$ is effective.

Theorem

Let L be a big line bundle on X. $\forall \epsilon > 0$, \exists a projective birational morphism $\mu : Y \to X$ and a decomposition $\mu^* L = A + E$ in $N^1(Y)_{\mathbb{Q}}$ with A ample and E effective such that:

 $\operatorname{vol}_Y(A) > \operatorname{vol}_X(L) - \epsilon.$

Corollary (limsup is lim)

$$\operatorname{vol}(L) = \lim_{m \to +\infty} \frac{h^0(X, mL)}{m^d/d!}.$$

Theorem (movable intersection number)

Let L be a big line on X. Let $\mathfrak{b}(|mL|)$ be the base ideal of |mL|. Let $\mu_m : X_m \to X$ be the (resolution of the) normalized blow-up of $\mathfrak{b}(|mL|)$ with exceptional divisor E_m . Then

$$\operatorname{vol}(L) = \lim_{m \to +\infty} \left(\mu_m^* L - \frac{1}{m} E_m \right)^d =: \langle L^d \rangle.$$

Let $V \subset X$ be a subvariety of dimension r. Restricted volume:

$$\operatorname{vol}_{X|V}(L) = \limsup_{m \to +\infty} \frac{\dim_{\mathbb{C}} \operatorname{Im}(H^0(X, mL) \to H^0(V, mL))}{m^r/r!}$$

If L is ample (or just nef), then $\operatorname{vol}_{X|V}(L) = L^r \cdot V$.

Base locus: $\mathbf{B}(L) = \bigcap_{m} Bs(|mL|)_{red}$ (not invariant on numerical class)

Augmented base locus: $\mathbf{B}_{+}(L) = \bigcap_{L=A+E} \operatorname{Supp}(E).$

 $\mathbf{B}_+(L)$ depends only on numerical class of L.

Theorem (ELMNP)

• If
$$V \not\subseteq \mathbf{B}_+(L)$$
, then $\operatorname{vol}_{X|V}(L) > 0$.

- 2 $\operatorname{vol}_{X|V}(L)$ depends only on the numerical equivalence class of L.
- B₊(L) is the union of all positive dimensional subvarieties V such that vol_{X|V}(L) = 0.

Assume that $V \not\subseteq \mathbf{B}(L)$. Let $\mu_m : X_m \to X$ be a resolution of the base ideal $\mathfrak{b}_m = \mathbf{B}(|mL|)$. We have decomposition:

$$\mu_m^*|mL| = |M_m| + E_m.$$

Let \tilde{V}_m be the strict transform of V. The asymptotic intersection number of L and V:

$$\|L^r \cdot V\| := \limsup_{m \to +\infty} \frac{M_m^r \cdot V_m}{m^r}.$$

Theorem (Generalized Fujita approximation theorem, ELMNP)

If $V \not\subseteq \mathbf{B}_+(L)$, then

$$\operatorname{vol}_{X|V}(L) = \|L' \cdot V\|.$$

Restricted volume as derivative of volumes, after Boucksom-Favre-Jonsson

Theorem (Positive intersection product, Boucksom-Favre-Jonsson)

 \forall big class ξ , $\exists \langle \xi^{d-1} \rangle \in N^1(X)^*$ satisfying: for any $\gamma \in N^1(X)$,

$$\left. \frac{d}{dt} \right|_{t=0} \operatorname{vol}(\xi + t\gamma) = d\langle \xi^{d-1} \rangle \cdot \gamma$$

Theorem (BFJ)

If V is a prime divisor, then
$$\operatorname{vol}_{X|V}(L) = \langle L^{d-1} \rangle \cdot V = \|L^{r-1} \cdot V\|.$$

 $\forall \text{ big } \xi \in N^1(X) \text{ and } 1 \leq p \leq d$, BFJ defined a positive intersection product (where $\mathfrak{X} = \lim_{\pi} X_{\pi}$ (ranges over blowups $\pi : X_{\pi} \to X$) is the Riemann-Zariski space):

$$\langle \xi^{p} \rangle = \sup \{ \beta^{p}; \beta \in CN^{1}(\mathfrak{X}) \text{ nef and } \beta \leq \xi \} \in N^{p}(\mathfrak{X}).$$

Example: $\langle \xi^d \rangle \in N^d(\mathfrak{X}) \cong \mathbb{R}$ is the volume; $\langle \xi \rangle \in N^1(\mathfrak{X})$ is the collection of positive part of the divisorial Zariski decompositions of $\pi^* \xi$ (Nakayama, Boucksom) $\{P(\pi^* \xi)\}_{\pi}$

Example: Let V be a prime divisor. If $\mu_m : X_m \to X$ is the (resolution of the) normalized blowup of $\mathfrak{b}(|mL|)$, then

$$\langle L^{d-1} \rangle \cdot V = \lim_{m \to +\infty} (L_m^{d-1}) \cdot \mu_m^* V = \sup_{\mu^* L = A + E} A^d \cdot \mu^* V.$$

• If *L* is ample, then by Hirzebruch-Riemann-Roch formula:

$$h^{0}(mL) = L^{d} \frac{m^{d}}{d!} + \frac{1}{2} K_{X} \cdot L^{d-1} \frac{m^{d-1}}{(d-1)!} + O(m^{d-2}).$$

This is still true if *L* is big and nef by Fujita's vanishing theorem.

• In general if *L* is big, we only have $h^0(mL) = \operatorname{vol}(L) \frac{m^d}{d!} + O(m^{d-1})$. Cutkosky-Srinivas constructed a 3-fold example such that $h^0(mL)$ is a polynomial of degree 3 in $[m(2 - \frac{\sqrt{3}}{3})]$.

• If *L* admits a rational Zariski decomposition L = P + N, then $h^0(mL) = h^0(\lfloor mP \rfloor)$ is polynomial with 1st coefficient given by $K_X \cdot P^d$.

Definition

For any big line bundle L, define $\mathfrak{r}_1(X,L) := \mathfrak{r}_1(X,L) = \langle \mathcal{L}^{d-1} \rangle \cdot K_X$.

Lemma

If $\mu : Y \to X$ is any birational morphism, we have $\mathfrak{r}_1(X, L) = \mathfrak{r}_1(Y, \mu^*L)$.

I would like to propose the following conjecture

Conjecture

For any big line bundle L over a (smooth) projective variety, there exists a sequence of birational morphism $\mu_m : X_m \to X$ and a decomposition $\mu^* L = L_m + E_m$ with L_m ample and E_m effective such that

$$\lim_{m\to+\infty} L_m^d = \operatorname{vol}(L), \quad \text{ and } \quad \lim_{m\to+\infty} \mathfrak{r}_1(L_m) = \mathfrak{r}_1(L).$$

Lemma

If L admits a birational Zariski decomposition, i.e. if there exists a birational morphism $\mu : Y \to X$ such that μ^*L admits a Zariski decomposition, then the above conjecture is true. In particular, if X is toric (or more generally spherical variety), then the conjecture is true.

• Nakayama: there are examples of big line bundles which do not have birational Zariski decomposition.

Definition

A test configuration of (X, L) is the following data:

- A flat family of projective varieties $\pi : \mathcal{X} \to \mathbb{C}$ with a \mathbb{C}^* -action such that π is \mathbb{C}^* -equivariant.
- A semiample \mathbb{Q} -line bundle \mathcal{L} such that \mathbb{C}^* lifts to act on \mathcal{L} .
- There is a \mathbb{C}^* -equivariant isomorphism $\mathcal{X} \times_{\mathbb{C}} \mathbb{C}^* \cong X \times \mathbb{C}^*$.

Equivalent data:

- $m \in \mathbb{N}$ and an embedding $X \to \mathbb{P}(H^0(X, mL)^*) \cong \mathbb{P}(\mathbb{C}^{N_m 1})$.
- A one parameter \mathbb{C}^* -subgroup $\exp(s\eta) \in PGL(N_m, \mathbb{C})$
- Limit in the Hilbert scheme: $[\mathcal{X}_0] = \lim_{s \to +\infty} [X].$
- $(\mathcal{X},\mathcal{L}) = (X \times \mathbb{C}^* \cup \mathcal{X}_0, m^{-1}H_{\mathbb{P}^{N_m-1}}) \subset \mathbb{P}^{N_m-1} \times \mathbb{C}$

Set $(\bar{\mathcal{X}}, \bar{\mathcal{L}}) = (\mathcal{X}, \mathcal{L}) \cup (\mathcal{X}, \mathcal{L}) \times \{\infty\}$: the natural compactification. • \mathcal{X} is dominating if there is a \mathbb{C}^* -equivariant birational morphism $\rho : \mathcal{X} \to \mathcal{X} \times \mathbb{C}$. By resolution of singularities, we can always achieve this. **Definition**: For any test configuration $(\mathcal{X}, \mathcal{L})$, define:

$$\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \mathbf{K}^{\mathrm{log}}_{\bar{\mathcal{X}}/\mathbb{P}^1} \cdot \bar{\mathcal{L}}^{\cdot n} + \frac{\underline{\mathsf{S}}}{n+1} \bar{\mathcal{L}}^{\cdot n+1}$$

where $\mathcal{K}^{\log}_{\tilde{\mathcal{X}}/\mathbb{P}^1} = \mathcal{K}_{\mathcal{X}} + (\mathcal{X}_0)_{\mathrm{red}} - \pi^* (\mathcal{K}_{\mathbb{P}^1} + \{0\}), \ \underline{S} = \frac{nc_1(\mathcal{X}) \cdot L^{-n-1}}{L^{\cdot n}}.$

• Base change $(\mathcal{X}', \mathcal{L}') := (\mathcal{X}, \mathcal{L}) \times_{\mathbb{C}, t \mapsto t^b} \mathbb{C}$ with reduced central fibre s.t.

$$\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \frac{1}{b}\mathbf{M}^{\mathrm{NA}}(\mathcal{X}',\mathcal{L}') = \frac{1}{b}\left(K_{\bar{\mathcal{X}'}/\mathbb{P}^1} \cdot \bar{\mathcal{L}'}^{\cdot n} + \frac{\underline{S}}{n+1}\bar{\mathcal{L}'}^{\cdot n+1}\right).$$

• Translational invariance:

$$\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}+c\mathcal{X}_0).$$

• If \mathcal{X}_0 is smooth and \mathcal{L} is relative ample, \mathbf{M}^{NA} reduces to the Futaki invariant $\mathrm{Fut}(\eta)$ of central fibre (an obstruction to the existence of constant scalar curvature Kähler (cscK) metrics).

Non-Archimedean ${\bf J}$ functional of a test configuration:

$$\mathsf{J}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \bar{\mathcal{L}} \cdot L_{\mathbb{P}^1}^{n+1} - \frac{1}{n+1} \bar{\mathcal{L}}^{\cdot n+1} > 0 \quad \text{ if } (\mathcal{X},\mathcal{L}) \text{ non-trivial}$$

Definition

(X, L) is uniformly K-stable if $\exists \gamma > 0$ s.t. for any test configuration $(\mathcal{X}, \mathcal{L})$,

 $\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) \geq \gamma \cdot \mathbf{J}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}).$

Conjecture (Uniform version of Yau-Tian-Donaldson (YTD) conjecture)

Assume $Aut(X, L)_0$ is discrete. There exists a constant scalar curvature Kähler (cscK) metrics in $c_1(L)$ if and only if (X, L) is uniformly K-stable.

There is a version when $Aut(X, L)_0$ is not discrete.

• The direction: $cscK \implies$ uniform K-stability is known.

• YTD conjecture is known to hold when X is Fano and $L = -K_X$, even for all singular Fano varieties (Tian, Berman, Chen-Donaldson-Sun, Berman-Boucksom-Jonsson, L.-Tian-Wang, Hisamoto, L., ...).

• K-stability for Fano varieties is an active subject in algebraic geometry...

A model of (X, L) is the same data as a test configuration except that we don't require \mathcal{L} to be semiample.

For any model $(\mathcal{X}, \mathcal{L})$, choose $c \gg 1$ such that $\overline{\mathcal{L}}_c = \overline{\mathcal{L}} + cX_0$ is a big line bundle over $\overline{\mathcal{X}}$. Define non-Archimedean functionals (independent of $c \gg 1$):

$$egin{array}{rcl} {f M}^{
m NA}({f X},{\cal L})&=&\langlear{{\cal L}}_c^n
angle\cdot{\cal K}_{ar{{\cal X}}/{\mathbb P}^1}^{
m log}+rac{{f S}}{n+1}\langlear{{\cal L}}_c^{n+1}
angle\ {f J}^{
m NA}({f X},{\cal L})&=&\langlear{{\cal L}}_c
angle\cdot{\cal L}_{\mathbb P}^n-rac{1}{n+1}\langlear{{\cal L}}_c^{n+1}
angle. \end{array}$$

Theorem (L. '20, based on many people's works)

If (X, L) is uniformly K-stable for all models, i.e. $\exists \gamma > 0$ such that $\mathbf{M}^{NA}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot \mathbf{J}^{NA}(\mathcal{X}, \mathcal{L})$ for all models, then (X, L) admits a cscK metric.

If Conjecture 1 is true, then we can remove the words "for all models" and get YTD conjecture 2, because we can then find a sequence of test configurations $(\mathcal{X}_m, \mathcal{L}_m)$ such that (up to base change):

$$\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \lim_{m \to +\infty} \mathbf{M}^{\mathrm{NA}}(\mathcal{X}_m,\mathcal{L}_m), \quad \mathbf{J}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) = \lim_{m \to +\infty} \mathbf{J}^{\mathrm{NA}}(\mathcal{X}_m,\mathcal{L}_m).$$

- (X^{NA}, L^{NA}) : (Berkovich) analytification w.r.t. to the trivially valued field \mathbb{C} .
- Points of X^{NA} : real valuations on functional fields of subvarieties.
- $X^{\text{div}}_{\mathbb{Q}}$: set of divisorial valuations on $\mathbb{C}(X)$, dense in X^{NA} .
- smooth PSH metrics on $L^{NA} \longleftrightarrow$ (equiv. classes of) test configurations They are represented by relative (non-Archimedean) potential (G(v) is the Gauss extension $X_{\mathbb{Q}}^{\operatorname{div}} \to (X \times \mathbb{C})_{\mathbb{Q}}^{\operatorname{div}}$)

$$(\phi_{\mathcal{L}} - \phi_{\mathrm{triv}})(\mathbf{v}) = G(\mathbf{v})(\mathcal{L} - \rho^* L_{\mathbb{C}}).$$

• non-Archimedean Monge-Ampere measure (by Chambert-Loir): assume $\mathcal{X}_0 = \sum_i b_i E_i$, $x_i = b_i^{-1} r(\operatorname{ord}_{E_i})$ where r is the restriction of valuations via embedding $\mathbb{C}(X) \to \mathbb{C}(X \times \mathbb{C})$.

$$\mathrm{MA}^{\mathrm{NA}}(\phi_{\mathcal{L}}) = \sum_{i} b_{i} (\mathcal{L}^{n} \cdot E_{i}) \delta_{x_{i}}.$$

• Mixed Monge-Ampere measure for several line bundles defined similarly.

• $M^{\rm NA}$ has a decomposition: for any test configuration $(\mathcal{X}, \mathcal{L})$

$$\mathbf{M}^{\mathrm{NA}}(\phi_{\mathcal{L}}) = \mathcal{K}_{ar{\mathcal{K}}/X_{\mathbb{P}^1}} \cdot ar{\mathcal{L}}^n +
ho^* \mathcal{K}_X \cdot ar{\mathcal{L}}^n + rac{S}{n+1} ar{\mathcal{L}}^{n+1}.$$

non-Archimedean entropy

$$\begin{split} \mathcal{K}_{\bar{\mathcal{X}}/X_{\mathbb{P}^{1}}}^{\log} \cdot \bar{\mathcal{L}}^{n} &= \sum_{i} (A_{X_{\mathbb{C}}}(E_{i}) - 1) E_{i} \cdot \bar{\mathcal{L}}^{n} = \sum_{i} A_{X}(b_{i}^{-1}r(E_{i})) b_{i}(\mathcal{L}^{n} \cdot E_{i}) \\ &= \int_{X^{\mathrm{NA}}} A_{X}(x) \mathrm{MA}^{\mathrm{NA}}(\phi) \end{split}$$

 $A_{X \times \mathbb{C}}(E_i) = \operatorname{ord}_{E_i}(K_{\mathcal{X}/X_{\mathbb{C}}}) + 1$ is the log discrepancy of E_i , similar for $A_X(\cdot)$.

• Non-Archimedean Monge-Ampère energy:

$$\begin{split} \bar{\mathcal{L}}^{n+1} &= \sum_{i=0}^{n+1} (\bar{\mathcal{L}}^{k+1} \cdot L_{\mathbb{P}^1}^{n-k} - \bar{\mathcal{L}}^k \cdot L_{\mathbb{P}^1}^{n-k+1}) = \sum_{0}^{n+1} (\bar{\mathcal{L}} - L_{\mathbb{P}^1}) \cdot \bar{\mathcal{L}}^k \cdot L_{\mathbb{P}^1}^{n-k} \\ &= \sum_{k=0}^{n+1} \int_{X^{\mathrm{NA}}} (\phi_{\mathcal{L}} - \phi_{\mathrm{triv}}) \mathrm{MA}^{\mathrm{NA}} (\phi_{\mathcal{L}}^{[k]}, \phi_{\mathrm{triv}}^{[n-k]}) = (n+1) \mathsf{E}^{\mathrm{NA}} (\mathcal{L}). \end{split}$$

Extension to models

Boucksom-Favre-Jonsson defined Monge-Ampère measure for any continuous PSH metric, which is a non-Archimedean analogue of Bedford-Taylor's theory in classical pluripotential theory. They also solved non-Archimedean Monge-Ampère equations, as a non-Archimedean analogue of Calabi-Yau's theorem.

• models \implies continuous PSH metrics on \mathcal{L}^{NA} : $\mu : \mathcal{X}_m \to \mathcal{X}$ blowup of $\mathfrak{b}(|m\mathcal{L}|)$ with exceptional divisor E_m , $\mathcal{L}_m = \mu_m^* \mathcal{L} - \frac{1}{m} E_m$

$$\phi_{\mathcal{L}} = \lim_{m \to +\infty} \phi_{\mathcal{L}_m}.$$

• Monge-Ampère measure for big models (L. '20):

$$\mathrm{MA}^{\mathrm{NA}}(\phi_{\mathcal{L}_{c}}) = \sum_{i} b_{i} (\langle \mathcal{L}_{c}^{n} \rangle \cdot E_{i}) \delta_{x_{i}}.$$

• Non-Archimedean Mabuchi functional of models:

$$\mathbf{M}^{\mathrm{NA}}(\phi_{\mathcal{L}}) = \int_{X^{\mathrm{NA}}} A_X(x) \mathrm{MA}^{\mathrm{NA}}(\phi) + (\mathbf{E}^{K_X})^{\mathrm{NA}}(\phi) + \underline{S} \mathbf{E}^{\mathrm{NA}}(\phi).$$

$$= \langle \bar{\mathcal{L}}_c^n \rangle \cdot \mathcal{K}_{\bar{\mathcal{X}}/\mathbb{P}^1}^{\log} + \frac{\underline{S}}{n+1} \langle \bar{\mathcal{L}}_c^{n+1} \rangle$$

$$= \mathfrak{r}_1(\bar{\mathcal{L}}_c) + \frac{\underline{S}}{n+1} \mathrm{vol}(\bar{\mathcal{L}}_c) + 2L^n.$$

Archimedean Mabuchi functional: e^{-arphi} a PSH metric on L o X

$$\mathbf{M}(\varphi) = \int_{X} \log \frac{(\mathrm{dd}^{c}\varphi)^{n}}{\omega_{0}^{n}} \omega_{0}^{n} + \mathbf{E}^{\operatorname{Ric}(\omega_{0})}(\varphi) + \underline{S}\mathbf{E}(\varphi).$$

• For any $\phi = \phi_{\mathcal{L}}$ there exists a unique geodesic rays $\Phi = \{\varphi(s)\}$ in the space of positively curved Hermitian metrics such that $\Phi_{\mathrm{NA}} = \phi$ where $(\Phi_{\mathrm{NA}} - \phi_{\mathrm{triv}})(v) = G(v)(\Phi)$ is the Lelong number with respect to any divisorial valuation v.

Conjecture

For any (continuous) metric $\phi = \phi_{\mathcal{L}}$ associated to models, we have:

$$\lim_{s \to +\infty} \frac{\mathsf{M}(\varphi(s))}{s} = \mathsf{M}^{\mathrm{NA}}(\phi).$$

This is true for $(\mathbf{E}^{K_X})^{NA}$ and \mathbf{E}^{NA} . It's known that LHS \geq RHS (L.). The conjecture for the entropy part is known for test configurations. The conjecture is again implied by Conjecture 1!

Thanks for your attention!