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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure

Classification of closed Riemann surfaces :

Topology Metric Curvature

S2 = CP1 spherical 1

T2 = C/Λ flat 0

Σg = B1/π1(Σg ) hyperbolic -1

Notation: Σg closed oriented surface of genus g ≥ 2.
B1 = {z ∈ C; |z | < 1}.
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Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.

g = 1: Moduli space of elliptic curves ∼= C by the j-invariant.
g ≥ 2: Teichmüller spaces:

Tg = {hyperbolic structures on Σg}.

Isothermal Coordinate Theorem and Uniformization Theorem:

Tg ∼= {conformal or complex structures on Σg}.

Tg is a complex manifold of complex dimension 3g − 3.
Tangent space: H1

J (Σg ,TΣg ) = H0
J (Σg ,K

2
Σg

).

Moduli space: Mg = Tg/MCG(Σg ).
Mg is a complex orbifold.

Case of Riemann surfaces



Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
g = 1: Moduli space of elliptic curves ∼= C by the j-invariant.

g ≥ 2: Teichmüller spaces:

Tg = {hyperbolic structures on Σg}.

Isothermal Coordinate Theorem and Uniformization Theorem:

Tg ∼= {conformal or complex structures on Σg}.

Tg is a complex manifold of complex dimension 3g − 3.
Tangent space: H1

J (Σg ,TΣg ) = H0
J (Σg ,K

2
Σg

).

Moduli space: Mg = Tg/MCG(Σg ).
Mg is a complex orbifold.

Case of Riemann surfaces



Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
g = 1: Moduli space of elliptic curves ∼= C by the j-invariant.
g ≥ 2: Teichmüller spaces:

Tg = {hyperbolic structures on Σg}.

Isothermal Coordinate Theorem and Uniformization Theorem:

Tg ∼= {conformal or complex structures on Σg}.

Tg is a complex manifold of complex dimension 3g − 3.
Tangent space: H1

J (Σg ,TΣg ) = H0
J (Σg ,K

2
Σg

).

Moduli space: Mg = Tg/MCG(Σg ).
Mg is a complex orbifold.

Case of Riemann surfaces



Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
g = 1: Moduli space of elliptic curves ∼= C by the j-invariant.
g ≥ 2: Teichmüller spaces:

Tg = {hyperbolic structures on Σg}.

Isothermal Coordinate Theorem and Uniformization Theorem:

Tg ∼= {conformal or complex structures on Σg}.

Tg is a complex manifold of complex dimension 3g − 3.
Tangent space: H1

J (Σg ,TΣg ) = H0
J (Σg ,K

2
Σg

).

Moduli space: Mg = Tg/MCG(Σg ).
Mg is a complex orbifold.

Case of Riemann surfaces



Weil-Petersson metric: g ≥ 2

Weil-Petersson metric ωWP: For any hyperbolic metric h on Σg ,

ωWP(v) =

∫
Σg

|v |2h dvolh, v ∈ H1
J(Σg ,TΣg ; h).

ωWP is a Kähler metric: dωWP = 0.

The holomorphic sectional curvature of ωWP is negative.
Mg is Kobayashi hyperbolic.

An hermitian line bundle (LWP, hWP) over Mg with Chern
curvature −

√
−1∂∂̄ log hWP = ωWP.
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Deligne-Mumford compactifications Mg , g ≥ 2

Mg\Mg parametrizes stable curves.
Constructed via relative MMP over a 1-dimensional base.

Stable curves can be obtained as Gromov-Hausdorff limits

ωWP can be extended to Mg .

The coarse moduli space Mg is a projective
(Knudsen-Mumford)

Case of Riemann surfaces



Higher dimensional Kähler manifolds

X : complex manifold (transition functions are holomorphic);
J: TX → TX complex structure;
g : Riemannian metric s.t. g(J·, J·) = g(·, ·).

Kähler form: ω = g(·, J·). Using holomorphic coordinates {z i}:

ω =
√
−1

n∑
i ,j=1

gi j̄dz
i ∧ dz̄ j , (gi j̄) > 0.

Kähler condition: dω = 0. Consequences:

ω determines the Kähler class [ω] ∈ H1,1(X ,R) ⊂ H2(X ,R).

Locally, ω =
√
−1∂∂̄ψ =

√
−1
∑

i ,j
∂2ψ
∂z i∂z̄ j

dz i ∧ dz̄ j .

Kähler-Einstein metrics Three classes of Kähler-Einstein manifolds
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Basic examples and curvature

Notation: Bn = {z ∈ Cn; |z | < 1}.
Pn = (Cn+1 − {0})/C∗ = Cn ∪ Pn−1.

Bn ωBn = −
√
−1∂∂̄ log(1− |z |2) Bn/Γ; Γ < PSU(n, 1)

Cn ωCn =
√
−1∂∂̄|z |2 Cn/Λ; Λ ∼= Z2n

Pn ωFS =
√
−1∂∂̄ log(1 + |z |2) Pn

Kähler manifolds with constant holomorphic sectional curvatures:

Ri j̄k l̄ = µ(gi j̄gkl̄ + gi l̄gkj̄), µ = −1, 0, 1.

Curvature tensor: Ri j̄k l̄ = − ∂2gkl̄
∂zi∂z̄j

+ g r q̄ ∂gkq̄
∂zi

∂gr l̄
∂z̄j

.
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Ricci curvature

Ricci curvature: Ri j̄ = gkl̄Ri l̄k j̄ = gkl̄Ri j̄k l̄ .

Compact expression: Ri j̄ = − ∂2

∂z i∂z̄ j
log det(gkl̄).

Ricci form is a (1,1)-form:

Ric(ω) =
√
−1

n∑
i ,j=1

Ri j̄dz
i ∧ dz̄ j =: −

√
−1∂∂̄ logωn

Ric(ω) represents the first Chern class of the complex manifold:

Ric(ω) ∈ 2πc1(X ) ∈ H1,1(X ,Z).
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Kähler-Einstein metrics

Normalize the Einstein constant to µ = −1, 0, or 1. KE equation:

Ric(ωϕ) = µ · ωϕ

m

(ω +
√
−1∂∂̄ϕ)n = ehω−µϕωn(

hω satisfies: Ric(ω)− µω =
√
−1∂∂̄hω, and

∫
X
ehωωn =

∫
X
ωn.

)

µ = −1 Solvable (Aubin, Yau) c1(X ) < 0 Canonically polarized

µ = 0 Solvable (Yau) c1(X ) = 0 Calabi-Yau

µ = 1 in general not solvable c1(X ) > 0 Fano
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Building blocks of projective manifolds

Minimal Model Program (some parts are still conjectural):

X = X0 99K X1 99K · · · 99K Xk 99K Y

1 κ(X ) = −∞. Xk → Y is a Mori fiber space with fiber being
Fano variety of Picard number 1;

2 0 ≤ κ(X ) < n. Xk → Y is a Calabi-Yau fiber space;

3 κ(X ) = n. Y = X can is a canonically polarized variety.

Kähler-Einstein metrics Three classes of Kähler-Einstein manifolds



Fano manifolds

X Fano: c1(X ) > 0⇐⇒ ∃ Kähler metric ω with Ric(ω) > 0.

1 dimC = 1: P1.

2 dimC = 2: P2, P1 × P1, P2]kP2 for 1 ≤ k ≤ 8.

3 dimC = 3: 105 deformation families

4 Hypersurface in Pn+1 of degree ≤ n + 1;
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Obstructions to KE on Fano manifolds

First obstruction: KE =⇒ Aut(X ) is reductive (Matsushima).
Example: Rule out P2 blown-up one or two points:

Aut(P2]P2) ∼=
{( ∗ ∗ ∗

0 ∗ ∗
0 ∗ ∗

)
∈ PGL(3,C)

}
.

Aut(P2]2P2) ∼=
{( ∗ 0 ∗

0 ∗ ∗
0 0 ∗

)
∈ PGL(3,C)

}
.

In dimCX = 2, this is the only obstruction (Tian ’90).

In higher dimensions, there are other obstructions, using Futaki
invariant, energy functionals and K-stability.

Conjecture (Yau-Tian-Donaldson)

Fano manifold X has KE ⇐⇒ (X ,−KX ) is K-polystable.

“ =⇒ ”: Proved by Tian and Berman;
“⇐= ”: Completed by Tian, Chen-Donaldson-Sun independently.

Kähler-Einstein metrics Kähler-Einstein on Fano manifolds
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Futaki invariant

v : any holomorphic vector field. Recall: Ric(ω)− ω =
√
−1∂∂̄hω.

Futaki invariant: FutX (v) =

∫
X
v(hω)ωn. (FutX : h→ C)

Theorem (Futaki)

FutX (v) is independent of ω ∈ 2πc1(X ).

X Kähler-Einstein =⇒ FutX ≡ 0.

Interpretation: (∂̄ −
√
−1iv )(ω + divΩ(v)) = 0 (Ω = ehωωn)

FutX (v) =
1

n + 1

∫
X

(ω + divΩv)n+1.

Equivariant cohomology (⇒ localization formula)

Kähler-Einstein metrics Kähler-Einstein on Fano manifolds



Special degeneration

Definition (Special Degeneration)

A C∗-equivariant degeneration of Fano manifolds over C:

(X × C∗,−KX ) �
� //

��

(X ,−KX/C)

��

(X0,−KX0)? _oo

��
C∗ // C {0}oo

such that X0 is an irreducible normal Fano variety with
Kawamata-log-terminal (klt) singularities.

C∗-action ; holomorphic vector field v on X0. For special
degenerations, define:

Fut(X ,−KX/C) = −FutX0(v)

Kähler-Einstein metrics Kähler-Einstein on Fano manifolds



K-stability

Definition (K-polystability, Tian ’97)

Fut(X ,K−1
X ) ≥ 0 for any specicial degeneration X of X , with equality

holds iff X ∼= X × C.

Imitating Hilbert-Mumford numerical criterion in GIT:

Slope at infinity ←→ Fut(X ,L).

Stability from functionals (variational point of view):

(a) Stable (b) Semistable (c) Unstable

Generalization by Donaldson using general test configuration.
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Canonically polarized case: KSBA compactification

Generalization of Deligne-Mumford compactification developped by
Kollár-Shepherd-Barron-Alexeev.
Four aspects of the construction:

1 Properness: stable varieties (semi-log-canonical singularities)

2 Boundedness: Hacon-McKernan-Xu

3 Separatedness: relatively easy

4 Local openness: Kollár

Extra properties:

Projectivity: Kollár, Fujino.

By Berman-Huenancia and Odaka: Canonically polarized case:
Kähler-Einstein = Stable varieties = K-stable

Expect: all stable varieties can be obtained from GH limits.

Proper Moduli spaces Comparison



Fano case: Properness

(X ,L)→ (C , 0): flat family of polarized projective varieties.
(X ◦,L◦) ∼= (X ◦,K−1

X ◦/C◦)→ C ◦: family of smooth Fano manifolds.
The special fiber X0 can be very bad.

Theorem (L.-Xu, ’12)

There exists a Q-Fano filling after base change:

X s

��

//___ X ×C C ′

��

// X

��

X ◦? _oo

��
C ′ C ′

φ(=zm) // C C ◦? _oo

Moreover, CM(X s/C ′,−KX s ) ≤ deg(φ) · CM(X/C ,L).

Use Minimal Model Program to simplify the family

Keep track of the CM-degree (which generalizes Futaki invariant)
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Fano case: Separatedness

Compare 2 flat families of Q-Fano with isomorphic generic fibres:

X

��

''n
i d _ Z U

P
X ◦ = X ′◦? _oo

��

� � // X ′

��
C C ◦ = C ◦? _oo � � // C

Question of separatednes: X ∼= X ′ ?

Answer: In general fails:

Smooth dimC = 3: Mukai-Umemura’s example.

Singular dimC = 2: infinitely many singular del-Pezzo
degenerations of P2 (Hacking-Prokhorov).
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Issue in the construction of compact moduli in the Fano
case

1 Boundedness fails without restrictions on the singularities

2 Separatedness fails

3 Continuous automorphism group

4 Tian’s conjecture: the moduli space of Kähler-Einstein
manifolds is quasi-projective

Surprisingly, by adding “Kähler-Einstein” condition, these issues
can be solved simultaneously.

Proper Moduli spaces Comparison



Algebraic structure on Gromov-Hausdorff limit

{(Xi , ωi )}: Fano Kähler manifolds. Ric(ωi ) = ωi . Then:

Diam(Xi , ωi ) ≤ D(n) =
√

2n − 1 · π (Myers Theorem)

Vol(Br (x))/Vol(Br (0))↘ as r ↗ (Bishop-Gromov)

Gromov compactness =⇒ (Xi , ωi )
GH−→ (X∞, ω∞).

Proposition (Tian, also L. ’12)

Partial C 0-estimate =⇒ X∞ has an algebraic structure.

Proof: Skoda-Siu’s theorem on finite generation.

Conjecture (Tian’s partial C 0-estimate Conjecture)

There exists m = m(n) and δ = δ(n) > 0 such that ρm ≥ δ.

{si}Nm
i=1: O.N. basis of H0(X ,K−mX ) under the L2-inner product.

Bergman kernel: ρm(z) =
Nm∑
i=1

|si |2h⊗m(z)

Proper Moduli spaces Gromov-Hausdorff limit
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Properness of “KE Fano” under Gromov-Hausdorff limits

Theorem (Donaldson-Sun, Tian)

Tian’s partial C 0-estimate conjecture holds. As a consequence,
X∞ is a normal Fano variety.

ωn
t = e−ui Ωi , Ωi =

(∑Nm
j=1 |s

(i)
j |2

)−1/m

⇓ ⇓

ωn
∞ = e−u∞Ω∞, Ω∞ =

(∑Nm
j=1 |s

(∞)
j |2

)−1/m

e−ui = V
(ρ

(i)
m )1/m∫

Xi
(ρ

(i)
m )1/mΩi

=⇒ e−u∞ = V
(ρ

(∞)
m )1/m∫

X∞
(ρ

(∞)
m )1/mΩ∞

.

∫
X∞

Ω∞ =

∫
X∞

eu∞ωn
∞ < +∞ =⇒ X∞ has Klt singularities.

Proper Moduli spaces Gromov-Hausdorff limit
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Tian’s partial C 0-estimate conjecture holds. As a consequence,
X∞ is a normal Fano variety.

ωn
t = e−ui Ωi , Ωi =

(∑Nm
j=1 |s

(i)
j |2

)−1/m

⇓ ⇓

ωn
∞ = e−u∞Ω∞, Ω∞ =

(∑Nm
j=1 |s

(∞)
j |2

)−1/m

e−ui = V
(ρ

(i)
m )1/m∫

Xi
(ρ

(i)
m )1/mΩi

=⇒ e−u∞ = V
(ρ

(∞)
m )1/m∫

X∞
(ρ

(∞)
m )1/mΩ∞

.

∫
X∞

Ω∞ =

∫
X∞

eu∞ωn
∞ < +∞ =⇒ X∞ has Klt singularities.
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Gromov-Hausdorff limits of pairs

Conical Kähler-Einstein metric:

Ric(ω(β)) = βω + 2π(1− β){D}.

Theorem (Tian, Chen-Donaldson-Sun)

Xi : n-dim’l Fano manifold; Di ∈ 1
m | −mKXi

| smooth divisors;
ωi (βi ): conical KE on (Xi , (1− βi )Di ). If βi → β∞ ∈ (0, 1), then,
by passing to a subsequence,

1 (Xi , (1− βi )Di ;ωi (βi ))
GH−→ (Y , (1− β∞)E ;ω(β∞))

2 There exist embeddings Ti : Xi → PN and T∞ : Y → PN ,
such that (Ti (Xi ),Ti (Di ))→ (T∞(Y ),T∞(E )) as projective
varieties.

Proper Moduli spaces Gromov-Hausdorff limit



Separatedness and local openness

Theorem (L.-Wang-Xu, ’14)

X → (C , 0) a flat family over a smooth pointed curve, satisfying

1 −KX/C is Q-Cartier and relatively ample;

2 for any t ∈ C ◦ := C\{0}, Xt is smooth and X0 is klt;

3 X0 is K-polystable.

Then

(i) ∃ a Zariski open neighborhood U of 0 ∈ C, s.t. Xt is K-
semistable (resp. K-stable if Aut(X0) is discrete) for all t ∈ U.

(ii) For any flat X ′ → C ′ satisfying (1)-(3) as above, and
X ′ ×C C ◦ ∼= X ×C C ◦, we have X ′0 ∼= X0;

(iii) X0 admits a weak Kähler-Einstein metric. If Xt is
K-polystable, then X0 is the Gromov-Hausdorff limit Xt

endowed with the Kähler-Einstein metric for any t → 0.

Related works by Spotti-Sun-Yao.
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Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kähler-Einstein Fano varieties.

Nice algebraic structure of M←→ Moduli problem:

Properness/Boundedness: Donaldson-Sun, Tian

Local Openness: L.-Wang-Xu (’14)

Separatedness: L.-Wang-Xu (’14)

Theorem (L.-Wang-Xu, ’14)

∃ proper algebraic moduli space M of K-polystable, smoothable,
Fano varieties.

X (weak) KE ⇒ Aut(X ) is reductive. (CDS, BBEGZ)

Locally K-polystable slice = GIT moduli

Glue: M =
⋃I

i=1 (Uzi � Gzi ) using languages of algebraic stacks

Related work by Odaka
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On projectivity of moduli spaces

M−: moduli space of canonically polarized manifolds
M−: Kollár-Shepherd-Barron-Alexeev compactification

Viehweg: M− is quasi-projective (nef KX is enough)

Kollar, Fujino: M− is projective

Other polarizations:

Cons: Kollár: moduli space of polarized uniruled manifolds in
general is not quasi-projective

Pros: Fujiki-Schumacher: compact subarieties of the moduli
space of Kähler-Einstein manifolds are projective.

Constraint: Use of canonical metrics ←→ Weil-Petersson geometry

Theorem (L.-Wang-Xu, ’15)

The moduli space M parametrizing smooth Kähler-Einstein Fano
manifolds is quasi-projective.
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Proof: Continuity method

Continuity method: use the log version.
Define the set of parameters:

B(X ,D) = {β ∈ (0,B] |(Xt , (1− β)Dt) has conical KE ωt(β)

and (Xt ,Dt ;ωt(β))
GH−→ (X0,D0;ω0(β))

}
.

Need to prove B(X ,D) satisfies
1: Non-empty; 2: Open; 3: Closed.
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Proof: Non-emptiness of B(X ,D)

Lemma

There exists ε = ε(n) > 0 such that if

1 (X , (1− ε)D) and (X ′, (1− ε)D′) are two families of klt

log-Fano varieties with D(′) ∈ 1
m

∣∣∣−mKX (′)/C (′)

∣∣∣ irreducible;

2 (X ,D)×C C ◦ ∼= (X ′,D′)×C C ◦,

then (X ′,D′) ∼= (X ,D).

Corollary

Any klt log-Fano pair (X , (1− ε)D) with D ∈ 1
m | −mKX |

irreducible is K-stable, and hence has conical KE.

Corollary

B(X ,D) is non-empty.
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Proof: key algebraic lemma on action of reductive group

G : a reductive group acting on PN ;
z : C → PN be an arc with z(0) = z0;
O = lim

t→0
Oz(t) with Oz(t) = G · z(t).

Lemma (Key Algebraic Lemma)

Suppose the stabilizer of z0 ∈ PN is reductive. Then there is a
G-invariant Zariski open neighborhood of z0 ∈ U ⊂ PN satisfying:

O ∩ U =
⋃

Op⊂O

Op∩Oz0 6=∅

Op ∩ U,

i.e. the closure of the G-orbit of any point in O near z0 contains
g · z0 for some g ∈ G.

Proved by Luna Slice Theorem. The condition of reductivity is
needed.
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Proof: Openness of B(X ,D)

Picture by X. Wang
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Proof: Closedness of B(X ,D)

Picture by X. Wang
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Zariski openness of K-semistable points

This essentially follows from the two properties of the following
invariant:

kst(Xt ,Dt) = sup{β ∈ [0,B] |(Xt , (1− β)Dt) is K-semistable}

As a function of t ∈ C , we have

1 kst is a constructible function. This follows GIT argument
because K-stability can also be formulated as CM-stability.

2 kst is lower semi-continuous. This can be proved using similar
arguments as above (also proved by Spotti-Sun-Yao).
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Structure near K-polystable orbit

1 Smoothable K-semistable Q-Fano varieties are bounded;

2 There exists a neighborhood Uks s.t. any K-semistable
z ∈ Uks degenerates to ẑ ∈ Ukps

Theorem

∃ a Zariski open neighborhood U of Chow(X ), such that
Chow(Y ) ∈ U is GIT-polystable with respect to Aut(X ) if and
only if Y is K-polystable.

Remark: case of smooth X is due to Donaldson, Brönnle and

Székelyhidi.

Glue local GIT moduli to get global moduli by the work of
Alper and others.

Proper Moduli spaces Sketch of proofs



CM line bundle

Let (X ,−KX/C )→ C be flat family of polarized Q-Fano varieties.
CM line bundle over the base C (Tian, Fujiki-Schumacher):

LCM =
1

2n+1
det
(
π![−(K−1

X/C − KX/C )n+1]
)
, .

Knudsen-Mumford expansion:

det
(
π∗(K

−k
X/C )

)
= −LCM

kn+1

(n + 1)!
+ O(kn).

Futaki invariant as CM weight:

Fut(X ,L) = − 1

n + 1
(K−1
X̄/P1)n+1
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Weil-Petersson metric

X → C a flat family of Kähler-Einstein manifolds

ωWP(v) =

∫
X
|v |2ωωn, v ∈ H1(X ,TX ;ω).

1 ωWP = −
∫
X/C

ωn+1.

Here ω = −
√
−1∂∂̄ log{ωn

t } is a (1,1)-form on the total space
X with ω|Xt = ωt .

2 ωWP = −
√
−1∂∂̄ log hWP. Here hWP is a Quillen-type metric

on the determinant line bundle LCM.
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Hermtian metric on LCM via Deligne’s pairing

CM line bundle via Deligne pairings

LCM
∼= −〈−KX/C , · · · ,−KX/C 〉DP → C .

Monge-Ampère equations: ωn
t = e−ut Ωt , where

Ωt =

(
Nm∑
i=1

|si |2
)−1/m

, e−ut =
ρ

1/m
m∫

Xt
ρ

1/m
m Ωt

.

Change of metric formula Define: hDP := hΩte
−Ut :

Ut = −
n∑

k=0

∫
Xt

utω
k
t ∧ ω̌n−k

t , ω̌t = −
√
−1∂∂̄ log Ωt

hDP is defined even for singular Xt !
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Continuation of construction

Continuous extension of Hermtian metric hDP to locus of
singular fibers, depending on:

Lemma (Continuity Lemma)

lim
t→0

∫
Xt

Ωt =

∫
X0

Ω0.

Proof: Calculation by lifting to resolution (weak semistable
reduction) + Inversion of adjunction.

Descent of metric to the line bundle M by the functoriality of
Deligne’s pairing
Futaki invariant=0 =⇒ Aut(Xt)0 acts trivially on LCM|{t}
=⇒ hDP is invariant up to the action of Aut(Xt)0
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Quasi-Projectivity criterion

Using hDP, it’s easy to check that the assumption of the following
criterion is satisfied.

Theorem (L.-Wang-Xu, ’15)

M: a normal proper algebraic space of finite type over C;
L: a line bundle on M; M◦ ⊂ M an open subspace.
Assume: Lm · Z ≥ 0 for any m-dimensional irreducible subspace
and the strict inequality holds for any Z meeting M◦.
Then for sufficiently large power k, |Lk | induces a rational map
which is an embedding when restricted on M◦.

Proof: 1. Reduce to the case when M is projective;
2. Results of Nakamaye and Birkar:

Null locus = augmented stable base locus.
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Some open questions

Is M projective? Is the line bundle LCM ample?

What are some properties of M? Is M rationally connected?

What are the behaviors of the limiting metric structure
(X∞, d∞) near X sing

∞ ?
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Thanks for your attention!
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