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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure

Classification of closed Riemann surfaces :

Topology Metric Curvature
S? = CP! spherical 1
T2 = C/A flat 0
Y, =B!/m(Z;) hyperbolic -1

Notation: ¥, closed oriented surface of genus g > 2.
B! ={z€C;|z| < 1}.
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Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
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Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
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Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
g = 1: Moduli space of elliptic curves = C by the j-invariant.
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Tg = {hyperbolic structures on ¥, }.
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Moduli spaces of Riemann surfaces

g = 0: Moduli space={pt}.
g = 1: Moduli space of elliptic curves = C by the j-invariant.
g > 2: Teichmiiller spaces:

Tg = {hyperbolic structures on ¥, }.
Isothermal Coordinate Theorem and Uniformization Theorem:

~
Tg = {conformal or complex structures on ¥, }.

Tg is a complex manifold of complex dimension 3g — 3.
Tangent space: Hj(Tg, TE,) = H)(Tg, K3, )

Moduli space: M, = Tg/MCG(X,).
My is a complex orbifold.
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Weil-Petersson metric: g > 2

Weil-Petersson metric wywp: For any hyperbolic metric h on X,

wwp(v) = / ]v|%7 dvol,, ve Hb(zg, TXg;h).

g
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Weil-Petersson metric: g > 2

Weil-Petersson metric wywp: For any hyperbolic metric h on X,

wwp(v) = / ]v|%7 dvol,, ve Hb(zg, TXg;h).

g

@ wwp is a Kahler metric: dwwp = 0.

@ The holomorphic sectional curvature of wwp is negative.
Mg is Kobayashi hyperbolic.

@ An hermitian line bundle (Lwp, hwp) over M, with Chern
curvature —y/—1090 log hwp = wwp.

Case of Riemann surfaces



Deligne-Mumford compactifications ﬂg, g>2

o Mg\ M, parametrizes stable curves.
Constructed via relative MMP over a 1-dimensional base.

@ Stable curves can be obtained as Gromov-Hausdorff limits
o wwp can be extended to M,.

@ The coarse moduli space Wg is a projective
(Knudsen-Mumford)

Case of Riemann surfaces



Higher dimensional Kahler manifolds

X: complex manifold (transition functions are holomorphic);
J: TX — TX complex structure;

g: Riemannian metric s.t. g(J-,J-) = g(-, ).

Kihler form: w = g(-, J-). Using holomorphic coordinates {z'}:

w=V=1)_ gz ndZ, (g;)>0.

ij=1
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Three classes of Kahler-Einstein manifolds



Higher dimensional Kahler manifolds

X: complex manifold (transition functions are holomorphic);
J: TX — TX complex structure;
g: Riemannian metric s.t. g(J-,J-) = g(-, ).

Kihler form: w = g(-, J-). Using holomorphic coordinates {z'}:

n
w=V=1)_ gz ndZ, (g;)>0.
ij=1
Kahler condition: dw = 0. Consequences:

o w determines the Kahler class [w] € HY(X,R) € H?(X,R).
o Locally, w=+/—100¢ = /-1 Uzl A dF,

ij 020z
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Basic examples and curvature

Notation: B" = {z € C"; |z| < 1}.
P" = (C" — {0})/C* =C"uP" L

B" | wpn = —/—100log(1 — |z|?) | B"/T; T < PSU(n,1)

C" | wen = v/—100)|z? C"/N, A= 72n

P | wps = v/—100log(1 + |z[?) | P"

Kahler manifolds with constant holomorphic sectional curvatures:

R = 1(giz8ii + &i8k7)» m=—1,0,1.
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Basic examples and curvature

Notation: B" = {z € C"; |z| < 1}.
P" = (C" — {0})/C* =C"uP" L

B" | wpn = —/—100log(1 — |z|?) | B"/T; T < PSU(n,1)

C" | wen = v/—100)|z? C"/N, A= 72n

P | wps = v/—100log(1 + |z[?) | P"

Kahler manifolds with constant holomorphic sectional curvatures:
Rijur = (g8 + &i8x;): = —1,0,1.

P 573 08ka 081
82,‘8%‘ 0z; 8%

Curvature tensor: R 1 =

Kahler-Einstein metrics Three classes of Kahler-Einstein manifolds



Ricci curvature

Ricci curvature: R,-Jf = k'R,,kJ kI_Rika_'
82
Compact expression: R = ~ 35705 log det(g,7).
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Ricci curvature

Ricci curvature: R,-Jf = gkI_Rl-,-kj = gk’_Rijk,-.
82
Compact expression: R = ~ 35705 log det(g,7).

Ricci form is a (1,1)-form:
Ric(w) = v — Z R;; -dz' AdZ =: —/—190 logw"

ij=1

Ric(w) represents the first Chern class of the complex manifold:

Ric(w) € 2mc1(X) € HYY(X, Z).

Kahler-Einstein metrics Three classes of Kahler-Einstein manifolds



Kahler-Einstein metrics

Normalize the Einstein constant to 4 = —1,0, or 1. KE equation:

Ric(w,) = p- w,

)
(w+ V/—100p)" = ehoreyn

<hw satisfies: Ric(w) — puw = v/—180h,,, and / e = / w”.>
X X
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Kahler-Einstein metrics

Normalize the Einstein constant to 4 = —1,0, or 1. KE equation:

Ric(w,) = p- w,

)
(w+ V/—100p)" = ehoreyn

<hw satisfies: Ric(w) — puw = v/—180h,,, and / e = / w”.>
X X
u=—1 Solvable (Aubin, Yau) ¢i(X) <0 Canonically polarized

uw=0  Solvable (Yau) c1(X) =0 Calabi-Yau
w=1  in general not solvable ¢;(X) >0 Fano

Kahler-Einstein metrics Three classes of Kahler-Einstein manifolds



Building blocks of projective manifolds

Minimal Model Program (some parts are still conjectural):
X=Xg--+Xy-=» - X - Y

O k(X)= —00. Xk — Y is a Mori fiber space with fiber being
Fano variety of Picard number 1;

@ 0 < k(X) < n Xi— Y isa Calabi-Yau fiber space;

@ k(X)=n. Y = X" is a canonically polarized variety.

Kahler-Einstein metrics Three classes of Kahler-Einstein manifolds



Fano manifolds

X Fano: ci1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.
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Fano manifolds

X Fano: ci1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q@ dimc = 1: PL.
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Fano manifolds

X Fano: ci1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q@ dimc = 1: PL.
Q dim¢ = 2: P2, P! x P!, P24kP? for 1 < k < 8.
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Fano manifolds

X Fano: ci1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.

Q@ dimc = 1: PL.
Q dim¢ = 2: P2, P! x P!, P24kP? for 1 < k < 8.

© dimc = 3: 105 deformation families
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Fano manifolds

X Fano: ci1(X) > 0 <= 3 Kahler metric w with Ric(w) > 0.
Q@ dimc = 1: PL.
Q dim¢ = 2: P2, P! x P!, P24kP? for 1 < k < 8.
© dimc = 3: 105 deformation families

Q Hypersurface in P™! of degree < n+1;

Kahler-Einstein metrics Kahler-Einstein on Fano manifolds



Obstructions to KE on Fano manifolds

First obstruction: KE = Aut(X) is reductive (Matsushima).
Example: Rule out P? blown-up one or two points:

o Aut(P24P?) = {( 8 - ) e PGL(3,(C)}.
o Aut(P242P2?) = {< 8 Z : ) € PGL(3,(C)}.
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Obstructions to KE on Fano manifolds

First obstruction: KE = Aut(X) is reductive (Matsushima).
Example: Rule out P? blown-up one or two points:

o Aut(P24P?) = {( 8 - ) e PGL(3,(C)}.

o Aut(P242P2?) = {< é 2

In dimc X = 2, this is the only obstruction (Tian '90).

. ) € PGL(3,<C)}.

*

In higher dimensions, there are other obstructions, using Futaki
invariant, energy functionals and K-stability.
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Obstructions to KE on Fano manifolds

First obstruction: KE = Aut(X) is reductive (Matsushima).
Example: Rule out P? blown-up one or two points:

o Aut(P24P?) = {( 8 - ) e PGL(3,(C)}.

- * 0
o Aut(P?{2P2) {< 0 x
0 *

In dimc X = 2, this is the only obstruction (Tian '90).

In higher dimensions, there are other obstructions, using Futaki
invariant, energy functionals and K-stability.

. ) € PGL(3,<C)}.

Conjecture (Yau-Tian-Donaldson)

Fano manifold X has KE <= (X, —Kx) is K-polystable.

=—>": Proved by Tian and Berman;
<=": Completed by Tian, Chen-Donaldson-Sun independently.

Kahler-Einstein metrics

Kahler-Einstein on Fano manifolds



Futaki invariant

v: any holomorphic vector field. Recall: Ric(w) —w = /—190h,.

Futaki invariant: Futx(v) = / v(hy)w". (Futx : h — C)
X

Theorem (Futaki)

e Futx(v) is independent of w € 2wy (X).
@ X Kahler-Einstein — Futx = 0.

Interpretation: (0 — v/—1i,)(w + diva(v)) =0 (Q = ew")

1
FutX(V) = m /);(CL) + diVQV)n+1.

Equivariant cohomology (= localization formula)

Kahler-Einstein metrics Kahler-Einstein on Fano manifolds



Special degeneration

Definition (Special Degeneration)

A C*-equivariant degeneration of Fano manifolds over C:

(X x C*, _KX)C—> (Xv _KX/(C) Q(Xoa _KXO)

| | |

C* C {0}
such that Xy is an irreducible normal Fano variety with
Kawamata-log-terminal (klt) singularities.

C*-action ~» holomorphic vector field v on &. For special
degenerations, define:

Fut(X, =Ky ,c) = —Futa,(v)

Kahler-Einstein metrics Kahler-Einstein on Fano manifolds



K-stability

Definition (K-polystability, Tian '97)

Fut(X, Ky') > 0 for any specicial degeneration X of X, with equality
holds iff X =2 X x C.

Kahler-Einstein metrics Kahler-Einstein on Fano manifolds



K-stability

Definition (K-polystability, Tian '97)

Fut(X, Ky') > 0 for any specicial degeneration X of X, with equality
holds iff X =2 X x C.

Imitating Hilbert-Mumford numerical criterion in GIT:

Slope at infinity <— Fut(X, £).

Stability from functionals (variational point of view):

(d) Stable (e) Semistable (f) Unstable

Generalization by Donaldson using general test configuration.

Kahler-Einstein metrics Kahler-Einstein on Fano manifolds



Canonically polarized case: KSBA compactification

Generalization of Deligne-Mumford compactification developped by
Kollar-Shepherd-Barron-Alexeev.
Four aspects of the construction:
© Properness: stable varieties (semi-log-canonical singularities)
@ Boundedness: Hacon-McKernan-Xu
© Separatedness: relatively easy

@ Local openness: Kollar
Extra properties:
o Projectivity: Kollar, Fujino.

o By Berman-Huenancia and Odaka: Canonically polarized case:
Kahler-Einstein = Stable varieties = K-stable

@ Expect: all stable varieties can be obtained from GH limits.

Proper Moduli spaces Comparison



Fano case: Properness

(X, L) — (C,0): flat family of polarized projective varieties.
(X, L) = (X°, Ky /Co) — C°: family of smooth Fano manifolds.
The special fiber Xo can be very bad.
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Fano case: Properness

(X, L) — (C,0): flat family of polarized projective varieties.
(X°,L°) = (&X°, K/,;(}/CO) — C°: family of smooth Fano manifolds.
The special fiber Xy can be very bad.

Theorem (L.-Xu, '12)
There exists a Q-Fano filling after base change:
XS——>Xxc(C( —=X<—2X°

L b

(———C C °C°
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Fano case: Properness

(X, L) — (C,0): flat family of polarized projective varieties.
(X°,L°) = (&X°, K/,;(}/CO) — C°: family of smooth Fano manifolds.
The special fiber Xy can be very bad.

Theorem (L.-Xu, '12)
There exists a Q-Fano filling after base change:
XS——>Xxc(C( —=X<—2X°

L b

(———C C (e
Moreover, CM(X*/C’, —Kys) < deg(¢) - CM(X/C, L).

@ Use Minimal Model Program to simplify the family
o Keep track of the CM-degree (which generalizes Futaki invariant)

Proper Moduli spaces Comparison



Fano case: Separatedness

Compare 2 flat families of Q-Fano with isomorphic generic fibres:

—

X';)Xo — X/o(—\i X/

R

C<—C=C"——=C

\_://

Question of separatednes: X = X' ?
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Fano case: Separatedness

Compare 2 flat families of Q-Fano with isomorphic generic fibres:

—

X</—)Xo — X/o(—\i X/

R

C<—C=C"——=C

\_://

Question of separatednes: X = X’ ? Answer: In general fails:
@ Smooth dim¢ = 3: Mukai-Umemura's example.

@ Singular dim¢ = 2: infinitely many singular del-Pezzo
degenerations of P? (Hacking-Prokhorov).

Proper Moduli spaces Comparison



Issue in the construction of compact moduli in the Fano

case

@ Boundedness fails without restrictions on the singularities
@ Separatedness fails

© Continuous automorphism group

@ Tian's conjecture: the moduli space of Kahler-Einstein

manifolds is quasi-projective

Surprisingly, by adding “Kahler-Einstein” condition, these issues
can be solved simultaneously.

Proper Moduli spaces Comparison



Algebraic structure on Gromov-Hausdorff limit

{(Xi,w;)}: Fano Kahler manifolds. Ric(w;) = w;. Then:
e Diam(X;,w;) < D(n) = +/2n—1-m (Myers Theorem)
e Vol(B,(x))/Vol(B,(0)) ~\ as r / (Bishop-Gromov)

Gromov compactness = (X, w;) A (X0, Woo)-

Proper Moduli spaces Gromov-Hausdorff limit



Algebraic structure on Gromov-Hausdorff limit

{(Xi,w;)}: Fano Kahler manifolds. Ric(w;) = w;. Then:
e Diam(X;,w;) < D(n) = +/2n—1-m (Myers Theorem)
e Vol(B,(x))/Vol(B,(0)) ~\ as r / (Bishop-Gromov)

Gromov compactness = (X, w;) A (X0, Woo)-

Proposition (Tian, also L. '12)

Partial CO-estimate —> X has an algebraic structure.

Proof: Skoda-Siu’s theorem on finite generation.

Conjecture (Tian's partial C%estimate Conjecture)

There exists m = m(n) and 6 = 6(n) > 0 such that pp, > 9.

{s,} : O.N. basis of HO(X, K ™) under the L2-inner product.
Bergman kernel:  pn(z) = Z |si[2am(2)

Proper Moduli spaces Gromov-Hausdorff limit



Properness of “KE Fano” under Gromov-Hausdorff limits

Theorem (Donaldson-Sun, Tian)

Tian's partial C%-estimate conjecture holds. As a consequence,
Xoo is @ normal Fano variety.

Proper Moduli spaces Gromov-Hausdorff limit



Properness of “KE Fano” under Gromov-Hausdorff limits

Theorem (Donaldson-Sun, Tian)

Tian's partial C%-estimate conjecture holds. As a consequence,
Xoo is @ normal Fano variety.

wp = e i, Q= (EJN:ml ‘Sj(i)|2>_1/m
v Y
W =e U0, Qo = (ZJ n s (oo)’ )—l/m

SRRV V.0 Wi SV .
e Y= . e e =
in(pg'?))l/le_ fX (,0 1/mQ

Qo = / e’ wl < 400 = Xy has Klt singularities.
XOO o0

Proper Moduli spaces Gromov-Hausdorff limit



Gromov-Hausdorff limits of pairs

Conical Kahler-Einstein metric:

Ric(w(8)) = fw + 2r(1 — B){D}.

Theorem (Tian, Chen-Donaldson-Sun)

X;: n-dim’l Fano manifold; D; € X | — mKx;| smooth divisors;
wi(Bi): conical KE on (X, (1 6,) D;). If Bi — Boo € (0,1), then,
by passing to a subsequence,

O (X, (1 — B1)Driwi(Bi) 25 (Y, (1 Boo) E: w(Bo0))

@ There exist embeddings T; : X; — PN and To : Y — PN,
such that (T;(X;), Ti(D;)) = (Tso(Y), T (E)) as projective
varieties.

Proper Moduli spaces Gromov-Hausdorff limit



Separatedness and local openness

Theorem (L.-Wang-Xu, '14)
X — (C,0) a flat family over a smooth pointed curve, satisfying

Q@ —Kx/c is Q-Cartier and relatively ample;
@ for any t € C° := C\{0}, X} is smooth and Xy is klt;
Q Xy is K-polystable.

Then

(i) 3 a Zariski open neighborhood U of 0 € C, s.t. X} is K-
semistable (resp. K-stable if Aut(Xy) is discrete) for all t € U.
(ii) For any flat X' — C’ satisfying (1)-(3) as above, and
X' xc CO=2X xc C° we have X! = Xy;
(i) Xo admits a weak Kahler-Einstein metric. If Xy is
K-polystable, then Xy is the Gromov-Hausdorff limit X;
endowed with the Kahler-Einstein metric for any t — 0.

Proper Moduli spaces Main results



Separatedness and local openness

Theorem (L.-Wang-Xu, '14)
X — (C,0) a flat family over a smooth pointed curve, satisfying

Q@ —Kx/c is Q-Cartier and relatively ample;
@ for any t € C° := C\{0}, X} is smooth and Xy is klt;
Q Xy is K-polystable.

Then

(i) 3 a Zariski open neighborhood U of 0 € C, s.t. X} is K-
semistable (resp. K-stable if Aut(Xy) is discrete) for all t € U.
(ii) For any flat X' — C’ satisfying (1)-(3) as above, and
X' xc CO=2X xc C° we have X! = Xy;
(i) Xo admits a weak Kahler-Einstein metric. If Xy is
K-polystable, then Xy is the Gromov-Hausdorff limit X;
endowed with the Kahler-Einstein metric for any t — 0.

Related works by Spotti-Sun-Yao.



Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kahler-Einstein Fano varieties.
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Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kahler-Einstein Fano varieties.
Nice algebraic structure of M <— Moduli problem:

@ Properness/Boundedness: Donaldson-Sun, Tian

@ Local Openness: L.-Wang-Xu ('14)

@ Separatedness: L.-Wang-Xu ('14)
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Proper algebraic moduli space

M: moduli space of K-polystable smooth Fano manifolds.
M: “parametrize” all smoothable Kahler-Einstein Fano varieties.
Nice algebraic structure of M <— Moduli problem:

@ Properness/Boundedness: Donaldson-Sun, Tian

@ Local Openness: L.-Wang-Xu ('14)

@ Separatedness: L.-Wang-Xu ('14)

Theorem (L.-Wang-Xu, '14)

3 proper algebraic moduli space M of K-polystable, smoothable,
Fano varieties.

o X (weak) KE = Aut(X) is reductive. (CDS, BBEGZ)

@ Locally K-polystable slice = GIT moduli

o Glue: M = U,l-zl (Uz, /| Gz;) using languages of algebraic stacks
Related work by Odaka



On projectivity of moduli spaces

M™: moduli space of canonically polarized manifolds
M= Kollar-Shepherd-Barron-Alexeev compactification

e Viehweg: M™ is quasi-projective (nef Kx is enough)

e Kollar, Fujino: M~ is projective

Proper Moduli spaces Main results



On projectivity of moduli spaces

M™: moduli space of canonically polarized manifolds
M= Kollar-Shepherd-Barron-Alexeev compactification
e Viehweg: M™ is quasi-projective (nef Kx is enough)
e Kollar, Fujino: M~ is projective
Other polarizations:
@ Cons: Kollar: moduli space of polarized uniruled manifolds in
general is not quasi-projective

@ Pros: Fujiki-Schumacher: compact subarieties of the moduli
space of Kahler-Einstein manifolds are projective.
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On projectivity of moduli spaces

M™: moduli space of canonically polarized manifolds
M= Kollar-Shepherd-Barron-Alexeev compactification
e Viehweg: M™ is quasi-projective (nef Kx is enough)
e Kollar, Fujino: M~ is projective
Other polarizations:

@ Cons: Kollar: moduli space of polarized uniruled manifolds in
general is not quasi-projective

@ Pros: Fujiki-Schumacher: compact subarieties of the moduli
space of Kahler-Einstein manifolds are projective.

Constraint: Use of canonical metrics «— Weil-Petersson geometry

Theorem (L.-Wang-Xu, '15)

The moduli space M parametrizing smooth Kahler-Einstein Fano
manifolds is quasi-projective.

Proper Moduli spaces Main results



Proof: Continuity method

Continuity method: use the log version.
Define the set of parameters:

B(X,D) = {5¢€(0,B]|(X:,(1— ﬁ)Dt) has conical KE w¢(p)
and (X, Dy we(8)) < (Ao, Do; wo(ﬁ))}

Need to prove B(X, D) satisfies
1: Non-empty; 2: Open; 3: Closed.

Proper Moduli spaces Sketch of proofs



Proof: Non-emptiness of B(X', D)

Lemma

There exists ¢ = €(n) > 0 such that if
Q (X,(1—¢€)D) and (X', (1 — €)D’) are two families of kit
log-Fano varieties with D) € % ‘—mKX(/)/C(,)
@ (X,D) xc C°= (X, D) xc C°,
then (X', D') = (X, D).

irreducible;

Proper Moduli spaces Sketch of proofs



Proof: Non-emptiness of B(X', D)

There exists ¢ = €(n) > 0 such that if
Q (X,(1—¢€)D) and (X', (1 — €)D’) are two families of kit
log-Fano varieties with D) € % ‘—mKX(/)/C(,)
@ (X,D) xc C°= (X, D) xc C°,
then (X', D') = (X, D).

irreducible;

Any kit log-Fano pair (X, (1 — €)D) with D € 1| — mKx|
irreducible is K-stable, and hence has conical KE.

Proper Moduli spaces Sketch of proofs



Proof: Non-emptiness of B(X', D)

There exists ¢ = €(n) > 0 such that if
Q (X,(1—¢€)D) and (X', (1 — €)D’) are two families of kit
log-Fano varieties with D) € % ‘—mKX(/)/C(,)
@ (X,D) xc C°= (X, D) xc C°,
then (X', D') = (X, D).

irreducible;

Any kit log-Fano pair (X, (1 — €)D) with D € 1| — mKx|
irreducible is K-stable, and hence has conical KE.

B(X, D) is non-empty.

Proper Moduli spaces Sketch of proofs



Proof: key algebraic lemma on action of reductive group

G: a reductive group acting on PV;
z:C— PN be an arc with z(0) = z;
0] Oz(t) with Oz(t) =G- Z(t).

= lim
t—0

Lemma (Key Algebraic Lemma)

Suppose the stabilizer of zg € PN is reductive. Then there is a
G-invariant Zariski open neighborhood of zy € U C PN satisfying:

onu= |J o,nvu,
OpCcO

0pNO0#0

i.e. the closure of the G-orbit of any point in O near zy contains
g - 2o for some g € G.

Proved by Luna Slice Theorem. The condition of reductivity is
needed.

Proper Moduli spaces Sketch of proofs



Proof: Openness of B(X', D)

o Othew (e g 9s:)
7
(At
AN (il A )

> chew(%, . 0-8D D

[
é}nm (-\{: W-n E)

n—l
s A
2 ChegC e, eBYD D)

TET e

BaiNT

Picture by X. Wang
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Proof: Closedness of B(X', D)

ik (gchq(x,c;, RIS

Picture by X. Wang
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Zariski openness of K-semistable points

This essentially follows from the two properties of the following
invariant:

kst(Xt, Dt) = sup{B € [0,B] |(X:, (1 — B)D;) is K-semistable }

As a function of t € C, we have

© kst is a constructible function. This follows GIT argument
because K-stability can also be formulated as CM-stability.

@ kst is lower semi-continuous. This can be proved using similar
arguments as above (also proved by Spotti-Sun-Yao).

Proper Moduli spaces Sketch of proofs



Structure near K-polystable orbit

@ Smoothable K-semistable Q-Fano varieties are bounded;

@ There exists a neighborhood U*® s.t. any K-semistable
z € U degenerates to 2 € UkPs

3 a Zariski open neighborhood U of Chow(X), such that
Chow(Y') € U is GIT-polystable with respect to Aut(X) if and
only if Y is K-polystable.

Remark: case of smooth X is due to Donaldson, Bronnle and
Székelyhidi.
@ Glue local GIT moduli to get global moduli by the work of
Alper and others.
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CM line bundle

Let (X, —Kx/c) — C be flat family of polarized Q-Fano varieties.
CM line bundle over the base C (Tian, Fujiki-Schumacher):

1 n
Lont = srg det (ml—(Kifc = Kaye)™) .

Knudsen-Mumford expansion:

- kn+1 ,
det (Tr*(KX/C)> = —Lowg, gy + OK")

Futaki invariant as CM weight:

Fut(X, L) = —L(K*1

n+1
n+1 ?\_’/Pl)
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Weil-Petersson metric

X — C a flat family of Kahler-Einstein manifolds

wwp(v) = / Iv[2w", v e HYX, TX;w).
X

Q WWp = —/ Wt
x/C

Here w = —/—109 log{w!} is a (1,1)-form on the total space
X with w|y, = wt.

Q@ wwp = —/—100 log hywp. Here hywp is a Quillen-type metric
on the determinant line bundle Layy.
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Hermtian metric on Loy via Deligne's pairing

@ CM line bundle via Deligne pairings

Lem & —(—=Kxjc,- s —Kxyc)pp — C.

e Monge-Ampéere equations: w; = e~ “*CQ;, where
1/m

Ny, —1/m
_ Pm
Q= ( |5i|2> e
,'Z:; f l/mQt

@ Change of metric formula Define: hpp := the_uf:

n
—Z/ utwt A k, Or = —V/—100 log Q;
k=0 Xt

hpp is defined even for singular X!
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Continuation of construction

@ Continuous extension of Hermtian metric hpp to locus of
singular fibers, depending on:

Lemma (Continuity Lemma)

t—0 Xy Xo

Proof: Calculation by lifting to resolution (weak semistable
reduction) + Inversion of adjunction.

@ Descent of metric to the line bundle M by the functoriality of
Deligne’s pairing
Futaki invariant=0 == Aut(X:)o acts trivially on Lom| (s
= hpp is invariant up to the action of Aut(X})o
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Quasi-Projectivity criterion

Using hpp, it's easy to check that the assumption of the following
criterion is satisfied.

Theorem (L.-Wang-Xu, '15)

M: a normal proper algebraic space of finite type over C;

L: a line bundle on M; M°® C M an open subspace.

Assume: L™ - Z > 0 for any m-dimensional irreducible subspace
and the strict inequality holds for any Z meeting M°.

Then for sufficiently large power k, |L¥| induces a rational map
which is an embedding when restricted on M°.

Proof: 1. Reduce to the case when M is projective;
2. Results of Nakamaye and Birkar:
Null locus = augmented stable base locus.
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Some open questions

o Is M projective? Is the line bundle Ly ample?
e What are some properties of M? Is M rationally connected?

@ What are the behaviors of the limiting metric structure
(X0, doo) near X55'67?
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Thanks for your attention!
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