Moduli space of smoothable Kähler-Einstein Q-Fano varieties

Chi Li joint work with Xiaowei Wang and Chenyang Xu

Mathematics Department, Stony Brook University

University of Tokyo, July 27, 2015

Table of Contents

Case of Riemann surfaces

2 Kähler-Einstein metrics

- Three classes of Kähler-Einstein manifolds
- Kähler-Einstein on Fano manifolds

Oper Moduli spaces

- Comparison
 - Canonically polarized case
 - Q-Fano case
- Gromov-Hausdorff limit
- Main results
- Sketch of proofs
 - Separatedness and local openness
 - Construction of proper moduli space
 - Proof of quasi-projectivity

Riemann surface: surface with a complex structure Classification of closed Riemann surfaces :

Topology	Metric	Curvature
$\mathbb{S}^2=\mathbb{CP}^1$	spherical	1
$\mathbb{T}^2=\mathbb{C}/\Lambda$	flat	0
$\Sigma_g = \mathbb{B}^1/\pi_1(\Sigma_g)$	hyperbolic	-1

(< E) < E) = E</p>

Notation: Σ_g closed oriented surface of genus $g \ge 2$. $\mathbb{B}^1 = \{z \in \mathbb{C}; |z| < 1\}.$

g = 0: Moduli space={pt}.

(□ > ◆□ > ◆ Ξ > ◆ Ξ > ● ④ < ⊙ < ⊙

g = 0: Moduli space={pt}.

g = 1: Moduli space of elliptic curves $\cong \mathbb{C}$ by the *j*-invariant.

g = 0: Moduli space={pt}.

- g = 1: Moduli space of elliptic curves $\cong \mathbb{C}$ by the *j*-invariant.
- $g \ge 2$: Teichmüller spaces:

$$\mathcal{T}_g = \{ \text{hyperbolic structures on } \Sigma_g \}.$$

Isothermal Coordinate Theorem and Uniformization Theorem:

$$\mathcal{T}_g \cong \{ \text{conformal or complex structures on } \Sigma_g \}.$$

g = 0: Moduli space={pt}.

g = 1: Moduli space of elliptic curves $\cong \mathbb{C}$ by the *j*-invariant.

 $g \ge 2$: Teichmüller spaces:

$$\mathcal{T}_g = \{ \text{hyperbolic structures on } \Sigma_g \}.$$

Isothermal Coordinate Theorem and Uniformization Theorem:

$$\mathcal{T}_g \cong \{ \text{conformal or complex structures on } \Sigma_g \}.$$

▶ < E > < E > ...

 $\begin{array}{l} \mathcal{T}_g \text{ is a complex manifold of complex dimension } 3g-3. \\ \text{Tangent space: } H^1_J(\Sigma_g, T\Sigma_g) = H^0_J(\Sigma_g, \mathcal{K}^2_{\Sigma_g}). \\ \text{Moduli space: } \mathcal{M}_g = \mathcal{T}_g/\mathrm{MCG}(\Sigma_g). \\ \mathcal{M}_g \text{ is a complex orbifold.} \end{array}$

Weil-Petersson metric ω_{WP} : For any hyperbolic metric *h* on Σ_g ,

$$\omega_{\mathrm{WP}}(\mathbf{v}) = \int_{\Sigma_g} |\mathbf{v}|_h^2 \, d\mathrm{vol}_h, \quad \mathbf{v} \in \mathcal{H}^1_J(\Sigma_g, T\Sigma_g; h).$$

Weil-Petersson metric ω_{WP} : For any hyperbolic metric h on Σ_g ,

$$\omega_{\mathrm{WP}}(\mathbf{v}) = \int_{\Sigma_g} |\mathbf{v}|_h^2 \, d\mathrm{vol}_h, \quad \mathbf{v} \in \mathcal{H}^1_J(\Sigma_g, T\Sigma_g; h).$$

- ω_{WP} is a Kähler metric: $d\omega_{WP} = 0$.
- The holomorphic sectional curvature of ω_{WP} is negative. \mathcal{M}_g is Kobayashi hyperbolic.
- An hermitian line bundle $(L_{\rm WP}, h_{\rm WP})$ over \mathcal{M}_g with Chern curvature $-\sqrt{-1}\partial\bar{\partial} \log h_{\rm WP} = \omega_{\rm WP}$.

- *M_g**M_g* parametrizes stable curves.
 Constructed via relative MMP over a 1-dimensional base.
- Stable curves can be obtained as Gromov-Hausdorff limits
- $\omega_{\rm WP}$ can be extended to $\overline{\mathcal{M}}_g$.
- The coarse moduli space \overline{M}_g is a projective (Knudsen-Mumford)

Higher dimensional Kähler manifolds

- X: complex manifold (transition functions are holomorphic);
- *J*: $TX \rightarrow TX$ complex structure;
- g: Riemannian metric s.t. $g(J \cdot, J \cdot) = g(\cdot, \cdot)$.

Kähler form: $\omega = g(\cdot, J \cdot)$. Using holomorphic coordinates $\{z^i\}$:

$$\omega = \sqrt{-1} \sum_{i,j=1}^n g_{i\overline{j}} dz^i \wedge d\overline{z}^j, \quad (g_{i\overline{j}}) > 0.$$

Higher dimensional Kähler manifolds

- X: complex manifold (transition functions are holomorphic);
- *J*: $TX \rightarrow TX$ complex structure;
- g: Riemannian metric s.t. $g(J \cdot, J \cdot) = g(\cdot, \cdot)$.

Kähler form: $\omega = g(\cdot, J \cdot)$. Using holomorphic coordinates $\{z^i\}$:

$$\omega = \sqrt{-1} \sum_{i,j=1}^n g_{i\overline{j}} dz^i \wedge d\overline{z}^j, \quad (g_{i\overline{j}}) > 0.$$

Kähler condition: $d\omega = 0$. Consequences:

- ω determines the Kähler class $[\omega] \in H^{1,1}(X,\mathbb{R}) \subset H^2(X,\mathbb{R})$.
- Locally, $\omega = \sqrt{-1}\partial \bar{\partial} \psi = \sqrt{-1}\sum_{i,j} \frac{\partial^2 \psi}{\partial z^i \partial \bar{z}^j} dz^i \wedge d\bar{z}^j$.

Basic examples and curvature

Notation:
$$\mathbb{B}^n = \{z \in \mathbb{C}^n; |z| < 1\}.$$

 $\mathbb{P}^n = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^* = \mathbb{C}^n \cup \mathbb{P}^{n-1}.$

\mathbb{B}^n	$\omega_{\mathbb{B}^n} = -\sqrt{-1}\partialar\partial\log(1- z ^2)$	\mathbb{B}^n/Γ ; $\Gamma < \mathrm{PSU}(n,1)$
\mathbb{C}^{n}	$\omega_{\mathbb{C}^n} = \sqrt{-1}\partial\bar{\partial} z ^2$	$\mathbb{C}^n/\Lambda;\ \Lambda\cong\mathbb{Z}^{2n}$
\mathbb{P}^n	$\omega_{ m FS} = \sqrt{-1}\partial ar{\partial} \log(1+ z ^2)$	₽ <i>n</i>

Kähler manifolds with constant holomorphic sectional curvatures:

$$R_{i\overline{j}k\overline{l}} = \mu(g_{i\overline{j}}g_{k\overline{l}} + g_{i\overline{l}}g_{k\overline{j}}), \ \mu = -1, 0, 1.$$

Three classes of Kähler-Einstein manifolds

Basic examples and curvature

Notation:
$$\mathbb{B}^n = \{z \in \mathbb{C}^n; |z| < 1\}.$$

 $\mathbb{P}^n = (\mathbb{C}^{n+1} - \{0\})/\mathbb{C}^* = \mathbb{C}^n \cup \mathbb{P}^{n-1}.$

$$\begin{array}{l} \mathbb{B}^n & \omega_{\mathbb{B}^n} = -\sqrt{-1}\partial\bar{\partial}\log(1-|z|^2) & \mathbb{B}^n/\Gamma; \ \Gamma < \mathrm{PSU}(n,1) \\ \\ \mathbb{C}^n & \omega_{\mathbb{C}^n} = \sqrt{-1}\partial\bar{\partial}|z|^2 & \mathbb{C}^n/\Lambda; \ \Lambda \cong \mathbb{Z}^{2n} \\ \\ \mathbb{P}^n & \omega_{\mathrm{FS}} = \sqrt{-1}\partial\bar{\partial}\log(1+|z|^2) & \mathbb{P}^n \end{array}$$

Kähler manifolds with constant holomorphic sectional curvatures:

$$R_{i\overline{j}k\overline{l}} = \mu(g_{i\overline{j}}g_{k\overline{l}} + g_{i\overline{l}}g_{k\overline{j}}), \ \mu = -1, 0, 1.$$

$$\text{Curvature tensor: } R_{i\overline{j}k\overline{l}} = -\frac{\partial^2 g_{k\overline{l}}}{\partial z_i \partial \overline{z}_j} + g^{r\overline{q}} \frac{\partial g_{k\overline{q}}}{\partial z_i} \frac{\partial g_{r\overline{l}}}{\partial \overline{z}_j}$$

Ricci curvature:

Compact expression:

$$\begin{aligned} R_{i\bar{j}} &= g^{k\bar{l}} R_{i\bar{l}k\bar{j}} = g^{k\bar{l}} R_{i\bar{j}k\bar{l}}.\\ R_{i\bar{j}} &= -\frac{\partial^2}{\partial z^i \partial \bar{z}^j} \log \det(g_{k\bar{l}}). \end{aligned}$$

Ricci curvature: $R_{i\bar{j}} = g^{k\bar{l}}R_{i\bar{l}k\bar{j}} = g^{k\bar{l}}R_{i\bar{j}k\bar{l}}.$ Compact expression: $R_{i\bar{j}} = -\frac{\partial^2}{\partial z^i \partial \bar{z}^j} \log \det(g_{k\bar{l}}).$

Ricci form is a (1,1)-form:

$$Ric(\omega) = \sqrt{-1} \sum_{i,j=1}^{n} R_{i\overline{j}} dz^{i} \wedge d\overline{z}^{j} =: -\sqrt{-1}\partial\overline{\partial}\log\omega^{n}$$

 $Ric(\omega)$ represents the *first Chern class* of the complex manifold:

$$Ric(\omega) \in 2\pi c_1(X) \in H^{1,1}(X,\mathbb{Z}).$$

Kähler-Einstein metrics

Normalize the Einstein constant to $\mu = -1, 0$, or 1. **KE** equation:

$$igg(h_\omega ext{ satisfies: } extsf{Ric}(\omega) - \mu \omega = \sqrt{-1} \partial ar{\partial} h_\omega, ext{ and } \int_X e^{h_\omega} \omega^n = \int_X \omega^n. igg)$$

Kähler-Einstein metrics

Normalize the Einstein constant to $\mu = -1, 0$, or 1. **KE** equation:

$$\left(h_{\omega} \text{ satisfies: } \operatorname{\it Ric}(\omega) - \mu\omega = \sqrt{-1}\partial\bar{\partial}h_{\omega}, \text{ and } \int_{X} e^{h_{\omega}}\omega^{n} = \int_{X}\omega^{n}.
ight)$$

$$\begin{array}{ll} \mu = -1 & \mbox{Solvable (Aubin, Yau)} & c_1(X) < 0 & \mbox{Canonically polarized} \\ \mu = 0 & \mbox{Solvable (Yau)} & c_1(X) = 0 & \mbox{Calabi-Yau} \\ \mu = 1 & \mbox{in general not solvable} & c_1(X) > 0 & \mbox{Fano} \end{array}$$

Three classes of Kähler-Einstein manifolds

Minimal Model Program (some parts are still conjectural):

$$X = X_0 \dashrightarrow X_1 \dashrightarrow \cdots \dashrightarrow X_k \dashrightarrow Y$$

- κ(X) = -∞. X_k → Y is a Mori fiber space with fiber being Fano variety of Picard number 1;
- **2** $0 \le \kappa(X) < n$. $X_k \to Y$ is a Calabi-Yau fiber space;
- **③** $\kappa(X) = n$. $Y = X^{can}$ is a canonically polarized variety.

X Fano: $c_1(X) > 0 \iff \exists$ Kähler metric ω with $Ric(\omega) > 0$.

X Fano: $c_1(X) > 0 \iff \exists$ Kähler metric ω with $Ric(\omega) > 0$.

 $I \quad \dim_{\mathbb{C}} = 1: \mathbb{P}^1.$

Kähler-Einstein on Fano manifolds

→ ∃ →

X Fano: $c_1(X) > 0 \iff \exists$ Kähler metric ω with $Ric(\omega) > 0$.

 $I \quad \dim_{\mathbb{C}} = 1: \mathbb{P}^1.$

2 dim_{\mathbb{C}} = 2: \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, $\mathbb{P}^2 \sharp k \overline{\mathbb{P}^2}$ for $1 \le k \le 8$.

- X Fano: $c_1(X) > 0 \iff \exists$ Kähler metric ω with $Ric(\omega) > 0$.
 - $I \quad \dim_{\mathbb{C}} = 1: \mathbb{P}^1.$
 - 2 dim_{\mathbb{C}} = 2: \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, $\mathbb{P}^2 \sharp k \overline{\mathbb{P}^2}$ for $1 \le k \le 8$.
 - 3 $\dim_{\mathbb{C}} = 3$: 105 deformation families

- X Fano: $c_1(X) > 0 \iff \exists$ Kähler metric ω with $Ric(\omega) > 0$.
 - $I \quad \dim_{\mathbb{C}} = 1: \mathbb{P}^1.$
 - 2 dim_{\mathbb{C}} = 2: \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, $\mathbb{P}^2 \sharp k \overline{\mathbb{P}^2}$ for $1 \le k \le 8$.
 - $\textcircled{0} \dim_{\mathbb{C}} = 3: \ 105 \ deformation \ families$
 - **4** Hypersurface in \mathbb{P}^{n+1} of degree $\leq n+1$;

Obstructions to KE on Fano manifolds

First obstruction: $KE \implies Aut(X)$ is reductive (Matsushima). Example: Rule out \mathbb{P}^2 blown-up one or two points:

• Aut(
$$\mathbb{P}^2 \sharp \overline{\mathbb{P}^2}$$
) $\cong \left\{ \left(\begin{array}{ccc} * & * & * \\ 0 & * & * \\ 0 & * & * \end{array} \right) \in \mathrm{PGL}(3, \mathbb{C}) \right\}.$
• Aut($\mathbb{P}^2 \sharp 2 \overline{\mathbb{P}^2}$) $\cong \left\{ \left(\begin{array}{ccc} * & 0 & * \\ 0 & * & * \\ 0 & 0 & * \end{array} \right) \in \mathrm{PGL}(3, \mathbb{C}) \right\}.$

Obstructions to KE on Fano manifolds

First obstruction: $KE \implies Aut(X)$ is reductive (Matsushima). Example: Rule out \mathbb{P}^2 blown-up one or two points:

• Aut(
$$\mathbb{P}^2 \sharp \overline{\mathbb{P}^2}$$
) $\cong \left\{ \left(\begin{array}{ccc} * & * & * \\ 0 & * & * \\ 0 & * & * \end{array} \right) \in \mathrm{PGL}(3, \mathbb{C}) \right\}.$
• Aut($\mathbb{P}^2 \sharp 2 \overline{\mathbb{P}^2}$) $\cong \left\{ \left(\begin{array}{ccc} * & 0 & * \\ 0 & * & * \\ 0 & 0 & * \end{array} \right) \in \mathrm{PGL}(3, \mathbb{C}) \right\}.$

In $\dim_{\mathbb{C}} X = 2$, this is the only obstruction (Tian '90).

In higher dimensions, there are other obstructions, using Futaki invariant, energy functionals and K-stability.

Obstructions to KE on Fano manifolds

First obstruction: $KE \implies Aut(X)$ is reductive (Matsushima). Example: Rule out \mathbb{P}^2 blown-up one or two points:

• Aut(
$$\mathbb{P}^2 \sharp \overline{\mathbb{P}^2}$$
) $\cong \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \in \mathrm{PGL}(3, \mathbb{C}) \right\}.$
• Aut($\mathbb{P}^2 \sharp 2 \overline{\mathbb{P}^2}$) $\cong \left\{ \begin{pmatrix} * & 0 & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \in \mathrm{PGL}(3, \mathbb{C}) \right\}.$

In $\dim_{\mathbb{C}} X = 2$, this is the only obstruction (Tian '90).

In higher dimensions, there are other obstructions, using Futaki invariant, energy functionals and K-stability.

Conjecture (Yau-Tian-Donaldson)

Fano manifold X has $KE \iff (X, -K_X)$ is K-polystable.

" \implies ": Proved by Tian and Berman;

" \Leftarrow ": Completed by Tian, Chen-Donaldson-Sun independently.

v: any holomorphic vector field. Recall: $Ric(\omega) - \omega = \sqrt{-1}\partial \bar{\partial} h_{\omega}$.

$$\mathsf{Futaki\ invariant:}\quad \mathrm{Fut}_X(v)=\int_X v(h_\omega)\omega^n.\quad (\mathrm{Fut}_{\mathrm{X}}:\mathfrak{h}\to\mathbb{C})$$

Theorem (Futaki)

- Fut_X(v) is independent of $\omega \in 2\pi c_1(X)$.
- X Kähler-Einstein \Longrightarrow Fut_X \equiv 0.

Interpretation: $(\bar{\partial} - \sqrt{-1}i_{\nu})(\omega + \operatorname{div}_{\Omega}(\nu)) = 0$ $(\Omega = e^{h_{\omega}}\omega^{n})$

$$\operatorname{Fut}_X(v) = \frac{1}{n+1} \int_X (\omega + \operatorname{div}_{\Omega} v)^{n+1}.$$

Equivariant cohomology (\Rightarrow localization formula)

Ka

Definition (Special Degeneration)

A \mathbb{C}^* -equivariant degeneration of Fano manifolds over \mathbb{C} :

 \mathbb{C}^* -action \rightsquigarrow holomorphic vector field v on \mathcal{X}_0 . For special degenerations, define:

$$\operatorname{Fut}(\mathcal{X},-{\sf K}_{\mathcal{X}/\mathbb{C}})=-\operatorname{Fut}_{\mathcal{X}_0}(\nu)$$

Definition (K-polystability, Tian '97)

 $\operatorname{Fut}(\mathcal{X}, K_{\mathcal{X}}^{-1}) \geq 0$ for any specicial degeneration \mathcal{X} of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.

Definition (K-polystability, Tian '97)

 $\operatorname{Fut}(\mathcal{X}, K_{\mathcal{X}}^{-1}) \geq 0$ for any specicial degeneration \mathcal{X} of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.

Imitating Hilbert-Mumford numerical criterion in GIT:

Slope at infinity \longleftrightarrow Fut $(\mathcal{X}, \mathcal{L})$.

Stability from functionals (variational point of view):

Generalization by Donaldson using general test configuration.

Canonically polarized case: KSBA compactification

Generalization of Deligne-Mumford compactification developped by Kollár-Shepherd-Barron-Alexeev.

Four aspects of the construction:

- **O** Properness: stable varieties (semi-log-canonical singularities)
- Ø Boundedness: Hacon-McKernan-Xu
- Separatedness: relatively easy
- 4 Local openness: Kollár

Extra properties:

- Projectivity: Kollár, Fujino.
- By Berman-Huenancia and Odaka: Canonically polarized case: Kähler-Einstein = Stable varieties = K-stable
- Expect: all stable varieties can be obtained from GH limits.

 $(\mathcal{X}, \mathcal{L}) \to (C, 0)$: flat family of polarized projective varieties. $(\mathcal{X}^{\circ}, \mathcal{L}^{\circ}) \cong (\mathcal{X}^{\circ}, \mathcal{K}_{\mathcal{X}^{\circ}/C^{\circ}}^{-1}) \to C^{\circ}$: family of smooth Fano manifolds. The special fiber \mathcal{X}_0 can be very bad. $(\mathcal{X}, \mathcal{L}) \to (C, 0)$: flat family of polarized projective varieties. $(\mathcal{X}^{\circ}, \mathcal{L}^{\circ}) \cong (\mathcal{X}^{\circ}, \mathcal{K}_{\mathcal{X}^{\circ}/\mathcal{C}^{\circ}}^{-1}) \to \mathcal{C}^{\circ}$: family of smooth Fano manifolds. The special fiber \mathcal{X}_0 can be very bad.

Theorem (L.-Xu, '12)

There exists a \mathbb{Q} -Fano filling after base change:

 $(\mathcal{X}, \mathcal{L}) \to (C, 0)$: flat family of polarized projective varieties. $(\mathcal{X}^{\circ}, \mathcal{L}^{\circ}) \cong (\mathcal{X}^{\circ}, \mathcal{K}_{\mathcal{X}^{\circ}/\mathcal{C}^{\circ}}^{-1}) \to \mathcal{C}^{\circ}$: family of smooth Fano manifolds. The special fiber \mathcal{X}_0 can be very bad.

Theorem (L.-Xu, '12)

There exists a \mathbb{Q} -Fano filling after base change:

$$\begin{array}{c} \mathcal{X}^{s} - - \succ \mathcal{X} \times_{C} \mathcal{C}' \longrightarrow \mathcal{X} \longleftrightarrow \mathcal{X}^{\circ} \\ \downarrow & \downarrow & \downarrow \\ \mathcal{C}' = \mathcal{C}' \xrightarrow{\phi(=z^{m})} \mathcal{C} \xleftarrow{\phi(=z^{m})} \mathcal{C} \xleftarrow{\mathcal{C}^{\circ}} \\ \mathcal{M}oreover, \operatorname{CM}(\mathcal{X}^{s}/\mathcal{C}', -\mathcal{K}_{\mathcal{X}^{s}}) \leq \operatorname{deg}(\phi) \cdot \operatorname{CM}(\mathcal{X}/\mathcal{C}, \mathcal{L}). \end{array}$$

- Use Minimal Model Program to simplify the family
- Keep track of the CM-degree (which generalizes Futaki invariant)

Compare 2 flat families of \mathbb{Q} -Fano with isomorphic generic fibres:

Question of separatednes: $\mathcal{X} \cong \mathcal{X}'$?

Compare 2 flat families of \mathbb{Q} -Fano with isomorphic generic fibres:

Question of separatednes: $\mathcal{X} \cong \mathcal{X}'$? Answer: In general fails:

- Smooth $\dim_{\mathbb{C}} = 3$: Mukai-Umemura's example.
- Singular dim_C = 2: infinitely many singular del-Pezzo degenerations of P² (Hacking-Prokhorov).

- O Boundedness fails without restrictions on the singularities
- Separatedness fails
- Ontinuous automorphism group
- Tian's conjecture: the moduli space of Kähler-Einstein manifolds is quasi-projective

Surprisingly, by adding "Kähler-Einstein" condition, these issues can be solved simultaneously.

Algebraic structure on Gromov-Hausdorff limit

 $\{(X_i, \omega_i)\}$: Fano Kähler manifolds. $Ric(\omega_i) = \omega_i$. Then:

- $\text{Diam}(X_i, \omega_i) \leq D(n) = \sqrt{2n-1} \cdot \pi$ (Myers Theorem)
- $\operatorname{Vol}(B_r(x))/\operatorname{Vol}(B_r(\underline{0})) \searrow$ as $r \nearrow$ (Bishop-Gromov)

Gromov compactness \Longrightarrow $(X_i, \omega_i) \stackrel{GH}{\longrightarrow} (X_{\infty}, \omega_{\infty}).$

Algebraic structure on Gromov-Hausdorff limit

 $\{(X_i, \omega_i)\}$: Fano Kähler manifolds. $Ric(\omega_i) = \omega_i$. Then:

- $\operatorname{Diam}(X_i, \omega_i) \leq D(n) = \sqrt{2n-1} \cdot \pi$ (Myers Theorem)
- $\operatorname{Vol}(B_r(x))/\operatorname{Vol}(B_r(\underline{0})) \searrow$ as $r \nearrow$ (Bishop-Gromov)

Gromov compactness \Longrightarrow $(X_i, \omega_i) \xrightarrow{GH} (X_{\infty}, \omega_{\infty}).$

Proposition (Tian, also L. '12)

Partial C^0 -estimate $\Longrightarrow X_\infty$ has an algebraic structure.

Proof: Skoda-Siu's theorem on finite generation.

Conjecture (Tian's partial C^0 -estimate Conjecture)

There exists m = m(n) and $\delta = \delta(n) > 0$ such that $\rho_m \ge \delta$.

 $\{s_i\}_{i=1}^{N_m}$: O.N. basis of $H^0(X, K_X^{-m})$ under the L^2 -inner product. Bergman kernel: $\rho_m(z) = \sum_{i=1}^{N_m} |s_i|_{h^{\otimes m}}^2(z)$

Theorem (Donaldson-Sun, Tian)

Tian's partial C⁰-estimate conjecture holds. As a consequence, X_{∞} is a normal Fano variety.

Theorem (Donaldson-Sun, Tian)

Tian's partial C⁰-estimate conjecture holds. As a consequence, X_{∞} is a normal Fano variety.

$$\int_{X_{\infty}} \Omega_{\infty} = \int_{X_{\infty}} e^{u_{\infty}} \omega_{\infty}^n < +\infty \Longrightarrow X_{\infty} \text{ has Klt singularities.}$$

r

Conical Kähler-Einstein metric:

$$Ric(\omega(\beta)) = \beta \omega + 2\pi(1-\beta)\{D\}.$$

Theorem (Tian, Chen-Donaldson-Sun)

 X_i : n-dim'l Fano manifold; $D_i \in \frac{1}{m} | -mK_{X_i} |$ smooth divisors; $\omega_i(\beta_i)$: conical KE on $(X_i, (1 - \beta_i)D_i)$. If $\beta_i \to \beta_\infty \in (0, 1)$, then, by passing to a subsequence,

$$(X_i, (1-\beta_i)D_i; \omega_i(\beta_i)) \xrightarrow{GH} (Y, (1-\beta_\infty)E; \omega(\beta_\infty))$$

2 There exist embeddings $T_i : X_i \to \mathbb{P}^N$ and $T_\infty : Y \to \mathbb{P}^N$, such that $(T_i(X_i), T_i(D_i)) \to (T_\infty(Y), T_\infty(E))$ as projective varieties.

Theorem (L.-Wang-Xu, '14)

 $\mathcal{X} \to (C,0)$ a flat family over a smooth pointed curve, satisfying

1
$$-K_{\mathcal{X}/\mathcal{C}}$$
 is \mathbb{Q} -Cartier and relatively ample;

- **2** for any $t \in C^{\circ} := C \setminus \{0\}$, \mathcal{X}_t is smooth and \mathcal{X}_0 is klt;
- **3** \mathcal{X}_0 is K-polystable.

Then

- (i) \exists a Zariski open neighborhood U of $0 \in C$, s.t. \mathcal{X}_t is K-semistable (resp. K-stable if $\operatorname{Aut}(\mathcal{X}_0)$ is discrete) for all $t \in U$.
- (ii) For any flat $\mathcal{X}' \to C'$ satisfying (1)-(3) as above, and $\mathcal{X}' \times_C C^{\circ} \cong \mathcal{X} \times_C C^{\circ}$, we have $\mathcal{X}'_0 \cong \mathcal{X}_0$;
- (iii) \mathcal{X}_0 admits a weak Kähler-Einstein metric. If \mathcal{X}_t is K-polystable, then \mathcal{X}_0 is the Gromov-Hausdorff limit \mathcal{X}_t endowed with the Kähler-Einstein metric for any $t \to 0$.

Theorem (L.-Wang-Xu, '14)

 $\mathcal{X} \to (C,0)$ a flat family over a smooth pointed curve, satisfying

•
$$-K_{\mathcal{X}/\mathcal{C}}$$
 is \mathbb{Q} -Cartier and relatively ample;

- **2** for any $t \in C^{\circ} := C \setminus \{0\}$, X_t is smooth and X_0 is klt;
- **3** \mathcal{X}_0 is K-polystable.

Then

- (i) \exists a Zariski open neighborhood U of $0 \in C$, s.t. \mathcal{X}_t is K-semistable (resp. K-stable if $\operatorname{Aut}(\mathcal{X}_0)$ is discrete) for all $t \in U$.
- (ii) For any flat $\mathcal{X}' \to C'$ satisfying (1)-(3) as above, and $\mathcal{X}' \times_C C^{\circ} \cong \mathcal{X} \times_C C^{\circ}$, we have $\mathcal{X}'_0 \cong \mathcal{X}_0$;
- (iii) \mathcal{X}_0 admits a weak Kähler-Einstein metric. If \mathcal{X}_t is K-polystable, then \mathcal{X}_0 is the Gromov-Hausdorff limit \mathcal{X}_t endowed with the Kähler-Einstein metric for any $t \to 0$.

Related works by Spotti-Sun-Yao.

Proper algebraic moduli space

 $\mathcal{M}:$ moduli space of K-polystable smooth Fano manifolds.

 $\overline{\mathcal{M}}$: "parametrize" all smoothable Kähler-Einstein Fano varieties.

Proper algebraic moduli space

 $\mathcal{M}:$ moduli space of K-polystable smooth Fano manifolds.

 $\overline{\mathcal{M}}$: "parametrize" all smoothable Kähler-Einstein Fano varieties.

Nice algebraic structure of $\overline{\mathcal{M}} \longleftrightarrow$ Moduli problem:

- Properness/Boundedness: Donaldson-Sun, Tian
- Local Openness: L.-Wang-Xu ('14)
- Separatedness: L.-Wang-Xu ('14)

Proper algebraic moduli space

 $\mathcal{M}:$ moduli space of K-polystable smooth Fano manifolds.

 $\overline{\mathcal{M}}$: "parametrize" all smoothable Kähler-Einstein Fano varieties.

Nice algebraic structure of $\overline{\mathcal{M}} \longleftrightarrow$ Moduli problem:

- Properness/Boundedness: Donaldson-Sun, Tian
- Local Openness: L.-Wang-Xu ('14)
- Separatedness: L.-Wang-Xu ('14)

Theorem (L.-Wang-Xu, '14)

 \exists proper algebraic moduli space $\overline{\mathcal{M}}$ of K-polystable, smoothable, Fano varieties.

- X (weak) $KE \Rightarrow Aut(X)$ is reductive. (CDS, BBEGZ)
- Locally K-polystable slice = GIT moduli
- Glue: $\overline{\mathcal{M}} = \bigcup_{i=1}^{I} \left(\mathcal{U}_{z_i} \ /\!\!/ \ \mathsf{G}_{z_i} \right)$ using languages of algebraic stacks

Related work by Odaka

On projectivity of moduli spaces

 $\frac{\mathcal{M}^-}{\mathcal{M}^-}: \text{ moduli space of canonically polarized manifolds} \\ \overline{\mathcal{M}^-}: \text{ Kollár-Shepherd-Barron-Alexeev compactification}$

- Viehweg: \mathcal{M}^- is quasi-projective (nef K_X is enough)
- Kollar, Fujino: $\overline{\mathcal{M}^-}$ is projective

On projectivity of moduli spaces

 $\frac{\mathcal{M}^{-}}{\mathcal{M}^{-}}: \text{ moduli space of canonically polarized manifolds} \\ \overline{\mathcal{M}^{-}}: \text{ Kollár-Shepherd-Barron-Alexeev compactification}$

- Viehweg: \mathcal{M}^- is quasi-projective (nef K_X is enough)
- Kollar, Fujino: $\overline{\mathcal{M}^-}$ is projective

Other polarizations:

- Cons: Kollár: moduli space of polarized uniruled manifolds in general is not quasi-projective
- *Pros*: Fujiki-Schumacher: *compact* subarieties of the moduli space of Kähler-Einstein manifolds are projective.

On projectivity of moduli spaces

 $\frac{\mathcal{M}^- :}{\mathcal{M}^- :} \ \text{Kollár-Shepherd-Barron-Alexeev compactification}$

- Viehweg: \mathcal{M}^- is quasi-projective (nef K_X is enough)
- Kollar, Fujino: $\overline{\mathcal{M}^-}$ is projective

Other polarizations:

- Cons: Kollár: moduli space of polarized uniruled manifolds in general is not quasi-projective
- *Pros*: Fujiki-Schumacher: *compact* subarieties of the moduli space of Kähler-Einstein manifolds are projective.

Constraint: Use of canonical metrics \longleftrightarrow Weil-Petersson geometry

Theorem (L.-Wang-Xu, '15)

The moduli space \mathcal{M} parametrizing smooth Kähler-Einstein Fano manifolds is quasi-projective.

Continuity method: use the log version. Define the set of parameters:

$$\begin{split} \mathsf{B}(\mathcal{X},\mathcal{D}) &= \left\{ \beta \in (0,\mathfrak{B}] \left| (\mathcal{X}_t,(1-\beta)\mathcal{D}_t) \text{ has conical KE } \omega_t(\beta) \right. \\ & \left. \mathsf{and} \left(\mathcal{X}_t,\mathcal{D}_t;\omega_t(\beta) \right) \stackrel{\mathsf{GH}}{\longrightarrow} (\mathcal{X}_0,\mathcal{D}_0;\omega_0(\beta)) \right\}. \end{split}$$

Need to prove $B(\mathcal{X}, \mathcal{D})$ satisfies 1: Non-empty; 2: Open; 3: Closed.

Proof: Non-emptiness of $B(\mathcal{X}, \mathcal{D})$

Lemma

There exists $\epsilon = \epsilon(n) > 0$ such that if **1** $(\mathcal{X}, (1-\epsilon)\mathcal{D})$ and $(\mathcal{X}', (1-\epsilon)\mathcal{D}')$ are two families of klt log-Fano varieties with $\mathcal{D}^{(\prime)} \in \frac{1}{m} \left| -mK_{\mathcal{X}^{(\prime)}/\mathcal{C}^{(\prime)}} \right|$ irreducible; **2** $(\mathcal{X}, \mathcal{D}) \times_{\mathcal{C}} \mathcal{C}^{\circ} \cong (\mathcal{X}', \mathcal{D}') \times_{\mathcal{C}} \mathcal{C}^{\circ}$, then $(\mathcal{X}', \mathcal{D}') \cong (\mathcal{X}, \mathcal{D})$.

Proof: Non-emptiness of $B(\mathcal{X}, \mathcal{D})$

Lemma

There exists $\epsilon = \epsilon(n) > 0$ such that if

Corollary

Any klt log-Fano pair
$$(X, (1 - \epsilon)D)$$
 with $D \in \frac{1}{m}| - mK_X|$
irreducible is K-stable, and hence has conical KE.

∃ ⊳

A ₽

E 990

Proof: Non-emptiness of $B(\mathcal{X}, \mathcal{D})$

Lemma

There exists $\epsilon = \epsilon(n) > 0$ such that if

Corollary

Any klt log-Fano pair
$$(X, (1 - \epsilon)D)$$
 with $D \in \frac{1}{m}| - mK_X|$
irreducible is K-stable, and hence has conical KE.

Corollary

 $B(\mathcal{X}, \mathcal{D})$ is non-empty.

æ

Proof: key algebraic lemma on action of reductive group

$$\begin{array}{l} G: \text{ a reductive group acting on } \mathbb{P}^N; \\ z: C \to \mathbb{P}^N \text{ be an arc with } z(0) = z_0; \\ \overline{O} = \lim_{t \to 0} \overline{O_{z(t)}} \text{ with } O_{z(t)} = G \cdot z(t). \end{array}$$

Lemma (Key Algebraic Lemma)

Suppose the stabilizer of $z_0 \in \mathbb{P}^N$ is reductive. Then there is a *G*-invariant Zariski open neighborhood of $z_0 \in U \subset \mathbb{P}^N$ satisfying:

$$\overline{O} \cap U = \bigcup_{\substack{O_p \subset \overline{O} \\ \overline{O}_p \cap O_{z_0} \neq \emptyset}} O_p \cap U,$$

i.e. the closure of the G-orbit of any point in \overline{O} near z_0 contains $g \cdot z_0$ for some $g \in G$.

Proved by Luna Slice Theorem. The condition of reductivity is needed.

Proof: Openness of $B(\mathcal{X}, \mathcal{D})$

Picture by X. Wang

크

Proof: Closedness of $B(\mathcal{X}, \mathcal{D})$

Picture by X. Wang

< □ > <

э.

This essentially follows from the two properties of the following invariant:

 $kst(\mathcal{X}_t, \mathcal{D}_t) = sup\{\beta \in [0, \mathfrak{B}] | (\mathcal{X}_t, (1 - \beta)\mathcal{D}_t) \text{ is K-semistable} \}$

As a function of $t \in C$, we have

- kst is a constructible function. This follows GIT argument because K-stability can also be formulated as CM-stability.
- kst is lower semi-continuous. This can be proved using similar arguments as above (also proved by Spotti-Sun-Yao).

Structure near K-polystable orbit

- Smoothable K-semistable Q-Fano varieties are bounded;
- 2 There exists a neighborhood U^{ks} s.t. any K-semistable $z \in U^{\mathrm{ks}}$ degenerates to $\hat{z} \in U^{\mathrm{kps}}$

Theorem

 \exists a Zariski open neighborhood U of Chow(X), such that Chow(Y) \in U is GIT-polystable with respect to Aut(X) if and only if Y is K-polystable.

Remark: case of smooth X is due to Donaldson, Brönnle and Székelyhidi.

• Glue local GIT moduli to get global moduli by the work of Alper and others.

CM line bundle

Let $(\mathcal{X}, -K_{\mathcal{X}/C}) \to C$ be flat family of polarized Q-Fano varieties. CM line bundle over the base C (Tian, Fujiki-Schumacher):

$$L_{\rm CM} = \frac{1}{2^{n+1}} \det \left(\pi_! \left[-(\mathcal{K}_{\mathcal{X}/\mathcal{C}}^{-1} - \mathcal{K}_{\mathcal{X}/\mathcal{C}})^{n+1} \right] \right),$$

Knudsen-Mumford expansion:

$$\det\left(\pi_*(\mathcal{K}_{\mathcal{X}/\mathcal{C}}^{-k})\right) = -L_{\mathrm{CM}}\frac{k^{n+1}}{(n+1)!} + O(k^n).$$

Futaki invariant as CM weight:

$$\operatorname{Fut}(\mathcal{X},\mathcal{L}) = -rac{1}{n+1}(\mathcal{K}_{ar{\mathcal{X}}/\mathbb{P}^1}^{-1})^{n+1}$$

 $\mathcal{X} \to C$ a flat family of Kähler-Einstein manifolds

$$\omega_{\mathrm{WP}}(\mathbf{v}) = \int_X |\mathbf{v}|^2_\omega \omega^n, \mathbf{v} \in \mathcal{H}^1(X, TX; \omega).$$

$$\omega_{\rm WP} = -\int_{\mathcal{X}/\mathcal{C}} \omega^{n+1}.$$

Here $\omega = -\sqrt{-1}\partial\bar{\partial}\log\{\omega_t^n\}$ is a (1,1)-form on the total space \mathcal{X} with $\omega|_{\mathcal{X}_t} = \omega_t$.

3 $\omega_{\rm WP} = -\sqrt{-1}\partial\bar{\partial}\log h_{\rm WP}$. Here $h_{\rm WP}$ is a Quillen-type metric on the determinant line bundle $L_{\rm CM}$.

3

Hermtian metric on $L_{\rm CM}$ via Deligne's pairing

• CM line bundle via Deligne pairings

$$\mathcal{L}_{\mathrm{CM}} \cong -\langle -\mathcal{K}_{\mathcal{X}/\mathcal{C}}, \cdots, -\mathcal{K}_{\mathcal{X}/\mathcal{C}} \rangle_{\mathrm{DP}} \to \mathcal{C}.$$

• Monge-Ampère equations: $\omega_t^n = e^{-u_t}\Omega_t$, where $\Omega_t = \left(\sum_{i=1}^{N_m} |s_i|^2\right)^{-1/m}$, $e^{-u_t} = \frac{\rho_m^{1/m}}{\int_{\mathcal{X}_t} \rho_m^{1/m}\Omega_t}$.

• Change of metric formula Define: $h_{\mathrm{DP}} := h_{\Omega_t} e^{-\mathfrak{U}_t}$:

$$\mathfrak{U}_t = -\sum_{k=0}^n \int_{\mathcal{X}_t} u_t \omega_t^k \wedge \check{\omega}_t^{n-k}, \quad \check{\omega}_t = -\sqrt{-1}\partial\bar{\partial}\log\Omega_t$$

 $h_{\rm DP}$ is defined even for singular \mathcal{X}_t !

• Continuous extension of Hermtian metric *h*_{DP} to locus of singular fibers, depending on:

Lemma (Continuity Lemma)

$$\lim_{t\to 0}\int_{\mathcal{X}_t}\Omega_t=\int_{\mathcal{X}_0}\Omega_0.$$

Proof: Calculation by lifting to resolution (weak semistable reduction) + Inversion of adjunction.

Descent of metric to the line bundle *M* by the functoriality of Deligne's pairing
 Futaki invariant=0 ⇒ Aut(X_t)₀ acts trivially on L_{CM}|_{t}
 ⇒ h_{DP} is invariant up to the action of Aut(X_t)₀

Using $h_{\rm DP},$ it's easy to check that the assumption of the following criterion is satisfied.

Theorem (L.-Wang-Xu, '15)

M: a normal proper algebraic space of finite type over \mathbb{C} ; *L*: a line bundle on *M*; $M^{\circ} \subset M$ an open subspace. Assume: $L^{m} \cdot Z \geq 0$ for any *m*-dimensional irreducible subspace and the strict inequality holds for any *Z* meeting M° . Then for sufficiently large power *k*, $|L^{k}|$ induces a rational map which is an embedding when restricted on M° .

Proof: 1. Reduce to the case when M is projective;

2. Results of Nakamaye and Birkar:

Null locus = augmented stable base locus.

- Is $\overline{\mathcal{M}}$ projective? Is the line bundle $L_{\rm CM}$ ample?
- What are some properties of $\overline{\mathcal{M}}$? Is \mathcal{M} rationally connected?
- What are the behaviors of the limiting metric structure (X_{∞}, d_{∞}) near X_{∞}^{sing} ?

Thanks for your attention!

Proper Moduli spaces

Sketch of proofs

크