Kähler-Einstein metrics and K-stability

Chi Li
Mathematics Department, Stony Brook University

January 27, 2015
(1) Backgrounds
(2) Analytic Part

- A local Dirichlet problem
- Kähler-Einstein on Fano manifolds
- Aubin's continuity method
- Conical continuity method
- Gromov-Hausdorff limit
(3) Algebraic Part
- Algebraic version of metric limits
- Moduli space of K-polystable Fano varieties
(4) Supplementary Technicalities
- Analytic part
- Algebraic part

Riemann surface: surface with a complex structure
Classification of closed Riemann surfaces :

Topology	Metric	Curvature
$\mathbb{S}^{2}=\mathbb{C P}^{1}$	spherical	1
$\mathbb{T}^{2}=\mathbb{C} / \Lambda$	flat	0
$\Sigma_{g}=\mathbb{B}^{1} / \pi_{1}\left(\Sigma_{g}\right)$	hyperbolic	-1

Notation: Σ_{g} closed oriented surface of genus $g \geq 2$.

$$
\mathbb{B}^{1}=\{z \in \mathbb{C} ;|z|<1\} .
$$

Generalization for higher dimensional complex manifolds?
We will restrict to the class of Kähler manifolds, in particular projective manifolds.
X : complex manifold (transition functions are holomorphic);
$J: T X \rightarrow T X$ complex structure;
g : Riemannian metric s.t. $g(J \cdot, J \cdot)=g(\cdot, \cdot)$.
Kähler form: $\omega=g(\cdot, J \cdot)$. Using holomorphic coordinates $\left\{z^{i}\right\}$:

$$
\omega=\sqrt{-1} \sum_{i, j=1}^{n} g_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j}, \quad\left(g_{i \bar{j}}\right)>0
$$

X : complex manifold (transition functions are holomorphic);
$J: T X \rightarrow T X$ complex structure;
g : Riemannian metric s.t. $g(J \cdot, J \cdot)=g(\cdot, \cdot)$.
Kähler form: $\omega=g(\cdot, J \cdot)$. Using holomorphic coordinates $\left\{z^{i}\right\}$:

$$
\omega=\sqrt{-1} \sum_{i, j=1}^{n} g_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j}, \quad\left(g_{i \bar{j}}\right)>0
$$

Kähler condition: $d \omega=0$. Consequences:

- ω determines the Kähler class $[\omega] \in H^{1,1}(X, \mathbb{R}) \subset H^{2}(X, \mathbb{R})$.
- Locally, $\omega=\sqrt{-1} \partial \bar{\partial} \psi=\sqrt{-1} \sum_{i, j} \frac{\partial^{2} \psi}{\partial z^{i} \partial \bar{z}^{j}} d z^{i} \wedge d \bar{z}^{j}$.

Basic examples and curvature

Notation: $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n} ;|z|<1\right\}$.

$$
\mathbb{P}^{n}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}=\mathbb{C}^{n} \cup \mathbb{P}^{n-1}
$$

\mathbb{B}^{n}	$\omega_{\mathbb{B}^{n}}=-\sqrt{-1} \partial \bar{\partial} \log \left(1-\|z\|^{2}\right)$	$\mathbb{B}^{n} / \Gamma ; \Gamma<\operatorname{PSU}(n, 1)$
\mathbb{C}^{n}	$\omega_{\mathbb{C}^{n}}=\sqrt{-1} \partial \bar{\partial}\|z\|^{2}$	$\mathbb{C}^{n} / \Lambda ; \Lambda \cong \mathbb{Z}^{2 n}$
\mathbb{P}^{n}	$\omega_{\mathrm{FS}}=\sqrt{-1} \partial \bar{\partial} \log \left(1+\|z\|^{2}\right)$	\mathbb{P}^{n}

Kähler manifolds with constant holomorphic sectional curvatures:

Basic examples and curvature

Notation: $\mathbb{B}^{n}=\left\{z \in \mathbb{C}^{n} ;|z|<1\right\}$.

$$
\mathbb{P}^{n}=\left(\mathbb{C}^{n+1}-\{0\}\right) / \mathbb{C}^{*}=\mathbb{C}^{n} \cup \mathbb{P}^{n-1}
$$

\mathbb{B}^{n}	$\omega_{\mathbb{B}^{n}}=-\sqrt{-1} \partial \bar{\partial} \log \left(1-\|z\|^{2}\right)$	$\mathbb{B}^{n} / \Gamma ; \Gamma<\operatorname{PSU}(n, 1)$
\mathbb{C}^{n}	$\omega_{\mathbb{C}^{n}}=\sqrt{-1} \partial \bar{\partial}\|z\|^{2}$	$\mathbb{C}^{n} / \Lambda ; \Lambda \cong \mathbb{Z}^{2 n}$
\mathbb{P}^{n}	$\omega_{\mathrm{FS}}=\sqrt{-1} \partial \bar{\partial} \log \left(1+\|z\|^{2}\right)$	\mathbb{P}^{n}

Kähler manifolds with constant holomorphic sectional curvatures:

$$
R_{i \bar{j} k \bar{l}}=\mu\left(g_{i \bar{j}} g_{k \bar{l}}+g_{i \bar{I}} g_{k \bar{j}}\right), \mu=-1,0,1
$$

Curvature tensor: $R_{i \bar{j} k \bar{l}}=-\frac{\partial^{2} g_{k \bar{l}}}{\partial z_{i} \partial \bar{z}_{j}}+g^{r \bar{q}} \frac{\partial g_{k \bar{q}}}{\partial z_{i}} \frac{\partial g_{r \bar{l}}}{\partial \bar{z}_{j}}$.

Ricci curvature:

$$
R_{i \bar{j}}=g^{k \bar{l}} R_{i \bar{I} k \bar{j}}=g^{k k} R_{i \bar{j} k \bar{l}}
$$

Compact expression: $\quad R_{i \bar{j}}=-\frac{\partial^{2}}{\partial z^{i} \partial \bar{z}^{j}} \log \operatorname{det}\left(g_{k}\right)$.

Ricci curvature:

$$
R_{i \bar{j}}=g^{k \bar{l}} R_{i \bar{l} k \bar{j}}=g^{k \bar{l}} R_{i \bar{j} k \bar{l}}
$$

Compact expression: $\quad R_{i \bar{j}}=-\frac{\partial^{2}}{\partial z^{i} \partial \bar{z}^{j}} \log \operatorname{det}\left(g_{k \bar{l}}\right)$.
Ricci form is a (1,1)-form:

$$
\operatorname{Ric}(\omega)=\sqrt{-1} \sum_{i, j=1}^{n} R_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j}=:-\sqrt{-1} \partial \bar{\partial} \log \omega^{n}
$$

$\operatorname{Ric}(\omega)$ represents the first Chern class of the complex manifold:

$$
\operatorname{Ric}(\omega) \in 2 \pi c_{1}(X) \in H^{1,1}(X, \mathbb{Z})
$$

Kähler potentials

Lemma ($\partial \bar{\partial}$-Lemma)

Smooth $\omega_{i} \in[\omega], i=1,2 \Rightarrow \omega_{2}=\omega_{1}+\sqrt{-1} \partial \bar{\partial} \varphi$ with $\varphi \in C^{\infty}(X)$.

$$
\omega_{\varphi}:=\omega+\sqrt{-1} \partial \bar{\partial} \varphi=\sqrt{-1} \sum_{i, j}\left(g_{i \bar{j}}+\varphi_{i \bar{j}}\right) d z^{i} \wedge d \bar{z}^{j} .
$$

where $\left(\varphi_{i \bar{j}}\right):=\left(\frac{\partial^{2} \varphi}{\partial z^{i} \partial \bar{z}^{j}}\right)$ is the complex Hessian matrix.

Kähler potentials

Lemma ($\partial \bar{\partial}$-Lemma)

Smooth $\omega_{i} \in[\omega], i=1,2 \Rightarrow \omega_{2}=\omega_{1}+\sqrt{-1} \partial \bar{\partial} \varphi$ with $\varphi \in C^{\infty}(X)$.

$$
\omega_{\varphi}:=\omega+\sqrt{-1} \partial \bar{\partial} \varphi=\sqrt{-1} \sum_{i, j}\left(g_{i \bar{j}}+\varphi_{i \bar{j}}\right) d z^{i} \wedge d \bar{z}^{j} .
$$

where $\left(\varphi_{i \bar{j}}\right):=\left(\frac{\partial^{2} \varphi}{\partial z^{i} \partial \bar{z}^{j}}\right)$ is the complex Hessian matrix.

$$
\begin{aligned}
\omega_{\varphi} \text { positive definite } & \longleftrightarrow \omega+\sqrt{-1} \partial \bar{\partial} \varphi>0 \\
& \longleftrightarrow\left(g_{i \bar{j}}+\varphi_{i \bar{j}}\right)>0
\end{aligned}
$$

Kähler potentials

Lemma ($\partial \bar{\partial}$-Lemma)

Smooth $\omega_{i} \in[\omega], i=1,2 \Rightarrow \omega_{2}=\omega_{1}+\sqrt{-1} \partial \bar{\partial} \varphi$ with $\varphi \in C^{\infty}(X)$.

$$
\omega_{\varphi}:=\omega+\sqrt{-1} \partial \bar{\partial} \varphi=\sqrt{-1} \sum_{i, j}\left(g_{i \bar{j}}+\varphi_{i \bar{j}}\right) d z^{i} \wedge d \bar{z}^{j} .
$$

where $\left(\varphi_{i \bar{j}}\right):=\left(\frac{\partial^{2} \varphi}{\partial z^{i} \partial \bar{z}^{j}}\right)$ is the complex Hessian matrix.

$$
\begin{aligned}
\omega_{\varphi} \text { positive definite } & \longleftrightarrow \omega+\sqrt{-1} \partial \bar{\partial} \varphi>0 \\
& \longleftrightarrow\left(g_{i \bar{j}}+\varphi_{i \bar{j}}\right)>0
\end{aligned}
$$

Compare to conformal case: $g_{2}=e^{f} g_{1}$ for $f \in C^{\infty}(X)$.

Normalize the Einstein constant to $\mu=-1,0$, or 1 . KE equation:

$$
\operatorname{Ric}\left(\omega_{\varphi}\right)=\mu \omega_{\varphi}
$$

Normalize the Einstein constant to $\mu=-1,0$, or 1 . KE equation:

$$
\begin{aligned}
& \operatorname{Ric}\left(\omega_{\varphi}\right)=\mu \omega_{\varphi} \Longleftrightarrow(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=e^{h_{\omega}-\mu \varphi} \omega^{n} \\
& \Longleftrightarrow \operatorname{det}\left(g_{i \bar{j}}+\frac{\partial^{2} \varphi}{\partial z^{i} \partial \bar{z}^{j}}\right)=e^{h_{\omega}-\mu \varphi} \operatorname{det}\left(g_{i \bar{j}}\right) . \\
&\left(h_{\omega} \text { satisfies: } \operatorname{Ric}(\omega)-\mu \omega=\sqrt{-1} \partial \bar{\partial} h_{\omega}, \text { and } \int_{X} e^{h_{\omega}} \omega^{n}=\int_{X} \omega^{n} .\right)
\end{aligned}
$$

Kähler-Einstein metric and Monge-Ampère equation

Normalize the Einstein constant to $\mu=-1,0$, or 1 . KE equation:

$$
\begin{aligned}
\operatorname{Ric}\left(\omega_{\varphi}\right)=\mu \omega_{\varphi} & \Longleftrightarrow(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=e^{h_{\omega}-\mu \varphi} \omega^{n} \\
& \Longleftrightarrow \operatorname{det}\left(g_{i \bar{j}}+\frac{\partial^{2} \varphi}{\partial z^{i} \partial \bar{z}^{j}}\right)=e^{h_{\omega}-\mu \varphi} \operatorname{det}\left(g_{i \bar{j}}\right) .
\end{aligned}
$$

(h_{ω} satisfies: $\operatorname{Ric}(\omega)-\mu \omega=\sqrt{-1} \partial \bar{\partial} h_{\omega}$, and $\left.\int_{X} e^{h_{\omega}} \omega^{n}=\int_{X} \omega^{n}.\right)$

$$
\begin{array}{lll}
\mu=-1 & \text { Solvable (Aubin, Yau) } & c_{1}(X)<0 \\
\mu=0 & \text { Solvable (Yau) } & c_{1}(X)=0 \\
\mu=1 & \text { in general not solvable } & c_{1}(X)>0
\end{array}
$$

Compare: Yamabe invariant in a given conformal class.
U plurisubharmonic i.e. $\left(U_{i j}\right) \geq 0 ; B_{1}=\left\{z \in \mathbb{C}^{n} ;|z| \leq 1\right\}$.

$$
\begin{equation*}
\operatorname{det}\left(U_{i j}\right)=\frac{e^{-t U}}{\int_{B_{1}} e^{-t U} d V_{\mathbb{C}^{n}}} \text { on } B_{1}, \quad U=0 \text { on } \partial B_{1} . \tag{1}
\end{equation*}
$$

Solution U would produce Kähler-Einstein metrics (if $\left(U_{i \bar{j}}\right)>0$):

$$
\omega=\sqrt{-1} \sum_{i, j} U_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j} \quad \stackrel{(1)}{\Longrightarrow} \quad \operatorname{Ric}(\omega)=t \omega .
$$

Theorem (L. '13)

$\exists t^{*}=t^{*}(n)>0$ s.t. (1) has a regular nonpositive solution iff $t<t^{*}$.

Rotationally symmetric solutions

Reduction to ODE \leadsto Solutions:

$$
U(t)=\frac{(n+1)}{t} \log \left[1+\frac{(n!)^{1 / n} t}{(n+1) \pi}\left(|z|^{2}-1\right)\right]
$$

Range of $t: \quad-\infty<t<\frac{(n+1) \pi}{(n!)^{1 / n}}=: t^{*}$.

Rotationally symmetric solutions

Reduction to ODE \sim Solutions:

$$
U(t)=\frac{(n+1)}{t} \log \left[1+\frac{(n!)^{1 / n} t}{(n+1) \pi}\left(|z|^{2}-1\right)\right]
$$

Range of $t: \quad-\infty<t<\frac{(n+1) \pi}{(n!)^{1 / n}}=: t^{*}$.

$$
\begin{aligned}
t^{-} & <0: \omega=\frac{n+1}{t^{-}} \delta^{*} \omega_{\mathbb{B}^{n}} . \quad \delta: z \mapsto \delta \cdot z, 0<\delta<1 . \\
t^{-} & =t^{-}(\delta)=-\frac{(n+1) \pi}{(n!)^{1 / n}\left(\delta^{-2}-1\right)} \in(-\infty, 0) .
\end{aligned}
$$

Rotationally symmetric solutions

Reduction to ODE \sim Solutions:

$$
U(t)=\frac{(n+1)}{t} \log \left[1+\frac{(n!)^{1 / n} t}{(n+1) \pi}\left(|z|^{2}-1\right)\right]
$$

Range of $t: \quad-\infty<t<\frac{(n+1) \pi}{(n!)^{1 / n}}=: t^{*}$.

- $t^{-}<0: \omega=\frac{n+1}{t^{-}} \delta^{*} \omega_{\mathbb{B}^{n}} . \quad \delta: z \mapsto \delta \cdot z, 0<\delta<1$.
$t^{-}=t^{-}(\delta)=-\frac{(n+1) \pi}{(n!)^{1 / n}\left(\delta^{-2}-1\right)} \in(-\infty, 0)$.
- $t=0: \omega=\frac{(n!)^{1 / n}}{\pi} \omega_{\mathbb{C}^{n}}$.

Reduction to ODE \sim Solutions:

$$
U(t)=\frac{(n+1)}{t} \log \left[1+\frac{(n!)^{1 / n} t}{(n+1) \pi}\left(|z|^{2}-1\right)\right]
$$

Range of $t: \quad-\infty<t<\frac{(n+1) \pi}{(n!)^{1 / n}}=: t^{*}$.

$$
\begin{aligned}
t^{-}<0: \omega & =\frac{n+1}{t^{-}} \delta^{*} \omega_{\mathbb{B}^{n}} . \quad \delta: z \mapsto \delta \cdot z, 0<\delta<1 . \\
t^{-} & =t^{-}(\delta)=-\frac{(n+1) \pi}{(n!)^{1 / n}\left(\delta^{-2}-1\right)} \in(-\infty, 0) .
\end{aligned}
$$

- $t=0: \omega=\frac{(n!)^{1 / n}}{\pi} \omega_{\mathbb{C}^{n}}$.
- $t^{+}>0: \omega=\frac{(n+1)}{t^{+}} \epsilon^{*} \omega_{\mathrm{FS}} . \quad \epsilon: z \mapsto \epsilon \cdot z, 0<\epsilon<+\infty$.
$t^{+}=t^{+}(\epsilon)=\frac{(n+1) \pi}{(n!)^{1 / n}\left(1+\epsilon^{-2}\right)} \in\left(0, t^{*}\right)$.

(a) Potential

(b) Geometry

Curvature	Potential	Geometry
0	$\frac{1}{\pi}\left(\|z\|^{2}-1\right)$	flat disk
t	$\frac{2}{t} \log \left[1+\frac{t}{2 \pi}\left(\|z\|^{2}-1\right)\right]$	spherical cap
2π	$\frac{1}{\pi} \log \|z\|^{2}$	sphere

Theorem (L. '13)

\nexists nonpositive solution to (1) in $C^{2}\left(\overline{B_{1}}\right) \cap C^{4}\left(B_{1}\right)$ when $t \geq t^{*}$.
Proof: • Pohožaev identity (compare (3)):

$$
\begin{equation*}
2 n(n+1) \int_{B_{1}} \frac{e^{-t u}-1}{\int_{B_{1}} e^{-t u} d V}=t \int_{\partial B_{1}} 2^{-(n+1)}|\nabla u|^{n+1} d \sigma \tag{2}
\end{equation*}
$$

Theorem (L. '13)

\nexists nonpositive solution to (1) in $C^{2}\left(\overline{B_{1}}\right) \cap C^{4}\left(B_{1}\right)$ when $t \geq t^{*}$.
Proof: • Pohožaev identity (compare (3)):

$$
\begin{gathered}
2 n(n+1) \int_{B_{1}} \frac{e^{-t u}-1}{\int_{B_{1}} e^{-t u} d V}=t \int_{\partial B_{1}} 2^{-(n+1)}|\nabla u|^{n+1} d \sigma \\
\text { - } \int_{\partial B_{1}} 2^{-(n+1)}|\nabla u|^{n+1} d \sigma \geq\left(2^{-(n+1)} n^{n+1} / \operatorname{Vol}\left(S^{2 n-1}\right)\right)^{1 / n} \text { (Hölder) }
\end{gathered}
$$

Theorem (L. '13)

\nexists nonpositive solution to (1) in $C^{2}\left(\overline{B_{1}}\right) \cap C^{4}\left(B_{1}\right)$ when $t \geq t^{*}$.
Proof: • Pohožaev identity (compare (3)):

$$
\begin{equation*}
2 n(n+1) \int_{B_{1}} \frac{e^{-t u}-1}{\int_{B_{1}} e^{-t u} d V}=t \int_{\partial B_{1}} 2^{-(n+1)}|\nabla u|^{n+1} d \sigma \tag{2}
\end{equation*}
$$

- $\int_{\partial B_{1}} 2^{-(n+1)}|\nabla u|^{n+1} d \sigma \geq\left(2^{-(n+1)} n^{n+1} / \operatorname{Vol}\left(S^{2 n-1}\right)\right)^{1 / n}$ (Hölder)

Conjecture (Berman-Berndtsson)

All solutions to (1) are a priori radially symmetric.
A priori radially symmetric property holds for real Monge-Ampère equations (Gidas-Ni-Nirenberg, Delanoë).

Fano manifolds

X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.

Fano manifolds

X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.
(1) $\operatorname{dim}_{\mathbb{C}}=1: \mathbb{P}^{1}$.
X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.
(1) $\operatorname{dim}_{\mathbb{C}}=1: \mathbb{P}^{1}$.
(2) $\operatorname{dim}_{\mathbb{C}}=2: \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}$ for $1 \leq k \leq 8$.
X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.
(1) $\operatorname{dim}_{\mathbb{C}}=1: \mathbb{P}^{1}$.
(2) $\operatorname{dim}_{\mathbb{C}}=2: \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}$ for $1 \leq k \leq 8$.
(3) $\operatorname{dim}_{\mathbb{C}}=3$: 105 deformation families
X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.
(1) $\operatorname{dim}_{\mathbb{C}}=1: \mathbb{P}^{1}$.
(2) $\operatorname{dim}_{\mathbb{C}}=2: \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}$ for $1 \leq k \leq 8$.
(3) $\operatorname{dim}_{\mathbb{C}}=3$: 105 deformation families
(9) Hypersurface in \mathbb{P}^{n+1} of degree $\leq n+1$;
X Fano: $c_{1}(X)>0 \Longleftrightarrow \exists$ Kähler metric ω with $\operatorname{Ric}(\omega)>0$.
(1) $\operatorname{dim}_{\mathbb{C}}=1: \mathbb{P}^{1}$.
(2) $\operatorname{dim}_{\mathbb{C}}=2: \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}$ for $1 \leq k \leq 8$.
(3) $\operatorname{dim}_{\mathbb{C}}=3$: 105 deformation families
(9) Hypersurface in \mathbb{P}^{n+1} of degree $\leq n+1$;
(6) Toric Fano manifolds
(1) $\operatorname{dim}_{\mathbb{C}}=2: \mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}, \mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}, 1 \leq k \leq 3$;
(2) $\operatorname{dim}_{\mathbb{C}}=3: 18$ toric Fano threefolds.

Obstructions of KE on Fano manifolds

First obstruction: $\mathrm{KE} \Longrightarrow \operatorname{Aut}(X)$ is reductive (Matsushima).
Example: rule out \mathbb{P}^{2} blown-up one or two points:

- $\operatorname{Aut}\left(\mathbb{P}^{2} \sharp \overline{\mathbb{P}^{2}}\right) \cong\left\{\left(\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right) \in \operatorname{PGL}(3, \mathbb{C})\right\}$.
- $\operatorname{Aut}\left(\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}\right) \cong\left\{\left(\begin{array}{lll}* & 0 & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right) \in \operatorname{PGL}(3, \mathbb{C})\right\}$.

Obstructions of KE on Fano manifolds

First obstruction: $\mathrm{KE} \Longrightarrow \operatorname{Aut}(X)$ is reductive (Matsushima).
Example: rule out \mathbb{P}^{2} blown-up one or two points:

- $\operatorname{Aut}\left(\mathbb{P}^{2} \sharp \overline{\mathbb{P}^{2}}\right) \cong\left\{\left(\begin{array}{lll}* & * & * \\ 0 & * & * \\ 0 & * & *\end{array}\right) \in \operatorname{PGL}(3, \mathbb{C})\right\}$.
- $\operatorname{Aut}\left(\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}\right) \cong\left\{\left(\begin{array}{lll}* & 0 & * \\ 0 & * & * \\ 0 & 0 & *\end{array}\right) \in \operatorname{PGL}(3, \mathbb{C})\right\}$.

In $\operatorname{dim}_{\mathbb{C}} X=2$, this is the only obstruction (Tian '90).
In higher dimensions, there are other obstructions, using
Futaki invariant, energy functionals and K-stability .

Choose a closed positive (1,1)-current $\eta \in 2 \pi c_{1}(X)$. Twisted KE metrics:

$$
\begin{gathered}
\operatorname{Ric}\left(\omega_{\varphi_{t}}\right)=t \omega_{\varphi_{t}}+(1-t) \eta \\
\hat{\mathbb{}} \\
\left(\omega+\sqrt{-1} \partial \bar{\partial}_{t}\right)^{n}=e^{H_{\omega,(1-t) \eta^{-}}-t \varphi_{t}} \omega^{n}
\end{gathered}
$$

Choose a closed positive (1,1)-current $\eta \in 2 \pi c_{1}(X)$. Twisted KE metrics:

$$
\begin{gathered}
\operatorname{Ric}\left(\omega_{\varphi_{t}}\right)=t \omega_{\varphi_{t}}+(1-t) \eta \\
\hat{\mathbb{1}} \\
\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{t}\right)^{n}=e^{H_{\omega,(1-t) \eta^{-}} t \varphi_{t}} \omega^{n}
\end{gathered}
$$

Two basic questions:

- Determine set $\mathcal{S}=\left\{t ;(*)_{t}\right.$ can be solved $\}$.
- Blow-up phenomenon as $t \rightarrow \partial \mathcal{S}$?

Twisted KE metrics and continuity methods

Choose a closed positive (1,1)-current $\eta \in 2 \pi c_{1}(X)$. Twisted KE metrics:

$$
\begin{gathered}
\operatorname{Ric}\left(\omega_{\varphi_{t}}\right)=t \omega_{\varphi_{t}}+(1-t) \eta \\
\hat{\mathbb{1}} \\
\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{t}\right)^{n}=e^{H_{\omega,(1-t) \eta^{-}}-t \varphi_{t}} \omega^{n}
\end{gathered}
$$

Two basic questions:

- Determine set $\mathcal{S}=\left\{t ;(*)_{t}\right.$ can be solved $\}$.
- Blow-up phenomenon as $t \rightarrow \partial \mathcal{S}$?

Two basic twistings:
\& (Aubin) $\eta=\omega$.
© (Donaldson) $\eta=\{D\} \longleftrightarrow$ conical KE $D \sim_{\mathbb{Q}}-K_{X}$: smooth codim $\mathbb{C}=1$ complex submanifold.

$$
\begin{aligned}
& \operatorname{Ric}\left(\omega_{\varphi_{t}}\right)=t \omega_{\varphi_{t}}+(1-t) \omega \quad\left(>t \omega_{\varphi_{t}}\right) \\
& \hat{\mathbb{L}} \\
& \quad\left(\omega+\sqrt{-1} \partial \bar{\partial} \varphi_{t}\right)^{n}=e^{h_{\omega}-t \varphi_{t} \omega^{n}}
\end{aligned}
$$

Theorem (Tian)

$(* *)_{t}$ is solvable for $0<t \ll 1 ; \exists$ obstructions when t is near 1 .
Define $R(X)=\sup \left\{t ;(* *)_{t}\right.$ is solvable $\}$. It is independent of ω :

Theorem (Székelyhidi)

$R(X)=\sup \left\{t ; \exists \eta \in 2 \pi c_{1}(X)\right.$ s.t. $\left.\operatorname{Ric}(\eta)>t \eta\right\}$ (Greatest Ricci).
Question: How to determine $R(X)$? What happens as $t \rightarrow R(X)$?

Aubin's continuity method on toric Fano manifolds

Toric manifolds: $\left(\mathbb{C}^{*}\right)^{n}$ action with dense orbits; determined by lattice polytopes. Fano \leftrightarrow reflexive polytope $\sim O \in \triangle$.

(c) \mathbb{P}^{2}
(d) $B l_{p} \mathbb{P}^{2}$
(e) $\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}$
(f) $\mathbb{P}^{2} \sharp 3 \overline{\mathbb{P}^{2}}$

Aubin's continuity method on toric Fano manifolds

Toric manifolds: $\left(\mathbb{C}^{*}\right)^{n}$ action with dense orbits; determined by lattice polytopes. Fano \leftrightarrow reflexive polytope $\sim O \in \triangle$.

(g) \mathbb{P}^{2}
(h) $B l_{P} \mathbb{P}^{2}$
(i) $\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}$
(j) $\mathbb{P}^{2} \sharp 3 \overline{\mathbb{P}^{2}}$

Theorem (L. '09)

If $P_{c} \neq O$, then $R\left(X_{\triangle}\right)=|\overline{O Q}| /\left|\overline{P_{c} Q}\right|$, where $Q=\overrightarrow{P_{c} O} \cap \partial \triangle$.
Example: $R\left(\mathbb{P}^{2} \sharp \overline{\mathbb{P}^{2}}\right)=6 / 7$ (Székelyhidi); $R\left(\mathbb{P}^{2} \sharp 2 \overline{\mathbb{P}^{2}}\right)=21 / 25$.

Revisit of the proof of Wang-Zhu's result: $P_{c}=O \Rightarrow \exists K E$.
Torus symmetry: $X_{\triangle} \backslash D \cong \mathbb{C}^{n}=\mathbb{R}^{n} \times\left(S^{1}\right)^{n}$ reduces $(* *)_{t}$ to
Real Monge-Ampère: $\operatorname{det}\left(u_{i j}\right)=e^{-(1-t) \tilde{u}-t u}$ on \mathbb{R}^{n}.

Revisit of the proof of Wang-Zhu's result: $P_{c}=O \Rightarrow \exists K E$.
Torus symmetry: $X_{\triangle} \backslash D \cong \mathbb{C}^{n}=\mathbb{R}^{n} \times\left(S^{1}\right)^{n}$ reduces $(* *)_{t}$ to Real Monge-Ampère: $\operatorname{det}\left(u_{i j}\right)=e^{-(1-t) \tilde{u}-t u}$ on \mathbb{R}^{n}.

Key Relation: (Compare with Pohožaev identity (2))

$$
\begin{array}{rlc}
\frac{1}{\operatorname{Vol}(\triangle)} \int_{\mathbb{R}^{n}}(D \tilde{u}) e^{-(1-t) \tilde{u}-t u} d x & = & -\frac{t}{1-t} P_{C} \\
\downarrow & \downarrow \tag{3}\\
Q & = & -\frac{R\left(X_{\Delta}\right)}{1-R\left(X_{\Delta}\right.} P_{C} .
\end{array}
$$

Limit behavior of solutions on toric Fano manifolds

Theorem (L. '10)

As $t \rightarrow R\left(X_{\triangle}\right)$,
(1) $\exists \sigma_{t_{i}} \in\left(\mathbb{C}^{*}\right)^{n}$ s.t. $\sigma_{t_{i}}^{*} \omega_{t_{i}} \rightarrow \omega_{\infty}=\omega+\sqrt{-1} \partial \bar{\partial} \psi_{\infty}$;
(2) $\psi_{\infty} \in L^{\infty}\left(X_{\triangle}\right) \cap C^{\infty}\left(X_{\Delta} \backslash \operatorname{Bs}\left(\mathfrak{L}_{\mathcal{F}}\right)\right)$;
(3) ω_{∞} satisfies a twisted $K E$ equation $\left(0<b_{\alpha}<1\right)$:

$$
\operatorname{Ric}\left(\omega_{\infty}\right)=R\left(X_{\triangle}\right) \omega_{\infty}+\left(1-R\left(X_{\triangle}\right)\right) \sqrt{-1} \partial \bar{\partial} \log \left(\sum_{p_{\alpha}^{\mathcal{F}}} b_{\alpha}\left|s_{\alpha}\right|^{2}\right)
$$

Notations:

- \mathcal{F} : the minimal face containing Q;
- $\left\{p_{\alpha}^{\mathcal{F}}\right\}$: vertex lattice points of \mathcal{F};
- $\mathfrak{L}_{\mathcal{F}}$: the sub-linear system of $\left|-K_{X_{\Delta}}^{-1}\right|$ determined by $\left\{p_{\alpha}^{\mathcal{F}}\right\}$
- $\operatorname{Bs}\left(\mathfrak{L}_{\mathcal{F}}\right)$: base locus of $\mathfrak{L}_{\mathcal{F}}$.

(1) Construct σ_{t} using Wang-Zhu's C^{0}-estimate;
(2) Apply σ_{t} to get regularized equation and the limit equation;
(3) C^{0}-estimate for regularized equation, Harnack inequality;
(4) Partial C^{2}-estimate (Chern-Lu's inequality);
(5) Partial $C^{2, \alpha}$-estimate (Evans-Krylov's estimate).

Conical Kähler metrics: complex 1-dimensional case

Kähler form: $\hat{\omega}=\sqrt{-1} \frac{d z \wedge d \bar{z}}{|z|^{2(1-\beta)}}=\sqrt{-1} \partial \bar{\partial}\left(\beta^{-2}|z|^{2 \beta}\right)$.
D : a smooth complex submanifold $\operatorname{codim}_{\mathbb{C}} D=1$ (a smooth divisor). Locally $D=\left\{z^{1}=0\right\} \leadsto$ local conical model metric:

$$
\hat{\omega}=\sqrt{-1}\left(\frac{d z^{1} \wedge d \bar{z}^{1}}{\left|z^{1}\right|^{2(1-\beta)}}+\sum_{i=2}^{n} d z^{i} \wedge d \bar{z}^{i}\right) .
$$

$\operatorname{Ric}(\hat{\omega})=\sqrt{-1} \partial \bar{\partial} \log \left|z^{1}\right|^{2(1-\beta)}=(1-\beta) 2 \pi \delta_{\left\{z^{1}=0\right\}} d x^{1} \wedge d y^{1}$.
D : a smooth complex submanifold $\operatorname{codim}_{\mathbb{C}} D=1$ (a smooth divisor). Locally $D=\left\{z^{1}=0\right\} \leadsto$ local conical model metric:

$$
\hat{\omega}=\sqrt{-1}\left(\frac{d z^{1} \wedge d \bar{z}^{1}}{\left|z^{1}\right|^{2(1-\beta)}}+\sum_{i=2}^{n} d z^{i} \wedge d \bar{z}^{i}\right)
$$

$\operatorname{Ric}(\hat{\omega})=\sqrt{-1} \partial \bar{\partial} \log \left|z^{1}\right|^{2(1-\beta)}=(1-\beta) 2 \pi \delta_{\left\{z^{1}=0\right\}} d x^{1} \wedge d y^{1}$.
Definition (Conical KE on $(X,(1-\beta) D)$ with cone angle $2 \pi \beta$)

$$
\operatorname{Ric}(\omega)=\mu \omega+(1-\beta) 2 \pi\{D\}
$$

Cone angle $=2 \pi \beta$.

Conical continuity method

Fix a smooth divisor $D \sim-\lambda K_{X}$ with $0<\lambda \in \mathbb{Q}$.

$$
\begin{gathered}
\operatorname{Ric}\left(\omega_{\varphi}\right)=t(\beta) \omega_{\varphi}+(1-\beta) 2 \pi\{D\} \\
\mathfrak{\imath} \\
(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=e^{h_{\omega}-t(\beta) \varphi} \frac{\omega^{n}}{\|s\|^{2(1-\beta)}}
\end{gathered}
$$

Fix a smooth divisor $D \sim-\lambda K_{X}$ with $0<\lambda \in \mathbb{Q}$.

$$
\begin{gathered}
\operatorname{Ric}\left(\omega_{\varphi}\right)=t(\beta) \omega_{\varphi}+(1-\beta) 2 \pi\{D\} \\
\Uparrow \\
(\omega+\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=e^{h_{\omega}-t(\beta) \varphi} \frac{\omega^{n}}{\|s\|^{2(1-\beta)}} \\
\\
\Downarrow
\end{gathered}
$$

Notations:

- $t(\beta)=1-(1-\beta) \lambda$. (cohomological condition)
- $\hat{\omega}=\omega+\epsilon \sqrt{-1} \partial \bar{\partial}\|s\|^{2 \beta}(0<\epsilon \ll 1)$.

Existence:

- Linear theory by Donaldson: $C^{2, \alpha, \beta}(X, D)$ space and openness
- (log-K-energy is proper) Apriori estimates and closedness
- C^{0}-estimate: Berman, Jeffres-Mazzeo-Rubinstein (JMR)
- C^{2}-estimate: JMR-L. ('11), CDS
- $C^{2, \alpha, \beta}$-estimate: JMR-Tian, CDS.

Existence:

- Linear theory by Donaldson: $C^{2, \alpha, \beta}(X, D)$ space and openness
- (log-K-energy is proper) Apriori estimates and closedness
- C^{0}-estimate: Berman, Jeffres-Mazzeo-Rubinstein (JMR)
- C^{2}-estimate: JMR-L. ('11), CDS
- $C^{2, \alpha, \beta}$-estimate: JMR-Tian, CDS.

Obstruction:
(1) log-Futaki invariant vanishes: Donaldson
(2) log-K-stability: Berman, L. ('11), L.-Sun ('12)
(3) $\operatorname{Aut}(X, D)$ is reductive: CDS (Berndtsson and BBEGZ)

An example

$$
X=\mathbb{P}^{2}, D=\left\{Z_{0}^{2}+Z_{1}^{2}+Z_{2}^{2}=0\right\} .
$$

Theorem (L.-Sun, '12)

\exists a conical $K E$ on $\left(\mathbb{P}^{2},(1-\beta) D\right)$ if and only if $2 \pi \beta \in(\pi / 2,2 \pi]$.

An example

$$
X=\mathbb{P}^{2}, D=\left\{Z_{0}^{2}+Z_{1}^{2}+Z_{2}^{2}=0\right\} .
$$

Theorem (L.-Sun, '12)

\exists a conical $K E$ on $\left(\mathbb{P}^{2},(1-\beta) D\right)$ if and only if $2 \pi \beta \in(\pi / 2,2 \pi]$.

$$
\left(\mathbb{P}^{2},(1-\beta) D\right)
$$

Corollary (Question by Gauntlett-Martelli-Sparks-Yau, $\beta=1 / 3$)

\exists complete conical Calabi-Yau metric on 3-dimensional \mathbb{A}_{2} singularity: $\left\{z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{3}=0\right\} \subset \mathbb{C}^{4}$.
A_{k-1} singularity: $\left\{z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{k}=0\right\} \longleftrightarrow \beta=1 / k$ So \nexists such metric on 3 -dim A_{k-1} if $k \geq 4 \longleftrightarrow \beta \leq 1 / 4$.

Visualization: $\left(\mathbb{P}^{2},(1-\beta) D\right) \rightarrow \mathbb{P}(1,1,4)+\mathrm{EH} / \mathbb{Z}_{2}$

(a) $(t, f=a b)$

(b) $(t, a / b)$

(c) $\left(t, c^{2}\right)$

Fig. 5 Convergence of data

Fig. 6 Bubbling

Existence of conical Kähler-Einstein metric §
 log-Ding-energy is proper (strong Moser-Trudinger-Onofri inequality)

(k) Proper

(I) Bounded $\geq-C$

(m) Unbounded

Figure: Stability from functionals

Conformal case: Normalized Einstein-Hilbert (Sobolev inequality)
log-Ding-energy (recall that $t(\beta)=1-(1-\beta) \lambda)$:

$$
F_{\beta}\left(\omega_{\varphi}\right):=F_{\omega}^{0}(\varphi)-\log \left(\frac{1}{V} \int_{X} \frac{e^{h_{\omega}-t(\beta) \varphi} \omega^{n}}{\|s\|^{2(1-\beta)}}\right)
$$

log-Ding-energy (recall that $t(\beta)=1-(1-\beta) \lambda)$:

$$
F_{\beta}\left(\omega_{\varphi}\right):=F_{\omega}^{0}(\varphi)-\log \left(\frac{1}{V} \int_{X} \frac{e^{h_{\omega}-t(\beta) \varphi} \omega^{n}}{\|s\|^{2(1-\beta)}}\right)
$$

Monge-Ampère energy:

$$
\delta F_{\omega}^{0}(\varphi)=-\int_{X}(\delta \varphi) \omega_{\varphi}^{n}
$$

log-Ding-energy (recall that $t(\beta)=1-(1-\beta) \lambda)$:

$$
F_{\beta}\left(\omega_{\varphi}\right):=F_{\omega}^{0}(\varphi)-\log \left(\frac{1}{V} \int_{X} \frac{e^{h_{\omega}-t(\beta) \varphi} \omega^{n}}{\|s\|^{2(1-\beta)}}\right)
$$

Monge-Ampère energy: $\quad \delta F_{\omega}^{0}(\varphi)=-\int_{X}(\delta \varphi) \omega_{\varphi}^{n}$.
Observation: Concave in β (by Hölder's inequality):

$$
\beta_{t}=t \beta_{1}+(1-t) \beta_{2} \Longrightarrow F_{\beta_{t}} \geq t F_{\beta_{1}}+(1-t) F_{\beta_{2}}
$$

log-Ding-energy (recall that $t(\beta)=1-(1-\beta) \lambda)$:

$$
F_{\beta}\left(\omega_{\varphi}\right):=F_{\omega}^{0}(\varphi)-\log \left(\frac{1}{V} \int_{X} \frac{e^{h_{\omega}-t(\beta) \varphi} \omega^{n}}{\|s\|^{2(1-\beta)}}\right)
$$

Monge-Ampère energy: $\quad \delta F_{\omega}^{0}(\varphi)=-\int_{X}(\delta \varphi) \omega_{\varphi}^{n}$.
Observation: Concave in β (by Hölder's inequality):

$$
\beta_{t}=t \beta_{1}+(1-t) \beta_{2} \Longrightarrow F_{\beta_{t}} \geq t F_{\beta_{1}}+(1-t) F_{\beta_{2}}
$$

Consequence: " F_{β} proper at $\beta_{1}=2 \pi$ " + "bounded at $\beta_{2}=2 \pi / 4$ " \Longrightarrow proper for $2 \pi \beta \in(\pi / 2,2 \pi]$.

Proof III: Degeneration

Theorem (L.-Sun '12, L. '13)

- $(X, D) \stackrel{\mathbb{C}^{*}}{\sim}\left(\mathcal{X}_{0}, \mathcal{D}_{0}\right)$ over $B_{1}(0)$
$\Longrightarrow F_{\beta}$ bounded from below
- $\left(\mathcal{X}_{0},(1-\beta) \mathcal{D}_{0}\right)$ conical KE

Theorem (L.-Sun '12, L. '13)

- $(X, D) \stackrel{\mathbb{C}^{*}}{\sim}\left(\mathcal{X}_{0}, \mathcal{D}_{0}\right)$ over $B_{1}(0)$ $\Longrightarrow F_{\beta}$ bounded from below
- $\left(\mathcal{X}_{0},(1-\beta) \mathcal{D}_{0}\right)$ conical KE
(1) Embed into \mathbb{P}^{N} \& use Fubini-Study as reference metrics
(2) Construct geodesic ray starting φ_{t} from φ inside $\mathcal{K}_{\omega}(X)$.
(3) Subharmonicity of $\mathcal{F}_{\beta}^{\mathcal{X}_{t}}\left(\varphi_{t}\right)$ as function of $t \in B_{1}(0)$
- Subharmonicity away from 0 (Berndtsson)
- Continuity of energy under degeneration ([Li '13])
((Boundedness on the central fibre (Ding-Tian, BBEGZ)

Completion of proof and generalization

Nonexistence when $\beta \leq 1 / 4$: Two ways:
(1) Lichnerowicz obstruction (Gauntlett-Martelli-Sparks-Yau)
(2) log-slope-stability (Ross-Thomas, L.-Sun ('12))

Completion of proof and generalization

Nonexistence when $\beta \leq 1 / 4$: Two ways:
(1) Lichnerowicz obstruction (Gauntlett-Martelli-Sparks-Yau)
(2) log-slope-stability (Ross-Thomas, L.-Sun ('12))

Generalization: X Fano manifold, $D \sim \lambda K_{X}^{-1}$ with $0<\lambda<1$. Adjunction: $K_{D}^{-1}=\left.(1-\lambda) K_{X}^{-1}\right|_{D} \Longrightarrow D$ is also Fano.
Denote $\beta_{\mathrm{inf}}=\frac{\lambda^{-1}-1}{n}\left(\right.$ example $\left.\beta_{\mathrm{inf}}=\frac{\left((2 / 3)^{-1}-1\right.}{2}=1 / 4\right)$.

Proposition (L. '13)

Assume D and X both $K E .(X,(1-\beta) D)$ conical $K E$ iff $\beta \in\left(\beta_{\mathrm{inf}}, 1\right]$.

Convergence and bubbling

$$
(X,(1-\beta) D) \xrightarrow{\beta \rightarrow \beta_{\text {inf }}} \bar{C}\left(D, N_{D}\right)+\{\text { Tian-Yau metric on } X \backslash D\} .
$$

Convergence and bubbling

$(X,(1-\beta) D) \xrightarrow{\beta \rightarrow \beta_{\text {inf }}} \bar{C}\left(D, N_{D}\right)+\{$ Tian-Yau metric on $X \backslash D\}$.

Figure : Asymptotically conical Kähler manifold and compactification

Tian-Yau metric \leftrightarrow Asymptotically Conical Calabi-Yau

- Asymptotical rate (Cheeger-Tian, Conlon-Hein, L. '14)
- Compactification (L. 14)

Algebraic structure on Gromov-Hausdorff limit

$\left\{\left(X_{i}, \omega_{i}\right)\right\}$: Fano Kähler manifolds. $\operatorname{Ric}\left(\omega_{i}\right) \geq t \omega_{i}(t>0)$. Then:

- $\operatorname{Diam}\left(X_{i}, \omega_{i}\right) \leq D=D(n, t)$ (Myers Theorem)
- $\operatorname{Vol}\left(B_{r}(x)\right) / \operatorname{Vol}\left(B_{r}(\underline{0})\right) \searrow$ as $r \nearrow$ (Bishop-Gromov)

Gromov compactness $\Longrightarrow\left(X_{i}, \omega_{i}\right) \xrightarrow{G H}\left(X_{\infty}, \omega_{\infty}\right)$.

Algebraic structure on Gromov-Hausdorff limit

$\left\{\left(X_{i}, \omega_{i}\right)\right\}$: Fano Kähler manifolds. $\operatorname{Ric}\left(\omega_{i}\right) \geq t \omega_{i}(t>0)$. Then:

- $\operatorname{Diam}\left(X_{i}, \omega_{i}\right) \leq D=D(n, t)$ (Myers Theorem)
- $\operatorname{Vol}\left(B_{r}(x)\right) / \operatorname{Vol}\left(B_{r}(\underline{0})\right) \searrow$ as $r \nearrow$ (Bishop-Gromov)

Gromov compactness $\Longrightarrow\left(X_{i}, \omega_{i}\right) \xrightarrow{G H}\left(X_{\infty}, \omega_{\infty}\right)$.

Proposition (L. '12)

Tian's Partial C^{0}-estimate \Longrightarrow ring of holomorphic sections with uniform L^{2}-norms is effectively finitely generated.

Proof: Skoda's theorem on finite generation and Siu's global version.

Corollary (L. '12)

Tian's Partial C^{0}-estimate $\Longrightarrow X_{\infty}$ has an algebraic structure.
There are applications of partial C^{0}-estimate to moduli problem.

Yau-Tian-Donaldson conjecture

Conjecture (Yau-Tian-Donaldson)

Fano manifold X has $K E \Longleftrightarrow\left(X,-K_{X}\right)$ is K-polystable.
Recently completed by Chen-Donaldson-Sun, Tian independently. Idea of Proof:

- Introduce the divisor $D \sim-m K_{X}$. Consider conical KE on $(X,(1-\beta) D)$.
- Varying β to show $\hat{\omega}_{\beta}$ changes continuously. β^{*} : critical angle
- Proving log version of partial C^{0}-estimates to show that the limit $X_{\infty}\left(\right.$ as $\left.\beta \rightarrow \beta^{*}\right)$ is a \mathbb{Q}-Fano variety.
- If $X_{\infty} \neq X$, then construct some special degeneration to contradict K-polystability.

Q-Fano degenerations

$(\mathcal{X}, \mathcal{L}) \rightarrow C$: flat family of polarized projective varieties.
$\left(\mathcal{X}^{*}, \mathcal{L}^{*}\right) \cong\left(\mathcal{X}^{*}, K_{\mathcal{X}^{*} / C^{*}}^{-1}\right) \rightarrow C^{*}$: family of smooth Fano manifolds. The special fiber \mathcal{X}_{0} can be very bad.

Q-Fano degenerations

$(\mathcal{X}, \mathcal{L}) \rightarrow C$: flat family of polarized projective varieties.
$\left(\mathcal{X}^{*}, \mathcal{L}^{*}\right) \cong\left(\mathcal{X}^{*}, K_{\mathcal{X}^{*} / \mathcal{C}^{*}}^{-1}\right) \rightarrow C^{*}$: family of smooth Fano manifolds. The special fiber \mathcal{X}_{0} can be very bad.

Theorem (L.-Xu, '12)

There exists a \mathbb{Q}-Fano filling after base change:

Q-Fano degenerations

$(\mathcal{X}, \mathcal{L}) \rightarrow C$: flat family of polarized projective varieties.
$\left(\mathcal{X}^{*}, \mathcal{L}^{*}\right) \cong\left(\mathcal{X}^{*}, K_{\mathcal{X}}{ }^{-1} / C^{*}\right) \rightarrow C^{*}$: family of smooth Fano manifolds.
The special fiber \mathcal{X}_{0} can be very bad.

Theorem (L.-Xu, '12)

There exists a \mathbb{Q}-Fano filling after base change:

Moreover, $\operatorname{CM}\left(\mathcal{X}^{s} / C^{\prime},-K_{\mathcal{X}^{s}}\right) \leq \operatorname{deg}(\phi) \cdot \operatorname{CM}(\mathcal{X} / C, \mathcal{L})$.

- Use Minimal Model Program to simplify the family
- Keep track of the CM-degree in the process

Application: Confirmation of Tian's conjecture on the test of K-polystability.

Uniqueness of Filling

Compare 2 flat families of \mathbb{Q}-Fano with isomorphic generic fibres:

Question of separatednes: $\mathcal{X} \cong \mathcal{X}^{\prime}$?

Uniqueness of Filling

Compare 2 flat families of \mathbb{Q}-Fano with isomorphic generic fibres:

Question of separatednes: $\mathcal{X} \cong \mathcal{X}^{\prime}$? Answer: In general fails:

- Smooth $\operatorname{dim}_{\mathbb{C}}=3$: Mukai-Umemura's example.
- Singular $\operatorname{dim}_{\mathbb{C}}=2$: infinitely many singular del-Pezzo degenerations of \mathbb{P}^{2} (Hacking-Prokhorov).

Uniqueness of Filling

Compare 2 flat families of \mathbb{Q}-Fano with isomorphic generic fibres:

Question of separatednes: $\mathcal{X} \cong \mathcal{X}^{\prime}$? Answer: In general fails:

- Smooth $\operatorname{dim}_{\mathbb{C}}=3$: Mukai-Umemura's example.
- Singular $\operatorname{dim}_{\mathbb{C}}=2$: infinitely many singular del-Pezzo degenerations of \mathbb{P}^{2} (Hacking-Prokhorov).

Theorem (L.-Wang-Xu, '14)

Separatedness holds for families of smoothable K-polystable \mathbb{Q}-Fano varieties

Proper algebraic moduli space
\mathcal{M} : moduli space of K-polystable smooth Fano manifolds.
\mathcal{M} : moduli space of K-polystable smooth Fano manifolds. $\overline{\mathcal{M}}$: "parametrize" all smoothable Kähler-Einstein Fano varieties.
\mathcal{M} : moduli space of K-polystable smooth Fano manifolds. $\overline{\mathcal{M}}$: "parametrize" all smoothable Kähler-Einstein Fano varieties.

Nice algebraic structure of $\overline{\mathcal{M}} \longleftrightarrow$ Moduli problem:

- Properness/Boundedness: Donaldson-Sun, Tian
- Openness: L.-Wang-Xu ('14)
- Separatedness: L.-Wang-Xu ('14)

Proper algebraic moduli space

\mathcal{M} : moduli space of K-polystable smooth Fano manifolds.
$\overline{\mathcal{M}}$: "parametrize" all smoothable Kähler-Einstein Fano varieties.
Nice algebraic structure of $\overline{\mathcal{M}} \longleftrightarrow$ Moduli problem:

- Properness/Boundedness: Donaldson-Sun, Tian
- Openness: L.-Wang-Xu ('14)
- Separatedness: L.-Wang-Xu ('14)

Theorem (L.-Wang-Xu, '14)

\exists proper algebraic moduli space $\overline{\mathcal{M}}$ of K-polystable, smoothable, Fano varieties.

- Locally K-polystable slice $=$ GIT moduli
- Gluing: $\overline{\mathcal{M}}=\bigcup_{i=1}^{\prime}\left(\mathcal{U}_{z_{i}} / / G_{z_{i}}\right)$.

Projectivity of \mathcal{M}

Theorem (L.-Wang-Xu, '15)

\mathcal{M} is quasi-projective.

Proof.

- Existence (extension) of Weil-Petersson positive $(1,1)$-current with continuous potentials (partial $C^{0} \&$ explicit calculations).
- Existence of continuous metric on $C M$-line bundle over $\mathcal{U}_{z_{i}}^{\mathrm{kps}}$.
- Descend CM line bundle and metrics to $\mathcal{U}_{z_{i}} / / G_{z_{i}}$ and glue
- Quasi-projective criterion $(\longleftrightarrow$ Schumacher-Tsuji).

Projectivity of \mathcal{M}

Theorem (L.-Wang-Xu, '15)

\mathcal{M} is quasi-projective.

Proof.

- Existence (extension) of Weil-Petersson positive $(1,1)$-current with continuous potentials (partial $C^{0} \&$ explicit calculations).
- Existence of continuous metric on $C M$-line bundle over $\mathcal{U}_{z_{i}}^{\mathrm{kps}}$.
- Descend CM line bundle and metrics to $\mathcal{U}_{z_{i}} / / G_{z_{i}}$ and glue
- Quasi-projective criterion $(\longleftrightarrow$ Schumacher-Tsuji).

Still open: Projectivity of $\overline{\mathcal{M}}$

Projectivity of \mathcal{M}

Theorem (L.-Wang-Xu, '15)

\mathcal{M} is quasi-projective.

Proof.

- Existence (extension) of Weil-Petersson positive $(1,1)$-current with continuous potentials (partial $C^{0} \&$ explicit calculations).
- Existence of continuous metric on $C M$-line bundle over $\mathcal{U}_{z_{i}}^{\mathrm{kps}}$.
- Descend CM line bundle and metrics to $\mathcal{U}_{z_{i}} / / G_{z_{i}}$ and glue
- Quasi-projective criterion $(\longleftrightarrow$ Schumacher-Tsuji).

Still open: Projectivity of $\overline{\mathcal{M}} \longleftrightarrow C M$-line bundle ample.

Projectivity of \mathcal{M}

Theorem (L.-Wang-Xu, '15)

\mathcal{M} is quasi-projective.

Proof.

- Existence (extension) of Weil-Petersson positive $(1,1)$-current with continuous potentials (partial $C^{0} \&$ explicit calculations).
- Existence of continuous metric on $C M$-line bundle over $\mathcal{U}_{z_{i}}^{\mathrm{kps}}$.
- Descend CM line bundle and metrics to $\mathcal{U}_{z_{i}} / / G_{z_{i}}$ and glue
- Quasi-projective criterion $(\longleftrightarrow$ Schumacher-Tsuji).

Still open: Projectivity of $\overline{\mathcal{M}} \longleftrightarrow C M$-line bundle ample. Partial answer: $C M$-line bundle is nef and big over $\overline{\mathcal{M}}$.
X : Fano manifold; ω : Kähler metric in $2 \pi c_{1}(X)$; h : Hermitian metric on K_{X}^{-1} satisfying $-\sqrt{-1} \partial \bar{\partial} \log h=\omega$.
X : Fano manifold; ω : Kähler metric in $2 \pi c_{1}(X)$;
h : Hermitian metric on K_{X}^{-1} satisfying $-\sqrt{-1} \partial \bar{\partial} \log h=\omega$.
$H^{0}\left(X, K_{X}^{-k}\right)$: vector space of all holomorphic sections of K_{X}^{-k}. $\operatorname{dim} H^{0}\left(X, K_{X}^{-k}\right)=N_{k}$. Orthonormal basis $\left\{s_{i}\right\}_{i=1}^{N_{k}}$ under the L^{2}-inner product: $\left\langle s, s^{\prime}\right\rangle_{L^{2}}=\int_{X}\left\langle s, s^{\prime}\right\rangle_{h^{\otimes k}} \omega^{n}$.
X : Fano manifold; ω : Kähler metric in $2 \pi c_{1}(X)$;
h : Hermitian metric on K_{X}^{-1} satisfying $-\sqrt{-1} \partial \bar{\partial} \log h=\omega$.
$H^{0}\left(X, K_{X}^{-k}\right)$: vector space of all holomorphic sections of K_{X}^{-k}. $\operatorname{dim} H^{0}\left(X, K_{X}^{-k}\right)=N_{k}$. Orthonormal basis $\left\{s_{i}\right\}_{i=1}^{N_{k}}$ under the L^{2}-inner product: $\left\langle s, s^{\prime}\right\rangle_{L^{2}}=\int_{X}\left\langle s, s^{\prime}\right\rangle_{h^{\otimes k}} \omega^{n}$.
Bergman kernel: $\quad \rho_{k}(z)=\sum_{i=1}^{N_{k}}\left|s_{i}\right|_{h^{\otimes k}}^{2}(z)$
X : Fano manifold; ω : Kähler metric in $2 \pi c_{1}(X)$;
h : Hermitian metric on K_{X}^{-1} satisfying $-\sqrt{-1} \partial \bar{\partial} \log h=\omega$.
$H^{0}\left(X, K_{X}^{-k}\right)$: vector space of all holomorphic sections of K_{X}^{-k}. $\operatorname{dim} H^{0}\left(X, K_{X}^{-k}\right)=N_{k}$. Orthonormal basis $\left\{s_{i}\right\}_{i=1}^{N_{k}}$ under the L^{2}-inner product: $\left\langle s, s^{\prime}\right\rangle_{L^{2}}=\int_{X}\left\langle s, s^{\prime}\right\rangle_{h^{\otimes k}} \omega^{n}$.
Bergman kernel: $\quad \rho_{k}(z)=\sum_{i=1}^{N_{k}}\left|s_{i}\right|_{h^{\otimes k}}^{2}(z)$

- $\rho_{k}=\rho_{k}(\omega)$ depends only on ω.
- $\rho_{k}(\omega)=\frac{k^{n}}{n!}+\frac{R(\omega)}{2(n-1)!} k^{n-1}+O\left(k^{n-2}\right)$. (Tian, Zelditch, Lu) where $R(\omega)=g^{i \bar{j}} R_{i j}$: scalar curvature of ω.

Conjecture (Tian's partial C^{0}-estimates)

$\forall t>0, \exists k=k(n, t)$ and $\delta=\delta(n, t)>0$ s.t. if $\operatorname{Ric}(\omega) \geq t \omega$, then $\rho_{k} \geq \delta$.

Tian's Partial C^{0}-estimate

Conjecture (Tian's partial C^{0}-estimates)

$\forall t>0, \exists k=k(n, t)$ and $\delta=\delta(n, t)>0$ s.t. if $\operatorname{Ric}(\omega) \geq t \omega$, then $\rho_{k} \geq \delta$.

Tian's partial C^{0}-estimates in various settings recently were proved by groups of people (Donaldson-Sun, Tian, Chen-Donaldson-Sun, Tian-Zhang, Jiang, Székelyhidi, Chen-Wang)

Tian's Partial C^{0}-estimate

Conjecture (Tian's partial C^{0}-estimates)

$\forall t>0, \exists k=k(n, t)$ and $\delta=\delta(n, t)>0$ s.t. if $\operatorname{Ric}(\omega) \geq t \omega$, then $\rho_{k} \geq \delta$.

Tian's partial C^{0}-estimates in various settings recently were proved by groups of people (Donaldson-Sun, Tian, Chen-Donaldson-Sun, Tian-Zhang, Jiang, Székelyhidi, Chen-Wang) It plays a central role in the recent resolution (by Chen-Donaldson-Sun and Tian) of the following conjecture:

Conjecture-Theorem (Yau-Tian-Donaldson conjecture (YTD))

X admits a $K E$ if and only if $\left(X, K_{X}^{-1}\right)$ is K-polystable.
" only if" part: by Tian, and Berman.

Theorem (Li '12)

If $\rho_{k}>0$, then for any $m \geq(n+2) k$, if we let $I=\left\lfloor\frac{m}{k}\right\rfloor-n-1$, then

$$
u=\sum_{\alpha_{1}, \ldots, \alpha_{l}=1}^{N_{k}} u_{\alpha_{1}, \ldots, \alpha_{l}}^{(I)} s_{\alpha_{1}} \ldots s_{\alpha_{l}}
$$

with $u_{\alpha_{1}, \ldots, \alpha_{l}}^{(I)} \in H^{0}(X,(m-I k) L)$ and

$$
\left\|u_{\alpha_{1}, \ldots, \alpha_{l}}^{(I)}\right\|_{L^{2}}^{2} \leq \frac{(n+l)!}{l!n!} \frac{\left(\sup \rho_{k}\right)^{n+1}}{\left(\inf \rho_{k}\right)^{n+l+1}}\|u\|_{L^{2}}^{2}
$$

Tian's partial C^{0}-estimate $\Longrightarrow \quad X_{\infty}=\operatorname{Proj} \bigoplus_{m=0}^{+\infty} H_{L^{2}}^{0}\left(X_{\infty}, L_{\infty}^{m}\right)$.

Uniformization for marked sphere

Global setting: Σ Riemann surface; Euler number $\chi(\Sigma)=2-2 g(\Sigma)$. Singularities: $\left\{p_{i}\right\}_{i=1}^{r} . \hat{\omega}$ conical metric with cone angle $2 \pi \beta_{i}$ at p_{i}.
Gauss-Bonnet: $\chi(\Sigma)+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\Sigma} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.

Uniformization for marked sphere

Global setting: Σ Riemann surface; Euler number $\chi(\Sigma)=2-2 g(\Sigma)$. Singularities: $\left\{p_{i}\right\}_{i=1}^{r} . \hat{\omega}$ conical metric with cone angle $2 \pi \beta_{i}$ at p_{i}.
Gauss-Bonnet: $\chi(\Sigma)+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\Sigma} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.
$\Sigma=\mathbb{S}^{2} . D=\sum_{i=1}^{r} \alpha_{i} p_{i}, \alpha_{i}=1-\beta_{i}$ (cone defect).
$\chi\left(\mathbb{S}^{2}, D\right):=2+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.

Global setting: Σ Riemann surface; Euler number $\chi(\Sigma)=2-2 g(\Sigma)$. Singularities: $\left\{p_{i}\right\}_{i=1}^{r} . \hat{\omega}$ conical metric with cone angle $2 \pi \beta_{i}$ at p_{i}.
Gauss-Bonnet: $\chi(\Sigma)+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\Sigma} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.
$\Sigma=\mathbb{S}^{2} . D=\sum_{i=1}^{r} \alpha_{i} p_{i}, \alpha_{i}=1-\beta_{i}$ (cone defect).
$\chi\left(\mathbb{S}^{2}, D\right):=2+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.

- $\chi\left(\mathbb{S}^{2}, D\right)<0: \exists \omega$ such that $S(\omega) \equiv-1$.
- $\chi\left(\mathbb{S}^{2}, D\right)=0: \exists \omega$ such that $S(\omega) \equiv 0$.
- $\chi\left(\mathbb{S}^{2}, D\right)>0$: Troyanov, McOwen, Luo-Tian:

$$
\exists \omega \text { s.t. } S(\omega) \equiv 1 \Longleftrightarrow \alpha_{i}<\sum_{j \neq i} \alpha_{j}, \forall i=1, \ldots, r ;
$$

Global setting: Σ Riemann surface; Euler number $\chi(\Sigma)=2-2 g(\Sigma)$. Singularities: $\left\{p_{i}\right\}_{i=1}^{r} . \hat{\omega}$ conical metric with cone angle $2 \pi \beta_{i}$ at p_{i}.
Gauss-Bonnet: $\chi(\Sigma)+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\Sigma} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.
$\Sigma=\mathbb{S}^{2} . D=\sum_{i=1}^{r} \alpha_{i} p_{i}, \alpha_{i}=1-\beta_{i}$ (cone defect).
$\chi\left(\mathbb{S}^{2}, D\right):=2+\sum_{i=1}^{r}\left(1-\beta_{i}\right)=\frac{1}{2 \pi} \int_{\mathbb{S}^{2}} S(\hat{\omega}) \operatorname{dvol}_{\hat{\omega}}$.

- $\chi\left(\mathbb{S}^{2}, D\right)<0: \exists \omega$ such that $S(\omega) \equiv-1$.
- $\chi\left(\mathbb{S}^{2}, D\right)=0: \exists \omega$ such that $S(\omega) \equiv 0$.
- $\chi\left(\mathbb{S}^{2}, D\right)>0$: Troyanov, McOwen, Luo-Tian:

$$
\exists \omega \text { s.t. } S(\omega) \equiv 1 \Longleftrightarrow \alpha_{i}<\sum_{j \neq i} \alpha_{j}, \forall i=1, \ldots, r ;
$$

$\Longleftrightarrow\left(\mathbb{S}^{2}, D\right)$ is log-K-stable.
v : a holomorphic vector field. Recall: $\operatorname{Ric}(\omega)-\omega=\sqrt{-1} \partial \bar{\partial} h_{\omega}$.
Futaki invariant: $\operatorname{Fut}_{X}(v)=\int_{X} v\left(h_{\omega}\right) \omega^{n}$.

Theorem (Futaki)

- Fut $_{X}(v)$ is independent of $\omega \in 2 \pi c_{1}(X)$.
- $K E \Longrightarrow$ Fut $x \equiv 0$.

Interpretation: $\quad\left(\bar{\partial}-\sqrt{-1} i_{v}\right)\left(\omega+\operatorname{div}_{\Omega}(v)\right)=0 \quad\left(\Omega=e^{h_{\omega}} \omega^{n}\right)$

$$
\operatorname{Fut}_{X}(v)=\frac{1}{n+1} \int_{X}\left(\omega+\operatorname{div}_{\Omega} v\right)^{n+1}
$$

Equivariant cohomology \Rightarrow localization formula.

Test configuration (TC): \mathbb{C}^{*}-equivariant degeneration of Fano manifolds over \mathbb{C} :

$$
\begin{aligned}
&\left(X \times \mathbb{C}^{*},-K_{X}\right) \cong\left(\mathcal{X}^{*},\left.\mathcal{L}\right|_{\mathcal{X}^{*}}\right) \longleftrightarrow(\mathcal{X}, \mathcal{L}) \longleftrightarrow\left(\mathcal{X},\left.\mathcal{L}\right|_{\mathcal{X}_{0}}\right) \\
& \mathbb{C}^{*} \longrightarrow \downarrow \\
& \downarrow \\
& \mathbb{C} \longleftarrow
\end{aligned}
$$

Special test configuration (STC) \mathcal{X}_{0} irreducible normal Fano variety, \mathbb{Q}-factorial, Kawamata-log-terminal (klt); $\mathcal{L} \sim_{\mathbb{C}}-K_{\mathcal{X}}$.
\mathbb{C}^{*}-action \leadsto holomorphic vector field v on \mathcal{X}_{0}. For STC, define:

$$
\operatorname{Fut}(\mathcal{X}, \mathcal{L})=-\operatorname{Fut}_{\mathcal{X}_{0}}(v)
$$

Futaki invariant for general TC as CM weight:

> Definition (CM line bundle, [Tian, Fujiki-Schumacher])
> $L_{C M}=\operatorname{det}\left(\pi_{1}\left[n\left(\mathcal{L}-\mathcal{L}^{-1}\right)^{n+1}-(n+1)\left(K_{\mathcal{X}}^{-1}-K_{\mathcal{X}}\right) \cdot\left(\mathcal{L}-\mathcal{L}^{-1}\right)^{n}\right]\right)$.

CM weight: $\quad \mathrm{CM}(\mathcal{X}, \mathcal{L})=n \overline{\mathcal{L}}^{n+1}+(n+1) K_{\overline{\mathcal{X}} / \mathbb{P}^{1}} \cdot \overline{\mathcal{L}}^{n}$.

Futaki invariant for general TC as CM weight:

Definition (CM line bundle, [Tian, Fujiki-Schumacher])

$L_{C M}=\operatorname{det}\left(\pi!\left[n\left(\mathcal{L}-\mathcal{L}^{-1}\right)^{n+1}-(n+1)\left(K_{\mathcal{X}}^{-1}-K_{\mathcal{X}}\right) \cdot\left(\mathcal{L}-\mathcal{L}^{-1}\right)^{n}\right]\right)$.

CM weight: $\quad \operatorname{CM}(\mathcal{X}, \mathcal{L})=n \overline{\mathcal{L}}^{n+1}+(n+1) K_{\overline{\mathcal{X}} / \mathbb{P}^{1}} \cdot \overline{\mathcal{L}}^{n}$.

Definition-Theorem (Donaldson, Paul-Tian, Wang)

For any test configuration $\mathcal{X}, \operatorname{Fut}(\mathcal{X}, \mathcal{L})=\operatorname{CM}(\mathcal{X}, \mathcal{L})$.

Futaki invariant for general TC as CM weight:

Definition (CM line bundle, [Tian, Fujiki-Schumacher])

$L_{C M}=\operatorname{det}\left(\pi_{!}\left[n\left(\mathcal{L}-\mathcal{L}^{-1}\right)^{n+1}-(n+1)\left(K_{\mathcal{X}}^{-1}-K_{\mathcal{X}}\right) \cdot\left(\mathcal{L}-\mathcal{L}^{-1}\right)^{n}\right]\right)$.

CM weight: $\quad \operatorname{CM}(\mathcal{X}, \mathcal{L})=n \overline{\mathcal{L}}^{n+1}+(n+1) K_{\overline{\mathcal{X}} / \mathbb{P}^{1}} \cdot \overline{\mathcal{L}}^{n}$.

Definition-Theorem (Donaldson, Paul-Tian, Wang)

For any test configuration $\mathcal{X}, \operatorname{Fut}(\mathcal{X}, \mathcal{L})=\operatorname{CM}(\mathcal{X}, \mathcal{L})$.
Special test configuration \leadsto simplifications:

$$
\begin{gathered}
L_{C M}=\operatorname{det}\left(\pi_{!}\left[-\left(K_{\mathcal{X}}^{-1}-K_{\mathcal{X}}\right)^{n+1}\right]\right), \quad \operatorname{CM}(\mathcal{X}, \mathcal{L})=-\left(K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}^{-1}\right)^{n+1} . \\
\operatorname{det}\left(\pi_{*}\left(K_{\mathcal{X} / \mathbb{C}}^{-k}\right)\right)=-L_{C M} \frac{k^{n+1}}{(n+1)!}+O\left(k^{n}\right)
\end{gathered}
$$

Two versions K-polystability

Definition (K-polystability, Tian '97)

Fut $\left(\mathcal{X}, K_{\mathcal{X}}^{-1}\right) \geq 0 \forall \operatorname{STC} \mathcal{X}$ of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.

Two versions K-polystability

Definition (K-polystability, Tian '97)

$\operatorname{Fut}\left(\mathcal{X}, K_{\mathcal{X}}^{-1}\right) \geq 0 \forall$ STC \mathcal{X} of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.

Definition (K-polystability, Donaldson '02)
Fut $(\mathcal{X}, \mathcal{L}) \geq 0 \forall \mathrm{TC}(\mathcal{X}, \mathcal{L})$ of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.

Definition (K-polystability, Tian '97)

Fut $\left(\mathcal{X}, K_{\mathcal{X}}^{-1}\right) \geq 0 \forall \operatorname{STC} \mathcal{X}$ of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.

Definition (K-polystability, Donaldson '02)

$\operatorname{Fut}(\mathcal{X}, \mathcal{L}) \geq 0 \forall \mathrm{TC}(\mathcal{X}, \mathcal{L})$ of X, with equality holds iff $\mathcal{X} \cong X \times \mathbb{C}$.
Imitating Hilbert-Mumford Numerical criterion in GIT:
Slope at infinity $\longleftrightarrow \operatorname{Fut}(\mathcal{X}, \mathcal{L})$.

(g) Stable

(h) Semistable

(i) Unstable

Tian's conjecture

Compactness in Riemannian geometry (partial C^{0}-estimate) \leadsto

Conjecture (Tian)

For K-polystability of Fano, special degenerations are enough.

Theorem (Li-Xu '12)

$(\mathcal{X}, \mathcal{L})$: any TC. Then \exists an integer $k>0$, an $\operatorname{STC}\left(\mathcal{X}^{\mathrm{s}},-K_{\mathcal{X}}{ }^{\mathrm{s}}\right)$ and a birational map $\mathcal{X}^{s} \rightarrow \mathcal{X} \times_{z^{k}} \mathbb{C}$ inducing an isomorphism

$$
\left.\left.\left(\mathcal{X}^{\mathrm{s}}, \mathcal{L}^{\mathrm{s}}\right)\right|_{\mathbb{C}^{*}} \cong(\mathcal{X}, \mathcal{L})\right|_{\mathbb{C}^{*}} \times_{z^{k}} \mathbb{C}^{*},
$$

such that $\quad \operatorname{Fut}\left(\mathcal{X}^{\mathrm{s}}, \mathrm{K}_{\mathcal{X}^{\mathrm{s}}}^{-1}\right) \leq \mathrm{k} \cdot \operatorname{Fut}(\mathcal{X}, \mathcal{L})$,
and the equality holds iff $(\mathcal{X}, \mathcal{L}) \rightarrow C$ is itself a STC.
As a consequence, Tian's conjecture holds.

Vary the polarization in the direction of $K_{\mathcal{X}}$ and fix the volume:

$$
\mathcal{L}_{s}:=\frac{\mathcal{L}+s K_{\mathcal{X}}}{1-s}, \quad \mathcal{L}_{s} \mid \mathcal{X}_{t} \sim-K_{X} .
$$

Denote $\left(\mathcal{X}^{(0)}, \mathcal{L}^{(0)}\right)=$ a semistable reduction of $(\mathcal{X}, \mathcal{L})$.
Increase s: $s \nearrow \lambda_{i+1}<1: \mathcal{L}_{s}^{i}$ stops being ample \leadsto extremal ray $[R] \in \mathrm{NE}(\mathcal{X} / \mathbb{C})$ \leadsto birational contraction $\left\{\begin{array}{l}\text { divisorial } \\ \text { small } \leadsto \text { flip }\end{array}\right.$ $\leadsto\left(\mathcal{X}^{i+1}, \mathcal{L}_{\lambda_{i}}^{i+1}\right), \quad \mathcal{L}_{\lambda_{i+1}}^{i+1}$ ample \leadsto go to Increase s

More technical issues: log canonical modifications, Fano extension.

$$
\begin{aligned}
\operatorname{Fut}(\mathcal{X}, \mathcal{L})=n \overline{\mathcal{L}}^{n+1} & +(n+1) K_{\overline{\mathcal{X}} / \mathbb{P}^{1}} \cdot \overline{\mathcal{L}}^{n} ; \quad \mathcal{L}_{s}=\frac{\mathcal{L}+s K_{\mathcal{X}}}{1-s} . \\
\frac{d}{d s} \operatorname{Fut}\left(\mathcal{X}, \mathcal{L}_{s}\right) & =n(n+1) \overline{\mathcal{L}}_{s}^{n-1}\left(\overline{\mathcal{L}}_{s}+K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}\right) \cdot\left(\frac{d}{d s} \overline{\mathcal{L}}_{s}\right) \\
& =n(n+1) \overline{\mathcal{L}}_{s}^{n-1} \cdot\left(\overline{\mathcal{L}}_{s}+K_{\overline{\mathcal{X}} / \mathbb{P}^{1}}\right)^{2} /(1-s)^{2} \\
& \leq 0 . \quad \text { (Zariski Lemma) }
\end{aligned}
$$

$\Longrightarrow \operatorname{Fut}\left(\mathcal{X}, \mathcal{L}_{s}\right)$ is a decreasing function of s.

Divisorial contraction	Flip
$\mathcal{X}^{i} \longrightarrow \mathcal{X}^{i+1}$	$\mathcal{X}^{i}-\mathcal{X}^{i}+\boldsymbol{\phi}^{i}$
$\mathcal{L}^{i}+\lambda_{i+1} K_{\mathcal{X}^{i}}=\left(f^{i}\right)^{*}\left(\mathcal{L}^{i+1}+\lambda_{i+1} K_{\mathcal{X}^{i+1}}\right)$	\mathcal{X}^{i+1} $\mathcal{L}^{i+1}+\lambda_{i+1} K_{\mathcal{X}^{i}}=\left(f^{i}\right)^{*}\left(D_{\mathcal{X}^{i+1}}=\left(f^{i+}\right)\right)^{*}\left(D_{\mathcal{Y}^{i}}\right)$

Projection formula for intersection numbers \Rightarrow invariance of Futaki More technical issues: normalization, base change, log canonical modifications and Fano extensions
\mathcal{M}^{-}: moduli space of canonically polarized manifolds
\mathcal{M}^{-}: Kollár-Shepherd-Barron-Alexeev compactification
(properness + boundedness + openness + separatedness)

- Viehweg: \mathcal{M}^{-}is quasi-projective (nef K_{X} is enough)
- Kollar, Fujino: $\overline{\mathcal{M}^{-}}$is projective

Projectivity/non-projectivity of moduli spaces

\mathcal{M}^{-}: moduli space of canonically polarized manifolds
$\overline{\mathcal{M}^{-}}$: Kollár-Shepherd-Barron-Alexeev compactification
(properness + boundedness + openness + separatedness)

- Viehweg: \mathcal{M}^{-}is quasi-projective (nef K_{X} is enough)
- Kollar, Fujino: $\overline{\mathcal{M}^{-}}$is projective

Other polarizations:

- Cons: Kollár: moduli space of polarized uniruled manifolds in general is not quasi-projective
- Pros: Fujiki-Schumacher: compact subarieties of the moduli space of CSCK manifolds are projective.
CSCK=Constant Scalar Curvature Kähler: includes KE

Projectivity/non-projectivity of moduli spaces

\mathcal{M}^{-}: moduli space of canonically polarized manifolds
$\overline{\mathcal{M}^{-}}$: Kollár-Shepherd-Barron-Alexeev compactification
(properness + boundedness + openness + separatedness)

- Viehweg: \mathcal{M}^{-}is quasi-projective (nef K_{X} is enough)
- Kollar, Fujino: $\overline{\mathcal{M}^{-}}$is projective

Other polarizations:

- Cons: Kollár: moduli space of polarized uniruled manifolds in general is not quasi-projective
- Pros: Fujiki-Schumacher: compact subarieties of the moduli space of CSCK manifolds are projective.
CSCK=Constant Scalar Curvature Kähler: includes KE
Constraint: Use of canonical metrics \longleftrightarrow Weil-Petersson geometry

Three basic types of manifolds as building blocks:

Property	$c_{1}(X)<0$	$c_{1}(X)=0$	$c_{1}(X)>0$
Example	\mathbb{B}^{n} / Γ	\mathbb{C}^{n} / Λ	$\mathbb{C P}^{n}$
KE	\checkmark (Aubin, Yau)	$\checkmark($ Yau $)$	YTD conjecture
Aut (X)	finite	reductive	can be non-reductive
Moduli	KSBA	good moduli	non-separatedness
Rational Curv.	few (conj.)	few (conj.)	rationally-connected
\ldots	\ldots	\cdots	\cdots

Reductive: Complexification of compact Lie group. Example: $\mathbb{C}^{*}=\left(S^{1}\right)^{\mathbb{C}}, S L(N+1, \mathbb{C})=S U(N+1)^{\mathbb{C}}$.

Thanks for your attention!

