Kähler-Einstein metrics and K-stability

Chi Li

Department of Mathematics, Princeton University

May 3, 2012

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Table Of Contents

1 Preliminaries

- 2 Continuity method
- 3 Review of Tian's program
- 4 Special degeneration and K-stability

5 Thanks

Kähler-Einstein metrics and K-stability

Basic Kähler geometry

$$\begin{array}{rcl} (X,J,g) & \longleftrightarrow & (X,J,\omega_g) \\ g(\cdot,\cdot) = \omega_g(\cdot,J\cdot) & \longleftrightarrow & \omega_g(\cdot,\cdot) = g(J\cdot,\cdot) \\ \nabla^{LC}J = 0 & \Longleftrightarrow & d\omega_g = 0 \end{array}$$

Locally,

$$\omega_g = \sqrt{-1} \sum_{i,j} g_{i\bar{j}} dz^i \wedge d\bar{z}^j, \quad g = (g_{i\bar{j}}) > 0$$

 → Department of Mathematics, Princeton University

< 🗇 🕨

Kähler-Einstein metrics and K-stability

Curvature form

Riemannian curvature

$$R_{i\bar{j}k\bar{l}} = -\frac{\partial^2 g_{k\bar{l}}}{\partial z_i \partial \bar{z}_j} + g^{r\bar{q}} \frac{\partial g_{k\bar{q}}}{\partial z_i} \frac{\partial g_{r\bar{l}}}{\partial \bar{z}_j}$$

Ricci curvauture:

$$Ric(\omega) = -\frac{\sqrt{-1}}{2\pi} \log \omega^n = -\frac{\sqrt{-1}}{2\pi} \sum_{i,j} \frac{\partial^2}{\partial z^i \partial \bar{z}^j} \log \det(g_{k\bar{l}}) dz^i \wedge d\bar{z}^j$$

Chern-Weil theory implies:

$$Ric(\omega) \in c_1(X)$$

Department of Mathematics, Princeton University

< 17 ▶

Kähler-Einstein metrics and K-stability

Scalar curvature

Scalar curvature

$$S(\omega) = g^{i\overline{j}}Ric(\omega)_{i\overline{j}} = \frac{nRic(\omega) \wedge \omega^{n-1}}{\omega^n}$$

Average of Scalar curvature is a topological constant:

$$\underline{S} = \frac{\langle nc_1(X)[\omega]^{n-1}, [X] \rangle}{\langle [\omega]^n, [X] \rangle}$$

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Kähler-Einstein equation

$$Ric(\omega_{KE}) = \lambda \omega_{KE}$$

Generalization of uniformization theorem of Riemann surfaces.

- 1 $\lambda = -1$: $-c_1(X) > 0$, canonically polarized. Existence: Aubin, Yau
- **2** $\lambda = 0$: $c_1(X) = 0$, Calabi-Yau manifold. Existence: Yau
- **3** $\lambda > 0$: $c_1(X) > 0$, Fano manifold. There are obstructions.

(a)

Kähler-Einstein metric on Fano manifold

Obstructions:

- 1 Automorphism group is reductive (Matsushima'57)
- 2 Futaki invariant vanishes (Futaki'83)
- **3** K-stability (Tian'97, Donaldson'02)
- Existence result when Futaki invariant vanishes:
 - 1 Homogeneous Fano manifold
 - 2 Del Pezzo surface: Tian (1990)
 - 3 toric Fano manifold: Wang-Zhu (2000)

▶ < ∃ >

Complex Monge-Ampère equation

PDE of Kähler-Einstein metric:

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = e^{h_\omega - \phi}\omega^n$$

Ricci potential:

$$Ric(\omega) - \omega = \partial \bar{\partial} h_{\omega}, \quad \int_X e^{h_{\omega}} \omega^n = \int_X \omega^n$$

Space of Kähler metrics in $[\omega]$:

$$\mathcal{H}(\omega) = \{ \phi \in C^{\infty}(X); \omega_{\phi} := \omega + \sqrt{-1}\partial\bar{\partial}\phi > 0 \}$$

Department of Mathematics, Princeton University

Chi Li

Kähler-Einstein metrics and K-stability

Aubin-Yau Continuity Method and invariant R(X)

For $0 \le t \le 1$,

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi_t)^n = e^{h_\omega - t\phi}\omega^n$$

This equivalent to

$$Ric(\omega_{\phi_t}) = t\omega_{\phi_t} + (1-t)\omega \qquad (*)_t$$

Define

$$R(X) = \sup\{t : (*)_t \text{ is solvable }\}\$$

Tian('92) studied this invariant first. He estimated $R(Bl_p\mathbb{P}^2) \leq \frac{15}{16}$.

< 同 > < 三 >

Kähler-Einstein metrics and K-stability

Other previous results

Székelyhidi('09) showed:

R(X) is the same as

 $\sup\{t: \exists a \text{ K\"ahler metric } \omega \in c_1(X) \text{ such that } Ric(\omega) > t\omega\}$

In particular, R(X) is independent of reference metric ω . $R(Bl_p\mathbb{P}^2) = \frac{6}{7}$. $R(Bl_{p,q}\mathbb{P}^2) \le \frac{21}{25}$

2 Shi-Zhu('10) studied the limit behavior of solutions of continuity method on Bl_p P².

Toric Fano manifolds

{ toric Fano manifold X_{\triangle} } \longleftrightarrow { reflexive lattice polytope \triangle } Example: $Bl_p \mathbb{P}^2$. P_c : Center of mass

Department of Mathematics, Princeton University

▲ @ ▶ < ∃ ▶</p>

Kähler-Einstein metrics and K-stability

R(X) on any toric Fano manifold

Theorem (Li'09)

If $P_c \neq O$,

$$R(X_{\bigtriangleup}) = \frac{|\overline{OQ}|}{|\overline{P_cQ}|}$$

Here $|\overline{OQ}|$, $|\overline{P_cQ}|$ are lengths of line segments \overline{OQ} and $\overline{P_cQ}$. If $P_c = O$, then there is Kähler-Einstein metric on X_{\triangle} and $R(X_{\triangle}) = 1$.

Department of Mathematics, Princeton University

A (1) > A (2) > A

Kähler-Einstein metrics and K-stability

limit as $t \to R(X)$

Theorem (Li'11)

There exist biholomorphic transformations $\sigma_t : X_{\Delta} \to X_{\Delta}$, such that $\sigma_{t_i}^* \omega_{t_i}$ converge to a Kähler current $\omega_{\infty} = \omega + \partial \bar{\partial} \psi_{\infty}$, which satisfy a complex Monge-Ampère equation of the form

$$(\omega + \partial \bar{\partial} \psi_{\infty})^{n} = e^{-R(X)\psi_{\infty}} \left(\sum_{\alpha} {}^{\prime} b_{\alpha} \| s_{\alpha} \|^{2} \right)^{-(1-R(X))} \Omega$$

In particular,

$$Ric(\omega_{\psi_{\infty}}) = R(X)\omega_{\psi_{\infty}} + (1 - R(X))\partial\bar{\partial}\log(\sum_{\alpha} b_{\alpha}|s_{\alpha}|^2)$$

Department of Mathematics, Princeton University

• Im • • Im •

Kähler-Einstein metrics and K-stability

Corollaries

- Conic type singularity for the limit metric (compatible with Cheeger-Colding's theory)
- Partial C⁰-estimate along continuity method (*)_t for toric metrics. (Follows from convergence up to gauge transformation)
- 3 Calculate multiplier ideal sheaf for toric Fano manifold with large symmetries.

Singularity from the polytope

The nonzero terms in \sum' can be determined by the geometry of the polytope! Example: $R(Bl_{p,q}\mathbb{P}^2) = \frac{21}{25}$

Department of Mathematics, Princeton University

Chi Li

Kähler-Einstein metrics and K-stability

Idea of the proof

Aubin-Yau Continuity method:

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi_t)^n = e^{h_\omega - t\phi}\omega^n$$

Solvability for $t \in [0, t_0] \iff$ uniform C^0 -estimate on ϕ_t for $t \in [0, t_0]$.

Kähler-Einstein metrics and K-stability

toric invariant Kähler metrics

$$X_{\Delta} \setminus D \cong (\mathbb{C}^*)^n = \mathbb{R}^n \times (S^1)^n$$
$$z_i = (\log |z_i|^2, \frac{z_i}{|z_i|})$$

 $(S^1)^n$ -invariant Kähler metric \longleftrightarrow convex function u = u(x) on \mathbb{R}^n . Potential of reference $\omega = \omega_{FS}$:

$$\tilde{u} = \log \sum_{\alpha} |s_{\alpha}|^2 = \log \left(\sum_{\alpha} e^{\langle p_{\alpha}, x \rangle} \right)$$

Assume potential of $\omega_{\phi} = \omega + \partial \bar{\partial} \phi$ is a convex function u. \tilde{u} , u are proper convex functions on \mathbb{R}^n satisfying

$$D\tilde{u}(\mathbb{R}^n) = Du(\mathbb{R}^n) = Dw(\mathbb{R}^n) = \Delta$$

Real Monge-Ampère by torus symmetry

$$det(u_{ij}) = e^{-(1-t)\tilde{u}-tu} \qquad (**)_t$$
$$u = \tilde{u} + \phi$$

Combined potential:

$$w_t(x) = tu(x) + (1-t)\tilde{u}$$

Define

$$m_t = \inf\{w_t(x) : x \in \mathbb{R}^n\} = w_t(x_t)$$

Department of Mathematics, Princeton University

/⊒ > < ∃ >

Chi Li

Kähler-Einstein metrics and K-stability

Basic estimates

Proposition (Wang-Zhu)

1 there exists a constant C, independent of $t < R(X_{\triangle})$, such that

$$|m_t| < C$$

2 There exists $\kappa > 0$ and a constant C, both independent of $t < R(X_{\Delta})$, such that

$$w_t \ge \kappa |x - x_t| - C \tag{1}$$

Department of Mathematics, Princeton University

▲ □ ▶ ▲ □ ▶ ▲

Equivalent criterion for C^0 estimate

Proposition (Wang-Zhu)

Uniform bound of $|x_t|$ for any $0 \le t \le t_0 \iff C^0$ -estimates for the solution ϕ_t in $(*)_t$ for $t \in [0, t_0]$.

Corollary

$$\lim_{t_i \to R(X_{\triangle})} D\tilde{u}_0(x_{t_i}) = y_{\infty}$$
⁽²⁾

Department of Mathematics, Princeton University

A (10) > A (10) > A

Key identity

$$\frac{1}{Vol(\Delta)} \int_{\mathbb{R}^n} D\tilde{u}_0 e^{-w} dx = -\frac{t}{1-t} P_c \tag{3}$$

Remark

General formula: for any holomorphic vector field v,

$$-\int_X div_{\Omega}(v)\omega_t^n = \frac{t}{1-t}F(K_X^{-1},v)$$

Department of Mathematics, Princeton University

イロト イヨト イヨト

K-stability

key observation

Assume the reflexive polytope riangle is defined by

$$\langle \lambda_r, x \rangle \ge -1, r = 1, \dots, N$$

Proposition (Li)

If $P_c \neq O$,

$$Q := -\frac{R(X_{\triangle})}{1 - R(X_{\triangle})} P_c \in \partial \triangle$$

Precisely,

$$\lambda_r(Q) \ge -1$$

Equality holds if and only if $\lambda(y_{\infty}) = -1$. So Q and y_{∞} lie on the same faces.

э

A (1) > A (2) > A (2)

Transformation

 $\sigma_t: X_{\triangle} \longrightarrow X_{\triangle}$ in toric coordinate:

$$\sigma_t: x \longrightarrow x + x_t$$

In complex coordinate:

$$\sigma_t: z_i \longrightarrow e^{x_t^i/2} z_i$$

Transformation on the potential:

$$U(x) = \sigma_t^* u(x) - u(x_t) = u(x + x_t) - u(x_t)$$
$$\tilde{U}_t(x) = \sigma_t^* \tilde{u}_0(x) - \tilde{u}_0(x_t) = \tilde{u}_0(x + x_t) - \tilde{u}_0(x_t)$$

Department of Mathematics, Princeton University

・ロン ・回 と ・ ヨン ・

Kähler-Einstein metrics and K-stability

Regularization of singular Monge-Ampère

$$\det(U_{ij}) = e^{-tU - (1-t)\tilde{U} - w(x_t)} \iff$$

$$(\omega + \partial \bar{\partial} \psi)^n = e^{-t\psi} \left(\sum_{\alpha} b(p_{\alpha}, t) \|s_{\alpha}\|^2 \right)^{-(1-t)} e^{h_{\omega} - w(x_t)} \omega^n$$

$$(**)'_t$$

$$\det(U_{ij}) = e^{-tU - (1-t)\tilde{U}_{\infty} - w(x_t)} \iff$$

$$(\omega + \partial \bar{\partial} \psi)^n = e^{-R(X)\psi} \left(\sum_{\alpha} b_{\alpha} \|s_{\alpha}\|^2 \right)^{-(1-R(X))} e^{h_{\omega} - c} \omega^n$$

$$(**)'_{\infty}$$

Department of Mathematics, Princeton University

Chi Li

Kähler-Einstein metrics and K-stability

Uniform a priori estimate

C⁰-estimate. The point is that: the gauge transformation σ_t offset the blow up of ||φ||_∞ so that the transformed potential ψ has uniformly bounded ||ψ||_∞. Proof: Prove Harnack estimate:

$$\sup_{X} (-\psi) \le n \sup_{X} \psi + C(n)t^{-1}.$$

- Partial C²-estimate: Uniform C²-estimate on compact set away from the blow up set.
 Proof: Adapt Yau's proof of C²-estimate.
- **3** $C^{2,\alpha}$ -estimate: Evans-Krylov estimate. This estimate is purely local.

< 同 → < 回 →

My work on other continuity methods I

 (Conic Kähler-Einstein metric) Fix a smooth divisor *D* ∈ | − *K_X*|, construct Kähler-Einstein metric with conic singularity along the divisor *D* of cone angle 2πβ. This corresponds to solving the following equation:

$$Ric(\omega_{KE,\beta}) = \beta \omega_{KE,\beta} + (1-\beta) \{D\}$$

My work in this direction:

- **1** Construction of Kähler-Einstein metric with cone angle in $(\pi, 2\pi)$. (Joint with Yanir Rubinstein).
- **2** Formulate log-K-stability (obstruction to the existence).

A (1) > (1) > (1)

My work on other continuity methods II

- (Kähler-Ricci flow) My work: Construction of rotationally symmetric Kähler-Ricci solitons.
- (Complex structure continuity method) My work: still need to be done.

Kähler-Einstein metrics and K-stability

Obstruction to existence: Calabi-Futaki invariant

For any holomorphic vector field v, define $\theta_v = \mathcal{L}_v - \nabla_v$ on $K_X^{-1} = \wedge^n TX$, s.t. $\sqrt{-1}\bar{\partial}\theta_v = i_v\omega$.

$$F(K_X^{-1}, v) = -\int_X (S(\omega) - \underline{S})\theta_v \frac{\omega^n}{n!}$$

Theorem (Futaki)

 $F(K_X^{-1}, v)$ does not depend on the choice of ω in $c_1(X)$.

Department of Mathematics, Princeton University

(日) (同) (三) (三)

Kähler-Einstein metrics and K-stability

Mabuchi energy and Ding-energy

Definition

$$\nu_{\omega}(\omega_{\phi}) = -\int_{0}^{1} dt \int_{X} (S(\omega_{\phi_{t}}) - \underline{S}) \dot{\phi}_{t} \omega_{\phi}^{n} / n!$$

2 (Ding-energy)

$$F_{\omega}(\phi) = F_{\omega}^{0}(\phi) - V \log\left(\frac{1}{V} \int_{X} e^{h_{\omega} - \phi} \omega^{n} / n!\right)$$

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Tian's analytic criterion

Theorem (Tian'97)

If Aut(X, J) is discrete. There exists a Kähler-Einstein metric on X if and only if either $F_{\omega}(\omega_{\phi})$ or $\nu_{\omega}(\omega_{\phi})$ is proper.

Definition

[Tian'97] A functional $F : \mathcal{H}(\omega) \to \mathbb{R}$ proper:

$$F(\omega_{\phi}) \geq f\left(J_{\omega}(\omega_{\phi})\right), \text{ for any } \omega_{\phi} \in \mathcal{H}$$

where $f(t) : \mathbb{R}_+ \to \mathbb{R}$ is some monotone increasing function satisfying $\lim_{t\to+\infty} f(t) = +\infty$. $J_{\omega}(\omega_{\phi})$ is a positive energy norm defined on the space \mathcal{H}_{ω} .

Finite dimensional approximation I

1

 $\mathcal{H}_k = \{ \text{ inner products on the vector space } H^0(X, L^{\otimes k}) \}$ $\cong GL(N_k, \mathbb{C})/U(N_k, C)$

2

$$\mathcal{B}_k := \left\{ \frac{1}{k} \log \sum_{\alpha=1}^{N_k} |s_{\alpha}^{(k)}|_{h^{\otimes k}}^2; \{s_{\alpha}^{(k)}\} \text{ is a basis of } H^0(X, L^k) \right\}$$

Note that $\mathcal{B}_k \subset \mathcal{H}_\omega = \{\phi \in C^\infty(X); \omega + \sqrt{-1}\partial \bar{\partial} \phi > 0\}.$

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇
 Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Finite dimensional approximation II

Define two maps between \mathcal{H}_k and \mathcal{H} .

$$\begin{split} \mathsf{Hilb}_k &: \mathcal{H} & \longrightarrow & \mathcal{H}_k \\ h & \mapsto & \langle s_1, s_2 \rangle_{\mathsf{Hilb}_k(h)} = \int_X (s_1, s_2)_{h^{\otimes k}} \frac{\omega_h^n}{n!}, \\ \mathsf{FS}_k &: \mathcal{H}_k & \longrightarrow & \mathcal{B}_k \subset \mathcal{H} \\ H_k & \mapsto & |s|^2_{\mathsf{FS}_k(H_k)} = \frac{|s|^2}{\left(\sum_{\alpha=1}^{N_k} \left|s_\alpha^{(k)}\right|^2\right)^{1/k}}, \quad \forall s \in L. \end{split}$$

In the above definition, $\{s_{\alpha}^{(k)}; 1 \leq \alpha \leq N_k\}$ is an orthonormal basis of the Hermitian complex vector space $(H^0(X, L^k), H_k)$.

Finite Approximation III

Theorem (Tian)

$$\mathcal{H} = \overline{igcup_k \mathcal{B}_k}$$

More precisely, for any $h \in \mathcal{H}$,

 $FS_k(\operatorname{Hilb}_k(h)) \to h$

In terms of Kähler form:

$$\frac{1}{k}\sqrt{-1}\partial\bar{\partial}\log\sum_{\alpha=1}^{N_k}|s_{\alpha}^{(k)}|^2\to\omega_h$$

回 > ・ モ > ・ モ > Department of Mathematics, Princeton University

э

One application: Quantization of Mabuchi-energy

Theorem (Donaldson'05)

- **1** The k-th Chow-norm functionals approximate Mabuchi-energy as $k \to +\infty$.
- **2** If Aut(X, L) is discrete, then constant scalar curvature Kähler metric in $c_1(L)$ obtains the minimum of Mabuchi-energy.

Theorem (Li10)

Without assuming Aut(X, L) is discrete, CSCK metric in $c_1(L)$ always obtains the minimum of Mabuchi-energy.

Remark

The more general case is proved by Chen-Tian('08).

Tian's conjecture and partial C^0 -estimate

Conjecture (Tian)

There is a Kähler-Einstein metric on X if and only if for sufficiently large k, ν_{ω} is proper on \mathcal{B}_k .

This will follow from the following conjecture by Tian.

Conjecture (Partial C^0 -estimate)

If $\omega_t = \omega_{h_t}$ are solutions in a 'continuity method' to KE problem, then when $k \gg 1$, $\exists C_k > 0$ independent of parameter t, such that

$$\rho_k(\omega_t) = \sum_{\alpha=1}^{N_k} |s_{\alpha}^{(k)}|_{h_t}^2 \ge C > 0.$$

here $\{s_{\alpha}^{(k)}\}$ is orthonormal basis of $(H^0(X, K_X^{-\otimes k}), \operatorname{Hilb}_k(h_t))$.

Kähler-Einstein metrics and K-stability

Properness on \mathcal{B}_k : K-stability

Assume these conjectures. Then to see whether there is a Kähler-Einstein metric, we need to test whether the Mabuchi energy is proper on \mathcal{B}_k .

- Tian ('97) introduced algebraic condition: K-stability for testing such properness.
- Donaldson ('02) reformulated it for the more general setting.

Combine the above discussion, we have the following conjecture due to Tian, which is also a specialization of Yau-Tian-Donaldson conjecture to the Fano case:

Conjecture (Tian)

There exists a Kähler-Einstein metric on Fano manifold (X, J) if and only if $(X, -K_X)$ is K-polystable.

(ロ) (回) (E) (E)

Test configuration

A test configuration is a direction in \mathcal{B}_k .

Definition

Let X be a Fano manifold. A Q-test configuration $(\mathcal{X}, \mathcal{L})$ of $(X, K_X^{-\otimes k})$ consists of

- a variety \mathcal{X} with a \mathbb{C}^* -action,
- a \mathbb{C}^* -equivariant ample line bundle $\mathcal{L} \to \mathcal{X}$,
- a flat \mathbb{C}^* -equivariant map $\pi : (\mathcal{X}, \mathcal{L}) \to \mathbb{C}$, where \mathbb{C}^* acts on \mathbb{C} by multiplication in the standard way $(t, a) \to ta$, such that for any $t \neq 0$, $(\mathcal{X}_t = \pi^{-1}(t), \mathcal{L}|_{\mathcal{X}_t})$ is isomorphic to

 $(X, K_X^{-\otimes k}).$

< ロ > < 同 > < 回 > < 回

Algebraic definition of Futaki invariant

$$\begin{split} d_k &= \dim H^0(X, \mathcal{O}_X(-rkK_X)) = a_0k^n + a_1k^{n-1} + O(k^{n-2}) \\ \mathbb{C}^*\text{-weight of } H^0(X, \mathcal{O}_X(-rkK_X)) \\ & w_k = b_0k^{n+1} + b_1k^n + O(k^{n-1}). \end{split}$$

Definition

$$DF(\mathcal{X}, \mathcal{L}) = -\frac{F_1}{a_0} = \frac{a_1 b_0 - a_0 b_1}{a_0^2}$$
(4)

This is asymptotic slope in the direction determined by $(\mathcal{X}, \mathcal{L})$.

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

K-stability

Definition

(X, L) is K-semistable along $(\mathcal{X}, \mathcal{L})$ if $F(\mathcal{X}, \mathcal{L}) \ge 0$. Otherwise, it's unstable.

(X, L) is K-polystable for any test configuration $(\mathcal{X}, \mathcal{L})$ if $F(\mathcal{X}, \mathcal{L}) > 0$, or $F(\mathcal{X}, \mathcal{L}) = 0$ and the normalization $(\mathcal{X}^{\nu}, \mathcal{L}^{\nu})$ is a product test configuration.

(X, L) is K-semistable (resp. K-polystable) if, for any integer k > 0, (X, L^k) is K-semistable (K-polystable) along any test configuration of (X, L^k) .

Tian's original definition using special degeneration

Definition (Special Degeneration)

Special degeneration is a test configuration $(\mathcal{X}, \mathcal{L})$ of a Fano manifold $(X, K_X^{-\otimes k})$ such that \mathcal{X}_0 is a \mathbb{Q} -Fano variety and $\mathcal{L} = K_{\mathcal{X}/\mathbb{C}}^{-\otimes k}$.

Definition (Tian'97)

 $(X, -K_X)$ is K-semistable (resp. K-polystable) if $(X, K_X^{-\otimes k})$ is K-semistable (resp. K-polystable) along any special degeneration.

Department of Mathematics, Princeton University

A (10) > A (10) > A

Kähler-Einstein metrics and K-stability

Apply MMP to the problem of K-stability

The following result is from joint work with Dr. Chenyang Xu. The result roughly says:

Theorem (Li-Xu)

For any test configuration, we can modify it using Minimal Model Program to get a special test configuration with smaller Donaldson-Futaki invariant.

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

K-stability and special test configuration

Theorem

(Li-Xu) For any test configuration $(\mathcal{X}, \mathcal{L}) \to \mathbb{C}^1$, we can construct a special test configuration $(\mathcal{X}^s, -rK_{\mathcal{X}^s})$ and a positive integer m, such that

$$mDF(\mathcal{X}, \mathcal{L}) \ge DF(\mathcal{X}^s, -rK_{\mathcal{X}^s}).$$

Furthermore, if we assume \mathcal{X} is normal, then the equality holds only when $(\mathcal{X}, \mathcal{X}_0)$ itself is a special test configuration.

Tian's conjecture on K-stability of Fano manifolds

As a corollary of the above construction, we prove

Theorem

(Li-Xu) If X is destablized by a test configuration, then X is indeed destablized by a special test configuration. More precisely, the following statements true.

- 1 (unstable) If $(X, -kK_X)$ is not K-semi-stable, then there exists a special test configuration $(\mathcal{X}^s, -kK_{\mathcal{X}^s})$ with a negative Futaki invariant $DF(\mathcal{X}^s, -kK_{\mathcal{X}^s}) < 0$.
- 2 (semistable\stable) Let X be a K-semistable variety. If $(X, -kK_X)$ is not K-polystable, then there exists a special test configuration $(\mathcal{X}^{st}, -kK_{\mathcal{X}^s})$ with Donaldson-Futaki invariant 0 such that \mathcal{X}^s is not isomorphic to $X \times \mathbb{C}$.

A (1) > (1) > (1)

Intersection formula of Futaki invariant

Proposition

(Tian, Paul-Tian, Zhang, Donaldson, Wang, Odaka, Li-Xu) Assume \mathcal{X} is normal, then

$$DF(\mathcal{X}, \mathcal{L}) = \frac{1}{(n+1)!2a_0} \left(\frac{2a_1}{a_0} \bar{\mathcal{L}}^{n+1} + (n+1)K_{\bar{\mathcal{X}}/\mathbb{P}^1} \cdot \bar{\mathcal{L}}^n \right).$$
(5)

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ →

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

MMP: Variation of polarization in the direction of K_X

Assume $\mathcal{L}|_{\mathcal{X}_t} \sim_{\mathbb{C}} -K_X$. We vary the polarization in the direction of K_X :

$$\bar{\mathcal{M}}_s = \frac{\mathcal{L} + sK_{\bar{\mathcal{X}}}}{1-s}, \quad \bar{\mathcal{M}}_s|_{\bar{\mathcal{X}}_t} \sim -K_X$$

$$\frac{d}{ds}\bar{\mathcal{M}}_s = \frac{1}{(1-s)^2} (\bar{\mathcal{L}} + K_{\bar{\mathcal{X}}}) \stackrel{\tilde{s}=1/(1-s)}{\longleftrightarrow} \frac{d}{d\tilde{s}} \bar{\mathcal{M}}_{\tilde{s}} = K_{\bar{\mathcal{X}}} + \bar{\mathcal{L}}$$

$$\left(\longleftrightarrow \text{ normlized Kähler-Ricci flow: } \frac{\partial \omega}{\partial \tilde{s}} = -Ric(\omega_{\tilde{s}}) + \omega_{\tilde{s}} \right)$$

Department of Mathematics, Princeton University

MMP with scaling

Assume \mathcal{X} has mild singularities (log canonical), we can run $(K_{\bar{\mathcal{X}}} + \bar{\mathcal{L}})$ -MMP with scaling $\bar{\mathcal{L}}$:

$$\bar{\mathcal{M}}_{\lambda} = \frac{(K_{\bar{\chi}} + \bar{\mathcal{L}}) + \lambda \bar{\mathcal{L}}}{\lambda}, \quad \bar{\mathcal{M}}_{\infty} = \bar{\mathcal{L}}.$$

Note that

$$K_{\bar{\mathcal{X}}} + \bar{\mathcal{M}}_{\lambda} = \frac{\lambda + 1}{\lambda} (K_{\bar{\mathcal{X}}} + \bar{\mathcal{L}})$$
$$\frac{d}{d\lambda} \bar{\mathcal{M}}_{\lambda} = -\frac{1}{\lambda^2} (K_{\bar{\mathcal{X}}} + \bar{\mathcal{L}})$$

As λ decreases from $+\infty$ to 0, we get a sequence of critical points of λ and a sequence of models:

End product of MMP with scaling

The \mathcal{X}^k in the above sequence has very good properties:

- **1** $\mathcal{L}^k \sim_{\mathbb{C}} -K_{\mathcal{X}^k}$ is semiample.
- 2 Assume $\mathcal{X}_0 = \sum_{i=1}^N a_i \mathcal{X}_{0,i} = E \ge 0$, then $\mathcal{X} \dashrightarrow \mathcal{X}^0$ contracts precisely Supp(E).

By property 1 above, we can define:

$$\mathcal{X}^{an} = Proj(\mathcal{X}^k, -K_{\mathcal{X}^k/C})$$

so that $-K_{\mathcal{X}^{an}}$ is ample.

Department of Mathematics, Princeton University

▲ □ ▶ ▲ 三 ▶ ▲

Observation 1: Decreasing of Futaki invariant on a fixed model

Derivative of Donaldson-Futaki invariant along \mathcal{M}_{λ} :

$$\frac{d}{d\lambda} \mathrm{DF}(\mathcal{X}, \mathcal{M}_{\lambda}) = -C(n, \lambda) \bar{\mathcal{M}}_{\lambda}^{n-1} \cdot (\bar{\mathcal{L}} + K_{\bar{\mathcal{X}}/\mathbb{P}^{1}})^{2} \ge 0$$

by the Hodge index theorem, because

$$\bar{\mathcal{L}} + K_{\bar{\mathcal{X}}/\mathbb{P}^1} = \sum_i a_i \mathcal{X}_{0,i}$$

only supports on \mathcal{X}_0 . This means that DF invariant decreases as λ decreases.

Observation 2: Invariance of Futaki invariant at transition point

Two kinds of transitions:

- 1 Divisorial contraction
- 2 Flipping

Invariance of Donaldson-Futaki invariant comes from projection formula for intersection product.

Department of Mathematics, Princeton University

A weaker statement: unstable case

Theorem

Given any test configuration $(\mathcal{X}, \mathcal{L}) \to \mathbb{C}^1$, for any $\epsilon \ll 1$, we can construct a special test configuration $(\mathcal{X}^s, -rK_{\mathcal{X}^s})$ and a positive integer m, such that

$$m(\epsilon + \mathrm{DF}(\mathcal{X}, \mathcal{L})) \ge \mathrm{DF}(\mathcal{X}^s, -rK_{\mathcal{X}^s})$$

Department of Mathematics. Princeton University

Theorem

Tian's conjecture in the un-stable case holds.

Kähler-Einstein metrics and K-stability

unstable case I

Step 1: Equivariant semistable reduction:

such that

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

unstable case II

Step 2: perturb the pull back polarization

$$\mathcal{L}_{\mathcal{Y}} = \epsilon A + \phi_{\mathcal{Y}/\mathcal{X}}^*(\mathcal{L})$$

by an ample divisor A ($\epsilon \ll 1$) such that

- $\mathcal{L}_{\mathcal{Y}}$ is still ample
- For some $a \in \mathbb{Q}$

$$\mathcal{L}_{\mathcal{Y}} + K_{\mathcal{Y}} + a\mathcal{Y}_0 = \sum_{i=2}^N a_i \mathcal{Y}_{0,i}$$

with $a_i > 0$ for any $i \ge 2$.

Kähler-Einstein metrics and K-stability

unstable case III

Step 3: Run $(K_{\mathcal{Y}} + \mathcal{L}_{\mathcal{Y}})$ -MMP over \mathbb{C} . The end product is a special test configuration with \mathbb{Q} -Fano variety which is the strict transform of $\mathcal{Y}_{0,1}$.

Assume the $DF(\mathcal{X}, \mathcal{L}) < 0$ then

- **1** negativity is preserved under small perturbation
- 2 along MMP, Futaki invariant is always decreasing on a fixed model and does not change at the point of transition to a new model.

A (10) > A (10) > A

Stable case I

How to eliminate the perturbation? More steps: Step 1: Equivariant semistable reduction.

•
$$\mathcal{Y}$$
 is smooth
• $\mathcal{Y}_0 = \sum_{i=1}^{N_1} \mathcal{Y}_{0,i}$ is simple normal crossing

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Step 2: log canonical modification: Run $(K_{\mathcal{Y}} + \mathcal{Y}_0)$ -MMP over $\tilde{\mathcal{X}}$ to get \mathcal{X}^{lc} such that.

- *X*^{lc} is not too singular(log canonical) so that we can run MMP
- $K_{\mathcal{X}^{lc}}$ is relatively ample so that we can perturb $\phi^*_{\mathcal{X}^{lc}} \tilde{\mathcal{L}}$ along the direction of $K_{\mathcal{X}^{lc}}$ to get \mathcal{L}^{lc} .

 \mathcal{X}^{lc} is a kind of canonical partial resolution of $\tilde{\mathcal{X}}$. Step 3: Run $(K_{\mathcal{X}^{lc}}+\mathcal{L}^{lc})\text{-}\mathsf{MMP}$ over $\mathbb C$ to get \mathcal{X}^{an} such that $\mathcal{L}^{an}\sim -K_{\mathcal{X}^{an}}.$

Stable case II

Step 4: Take equivariant semistable reduction of \mathcal{X}^{an} :

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Then choose ample divisor A to perturb such that

• There exists $a \in \mathbb{Q}$, and $a_i > 0$ for $i = 2, \ldots, N_2$

$$\phi_{\mathcal{Z}/\mathcal{X}}^*(\mathcal{L}^{an}) + \epsilon A + K_{\mathcal{Z}} + a\mathcal{Z}_0 = \sum_{i=2}^{N_2} a_i \mathcal{Z}_{0,i}$$

• $a(E_1, \tilde{\mathcal{X}}^{an}) = 0.$ Now one extract E_1 on $\tilde{\mathcal{X}}^{an}$ to get $\phi_{\mathcal{X}'/\tilde{\mathcal{X}}^{an}} : \mathcal{X}' \to \tilde{\mathcal{X}}^{an}$ such that $\phi^*_{\mathcal{X}'/\tilde{\mathcal{X}}^{an}} K_{\tilde{\mathcal{X}}^{an}} = K_{\mathcal{X}'}.$

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability

Stable Case III

Step 5: Run $(K_{\mathcal{X}'} + \mathcal{L}')$ -MMP over \mathbb{C} to get \mathcal{X}^s . Note that

$$K_{\mathcal{X}'} + \mathcal{L}' = \sum_{i=2}^{N_3} a_i \mathcal{X}'_{0,i}$$

with $a_i > 0$ for $i = 2, ..., N_3$. So \mathcal{X}_0^s is the strict transform of $\mathcal{Z}_{0,1}$ (or $\mathcal{X}'_{0,1}$).

・ロト ・回ト ・ 回ト ・

Steps of modification

- (step 0): normalization
- 2 (step 1): equivariant semistable reduction
- 3 (step 2): log-canonical modification
- 4 (step 3): MMP with scaling
- **5** (step 4): base change and crepant blow up
- 6 (step 5): contracting extra components

→ < ∃ →</p>

Final remark: log (pair) case

The above results can be generalized to the pair case (X, D). At least when D is smooth, we have the following connection: conic Kähler-Einstein metric on $(X, D) \longleftrightarrow$ log-K-stability of the pair (X, D).

A (1) > A (1) > A

Kähler-Einstein metrics and K-stability

Thank you!

Thank you!

▲口 ▶ ▲圖 ▶ ▲臣 ▶ ▲臣 ▶ ▲国 ▶ ▲ ◎ ◆ ○ ◆ ○

Department of Mathematics, Princeton University

Kähler-Einstein metrics and K-stability