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Kähler-Einstein metric

A Fano manifold X is a projective manifold such that:
Fano: −KX = ∧nTholX is an ample line bundle.

Equivalently: ∃ a Kähler metric g s.t. its Kähler form ω ∈ 2πc1(−KX ).

Kähler form: ω = g(J·, ·) =
√
−1
∑
i,j

gi j̄dzi ∧ dz̄j =
√
−1∂∂̄ϕα. (1)

Examples P2]kP2, 0 ≤ k ≤ 8; Pn; {F (z1, . . . , zn) = 0} ⊂ Pn−1 with deg(F ) < n.

Hermitian metric on −KX : h = e−ϕ = {e−ϕα} s.t. |∂zα |2e−ϕα = |∂zβ |
2e−ϕβ .

Ric(ω) = −
√
−1
∑
i,j

∂2 log det(gkl̄)

∂zi∂z̄j
dzi ∧ dz̄j ∈ 2πc1(−KX ) ∈ H2(X ,R). (2)

Kähler-Einstein (KE) Equation: Ric(ω) = ω

KE equation is equivalent to a complex Monge-Ampère equation:

(
√
−1∂∂̄ϕα)n = |∂zα |

2e−ϕα(
√
−1)n

2

dzα ∧ dz̄α
locally⇐⇒ det(ϕi j̄) = e−ϕ. (3)



K-stability from variational appoint of view

Theorem (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein)

X admits a KE metric if and only if Mabuchi or Ding energy (denoted by F ) is
proper modulo the holomorphic automorphism group Aut(X ).

K-stability: a Hilbert-Mumford type criterion for properness of energy:

Definition (K-stability after Tian, equivalent to Donaldson’s formulation by L.-Xu)

X is K-polystable if for any special degeneration (X , η) of X , Fut(X0,−η) ≥ 0
and the identity holds iff X is induced by a holomorphic vector field η on X .

Conjecture (Yau-Tian-Donaldson (YTD) conjecture)

X has a Kähler-Einstein metric if and only if X is K-polystable.

Necessary (needs energy properness): Tian (’97), Berman (works for any Q-Fano)

Sufficient (partial C0-estimate for conical KE): Chen-Donaldson-Sun, Tian



KE on Q-Fano variety

Definition

A Q-Fano variety X is a normal projective variety satisfying 2 conditions:
Fano: −KX is ample Q-line bundle, i.e. −mKX := (∧nTX reg)⊗m extends as an
ample line bundle for some m ∈ Z;
Klt (Kawamata log terminal): ∀x ∈ X , ∃ an open neighborhood U s.t. for a
nowhere vanishing section s ∈ OmKX (U)∫

Ureg

(
√
−1

mn2

s ∧ s̄)1/m < +∞. (4)

Hermitian metric on the Q-line bundle −KX : e−ϕ = {e−ϕα} s.t.
|s∗α|2e−mϕα = |s∗β |2e−mϕβ . We always assume {ϕα} are bounded.

KE equation: (
√
−1∂∂̄ϕα)n = |s∗α|2/me−ϕα

(√
−1

mn2

sα ∧ s̄α

)1/m

. (5)

weak KE metrics: bounded solutions (in Bedford-Taylor sense) to (5).

Note: Condition (4) ⇐⇒ the right-hand-side of (5) is integrable.



Digression: Why Klt singularities

It is the biggest class of singularities for which the Yau-Tian-Donaldson
conjecture is expected to hold, and for which the Minimal Model Program in
birational algebraic geometry is known to work.

1 dimC X = 2: Klt=isolated quotient singularity C2/G .

2 dimC X = 3: partial classifications ({terminal} ⊂ {canonical} ⊂ {Klt})
3 Quotient singularities and toric singularities are Klt.

4 Klt singularities are local correspondent of (log-)Fano varieties. Any Klt
singularity degenerates to (orbifold-)cones over (log-)Fano varieties.

Check Klt condition: first choose a resolution of singularities µ : M → X (M is
smooth and µ is isomorphism over X reg) and write:

µ∗(s ∧ s̄)
1
m = h(z)

∏
i

|zi |2ai dz ∧ dz̄ , (h(z) nowhere vanishing);

or algebraically: KM = µ∗KX +
∑
i

aiEi , Ei = {zi = 0}.

Then (4) is equivalent ai > −1. ai is called the discrepancy of Ei over X .



Main Result

We say the singularities of X are admissible if ∃ a log resolution of singularities
µ : M → X s.t.

(A1) If KM = µ∗KX +
∑

i aiEi , then −1 < ai ≤ 0 for any i ; and

(A2) ∃θi ∈ Q>0 s.t. µ∗(−KX )−
∑

i θiEi is an ample Q-line bundle on M.

Theorem (L.-Tian-Wang ’17)

Let X be a Q-Fano variety with admissible singularities. If X is K-polystable,
then X admits a Kähler-Einstein metric.

1 (A2) is always satisfied for Q-factorial singularities. There are a lot of admissible
Klt singularities including all 2-dimensional Klt singularities, Q-factorial Klt
singularities admitting crepant resolutions.

2 First existence result of YTD for “non-smoothable” Fano varieties.

3 YTD is expected to be true for any Q-Fano variety. But not all KE Fano varieties
are expected to be Gromov-Hausdorff (GH) limits of smooth Riemannian
manifolds with lower Ricci bounds.



Idea/sketch of proofs

Take an admissible resolution µ : M → X and solve for appropriate (edge)
conical Kähler-Einstein metric on M.

Prove that the (edge) conical KE metrics on M converge to a
Kähler-Einstein metric on X under the assumption of K-polystability.



(Edge) Conical Kähler metrics

g = |dz|2

|z|2(1−β) = dr 2 + β2r 2dθ2, ω =
√
−1 dz∧dz̄
|z|2(1−β) =

√
−1∂∂̄

(
β−2|z |2β

)
.

Higher dim: If D =
∑m

i=1 Di = {z1z2 · · · zm = 0} is a SNC divisor (i.e. Di are
smooth and intersections are transversal), then local (edge) conical model:

ω =
√
−1

(
m∑
i=1

dzi ∧ dz̄i
|zi |2(1−βi )

+
n∑

j=m+1

dzj ∧ dz̄j

)
.

Its Ricci curvature has a current term:

Ric(ω) =
√
−1∂∂̄

m∑
i=1

log |zi |2(1−βi ) =
m∑
i=1

(1− βi )2πδ{zi=0}dxi ∧ dyi . (6)



Sketch of proof of Theorem 2

We divide the proof of the main result into 6 steps:

Step 0 (A2) ⇒ can assume Lε := µ∗(−KX )− ε
∑

i θiEi is positive for 0 < ε ≤ 1 ⇒
there is a very ample divisor H = {sH = 0} ∈ |mL1| (with m� 1) s.t. H +

∑
i Ei

has SNC.

Step 1 Prove (M, 1−t
m

H +
∑

i≥1(1− βi )Ei ) is uniformly-K-stable for appropriate cone

anges 2πβi . This part is purely algebraic.

Step 2 Use version of YTD for log smooth pairs to construct 2-parameter family of
(edge) conical KE metrics ω(ε,t) ∈ 2πc1(Lε) on M with edge conical singularities

along H ∪
∑

i Ei .

Step 3 For fixed t, prove (M, ω(ε,t), d(ε,t))
εi→0−→ (X , ω(0,t), d(0,t)) (in both puripotential

and GH senses). ω(0,t) is a weak KE on (X , 1−t
m

HX ) for some HX ∈ | −mKX |
and (X , d(0,t)) = (X reg, ω(0,t)|Xreg ) (metric completion).

Step 4 As t → 1, (X , ω(0,t)) subsequentially converges in Gromov-Hausdorff topology to
X∞ equipped with a weak Kähler-Einstein metric ω(0,1).

Step 5 Construct a special degeneration of X to X∞ with zero Futaki invariant.
K-polystability of X forces X∞ ∼= X .

The last two steps were essentially done by CDS and Tian (although X is
smooth in their case).



Step 0: set-up (edge) conical KE equation on M

Decomposition of Q-divisor:

−KM = µ∗(−KX ) +
∑
i≥1

(−ai )Ei = t(µ∗(−KX )− ε
∑
i

θiEi )

+
1− t

m
H +

∑
i≥1

(−ai + tεθi + (1− t)θi )Ei =: B(ε,t).

Correspondingly, solve the following KE equation (E0 = H for simplicity):

Ric(ω(ε,t)) = tω(ε,t) + 2π{B(ε,t)} ⇔ (
√
−1∂∂̄ϕ)n =

e−tϕ∏
i≥0 |sEi |2(1−βi )

((∗)(ε,t))

Geometrically, ω(ε,t) is a (edge) conical KE metric which is smooth on
M \Supp(B(ε,t)) and has cone singularities along Ei with cone angle 2πβi where

βi =

{
1− 1−t

m
; for i = 0 i.e. E0 = H

1 + ai − tεi − (1− t)θi for i ≥ 1.

Why Admissible: ai ∈ (−1, 0]⇒ βi ∈ (0, 1] for 0 ≤ max{ε, 1− t} � 1



Step 1: Uniform K-stability of (M,B(ε,t))

Proposition

X K-polystable ⇒ (M,B(ε,t)) uniformly K-stable if 0 < max{ε, 1− t} � 1.

The proof uses the valuative criterion of K-stability developed by Fujita and L..
For any divisorial valuation ordF over M, define:

Φ(M,B)(F ) :=
A(M,B)(E)(−KM − B)n∫ +∞

0
volM(−KM − B − xE)dx

, δ̃(M,B) := inf
F

Φ(M,B)(F ). (7)

Theorem (Fujita, L.)

1 (M,B) is K-semstable iff δ̃(M,B) ≥ 1.

2 (M,B) is uniform K-stable iff δ̃(M,B) > 1.

Why this helps: because C(M) ∼= C(X ) and the set of valuations do not
change. On the other hand, the set of special degenerations change!



Step 2: existence of KE on (M,B(ε,t))

Need a logarithmic version of YTD for the pair (M,B) with smooth ambient space:

Theorem (L.-Tian-Wang, Tian-Wang)

(M,B) is uniformly K-stable =⇒ energy is proper =⇒ ∃ solution to (∗)(ε,t).

Two proofs for energy properness:

1 Generalize Berman-Boucksom-Jonsson’s argument to the logarithmic setting:

Uniformly K-stable
def⇐⇒ FNA ≥ δJNA on smooth non-Archimedean metrics
⇐⇒ FNA ≥ δJNA on finite energy non-Archimedean metrics
⇐⇒ F ≥ δJ − C on the space of (smooth or finite energy) Kähler metrics.

2 Generalize CDS-Tian’s argument to the logarithmic setting (need the conical
version of Cheeger-Colding-Tian’s theory developed recently by Tian-Wang).

The Euler-Lagrange equation of F is (∗)(ε,t):

F := FB(ε,t)
(ϕ) = −Eψε (ϕ)−

1

t
log

(∫
M

e−tϕ

|sB |2

)
. (8)

J-energy measures the distance between two potentials:

J := Jψε (ϕ) = −Eψε (ϕ) +
1

(L·nε )

∫
M

(ϕ− ψε)(
√
−1∂∂̄ψε)

n. (9)



Step 3: take limit of (M, ω(ε,t)) as ε→ 0+: potential Part

Proposition (weak uniform properness)

Fix t ∈ (0, 1) there exist ε∗ = ε∗(t), δ∗ = δ∗(t) and C > 0 s.t. for any
ε ∈ (0, ε∗] and any ϕ ∈ PSH(Lε), the following inequality holds:

FB(ε,t)
(t, ϕ) ≥ δ∗Jψε(ϕ)− Cε∗‖ϕ− ϕε‖∞ − C . (10)

We proved this estimate by using the properness of FB(ε∗,t)
and comparing the

energy functional for parameter ε and ε∗ by a rescaling map:

Pε : PSH(Lε) → PSH(Lε∗)

ϕ 7→ ψε∗ +
1

1 + 2(ε∗ − ε) (ϕ− ψε)

From weak properness to ‖ϕ(ε,t) − ψε‖L∞ , need 2 facts:

1 Uniform bound on Sobolev constants for (edge) conical KE’s (M, ω(ε,t)).
This allows us to bound ‖ · ‖L∞ in terms of Jψε(ϕ) by Moser iteration.

2 F(Bε,t)
(ϕ(ε,t)) (= infimum of FB(ε,t)

) is uniformly bounded from above.

Combining these facts, we get uniform L∞ estimates:



Uniform estimates for the potential functions of ω(ε,t)

Proposition (uniform L∞ estimate)

There exists a constant C = C(X , t) > 0 s.t. the solution ϕ(ε,t) to (∗)(ε,t)

satisfies the uniform L∞ estimate: ‖ϕ(ε,t) − ψε‖L∞ < C .

Derive higher-order estimate away from singular set from the uniform L∞ estimate

Proposition (higher order estimates)

For any V b M \ (∪i≥1Ei ) and any α < (1− 1−t
m

)−1 − 1, there exists a
constant C = C(M,V , t, α) > 0 s.t. ‖ω(ε,t)‖Cα,β0 (V ) ≤ C .

As ε→ 0+, ω(ε,t) converges to a solution to weak Kähler-Einstein metric ω(0,t)

on (X ,HX ) where µ∗HX = H + m
∑

i θiEi . So we get:

Theorem (weak version of YTD)

If an admissible Q-Fano X is uniformly K-stable, then X ha a KE metric.

If X is K-semistable, then there exists KE ω(0,t) on (X , 1−t
m

HX ) for
0 < 1− t � 1.



Step 3: take limit of (M, ω(ε,t)) as ε→ 0+: metric part

Theorem (Tian-Wang)

Let (X(0,t), d(0,t)) be a GH limit of a sequence (M, ω(εi ,t)) as εi → 0 . Then
there is a decomposition X(0,t) = R∪ S satisfying:

1 R is open in X(0,t) and has a smooth manifold structure equipped with a
smooth KE metric.

2 The singular set has a decomposition S = ∪n
k=1S2n−2k where S2n−2k

consists of the points whose metric tangent cones do not split
R2n−2k+1-factor. S2n−2k satisfies codimR(S2n−2k) ≥ 2k.

Main problem: Prove X(0,t) = X . In particular, X(0,t) is an algebraic variety.

Difficulty: ω(ε,t) is curvature form of varying line bundle Lε. The usual partial
C 0-estimate technique does not apply directly.

Fortunately, similar problems have been considered in the study of Kähler-Ricci
flow and other continuity method by J. Song and Tian-Zhang.



X(0,t)
∼= X : Gauge fixing

Using L∞ and higher order estimate of ϕ(ε,t), we get a gauge fixing result:

Proposition (Proposition A: gauge fixing motivated by Rong-Zhang)

For 0 < t < 1, (X(0,t), d(0,t)) is the metric completion of (X reg, ω(0,t)|Xreg ).
Moreover, id : (X reg = M \ E , dg(0,t))→ (M, ω(ε,t)) gives a GH approximation

for the convergence (M, ω(ε,t))
ε→0−→ (X(0,t), dt).

The next result says X(0,t) coincides with the algebraic variety X :

Proposition (Proposition B)

X(0,t) is homeomorphic to X . As a consequence, (X , 1−t
m

HX ) admits a weak
Kähler-Einstein metric ω(0,t) such that the (X , d(0,t)) is the metric completion
of the geodesically convex subset (X reg, ω(0,t)|Xreg ).



X(0,t)
∼= X : construction of map

Let L = µ∗(−KX ) and Φ` : M → PN be the morphism defined by an o.n.b. of
(H0(M, Lm`), hm`

FS, ωFS). Then

Φ`(ε,t) = Φ` : (M, ω(ε,t))→ (Φ`(M) ∼= X , ωFS) (11)

is uniformly Lipschitz (by using Chern-Lu’s inequality):

ωFS ≤ C · ω(ε,t) with uniform C .

As ε→ 0 with t fixed, Φ(εi ,t) subsequentially converges to a Lipschitz map:

Φ`(0,t) : (X(0,t), d(0,t))→ (Φ`(M) ∼= X , ωFS). (12)

Recall: X(0,t) is the metric completion of (X reg, ω(0,t)) and Φ(0,t)|Xreg is an isometry.

Proposition

Φ`
∗

(0,t) is injective for some `∗ � 1. As a consequence, X(0,t) is homeomorphic
to X . Hence (M, ω(ε,t)) Gromov-Hausdorff converges to (X , d(0,t)) which is the
metric completion of (X reg, ω(0,t)).

1 Need a lot of peak sections in (H0(X reg
(0,t),−K

mk
X

reg
0,t

), ‖ · ‖L2(hk
(0,t)

,ω(0,t))).

2 Need gradient estimate of |∇hk(0,t)ζ|hk
(0,t)
⊗ω(0,t)

for ζ ∈ H0(X reg
(0,t), L

k).



X(0,t)
∼= X : construct L2 section using ĥε

Singular metric on µ∗(−KX ) = Lε +
∑

i θiEi : (write ε for (ε, t))

ĥε := e−ϕ̂ε =
e−ϕε∏
i |si |2εθi

. (13)

satisfies (recall 1− βi = −ai + tεθi + (1− t)θi ∈ [0, 1)):

e−kϕ̂εωn
ε =

e−(k+t)ϕε

|sH |2
1−t
m
∏

i |si |2(kεθi+1−βi )
and Θ(ĥk

ε ) + Ric(ωε) ≥ (k + t)ωε.

Weitzenböch formula together with Hörmander’s L2-estimates give:

Proposition (solve ∂̄-equation with L2-estimate)

Assume kεθi + 1− βi < 1. Then ∃C > 0 independent of ε s.t. for any
ξ ∈ Γ(T ∗(0,1)M ⊗ Lk) with ∂̄ξ = 0, we can find a solution to ∂̄ζ = ξ which
satisfies: ∫

M

|ζ|2ĥkεω
n
ε ≤

C

k

∫
M

|ξ|2ĥkε⊗ωεω
n
ε . (14)



X(0,t)
∼= X : construct L2-sections using h(0,t)

Proposition (convergence away from B)

Assume kεθi + 1− βi < 1. Let ζj be a sequence of holomorphic sections of Lk ,
k≥ 1, satisfying

∫
M
|ζj |2ĥkεj

ωn
εj ≤ 1. Then as εj → 0, ζj subsequentially converges

to a locally bounded holomorphic section ζ∞ of Lk over R = M \ supp(B).

Need boundedness of |ζ|hk
(0,t)

and |∇hk(0,t)ζ∞|hk
(0,t)
⊗ω(0,t)

on the regular part X reg.

Let hFS be the pull back of Fubini-Study metric Φ∗hFS on L = µ∗(−KX ). Use
Bochner formula and Moser iteration to get:

Proposition (uniform estimates w.r.t. hFS)

There exists C > 0 independent of ε, s.t. for any ζ ∈ H0(M, Lk) we have:

sup
M
|ζ|2hkFS

≤ Ckn

∫
M

|ζ|2hkFS
ωn
ε ; (15)

|∇hFSζ|2 ≤ Ckn+1

∫
M

|ζ|2hkFS
ωn
ε . (16)

To transfer the estimates to estimates for h(0,t), we need gradient estimate for
ϕ(0,t) on X reg.



X(0,t)
∼= X : uniform gradient estimate of ϕ(0,t)

Write ω(0,t) = χ0 +
√
−1u(0,t) over X . Then u(0,t) is defined up to a constant

and satisfies ∆(0,t)u(0,t) = −trω(0,t)
χ0 + n. We approximate u(0,t) by functions

on M as follows. Choose p ∈ X reg and let U = µ−1(X \ Bω(0,t)
(p, 2r)). Solve:

Dirichlet problem:

{
∆εvε = −trω(ε,t)

χ0 + n on U;

vε = u(0,t) on ∂U.
(17)

Proposition

There exist constant C > 0 independent of ε s.t. |vε|+ |∇εvε| ≤ C over U.

As ε→ 0, (U, ω(ε,t))→ (Û, d(0,t)). vε → v satisfies equation:{
∆εv = −trωε,t)

χ0 + n on Û ∩R;

v = u(0,t) on ∂Û.
(18)

Then one can show that v = u(0,t) over Û ∩R and hence |∇ω(0,t)
u(0,t)| is

indeed bounded.



Φ`∗

(0,t) is homeomorphism for some `∗ � 1

1 ∀p ∈ X reg, construct a local approximate holomorphic section on a small
open set containing p: transfer constant section on the metric tangent
cone Cp to small open set containing p by using a good cut function and a
gauge fixing diffeomorphism (V (p, ε) ⊂ Cregp , Cp × C)→ (X reg

(0,t), L
kp ).

2 For any p ∈ X , construct holomorphic peak section (almost) centered at p.
This is obtained by solving ∂̄-equation to adjust approximate holomorphic
section to become a genuine holomorphic section. The gradient estimate
of ϕ(0,t) allows to extend the uniform estimates “across the singularity”.

3 Prove the Φ`
∗

(0,t) is injective for some `∗ � 1.

For p, q ∈ X(0,t), construct two peak sections in Lm`p,q almost centered at
p and q. Prove that Φlp,q is injective.
Then use the effective finite generation of section rings to prove there
exists an `∗ that works for all pairs p, q.



Step 4 & 5: Completion of Proof of Main Theorem

1 As t → 1, (X , d(0,t)) GH converges to (X∞, d∞). Tian-F.Wang’s
compactness applies because (X , d(0,t)) are GH limits of strong (edge)
conical KE metrics with positive Ricci curvature.

2 Use the technique of partial C 0-estimates to show that X∞ is a normal
Q-Fano variety and admits a weak KE metric with Lipschitz potentials.
Moreover, X∞ and X can be embedded by L2-sections into a common
projective space PN such that Hilb(X∞) is in the orbit closure of Hilb(X )
under PGL(N + 1,C).

3 Prove generalized Matsushima type result: Aut(X∞) is reductive. As a
consequence and by using Luna slice theorem, there is a one parameter
subgroup in the Hilbert scheme such that

λ(t) ·Hilb(X )→ Hilb(X∞) as t → 0.

This gives a special degeneration of X with central fibre X∞.

4 X being KE implies Fut(X∞,−v) = 0 where v is the generator of λ(t).
The K-polystability of X forces X∞ ∼= X .



Thanks for your attention!


