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Kahler-Einstein metric

A Fano manifold X is a projective manifold such that:
Fano: —Kx = A"Tho1 X is an ample line bundle.

Equivalently: 3 a Kahler metric g s.t. its Kahler form w € 2mc(—Kx).

Kahler form: w = g(J-,:) = vV — Zg,ldz, ANdz = +—100¢p,. (1)

ij
Examples P’tkP2, 0 < k < 8; P"; {F(z1,...,2,) = 0} C P""! with deg(F) < n.

Hermitian metric on —Kx: h=e"¥ = {e ¥~} sit. |0., % %> = |0z, [?e™ 7.

(e |

. 0 log det(g,7) - 2
Ric(w) = —\/—1; Tazjc/z,- AdZ; € 2ma(—Kx) € H(X,R). (2)
Kahler-Einstein (KE) Equation: Ric(w) = w

KE equation is equivalent to a complex Monge-Ampere equation:

(V=108pa)" = |00 P~ % (V=1)" dza A dZ. EE det(p) = e *.  (3)



K-stability from variational appoint of view

Theorem (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein)

X admits a KE metric if and only if Mabuchi or Ding energy (denoted by F) is
proper modulo the holomorphic automorphism group Aut(X).

K-stability: a Hilbert-Mumford type criterion for properness of energy:

Definition (K-stability after Tian, equivalent to Donaldson’s formulation by L.-Xu)

X is K-polystable if for any special degeneration (X,n) of X, Fut(Xo,—n) > 0
and the identity holds iff X is induced by a holomorphic vector field n on X.

Conjecture (Yau-Tian-Donaldson (YTD) conjecture)

X has a Kahler-Einstein metric if and only if X is K-polystable.

Necessary (needs energy properness): Tian ('97), Berman (works for any Q-Fano)

Sufficient (partial C%-estimate for conical KE): Chen-Donaldson-Sun, Tian



KE on Q-Fano variety

Definition

A Q-Fano variety X is a normal projective variety satisfying 2 conditions:
Fano: —Kx is ample Q-line bundle, i.e. —mKx := (A" TX"®)®™ extends as an
ample line bundle for some m € Z;

Klt (Kawamata log terminal): Vx € X,3 an open neighborhood U s.t. for a
nowhere vanishing section s € Ok, (U)

2
/ (V=I™ s A 5™ < oo (4)
ureg

v

Hermitian metric on the Q-line bundle —Kx: e™%¥ = {e™ %>} s.t.
|si|?e™m = |s5[?e™¥5. We always assume {¢q} are bounded.

= mn? 1/m
KE equation: (vV/—100p,)" = |si[*/me™ % (\/—1 Sa A §a> )

weak KE metrics: bounded solutions (in Bedford-Taylor sense) to (5).

Note: Condition (4) <= the right-hand-side of (5) is integrable.



Digression: Why KIlt singularities

It is the biggest class of singularities for which the Yau-Tian-Donaldson
conjecture is expected to hold, and for which the Minimal Model Program in
birational algebraic geometry is known to work.

@ dimc X = 2: Klt=isolated quotient singularity C?/G.
@ dim¢ X = 3: partial classifications ({terminal} C {canonical} C {KIt})
© Quotient singularities and toric singularities are Kilt.

Q Kit singularities are local correspondent of (log-)Fano varieties. Any Klt
singularity degenerates to (orbifold-)cones over (log-)Fano varieties.

Check KIt condition: first choose a resolution of singularities p: M — X (M is
smooth and p is isomorphism over X*°®) and write:

u (s A 5)% = h(z) H |zi|*®dz A dz, (h(z) nowhere vanishing);

or algebraically: Ku = " Kx + ZaiEi, E = {z =0}

Then (4) is equivalent a; > —1. a; is called the discrepancy of E; over X.



Main Result

We say the singularities of X are admissible if 3 a log resolution of singularities
w:M—= Xst.

(A1) If Ky = p"Kx + 3, aiE;, then —1 < a; < 0 for any i; and
(A2) 30; € Qo s.t. p"(—Kx) — >, 0iE; is an ample Q-line bundle on M.

Theorem (L.-Tian-Wang '17)

Let X be a Q-Fano variety with admissible singularities. If X is K-polystable,
then X admits a Kahler-Einstein metric.

@ (A2) is always satisfied for Q-factorial singularities. There are a lot of admissible
Klt singularities including all 2-dimensional Klt singularities, Q-factorial Klt
singularities admitting crepant resolutions.

@ First existence result of YTD for “non-smoothable” Fano varieties.

© YTD is expected to be true for any Q-Fano variety. But not all KE Fano varieties
are expected to be Gromov-Hausdorff (GH) limits of smooth Riemannian
manifolds with lower Ricci bounds.



Idea/sketch of proofs

o Take an admissible resolution p : M — X and solve for appropriate (edge)
conical Kahler-Einstein metric on M.

@ Prove that the (edge) conical KE metrics on M converge to a
Kahler-Einstein metric on X under the assumption of K-polystability.
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(Edge) Conical Kahler metrics

g= ol = P PRI, W= VLA = /100 (572).

R

Higher dim: If D =>""  Di = {z1z2-- - zm = 0} is a SNC divisor (i.e. D; are
smooth and intersections are transversal), then local (edge) conical model:

dz; N\ dz,
o= V(SRS S ).
j=m+1
Its Ricci curvature has a current term:

Ric(w) = \/—1652 log |z;| ) = Z(l — Bi)2m0 =0y dxi A dyi.  (6)

i=1 i=1



Sketch of proof of Theorem 2

We divide the proof of the main result into 6 steps:

Step 0

Step 1

Step 2

Step 3

Step 4

Step 5

(A2) = can assume L := p*(—Kx) —e>_; 6;E; is positive for 0 < e <1 =
there is a very ample divisor H = {sy = 0} € |[mLy| (with m > 1) s.t. H+ 3 E;
has SNC.

Prove (M, %H + >2i>1(1 = Bi)E;) is uniformly-K-stable for appropriate cone
anges 27[3;. This part is purely algebraic.

Use version of YTD for log smooth pairs to construct 2-parameter family of
(edge) conical KE metrics w( ¢) € 2mc1(Le) on M with edge conical singularities
along HU Y, E;.

For fixed t, prove (M, w(c 1), d(c.¢)) ) (X, w(0,6)5 d(0,)) (in both puripotential
and GH senses). w(o,¢) is a weak KE on (X, %HX) for some Hx € | — mKx|
and (X, d(,1)) = (X8, w(q )| xres) (metric completion).

Ast — 1, (X,w(o,t)) subsequentially converges in Gromov-Hausdorff topology to
X equipped with a weak Kahler-Einstein metric w(q,1).

Construct a special degeneration of X to Xo with zero Futaki invariant.
K-polystability of X forces Xoc = X.

The last two steps were essentially done by CDS and Tian (although X is
smooth in their case).



Step 0: set-up (edge) conical KE equation on M

Decomposition of Q-divisor:
—Ky = M*(_KX)+Z(_af)Ef: t(u*(—KX)—EZGIEi)
i>1 i

11—t
-l—TH + Z(—a; + teb; + (1 — t)@;)E; =: B(E,t).

i>1
Correspondingly, solve the following KE equation (Eq = H for simplicity):

e ¥

R/C(W(e’t)) = tW(e’t) 4+ 27T{B(67t)} [= (\/—185(,0)n = W ((*)(e,t))
i>0 i

Geometrically, w(.,+) is a (edge) conical KE metric which is smooth on

M\ Supp(Bi.,)) and has cone singularities along E; with cone angle 273; where

8 = 1- Lt fori=0ie Eo=H
T 1+a,—te,—(1—t)9 for i > 1.

Why Admissible: a; € (—1,0] = §; € (0,1] for 0 < max{e,1 —t} < 1



Step 1: Uniform K-stability of (M, B 1))

Proposition
X K-polystable = (M, Bcy)) uniformly K-stable if 0 < max{e,1 —t} < 1.

The proof uses the valuative criterion of K-stability developed by Fujita and L..
For any divisorial valuation ordr over M, define:

Awm,g)(E)(—Kum — B)"

7% volu(—Kum — B — xE)dx’

®m,)(F) = 5(M,B) == inf ®(u5)(F). (7)

Theorem (Fujita, L.)

O (M, B) is K-semstable iff 5(M, B) > 1.
Q@ (M, B) is uniform K-stable iff 5(M, B) > 1.

Why this helps: because C(M) 2 C(X) and the set of valuations do not
change. On the other hand, the set of special degenerations change!



Step 2: existence of KE on (M, B(E.‘t))

Need a logarithmic version of YTD for the pair (M, B) with smooth ambient space:

Theorem (L.-Tian-Wang, Tian-Wang)

(M, B) is uniformly K-stable = energy is proper = 3 solution to (*)(c,¢)-

Two proofs for energy properness:
© Generalize Berman-Boucksom-Jonsson's argument to the logarithmic setting:

Uniformly K-stable

def, . .
L FNA > §JNA on smooth non-Archimedean metrics

<  FNA > §JNA on finite energy non-Archimedean metrics
<= F > 6J— C on the space of (smooth or finite energy) Kahler metrics.

@ Generalize CDS-Tian’s argument to the logarithmic setting (need the conical
version of Cheeger-Colding-Tian's theory developed recently by Tian-Wang).

The Euler-Lagrange equation of F is (%) (¢ »:

Fim P o(0) = ~Eu o)~ {lox ([ £0). (®)

Isg|?

J-energy measures the distance between two potentials:

o= Jy () = —Ey(0) + ﬁ /M (¢ — ) (V"105%.)". )



Step 3: take limit of (M,w(,)) as € — 0": potential Part

Proposition (weak uniform properness)

Fix t € (0,1) there exist €* = €*(t), 6* = 6*(t) and C > 0 s.t. for any
€ € (0,€] and any ¢ € PSH(L.), the following inequality holds:

Foie.o(t:0) = 6" Iy () = Ce"[lp = pelloo — C. (10)

We proved this estimate by using the properness of FB(E* 9 and comparing the
energy functional for parameter ¢ and €* by a rescaling map:

P.: PSH(L)) — PSH(L.)
1

m(@*%)

© = Y +

From weak properness to ||¢(c,s) — %e|[L, need 2 facts:

@ Uniform bound on Sobolev constants for (edge) conical KE's (M, w(c,+))-
This allows us to bound || - ||, in terms of Jy_(¢) by Moser iteration.

Q@ Fs, ,(¢(,n) (= infimum of Fg_, ) is uniformly bounded from above.

Combining these facts, we get uniform L* estimates:



Uniform estimates for the potential functions of w, 1)

Proposition (uniform L* estimate)

There exists a constant C = C(X, t) > 0 s.t. the solution @(c ;) to (¥) (e,
satisfies the uniform L> estimate: ||¢(c,s) — Pe||rc < C.

Derive higher-order estimate away from singular set from the uniform L°° estimate

Proposition (higher order estimates)

For any V. € M\ (Ui>1E) and any o < (1 — 1=1)71 — 1, there exists a
constant C = C(M7 V7 t7 CY) > 0 s.t. ||w(6,t)HCO‘»50(V) S C

As e — 0T, W(e,r) converges to a solution to weak Kahler-Einstein metric w(o,y
on (X, Hx) where u*Hx = H+ m}_, 0;E;. So we get:

Theorem (weak version of YTD)
e If an admissible Q-Fano X is uniformly K-stable, then X ha a KE metric.

e If X is K-semistable, then there exists KE w(o,r) on (X, ==t Hx) for
0<1l -tk 1l




Step 3: take limit of (M,w(,)) as € — 0": metric part

Theorem (Tian-Wang)
Let (X(o,t), d(o,r)) be a GH limit of a sequence (M,w(, ) as i — 0 . Then
there is a decomposition X,y = RUS satisfying:
© R is open in X, and has a smooth manifold structure equipped with a
smooth KE metric.

@ The singular set has a decomposition S = Uj_1San—2k where Sap—ok
consists of the points whose metric tangent cones do not split
R2"=2k*1_factor. San_ox satisfies codimg(Sa,_2x) > 2k.

Main problem: Prove X ) = X. In particular, X,y is an algebraic variety.

Difficulty: wye,r) is curvature form of varying line bundle L. The usual partial
CP-estimate technique does not apply directly.

Fortunately, similar problems have been considered in the study of Kahler-Ricci
flow and other continuity method by J. Song and Tian-Zhang.



Xo,r) = X: Gauge fixing

Using L™ and higher order estimate of ¢(.,+), we get a gauge fixing result:

Proposition (Proposition A: gauge fixing motivated by Rong-Zhang)

For0 < t <1, (Xq,), do,t)) is the metric completion of (X"8, w(q,¢)|xee).
Moreover, id : (X™® = M\ E, dg0,+)) = (M, we,r)) gives a GH approximation

for the convergence (M, w()) = (X0,0), dt)-

The next result says X(o,¢) coincides with the algebraic variety X:

Proposition (Proposition B)

Xo,t) is homeomorphic to X. As a consequence, (X, %Hx) admits a weak
Kahler-Einstein metric w(o,¢) such that the (X, d(o,s)) is the metric completion
of the geodesically convex subset (X%, w(o,¢)|xres).




Xo,r) = X : construction of map

Let L =p*(— Kx) and ®¢ : M — P" be the morphism defined by an o.n.b. of
(H(M, Lm‘f) h#$, wrs). Then

Dy =D 1 (M, wie,n) = (9°(M) 2 X, wrs) (11)
is uniformly Lipschitz (by using Chern-Lu’s inequality):
wrs < C - w(e,p) with uniform C.
As € — 0 with t fixed, ®(, ;) subsequentially converges to a Lipschitz map:
0.0 (X0,0 do,)) — (¥°(M) = X, wrs). (12)

Recall: X(q,) is the metric completion of (X", w(g ) and ®(g )| xres is an isometry.

Proposition

¢fo*,t) is injective for some £* > 1. As a consequence, X+ is homeomorphic
to X. Hence (M,w(c,)) Gromov-Hausdorff converges to (X, d(,+)) which is the
metric completion of (X8, w(q +)-

© Need a lot of peak sections in (HO(XrOe%), —Kgk o N HLZ(h(kO t),w(o,:)))'

@ Need gradient estimate of |V" .0 §|hk ®40.0 for ¢ € H()(X(roef)7 L5).



X(o,r) = X: construct L* section using h.

Singular metric on p*(—Kx) = Le + >, 0iEi: (write € for (e, t))

hoime P &7 13
R VAT )
satisfies (recall 1 — 8; = —a; + tef; + (1 — t)6; € [0,1)):
kpe n e_(k+t)LP5

and ©(hX) + Ric(w:) > (k + t)we.

R VAERERRY

Weitzenbdch formula together with Hormander's [*-estimates give:

Proposition (solve §-equation with [*-estimate)

Assume kel; +1 — 5; < 1. _Then 3C > 0 independent of € s.t. for any
£ e M(T*CYM ® L*) with ¢ = 0, we can find a solution to 8¢ = & which

satisfies: .
[ ictr < £ [ leBguen (14)
M M




Xo,r) = X: construct L*-sections using hq 1)

Proposition (convergence away from B)

Assume ke + 1 — B; < 1. Let (; be a sequence of holomorphic sections of L¥,
k> 1, satisfying [,, \Q|%k we, < 1. Then as ¢; — 0, (; subsequentially converges
5

to a locally bounded holomorphic section (s of L* over R = M\ supp(B).

Need boundedness of \C|h<k " and |V" (. f>Coo|,,k o @i, ON the regular part X*°8.

Let hrs be the pull back of Fubini-Study metrlc ®*hpg on L = p*(—Kx). Use
Bochner formula and Moser iteration to get:

Proposition (uniform estimates w.r.t. hgs)

There exists C > 0 independent of ¢, s.t. for any ¢ € H°(M, LX) we have:
2 n 2 n,
sup|Cly, < K" [ (L ot (15)
viescR < ekt [ oy ur. (16)
M FS

To transfer the estimates to estimates for h ), we need gradient estimate for
©(0,¢) on X",



X(o,r) = X: uniform gradient estimate of ¢(q ;)

Write wo,t) = Xo + v/ —1u,+r) over X. Then u( ) is defined up to a constant
and satisfies A,y U(o,t) = —trwg X0 + N We approximate uq,+) by functions
on M as follows. Choose p € X™% and let U = p~1(X '\ B (P, 2r)). Solve:

Acve = —try,, . xXo+n on U,
(e:) 17
Ve = U(0,¢) on OU. a7

Proposition
There exist constant C > 0 independent of € s.t. |ve| + |Veve| < C over U.

As e — 0, (U,we,n) = (U7 do,r)). ve — v satisfies equation:

Dirichlet problem: {

{ Aev:—trweyt)xg—i—n on UNR; (18)

V= U1 on 80.

Then one can show that v = uq ) over UNR and hence |VW(M U,y is
indeed bounded.



(0.4) is homeomorphism for some ¢* > 1

Q Vp € X™8, construct a local approximate holomorphic section on a small

open set containing p: transfer constant section on the metric tangent
cone C, to small open set containing p by using a good cut function and a
gauge fixing diffeomorphism (V(p, ) C C3%,C,p x C) = (X355, L*%).

For any p € X, construct holomorphic peak section (almost) centered at p.
This is obtained by solving d-equation to adjust approximate holomorphic
section to become a genuine holomorphic section. The gradient estimate
of ©(o,+) allows to extend the uniform estimates “across the singularity”.

Prove the ¢€g,:) is injective for some £* > 1.

For p,q € X(o,), construct two peak sections in L™ almost centered at
p and g. Prove that ®»7 is injective.

Then use the effective finite generation of section rings to prove there
exists an £* that works for all pairs p, g.



Step 4 & 5: Completion of Proof of Main Theorem

O Ast — 1, (X,do,)) GH converges to (X, dx). Tian-F.Wang's
compactness applies because (X, d(o,)) are GH limits of strong (edge)
conical KE metrics with positive Ricci curvature.

@ Use the technique of partial C%-estimates to show that X. is a normal
Q-Fano variety and admits a weak KE metric with Lipschitz potentials.
Moreover, Xoo and X can be embedded by L*-sections into a common
projective space PV such that Hilb(X4.) is in the orbit closure of Hilb(X)
under PGL(N + 1,C).

@ Prove generalized Matsushima type result: Aut(Xs) is reductive. As a
consequence and by using Luna slice theorem, there is a one parameter
subgroup in the Hilbert scheme such that

A(t) - Hilb(X) — Hilb(Xs) as t — 0.

This gives a special degeneration of X with central fibre X.

O X being KE implies Fut(Xoo, —v) = 0 where v is the generator of A(t).
The K-polystability of X forces X =2 X.



Thanks for your attention!



