On Yau-Tian-Donaldson conjecture for singular Fano varieties

Chi Li
joint work with Gang Tian and Feng Wang
Department of Mathematics, Purdue University
Hopkins-Maryland Complex Geometry Seminar November 27, 2018

A Fano manifold X is a projective manifold such that:
Fano: $-K_{X}=\wedge^{n} T_{\text {hol }} X$ is an ample line bundle.
Equivalently: \exists a Kähler metric g s.t. its Kähler form $\omega \in 2 \pi c_{1}\left(-K_{X}\right)$.

$$
\begin{equation*}
\text { Kähler form: } \omega=g(J \cdot, \cdot)=\sqrt{-1} \sum_{i, j} g_{i \bar{j}} d z_{i} \wedge d \bar{z}_{j}=\sqrt{-1} \partial \bar{\partial} \varphi_{\alpha} . \tag{1}
\end{equation*}
$$

Examples $\mathbb{P}^{2} \sharp k \overline{\mathbb{P}^{2}}, 0 \leq k \leq 8 ; \mathbb{P}^{n} ;\left\{F\left(z_{1}, \ldots, z_{n}\right)=0\right\} \subset \mathbb{P}^{n-1}$ with $\operatorname{deg}(F)<n$.
Hermitian metric on $-K_{X}: h=e^{-\varphi}=\left\{e^{-\varphi_{\alpha}}\right\}$ s.t. $\left|\partial_{z_{\alpha}}\right|^{2} e^{-\varphi_{\alpha}}=\left|\partial_{z_{\beta}}\right|^{2} e^{-\varphi_{\beta}}$.

$$
\begin{equation*}
\operatorname{Ric}(\omega)=-\sqrt{-1} \sum_{i, j} \frac{\partial^{2} \log \operatorname{det}\left(g_{k \bar{l}}\right)}{\partial z_{i} \partial \bar{z}_{j}} d z_{i} \wedge d \bar{z}_{j} \in 2 \pi c_{1}\left(-K_{X}\right) \in H^{2}(X, \mathbb{R}) \tag{2}
\end{equation*}
$$

Kähler-Einstein (KE) Equation: $\quad \operatorname{Ric}(\omega)=\omega$
KE equation is equivalent to a complex Monge-Ampère equation:

$$
\begin{equation*}
\left(\sqrt{-1} \partial \bar{\partial} \varphi_{\alpha}\right)^{n}=\left|\partial_{z_{\alpha}}\right|^{2} e^{-\varphi_{\alpha}}(\sqrt{-1})^{n^{2}} d z_{\alpha} \wedge d \bar{z}_{\alpha} \stackrel{\text { locally }}{\Longleftrightarrow} \operatorname{det}\left(\varphi_{i \bar{j}}\right)=e^{-\varphi} . \tag{3}
\end{equation*}
$$

Theorem (Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein)

X admits a KE metric if and only if Mabuchi or Ding energy (denoted by F) is proper modulo the holomorphic automorphism group $\operatorname{Aut}(X)$.

K-stability: a Hilbert-Mumford type criterion for properness of energy:
Definition (K-stability after Tian, equivalent to Donaldson's formulation by L.-Xu)
X is K-polystable if for any special degeneration (\mathcal{X}, η) of $X, \operatorname{Fut}\left(\mathrm{X}_{0},-\eta\right) \geq 0$ and the identity holds iff \mathcal{X} is induced by a holomorphic vector field η on X.

Conjecture (Yau-Tian-Donaldson (YTD) conjecture)

X has a Kähler-Einstein metric if and only if X is K-polystable.
Necessary (needs energy properness): Tian ('97), Berman (works for any \mathbb{Q}-Fano)
Sufficient (partial C^{0}-estimate for conical KE): Chen-Donaldson-Sun, Tian

Definition

$A \mathbb{Q}$-Fano variety X is a normal projective variety satisfying 2 conditions:
Fano: $-K_{X}$ is ample \mathbb{Q}-line bundle, i.e. $-m K_{X}:=\left(\wedge^{n} T X^{\mathrm{reg}}\right)^{\otimes m}$ extends as an ample line bundle for some $m \in \mathbb{Z}$;
Klt (Kawamata log terminal): $\forall x \in X, \exists$ an open neighborhood U s.t. for a nowhere vanishing section $s \in \mathcal{O}_{m K_{X}}(U)$

$$
\begin{equation*}
\int_{U^{\mathrm{reg}}}\left(\sqrt{-1}^{m n^{2}} s \wedge \bar{s}\right)^{1 / m}<+\infty \tag{4}
\end{equation*}
$$

Hermitian metric on the \mathbb{Q}-line bundle $-K_{X}: e^{-\varphi}=\left\{e^{-\varphi_{\alpha}}\right\}$ s.t. $\left|s_{\alpha}^{*}\right|^{2} e^{-m \varphi_{\alpha}}=\left|s_{\beta}^{*}\right|^{2} e^{-m \varphi_{\beta}}$. We always assume $\left\{\varphi_{\alpha}\right\}$ are bounded.

KE equation: $\quad\left(\sqrt{-1} \partial \bar{\partial} \varphi_{\alpha}\right)^{n}=\left|s_{\alpha}^{*}\right|^{2 / m} e^{-\varphi_{\alpha}}\left(\sqrt{-1}^{m n^{2}} s_{\alpha} \wedge \bar{s}_{\alpha}\right)^{1 / m}$.
weak KE metrics: bounded solutions (in Bedford-Taylor sense) to (5).
Note: Condition (4) \Longleftrightarrow the right-hand-side of (5) is integrable.

It is the biggest class of singularities for which the Yau-Tian-Donaldson conjecture is expected to hold, and for which the Minimal Model Program in birational algebraic geometry is known to work.
(1) $\operatorname{dim}_{\mathbb{C}} X=2$: $\mathrm{Klt}=$ isolated quotient singularity \mathbb{C}^{2} / G.
(2) $\operatorname{dim}_{\mathbb{C}} X=3$: partial classifications $(\{$ terminal $\} \subset\{$ canonical $\} \subset\{\mathrm{Klt}\})$
(3) Quotient singularities and toric singularities are Klt.
(9) Klt singularities are local correspondent of (log-)Fano varieties. Any Klt singularity degenerates to (orbifold-)cones over (log-)Fano varieties.

Check Klt condition: first choose a resolution of singularities $\mu: M \rightarrow X(M$ is smooth and μ is isomorphism over $X^{\text {reg }}$) and write:

$$
\begin{gathered}
\mu^{*}(s \wedge \bar{s})^{\frac{1}{m}}=h(z) \prod_{i}\left|z_{i}\right|^{2 a_{i}} d z \wedge d \bar{z}, \quad(h(z) \text { nowhere vanishing }) \\
\text { or algebraically: } \quad K_{M}=\mu^{*} K_{X}+\sum_{i} a_{i} E_{i}, \quad E_{i}=\left\{z_{i}=0\right\}
\end{gathered}
$$

Then (4) is equivalent $a_{i}>-1 . a_{i}$ is called the discrepancy of E_{i} over X.

We say the singularities of X are admissible if \exists a log resolution of singularities $\mu: M \rightarrow X$ s.t.
(A1) If $K_{M}=\mu^{*} K_{X}+\sum_{i} a_{i} E_{i}$, then $-1<a_{i} \leq 0$ for any i; and
(A2) $\exists \theta_{i} \in \mathbb{Q}>0$ s.t. $\mu^{*}\left(-K_{X}\right)-\sum_{i} \theta_{i} E_{i}$ is an ample \mathbb{Q}-line bundle on M.

Theorem (L.-Tian-Wang '17)

Let X be a \mathbb{Q}-Fano variety with admissible singularities. If X is K-polystable, then X admits a Kähler-Einstein metric.
(1) (A2) is always satisfied for \mathbb{Q}-factorial singularities. There are a lot of admissible KIt singularities including all 2-dimensional KIt singularities, \mathbb{Q}-factorial KIt singularities admitting crepant resolutions.
(2) First existence result of YTD for "non-smoothable" Fano varieties.
(3) YTD is expected to be true for any \mathbb{Q}-Fano variety. But not all KE Fano varieties are expected to be Gromov-Hausdorff (GH) limits of smooth Riemannian manifolds with lower Ricci bounds.

- Take an admissible resolution $\mu: M \rightarrow X$ and solve for appropriate (edge) conical Kähler-Einstein metric on M.
- Prove that the (edge) conical KE metrics on M converge to a Kähler-Einstein metric on X under the assumption of K-polystability.

$g=\frac{|d z|^{2}}{|z|^{2(1-\beta)}}=d r^{2}+\beta^{2} r^{2} d \theta^{2}, \quad \omega=\sqrt{-1} \frac{d z \wedge d \bar{z}}{|z|^{2(1-\beta)}}=\sqrt{-1} \partial \bar{\partial}\left(\beta^{-2}|z|^{2 \beta}\right)$.

Higher dim: If $D=\sum_{i=1}^{m} D_{i}=\left\{z_{1} z_{2} \cdots z_{m}=0\right\}$ is a SNC divisor (i.e. D_{i} are smooth and intersections are transversal), then local (edge) conical model:

$$
\omega=\sqrt{-1}\left(\sum_{i=1}^{m} \frac{d z_{i} \wedge d \bar{z}_{i}}{\left|z_{i}\right|^{2\left(1-\beta_{i}\right)}}+\sum_{j=m+1}^{n} d z_{j} \wedge d \bar{z}_{j}\right) .
$$

Its Ricci curvature has a current term:

$$
\begin{equation*}
\operatorname{Ric}(\omega)=\sqrt{-1} \partial \bar{\partial} \sum_{i=1}^{m} \log \left|z_{i}\right|^{2\left(1-\beta_{i}\right)}=\sum_{i=1}^{m}\left(1-\beta_{i}\right) 2 \pi \delta_{\left\{z_{i}=0\right\}} d x_{i} \wedge d y_{i} \tag{6}
\end{equation*}
$$

We divide the proof of the main result into 6 steps:
Step 0 (A2) \Rightarrow can assume $L_{\epsilon}:=\mu^{*}\left(-K_{X}\right)-\epsilon \sum_{i} \theta_{i} E_{i}$ is positive for $0<\epsilon \leq 1 \Rightarrow$ there is a very ample divisor $H=\left\{s_{H}=0\right\} \in\left|m L_{1}\right|($ with $m \gg 1)$ s.t. $H+\sum_{i} E_{i}$ has SNC.
Step $1 \operatorname{Prove}\left(M, \frac{1-t}{m} H+\sum_{i \geq 1}\left(1-\beta_{i}\right) E_{i}\right)$ is uniformly-K-stable for appropriate cone anges $2 \pi \beta_{i}$. This part is purely algebraic.
Step 2 Use version of YTD for log smooth pairs to construct 2-parameter family of (edge) conical KE metrics $\omega_{(\epsilon, t)} \in 2 \pi c_{1}\left(L_{\epsilon}\right)$ on M with edge conical singularities along $H \cup \sum_{i} E_{i}$.
Step 3 For fixed t, prove $\left(M, \omega_{(\epsilon, t)}, d_{(\epsilon, t)} \xrightarrow{\epsilon_{i} \rightarrow 0}\left(X, \omega_{(0, t)}, d_{(0, t)}\right)\right.$ (in both puripotential and GH senses). $\omega_{(0, t)}$ is a weak KE on $\left(X, \frac{1-t}{m} H_{X}\right)$ for some $H_{X} \in\left|-m K_{X}\right|$ and $\left(X, d_{(0, t)}\right)=\overline{\left(X^{\text {reg }}, \omega_{(0, t)} \mid X^{\text {reg }}\right)}$ (metric completion).
Step 4 As $t \rightarrow 1,\left(X, \omega_{(0, t)}\right)$ subsequentially converges in Gromov-Hausdorff topology to X_{∞} equipped with a weak Kähler-Einstein metric $\omega_{(0,1)}$.
Step 5 Construct a special degeneration of X to X_{∞} with zero Futaki invariant. K-polystability of X forces $X_{\infty} \cong X$.

The last two steps were essentially done by CDS and Tian (although X is smooth in their case).

Decomposition of \mathbb{Q}-divisor:

$$
\begin{aligned}
-K_{M}= & \mu^{*}\left(-K_{x}\right)+\sum_{i \geq 1}\left(-a_{i}\right) E_{i}=t\left(\mu^{*}\left(-K_{x}\right)-\epsilon \sum_{i} \theta_{i} E_{i}\right) \\
& +\frac{1-t}{m} H+\sum_{i \geq 1}\left(-a_{i}+t \epsilon \theta_{i}+(1-t) \theta_{i}\right) E_{i}=: B_{(\epsilon, t)} .
\end{aligned}
$$

Correspondingly, solve the following KE equation ($E_{0}=H$ for simplicity):

$$
\operatorname{Ric}\left(\omega_{(\epsilon, t)}\right)=t \omega_{(\epsilon, t)}+2 \pi\left\{B_{(\epsilon, t)}\right\} \Leftrightarrow(\sqrt{-1} \partial \bar{\partial} \varphi)^{n}=\frac{e^{-t \varphi}}{\prod_{i \geq 0}\left|S_{E_{i}}\right|^{2\left(1-\beta_{i}\right)}}\left((*)_{(\epsilon, t)}\right)
$$

Geometrically, $\omega_{(\epsilon, t)}$ is a (edge) conical KE metric which is smooth on $M \backslash \operatorname{Supp}\left(B_{(\epsilon, t)}\right)$ and has cone singularities along E_{i} with cone angle $2 \pi \beta_{i}$ where

$$
\beta_{i}= \begin{cases}1-\frac{1-t}{m} ; & \text { for } i=0 \text { i.e. } E_{0}=H \\ 1+a_{i}-t \epsilon_{i}-(1-t) \theta_{i} & \text { for } i \geq 1 .\end{cases}
$$

Why Admissible: $a_{i} \in(-1,0] \Rightarrow \beta_{i} \in(0,1]$ for $0 \leq \max \{\epsilon, 1-t\} \ll 1$

Proposition

X K-polystable $\Rightarrow\left(M, B_{(\epsilon, t)}\right)$ uniformly K-stable if $0<\max \{\epsilon, 1-t\} \ll 1$.
The proof uses the valuative criterion of K-stability developed by Fujita and L..
For any divisorial valuation ord F_{F} over M, define:

$$
\begin{equation*}
\Phi_{(M, B)}(F):=\frac{A_{(M, B)}(E)\left(-K_{M}-B\right)^{n}}{\int_{0}^{+\infty} \operatorname{vol}_{M}\left(-K_{M}-B-x E\right) d x}, \tilde{\delta}(M, B):=\inf _{F} \Phi_{(M, B)}(F) \tag{7}
\end{equation*}
$$

Theorem (Fujita, L.)

(1) (M, B) is K-semstable iff $\tilde{\delta}(M, B) \geq 1$.
(2) (M, B) is uniform K-stable iff $\tilde{\delta}(M, B)>1$.

Why this helps: because $\mathbb{C}(M) \cong \mathbb{C}(X)$ and the set of valuations do not change. On the other hand, the set of special degenerations change!

Need a logarithmic version of YTD for the pair (M, B) with smooth ambient space:

Theorem (L.-Tian-Wang, Tian-Wang)

(M, B) is uniformly K-stable \Longrightarrow energy is proper $\Longrightarrow \exists$ solution to $(*)_{(\epsilon, t)}$.
Two proofs for energy properness:
(1) Generalize Berman-Boucksom-Jonsson's argument to the logarithmic setting:

Uniformly K-stable
$\stackrel{\text { def }}{\Longleftrightarrow} \quad F^{\text {NA }} \geq \delta J^{\mathrm{NA}}$ on smooth non-Archimedean metrics
$\Longleftrightarrow \quad F^{\mathrm{NA}} \geq \delta J^{\mathrm{NA}}$ on finite energy non-Archimedean metrics
$\Longleftrightarrow \quad F \geq \delta J-C$ on the space of (smooth or finite energy) Kähler metrics.
(2) Generalize CDS-Tian's argument to the logarithmic setting (need the conical version of Cheeger-Colding-Tian's theory developed recently by Tian-Wang).

The Euler-Lagrange equation of F is $(*)_{(\epsilon, t)}$:

$$
\begin{equation*}
F:=F_{B_{(\epsilon, t)}}(\varphi)=-E_{\psi_{\epsilon}}(\varphi)-\frac{1}{t} \log \left(\int_{M} \frac{e^{-t \varphi}}{\left|s_{B}\right|^{2}}\right) . \tag{8}
\end{equation*}
$$

J-energy measures the distance between two potentials:

$$
\begin{equation*}
J:=J_{\psi_{\epsilon}}(\varphi)=-E_{\psi_{\epsilon}}(\varphi)+\frac{1}{\left(L_{\epsilon}^{\cdot n}\right)} \int_{M}\left(\varphi-\psi_{\epsilon}\right)\left(\sqrt{-1} \partial \bar{\partial} \psi_{\epsilon}\right)^{n} . \tag{9}
\end{equation*}
$$

Proposition (weak uniform properness)

Fix $t \in(0,1)$ there exist $\epsilon^{*}=\epsilon^{*}(t), \delta^{*}=\delta^{*}(t)$ and $C>0$ s.t. for any $\epsilon \in\left(0, \epsilon^{*}\right]$ and any $\varphi \in \operatorname{PSH}\left(L_{\epsilon}\right)$, the following inequality holds:

$$
\begin{equation*}
F_{B_{(\epsilon, t)}}(t, \varphi) \geq \delta^{*} J_{\psi_{\epsilon}}(\varphi)-C \epsilon^{*}\left\|\varphi-\varphi_{\epsilon}\right\|_{\infty}-C \tag{10}
\end{equation*}
$$

We proved this estimate by using the properness of $F_{B_{\left(\epsilon^{*}, t\right)}}$ and comparing the energy functional for parameter ϵ and ϵ^{*} by a rescaling map:

$$
\begin{aligned}
P_{\epsilon}: \operatorname{PSH}\left(L_{\epsilon}\right) & \rightarrow P S H\left(L_{\epsilon^{*}}\right) \\
\varphi & \mapsto \psi_{\epsilon^{*}}+\frac{1}{1+2\left(\epsilon^{*}-\epsilon\right)}\left(\varphi-\psi_{\epsilon}\right)
\end{aligned}
$$

From weak properness to $\left\|\varphi_{(\epsilon, t)}-\psi_{\epsilon}\right\|_{L^{\infty}}$, need 2 facts:
(1) Uniform bound on Sobolev constants for (edge) conical KE's $\left(M, \omega_{(\epsilon, t)}\right)$. This allows us to bound $\|\cdot\|_{L_{\infty}}$ in terms of $J_{\psi_{\epsilon}}(\varphi)$ by Moser iteration.
(2) $F_{\left(B_{\epsilon, t)}\right.}\left(\varphi_{(\epsilon, t)}\right)$ (= infimum of $\left.F_{B_{(\epsilon, t)}}\right)$ is uniformly bounded from above.

Combining these facts, we get uniform L^{∞} estimates:

Proposition (uniform L^{∞} estimate)

There exists a constant $C=C(X, t)>0$ s.t. the solution $\varphi_{(\epsilon, t)}$ to $(*)_{(\epsilon, t)}$ satisfies the uniform L^{∞} estimate: $\left\|\varphi_{(\epsilon, t)}-\psi_{\epsilon}\right\|_{L^{\infty}}<C$.

Derive higher-order estimate away from singular set from the uniform L^{∞} estimate

Proposition (higher order estimates)

For any $V \Subset M \backslash\left(\cup_{i \geq 1} E_{i}\right)$ and any $\alpha<\left(1-\frac{1-t}{m}\right)^{-1}-1$, there exists a constant $C=C(M, V, t, \alpha)>0$ s.t. $\left\|\omega_{(\epsilon, t)}\right\|_{C^{\alpha, \beta_{0}}(V)} \leq C$.

As $\epsilon \rightarrow 0^{+}, \omega_{(\epsilon, t)}$ converges to a solution to weak Kähler-Einstein metric $\omega_{(0, t)}$ on $\left(X, H_{X}\right)$ where $\mu^{*} H_{X}=H+m \sum_{i} \theta_{i} E_{i}$. So we get:

Theorem (weak version of YTD)

- If an admissible \mathbb{Q}-Fano X is uniformly K-stable, then X ha a KE metric.
- If X is K-semistable, then there exists $K E \omega_{(0, t)}$ on $\left(X, \frac{1-t}{m} H_{X}\right)$ for $0<1-t \ll 1$.

Theorem (Tian-Wang)

Let $\left(X_{(0, t)}, d_{(0, t)}\right)$ be a GH limit of a sequence $\left(M, \omega_{\left(\epsilon_{i}, t\right)}\right)$ as $\epsilon_{i} \rightarrow 0$. Then there is a decomposition $X_{(0, t)}=\mathcal{R} \cup \mathcal{S}$ satisfying:
(1) \mathcal{R} is open in $X_{(0, t)}$ and has a smooth manifold structure equipped with a smooth KE metric.
(2) The singular set has a decomposition $\mathcal{S}=\cup_{k=1}^{n} \mathcal{S}_{2 n-2 k}$ where $\mathcal{S}_{2 n-2 k}$ consists of the points whose metric tangent cones do not split $\mathbb{R}^{2 n-2 k+1}$-factor. $\mathcal{S}_{2 n-2 k}$ satisfies $\operatorname{codim}_{\mathbb{R}}\left(\mathcal{S}_{2 n-2 k}\right) \geq 2 k$.

Main problem: Prove $X_{(0, t)}=X$. In particular, $X_{(0, t)}$ is an algebraic variety.
Difficulty: $\omega_{(\epsilon, t)}$ is curvature form of varying line bundle L_{ϵ}. The usual partial C^{0}-estimate technique does not apply directly.

Fortunately, similar problems have been considered in the study of Kähler-Ricci flow and other continuity method by J. Song and Tian-Zhang.

Using L^{∞} and higher order estimate of $\varphi_{(\epsilon, t)}$, we get a gauge fixing result:

Proposition (Proposition A: gauge fixing motivated by Rong-Zhang)

For $0<t<1,\left(X_{(0, t)}, d_{(0, t)}\right)$ is the metric completion of $\left(X^{\mathrm{reg}}, \omega_{(0, t)} \mid X^{\mathrm{reg}}\right)$. Moreover, id : $\left(X^{\text {reg }}=M \backslash E, d_{g(0, t)}\right) \rightarrow\left(M, \omega_{(\epsilon, t)}\right)$ gives a $G H$ approximation for the convergence $\left(M, \omega_{(\epsilon, t)}\right) \xrightarrow{\epsilon \rightarrow 0}\left(X_{(0, t)}, d_{t}\right)$.

The next result says $X_{(0, t)}$ coincides with the algebraic variety X :

Proposition (Proposition B)

$X_{(0, t)}$ is homeomorphic to X. As a consequence, $\left(X, \frac{1-t}{m} H_{X}\right)$ admits a weak Kähler-Einstein metric $\omega_{(0, t)}$ such that the $\left(X, d_{(0, t)}\right)$ is the metric completion of the geodesically convex subset ($\left.X^{\text {reg }}, \omega_{(0, t)} \mid X^{\text {reg }}\right)$.

Let $L=\mu^{*}\left(-K_{X}\right)$ and $\Phi^{\ell}: M \rightarrow \mathbb{P}^{N}$ be the morphism defined by an o.n.b. of $\left(H^{0}\left(M, L^{m \ell}\right), h_{\mathrm{FS}}^{m \ell}, \omega_{\mathrm{FS}}\right)$. Then

$$
\begin{equation*}
\Phi_{(\epsilon, t)}^{\ell}=\Phi^{\ell}:\left(M, \omega_{(\epsilon, t)}\right) \rightarrow\left(\Phi^{\ell}(M) \cong X, \omega_{\mathrm{FS}}\right) \tag{11}
\end{equation*}
$$

is uniformly Lipschitz (by using Chern-Lu's inequality):

$$
\omega_{\mathrm{FS}} \leq C \cdot \omega_{(\epsilon, t)} \text { with uniform } C .
$$

As $\epsilon \rightarrow 0$ with t fixed, $\Phi_{\left(\epsilon_{i}, t\right)}$ subsequentially converges to a Lipschitz map:

$$
\begin{equation*}
\Phi_{(0, t)}^{\ell}:\left(X_{(0, t)}, d_{(0, t)}\right) \rightarrow\left(\Phi^{\ell}(M) \cong X, \omega_{\mathrm{FS}}\right) \tag{12}
\end{equation*}
$$

Recall: $X_{(0, t)}$ is the metric completion of $\left(X^{\mathrm{reg}}, \omega_{(0, t)}\right)$ and $\Phi_{(0, t)} \mid X^{\text {reg }}$ is an isometry.

Proposition

$\Phi_{(0, t)}^{\ell^{*}}$ is injective for some $\ell^{*} \gg 1$. As a consequence, $X_{(0, t)}$ is homeomorphic to X. Hence $\left(M, \omega_{(\epsilon, t)}\right)$ Gromov-Hausdorff converges to $\left(X, d_{(0, t)}\right)$ which is the metric completion of $\left(X^{\mathrm{reg}}, \omega_{(0, t)}\right)$.
(1) Need a lot of peak sections in $\left(H^{0}\left(X_{(0, t)}^{\text {reg }},-K_{X_{0, t}^{m k}}^{\text {reg }}\right),\|\cdot\|_{L^{2}\left(h_{(0, t)}^{k}, \omega_{(0, t)}\right)}\right)$.
(2) Need gradient estimate of $\left|\nabla^{h_{(0, t)}^{k}} \zeta\right|_{h_{(0, t)}^{k} \otimes \omega_{(0, t)}}$ for $\zeta \in H^{0}\left(X_{(0, t)}^{\text {reg }}, L^{k}\right)$.

Singular metric on $\mu^{*}\left(-K_{X}\right)=L_{\epsilon}+\sum_{i} \theta_{i} E_{i}:($ write ϵ for $(\epsilon, t))$

$$
\begin{equation*}
\hat{h}_{\epsilon}:=e^{-\hat{\varphi}_{\epsilon}}=\frac{e^{-\varphi_{\epsilon}}}{\prod_{i}\left|s_{i}\right|^{2 \epsilon \theta_{i}}} . \tag{13}
\end{equation*}
$$

satisfies (recall $\left.1-\beta_{i}=-a_{i}+t \epsilon \theta_{i}+(1-t) \theta_{i} \in[0,1)\right)$:
$e^{-k \hat{\varphi}_{\epsilon}} \omega_{\epsilon}^{n}=\frac{e^{-(k+t) \varphi_{\epsilon}}}{\left|s_{H}\right|^{\frac{1-t}{m}} \prod_{i}\left|s_{i}\right|^{2\left(k \epsilon \theta_{i}+1-\beta_{i}\right)}}$ and $\Theta\left(\hat{h}_{\epsilon}^{k}\right)+\operatorname{Ric}\left(\omega_{\epsilon}\right) \geq(k+t) \omega_{\epsilon}$.
Weitzenböch formula together with Hörmander's L^{2}-estimates give:

Proposition (solve $\bar{\partial}$-equation with L^{2}-estimate)

Assume $k \in \theta_{i}+1-\beta_{i}<1$. Then $\exists C>0$ independent of ϵ s.t. for any $\xi \in \Gamma\left(T^{*(0,1)} M \otimes L^{k}\right)$ with $\bar{\partial} \xi=0$, we can find a solution to $\bar{\partial} \zeta=\xi$ which satisfies:

$$
\begin{equation*}
\int_{M}|\zeta|_{\hat{h}_{\epsilon}^{k}}^{2} \omega_{\epsilon}^{n} \leq \frac{C}{k} \int_{M}|\xi|_{\hat{h}_{\epsilon}^{k} \otimes \omega_{\epsilon}}^{2} \omega_{\epsilon}^{n} \tag{14}
\end{equation*}
$$

Proposition (convergence away from B)

Assume $k \in \theta_{i}+1-\beta_{i}<1$. Let ζ_{j} be a sequence of holomorphic sections of L^{k}, $k \geq 1$, satisfying $\int_{M}\left|\zeta_{j}\right|_{\hat{h}_{\epsilon_{j}}}^{2} \omega_{\epsilon_{j}}^{n} \leq 1$. Then as $\epsilon_{j} \rightarrow 0, \zeta_{j}$ subsequentially converges to a locally bounded holomorphic section ζ_{∞} of L^{k} over $\mathcal{R}=M \backslash \operatorname{supp}(B)$.

Need boundedness of $|\zeta|_{h_{(0, t)}^{k}}$ and $\left|\nabla^{h_{(0, t)}^{k}} \zeta_{\infty}\right|_{h_{(0, t)}^{k} \otimes \omega_{(0, t)}}$ on the regular part $X^{\text {reg }}$. Let h_{FS} be the pull back of Fubini-Study metric $\Phi^{*} h_{\mathrm{FS}}$ on $L=\mu^{*}\left(-K_{X}\right)$. Use Bochner formula and Moser iteration to get:

Proposition (uniform estimates w.r.t. $h_{F S}$)

There exists $C>0$ independent of ϵ, s.t. for any $\zeta \in H^{0}\left(M, L^{k}\right)$ we have:

$$
\begin{align*}
& \sup _{M}|\zeta|_{h_{\mathrm{FS}}^{k}}^{2} \leq C k^{n} \int_{M}|\zeta|_{h_{\mathrm{FS}}^{k}}^{2} \omega_{\epsilon}^{n} \tag{15}\\
& \left|\nabla^{h_{\mathrm{FS}}} \zeta\right|^{2} \leq C k^{n+1} \int_{M}|\zeta|_{h_{\mathrm{FS}}^{k}}^{2} \omega_{\epsilon}^{n} \tag{16}
\end{align*}
$$

To transfer the estimates to estimates for $h_{(0, t)}$, we need gradient estimate for $\varphi_{(0, t)}$ on X^{reg}.

Write $\omega_{(0, t)}=\chi_{0}+\sqrt{-1} u_{(0, t)}$ over X. Then $u_{(0, t)}$ is defined up to a constant and satisfies $\Delta_{(0, t)} u_{(0, t)}=-\operatorname{tr}_{\omega_{(0, t)}} \chi_{0}+n$. We approximate $u_{(0, t)}$ by functions on M as follows. Choose $p \in X^{\text {reg }}$ and let $U=\mu^{-1}\left(X \backslash B_{\omega_{(0, t)}}(p, 2 r)\right)$. Solve:

Dirichlet problem: $\begin{cases}\Delta_{\epsilon} V_{\epsilon}=-\operatorname{tr}_{\omega_{(\epsilon, t)}} \chi_{0}+n & \text { on } U ; \\ v_{\epsilon}=u_{(0, t)} & \text { on } \partial U .\end{cases}$

Proposition

There exist constant $C>0$ independent of ϵ s.t. $\left|v_{\epsilon}\right|+\left|\nabla_{\epsilon} v_{\epsilon}\right| \leq C$ over U.
As $\epsilon \rightarrow 0,\left(U, \omega_{(\epsilon, t)}\right) \rightarrow\left(\hat{U}, d_{(0, t)}\right) . \quad v_{\epsilon} \rightarrow v$ satisfies equation:

$$
\begin{cases}\Delta_{\epsilon} v=-\operatorname{tr}_{\omega_{\epsilon, t)}} \chi_{0}+n & \text { on } \hat{U} \cap \mathcal{R} ; \tag{18}\\ v=u_{(0, t)} & \text { on } \partial \hat{U} .\end{cases}
$$

Then one can show that $v=u_{(0, t)}$ over $\hat{U} \cap \mathcal{R}$ and hence $\left|\nabla_{\omega_{(0, t)}} u_{(0, t)}\right|$ is indeed bounded.
(1) $\forall p \in X^{\text {reg }}$, construct a local approximate holomorphic section on a small open set containing p : transfer constant section on the metric tangent cone \mathcal{C}_{p} to small open set containing p by using a good cut function and a gauge fixing diffeomorphism $\left(V(p, \epsilon) \subset \mathcal{C}_{p}^{\text {reg }}, \mathcal{C}_{p} \times \mathbb{C}\right) \rightarrow\left(X_{(0, t)}^{\text {reg }}, L^{k_{p}}\right)$.
(2) For any $p \in X$, construct holomorphic peak section (almost) centered at p. This is obtained by solving $\bar{\partial}$-equation to adjust approximate holomorphic section to become a genuine holomorphic section. The gradient estimate of $\varphi_{(0, t)}$ allows to extend the uniform estimates "across the singularity".
(3) Prove the $\Phi_{(0, t)}^{\ell^{*}}$ is injective for some $\ell^{*} \gg 1$.

For $p, q \in X_{(0, t)}$, construct two peak sections in $L^{m \ell_{p, q}}$ almost centered at p and q. Prove that $\Phi^{l_{p, q}}$ is injective.
Then use the effective finite generation of section rings to prove there exists an ℓ^{*} that works for all pairs p, q.
(1) As $t \rightarrow 1$, $\left(X, d_{(0, t)}\right)$ GH converges to $\left(X_{\infty}, d_{\infty}\right)$. Tian-F.Wang's compactness applies because $\left(X, d_{(0, t)}\right)$ are GH limits of strong (edge) conical KE metrics with positive Ricci curvature.
(2) Use the technique of partial C^{0}-estimates to show that X_{∞} is a normal \mathbb{Q}-Fano variety and admits a weak KE metric with Lipschitz potentials. Moreover, X_{∞} and X can be embedded by L^{2}-sections into a common projective space \mathbb{P}^{N} such that $\operatorname{Hilb}\left(X_{\infty}\right)$ is in the orbit closure of $\operatorname{Hilb}(X)$ under $\operatorname{PGL}(N+1, \mathbb{C})$.
(3) Prove generalized Matsushima type result: $\operatorname{Aut}\left(X_{\infty}\right)$ is reductive. As a consequence and by using Luna slice theorem, there is a one parameter subgroup in the Hilbert scheme such that

$$
\lambda(t) \cdot \operatorname{Hilb}(X) \rightarrow \operatorname{Hilb}\left(X_{\infty}\right) \text { as } t \rightarrow 0
$$

This gives a special degeneration of X with central fibre X_{∞}.
(9) X being KE implies $\operatorname{Fut}\left(X_{\infty},-v\right)=0$ where v is the generator of $\lambda(t)$. The K-polystability of X forces $X_{\infty} \cong X$.

Thanks for your attention!

