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Uniformatization Theorem for Riemann Surfaces

Riemann surface: surface with a complex structure:

Topology Metric Curvature

S2 = CP1 spherical 1

T2 = C/Z2 flat 0

Σg = B1/π1(Σg ) hyperbolic -1

Σg closed oriented surface of genus g ≥ 2.

B1 = {z ∈ C; |z | < 1}.

Generalization for higher dimensional complex projective manifolds?
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Kähler manifolds and Kähler metrics

X : complex manifold, {(Uα, z1, . . . , zn)}.
Kähler form: a smooth closed positive (1, 1)-form:

ω =

√
−1

2π

n∑
i,j=1

gi j̄dz
i ∧ dz̄ j , (gi j̄) > 0.

dω = 0 =⇒ Kähler class [ω] ∈ H2(X ,R) ∩ H1,1

∂̄
(X ,C).

∂∂̄-Lemma: any Kähler form in [ω] can be written as

ddcϕ := ω0 +

√
−1

2π
∂∂̄u =

√
−1

2π

∑
i,j

(
(ϕ0)i j̄ + ui j̄

)
dz i ∧ dz̄ j

where ϕ = ϕ0 + u is locally defined, while u = ϕ− ϕ0 and ddcϕ are
globally defined.
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Constant scalar curvature Kähler (cscK) metrics

Ricci curvature:

Ri j̄ := Ric(ddcϕ)i j̄ = − ∂2

∂zi∂z̄j
log det (ϕkl̄) .

Scalar curvature:

S(ddcϕ) = g i j̄Ri j̄ = −g i j̄ ∂2

∂zi∂z̄j
log det (ϕkl̄)

= −(g0i j̄ + ui j̄)
−1 ∂2

∂zi∂z̄j
log det(g0kl̄ + ukl̄).

cscK equation is a 4-th order highly nonlinear equation:

S(u) := S(ddcϕ) = S .

S is a topological constant:

S =
n〈c1(−KX ) ∧ [ω]n−1,X 〉

〈[ω]n,X 〉
.
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Kähler metric as curvature forms

If [ω] ∈ H1,1(X ,C) ∩ H2(X ,Z), then [ω] = c1(L) for an ample
holomorphic line bundle L over X and ω = ddcϕ for a Hermitian metric
e−ϕ on L.
Holomorphic line bundle: transition functions fαβ ∈ O(Uα ∩ Uβ).

L =

(⊔
α

Uα × C

)
/{sα = fαβsβ}.

Hermitian metrics: e−ϕ := {e−ϕα} Hermitian metric on L:

e−ϕα = |fαβ |2e−ϕβ .

∂∂̄-lemma: Fix any reference metric e−ϕ0 , then ∃u ∈ C∞(X ) s.t.

e−ϕ = e−ϕ0e−u.

Chern curvature: globally defined closed (1, 1)-form

ddcϕ =

√
−1

2π
∂∂̄ϕα.

Introduction and results



(Uniform) Yau-Tian-Donaldson (YTD) conjecture

Conjecture (YTD conjecture)

(X , L) admits a cscK metric if and only if (X , L) is Aut(X , L)0-uniformly
K-stable for test configurations.

The only if direction of this Conjecture is known to be true.

Example:
If L = −KX ample, then X is Fano and cscK=Kähler-Einstein (Tian,
Berman, Chen-Donaldson-Sun, Datar-Székelyhidi,
Berman-Boucksom-Jonsson, Hisamoto, L. -Tian-Wang, L. ,
Liu-Xu-Zhuang, ...)

Compare: Donaldson-Uhlenbeck-Yau’s theorem: a holomorphic vector
bundle admits a Hermitian-Einstein metric if and only if the vector
bundle is slope (poly)stable.
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Main results

Theorem (L. ’20)

Let G be a reductive subgroup of Aut(X , L)0. If (X , L) is G-uniformly
K-stable for models (or for filtrations), then (X , L) admits a cscK metric.

We have implications and conjecture they are all equivalent:
Aut(X , L)0-uniformly K-stable for models =⇒ cscK
=⇒ Aut(X , L)0-uniformly K-stable for test configurations

Applications: proving the YTD conjecture for polarized spherical varieties
(including polarized toric varieties):

Corollary (observed by Yuji Odaka)

A polarized spherical manifold (X , L) admits a cscK metric if and only if
(X , L) is G-uniformly K-stable.

G a complex reductive group, B ⊂ G a Borel subgroup.
G/H spherical homogeneous if B has an open orbit.
X is spherical: X = G/H is a G -equivariant compactification.
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Toric case

Toric Kähler manifold: a T := (C∗)n action with an open dense orbit.

Compact toric Kähler manifold ←→ moment convex polytope ∆

dλ : Lebesgue measure; dσ: boundary (lattice normalized) measure.

For any piecewise linear concave rational function f on ∆, define:

MNA(f ) = −
∫
∂∆

fdσ +
|∂∆|σ
|∆|

∫
∆

fdλ;

JNA
T (f ) = inf

{
max

∆
fξ −

1

|∆|

∫
∆

fξdλ; ξ ∈ NR = Lie((S1)n)

}
where fξ = f + 〈·, ξ〉. JNA

T is some normalized L1-norm.

T-uniform K-stable: there exists γ > 0 such that:

MNA(f ) ≥ γ · JNA
T (f ).

Corollary (Hisamoto, based on Chen-Cheng, Donaldson, Zhou-Zhu, ...)

A toric X admits a cscK metric iff it is T-uniformly K-stable.
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A necessary condition: vanishing of Futaki invariant

If v ∈ aut(X , L) is a holomorphic (1, 0) vector field with Hamiltonian

function θv : ιvω =

√
−1

2π
∂̄θv .

Define Futaki invariant (independent of ω ∈ [ω]):

Fut(v) =

∫
X

θv (S(ω)− S)ωn (1)

=

∫
X

(−Ric(ω) + ∆θv ) ∧ (ω + θv )n +
S

n + 1
(ω + θv )n+1.

G-uniformly K-stable ⇒ K-semistable ⇒ Futaki invariant ≡ 0.

Toric case: Fut = |∂∆|
|∆| cent(∆, dλ)− cent(∂∆, dσ).

Toric Fano case: Reflective polytope ↔ Toric Fano manifold
Wang-Zhu’s existence result: KE ↔ Fut ≡ 0.
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Space of Kähler metrics

Space of smooth Kähler metrics:

H = {ϕ = ϕ0 + u; u ∈ C∞(X ), ω0 + ddcu = ddcϕ > 0}.

Monge-Ampère energy (Aubin-Yau):

E(ϕ) =

∫ 1

0

∫
X

ϕ̇(ddcϕ)ndt =
1

n + 1

∑
k

∫
X

uωk
u ∧ ωn−k .

Finite energy metrics as Completion of H (Cegrell, Guedj-Zeriahi)

E1 = {ϕ ∈ PSH(X , [ω]);

E(ϕ) := inf{E(ϕ̃); ϕ̃ ≥ ϕ, ϕ̃ ∈ H} > −∞}.

Strong topology on E1: ϕm → ϕ strongly if ϕm → ϕ in L1(ωn) and
E(ϕm)→ E(ϕ).
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Geodesic rays

Definition

Given ϕ1, ϕ2 ∈ E1, a geodesic segment joining ϕ1, ϕ2 is:

Φ = sup{Φ̃ ∈ PSH(X × [s1, s2]× S1, p∗1L); Φ̃(·, si ) ≤ ϕi , i = 1, 2}.

A geodesic ray emanating from ϕ0 is a map Φ : R≥0 → E1 s.t.
∀s1, s2 ∈ R≥0, Φ|[s1,s2] is the geodesic segment joining ϕ(s1) and ϕ(s2),
and Φ(·, 0) = ϕ0.

Geodesics originates from Mabuchi’s L2-metric on H and satisfies the
Homogeneous Complex Monge-Ampère (HCMA) equation in
pluripotential sense (Semmes, Donaldson):

(
√
−1∂∂̄Φ)n+1 = 0.

Fact: E linear along geodesics:
√
−1∂∂̄E =

∫
X

(
√
−1∂∂̄Φ)n+1 = 0.
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Mabuchi functional

Mabuchi functional (K-energy): Chen-Tian’s formula:

M(ϕ) = −
∫ 1

0

dt

∫
X

ϕ̇ · (S(ϕ(t))− S)(ddcϕ(t))n

= H(ϕ) + EKX (ϕ) + S E(ϕ).

Decomposition: Entropy, twisted energy, Monge-Ampère energy

H(ϕ) =

∫
X

log
(ddcϕ)n

Ω
(ddcϕ)n.

The Euler-Lagrange equation of M is the cscK equation:

d

dt
M(ϕ) =

∫
X

ϕ̇(−∆(log(ddcϕ)n) + S)(ddcϕ)n

= −
∫
X

ϕ̇(S(ϕ)− S)(ddcϕ)n.
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CscK metrics are minimizers of Mabuchi functional

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

M is convex along geodesics in E1. It is linear if and only if the geodesic
is generated by holomorphic vector fields.

Consequences of convexity:

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

CscK metrics obtain the minimum of M over E1. Moreover (smooth)
cscK metrics are unique up to Aut(X , [ω])0.

Previous results: Chen-Tian, Donaldson and Mabuchi.
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Variational criterion

G = KC ⊂ Aut(X , [ω])0: a reductive Lie group, T the center of G.

Definition (Tian, refined by Darvas-Rubinstein and Hisamoto)

M is coercive (resp. G-coercive) if there exists γ > 0 such that for any
ϕ ∈ H (resp. ϕ ∈ HK),

M(ϕ) ≥ γ · J(ϕ) ( resp. ≥ γ · inf
σ∈T

J(σ∗ϕ) )

where J(ϕ) is a distance-like (or norm-like) functional.

We have hard analytic results:

Theorem (Chen-Cheng; Darvas-Rubinstein, Berman-Darvas-Lu)

Tian’s properness conjecture is true: there exists a cscK metric in
(X , [ω]) if and only if M is Aut(X , [ω])0-coercive.

Hisamoto, L. : Aut(X , [ω])0 can be replaced by any connected reductive
G that contains a maximal torus of Aut(X , [ω])0.
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Criterion via destabilizing geodesic rays

For a geodesic ray Φ and a functional F defined over E1, set:

F′∞(Φ) = lim
s→+∞

F(ϕ(s))

s
.

Fact: The limits exist for all F ∈ {E,EKX ,H,M, J, JT}.
Based on convexity of M and compactness result of
Berman-Boucksom-Eyssidieux-Guedj-Zeriahi: destabilizing sequence
produces destabilizing a geodesic ray:

Theorem (Darvas-He, Darvas-Rubinstein, Berman-Boucksom-Jonsson;
G-equivariant case: Hisamoto, L. )

M is not G-coercive (iff (X , [ω]) has no cscK) iff there exists a geodesic
ray Φ, such that

M′∞(Φ) ≤ 0, J′∞T (Φ) = 1.

Difficulty to YTD: (algebraic) regularity of “optimal” destabilizing rays.
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Contact with algebraic geometry: Test configurations
(Tian, Donaldson)

A test configuration (TC) (X ,L) is a C∗-equivariant degeneration of
(X , L):

1 π : X → C: a C∗-equivariant family of projective varieties;

2 L → X : a C∗-equiv. semiample holomorphic Q-line bundle;

3 η : (X ,L)×C C∗ ∼= (X , L)× C∗.

Trivial test configuration: (XC, LC) := (X , L)× C.

(X ,L) is dominating if there is a C∗-equivariant birational morphism
ρ : X → X × C.

Under the isomorphism η, psh metrics on L|π−1(C∗) are considered as
subgeodesic rays on (X , L).

Test configurations and G-uniform K-stability



Geodesic rays from test configurations

For any TC (X ,L), there are many smooth subgeodesic ray which extend
to be a smooth psh metrics on L.

Theorem (Phong-Sturm)

∀ test configuration (X ,L), ∃ a unique geodesic ray Φ = Φ(X ,L)

emanating from ϕ0 s.t. Φ extends to a bounded psh metric on L.

Φ is obtained by solving the HCMA on a resolution X̃ → X :

(µ∗(ddcΦ̃) + U)n+1 = 0; U|X×S1 = 0,

where Φ̃ is any smooth positively curved Hermitian metric on L.
In general the solution Φ := Φ̃ + U is at most C 1,1 (Phong-Sturm,
Chu-Tosatti-Weinkove).
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Non-Archimedean functionals of TCs

For any TC (X ,L), set:

ENA(X ,L) =
L̄·n+1

n + 1
;

JNA(X ,L) = L̄ · L·nP1 −
L̄·n+1

n + 1
≥ 0;

HNA(X ,L) = K log

X̄/X×P1 · L̄·n ≥ 0;

(EKX )NA(X ,L) = KX · L̄·n;

MNA(X ,L) = K log

X̄/P1 · L̄·n +
S

n + 1
L̄·n+1

= HNA + (EKX )NA + S ENA.

MNA(X ,L) generalizes the Futaki invariant in (1).

Similar non-Archimedean functional (EKX )NA.
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Slopes at infinitity = non-Archimedean functional

Theorem

Let Φ be the geodesic ray associated to a TC (X ,L). Then

1 [Tian, Zhang, Phong-Sturm-Ross, Boucksom-Hisamoto-Jonsson]
For F ∈ {E, J,EKX }, F′∞(Φ) = FNA(X ,L).

2 [Hisamoto] For G-equivariant TC, J′∞
T (Φ) = JNA

T (X ,L) where where

JNA
T (X ,L) = inf

ξ∈NR
JNA(Xξ,Lξ).

3 [L. , based on Tian, Boucksom-Hisamoto-Jonsson, Xia]
H′∞(Φ) = HNA(X ,L).
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G-uniform K-stability

Definition (Hisamoto, generalizing Tian, Donaldson, Székelyhidi, Dervan,
Boucksom-Hisamoto-Jonsson)

(X , L) is G-uniformly K-stable if there exists γ > 0 such that for any
G-equivariant test configuration (X ,L),

MNA(X ,L) ≥ γ · JNA
T (X ,L). (2)

Proposition (Hisamoto for Aut(X , L)0, L. for more general G)

Assume that (X , L) admits a cscK metric. If G contains a maximal torus
of Aut(X , L)0, then (X , L) is G-uniformly K-stable.

Test configurations and G-uniform K-stability



Approximation approach to YTD conjecture

Combining the above discussions, the Yau-Tian-Donaldson conjecture
now is reduced to two questions:

Q1: Can we approximate any destabilizing geodesic ray Φ by geodesic
rays from test configurations?

Q2: Can we approximate the slopes F′∞ along any destabilizing geodesic
ray by FNA = F′∞ of TC’s for F ∈ {E,EKX , J,H}?

More precisely, the YTD conjecture is reduced to the following

Conjecture: there exist TC’s (Xm,Lm) such that

JNA
T (Xm,Lm)→ J′∞T (Φ), lim sup

m→+∞
MNA(Xm,Lm) ≤ M′∞(Φ). (3)
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TC’s associated to geodesic rays

For any geodesic ray Φ, Berman-Boucksom-Jonsson constructed a
sequence of test configurations (Xm,Lm)m such that Φm ≥ Φ for any
m� 1.
Their construction is based on Demailly’s approximation:

1 Consider the multiplier ideal sheaf (MIS) over X × C:

J (mΦ)(U) =

{
f ∈ O(U);

∫
U
|f |2e−mΦ < +∞

}
.

2 µm : Xm = BlJ (mΦ)XC → XC, Lm = µ∗mLC − 1
m+m0

Em. Using the
Nadel vanishing and global generation property of MIS, (Xm,Lm) is
a test configuration of (X , L)

Maximal geodesic rays and approximation by TC



Maximal geodesic rays

Taking limm→+∞ Φ(Xm,Lm):

Theorem (Berman-Boucksom-Jonsson)

For any geodesic ray Φ, there exists a unique “maximal” geodesic ray Φ̂
satisfying:

1 Φ̂ ≥ Φ.

2 J (λΦ̂) = J (λΦ) for any λ > 0.

Maximal geodesic rays are exactly those that can be approximated by
algebraic ones (i.e. geodesic rays associated to TC’s).

Theorem (Berman-Boucksom-Jonsson, L. )

∀ maximal Φ, ∃ a sequence of TC’s (Xm,Lm)m s.t.
F′∞(Φ) = limm→+∞ F′∞(Φ(Xm,Lm)) for F ∈ {E,EKX , J, JT}.

Conjecture: The same holds for H, or equivalently for M.

Maximal geodesic rays and approximation by TC



Destabilizing geodesic rays are maximal

Theorem (L. , ’20)

A geodesic ray Φ satisfies M′∞(Φ) < +∞ is necessarily maximal.

The proof uses two key ingredients: equisingularity of multiplier
approximation (via a valuative description) and Jensen’s inequality
(motivated by Tian’s α-type estimate): for arbitrary α > 0,

C (α) > log

∫
X×D

eα(Φ̂−Φ)Ω
√
−1dt ∧ dt̄

≥ α

∫
X

(ϕ̂(s)− ϕ(s))(ddcϕ(s))n −HΩ(ϕ(s))− s

≥ Cα · (E(ϕ̂(s))− E(ϕ(s)))−H(ϕ(s))− s.

take slope
=⇒ E′∞(Φ̂) ≥ E′∞(Φ)

E linear
=⇒ Φ̂ = Φ (Dinew’s comparison principle).
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K-stability for models

In the definition of a test configuration (X ,L), if we don’t require L to
be semiample, then we say that (X ,L) is a model of (X , L).

For any (big) model (X ,L), one can still define:

ENA(X ,L) =
〈L̄·n+1〉
n + 1

=
vol(L̄)

n + 1
;

JNA(X ,L) = 〈L̄〉 · L·nP1 −
〈L̄·n+1〉
n + 1

;

MNA(X ,L) = K log

X̄/P1 · 〈L̄·n〉+
S

n + 1
〈L̄·n+1〉.

Volume/restricted volume studied by Tsuji, Boucksom-Favre-Jonsson,
Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa:

KX̄ · 〈L̄·n〉 =
d

dt

∣∣∣∣
t=0

vol(L̄+ tKX̄ ).
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Approximation slopes by NA invariants of models

Definition (L. )

(X , L) is G-uniformly K-stable for models if ∃γ > 0 such that for any
model (X ,L), MNA(X ,L) ≥ γ · JNA

T (X ,L).

Theorem (L. ’20)

For any maximal Φ, ∃ sequence of models (Xm,Lm) such that

JNA
T (Xm,Lm)→ J′∞T (Φ), lim sup

m→+∞
MNA(Xm,Lm) ≤M′∞(Φ).

The proof uses Archimedean/non-Archimedean pluripotential theory

Corollary

If (X , L) is G-uniform K-stable for models, then there does not exist
destabilizing geodesic ray Φ (with M′∞(Φ) ≤ 0 and J′∞T (Φ) = 1) and
hence (X , L) admits a cscK metric.
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Approximation of big models: Fujita approximation

Fujita approximation (almost Zariski decomposition) studied by Fujita,
Demailly-Ein-Lazarsfeld, Boucksom-Favre-Jonsson,
Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa, ...:

µm : Xm → X , Lm = µ∗L − 1

m
Em

µm is blow-up of base ideals or some asymptotic multiplier ideal sheaves
with exceptional divisor Em. Lm is semiample satisfying

lim
m→+∞

h0(X̄ ,mL̄)

mdimX /(dimX )!)
=: vol(X̄ , L̄) = lim

m→+∞
vol(X̄m, L̄m).

Theorem (Boucksom-Jonsson, L. )

For any model (X ,L), there exists a sequence of TC’s (Xm,Lm) s.t.

FNA(Xm,Lm) = F′∞(Φm)→ FNA(X ,L) = F′∞(Φ)

for F ∈ {E,EKX , J, JT} where Φm = Φ(Xm,Lm).
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A purely algebro-geometric conjecture

We propose the following conjecture:

Conjecture (strengthened Fujita approximation
⇒ approximation of HNA (conj. of Boucksom-Jonsson) ⇒ YTD)

∀ big line bundle L̄ → X̄ , ∃ birational morphisms µm : Xm → X and
decompositions µ∗mL̄ = Lm + 1

mEm with Lm semiample and Em effective,
s.t.

1 vol(L̄m)→ vol(L̄).

2 The derivatives also converge:

d

dt

∣∣∣∣
t=0

vol(L̄m + tKX̄m
)→ d

dt

∣∣∣∣
t=0

vol(L̄+ tKX̄ ). (4)

True if (X , L) is spherical (since X̄ is a Mori dream space), in particular
true for toric manifolds.

K-stability for models and Fujita approximation



Thanks for your attention!
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