Recent progress on the YTD conjecture for cscK metrics

Chi Li

Department of Mathematics, Rutgers University

CUNY geometric analysis seminar, April 8, 2021
1. Introduction and results

2. Variational approach and analytic criterion

3. Test configurations and \mathbb{G}-uniform K-stability

4. Maximal geodesic rays and approximation by TC

5. K-stability for models and Fujita approximation
Riemann surface: surface with a complex structure:

<table>
<thead>
<tr>
<th>Topology</th>
<th>Metric</th>
<th>Curvature</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S^2 = \mathbb{CP}^1$</td>
<td>spherical</td>
<td>1</td>
</tr>
<tr>
<td>$T^2 = \mathbb{C}/\mathbb{Z}^2$</td>
<td>flat</td>
<td>0</td>
</tr>
<tr>
<td>$\Sigma_g = \mathbb{B}^1/\pi_1(\Sigma_g)$</td>
<td>hyperbolic</td>
<td>-1</td>
</tr>
</tbody>
</table>

Σ_g closed oriented surface of genus $g \geq 2$.

$\mathbb{B}^1 = \{z \in \mathbb{C}; |z| < 1\}$.

Generalization for higher dimensional complex projective manifolds?
X: complex manifold, $\{(U_\alpha, z_1, \ldots, z_n)\}$.

Kähler form: a smooth closed positive (1, 1)-form:

$$\omega = \frac{\sqrt{-1}}{2\pi} \sum_{i,j=1}^{n} g_{i\bar{j}} dz^i \wedge d\bar{z}^j, \quad (g_{i\bar{j}}) > 0.$$

$d\omega = 0 \implies$ Kähler class $[\omega] \in H^2(X, \mathbb{R}) \cap H^{1,1}_\partial(X, \mathbb{C})$.

$\partial\bar{\partial}$-Lemma: any Kähler form in $[\omega]$ can be written as

$$dd^c \varphi := \omega_0 + \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} u = \frac{\sqrt{-1}}{2\pi} \sum_{i,j} \left((\varphi_0)_{i\bar{j}} + u_{i\bar{j}} \right) dz^i \wedge d\bar{z}^j$$

where $\varphi = \varphi_0 + u$ is locally defined, while $u = \varphi - \varphi_0$ and $dd^c \varphi$ are globally defined.
Constant scalar curvature Kähler (cscK) metrics

Ricci curvature:

\[R_{i\bar{j}} := \text{Ric}(dd^c \phi)_{i\bar{j}} = -\frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log \det (\phi_{k\bar{l}}). \]

Scalar curvature:

\[S(dd^c \phi) = g^{i\bar{j}} R_{i\bar{j}} = -g^{i\bar{j}} \frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log \det (\phi_{k\bar{l}}) \]

\[= -(g^{0i\bar{j}} + u^{i\bar{j}})^{-1} \frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log \det (g^{0k\bar{l}} + u_{k\bar{l}}). \]

cscK equation is a 4-th order highly nonlinear equation:

\[S(u) := S(dd^c \phi) = S. \]

\(S \) is a topological constant:

\[S = \frac{n \langle c_1(-K_X) \wedge [\omega]^{n-1}, X \rangle}{\langle [\omega]^n, X \rangle}. \]
Kähler metric as curvature forms

If $[\omega] \in H^{1,1}(X, \mathbb{C}) \cap H^2(X, \mathbb{Z})$, then $[\omega] = c_1(L)$ for an ample holomorphic line bundle L over X and $\omega = \ddc \varphi$ for a Hermitian metric $e^{-\varphi}$ on L.

Holomorphic line bundle: transition functions $f_{\alpha \beta} \in \mathcal{O}(U_{\alpha} \cap U_{\beta})$.

$$L = \left(\bigsqcup_{\alpha} U_{\alpha} \times \mathbb{C} \right) / \{ s_\alpha = f_{\alpha \beta} s_\beta \}.$$

Hermitian metrics: $e^{-\varphi} := \{ e^{-\varphi_\alpha} \}$ Hermitian metric on L:

$$e^{-\varphi_\alpha} = |f_{\alpha \beta}|^2 e^{-\varphi_\beta}.$$

$\partial \bar{\partial}$-lemma: Fix any reference metric $e^{-\varphi_0}$, then $\exists u \in C^\infty(X)$ s.t.

$$e^{-\varphi} = e^{-\varphi_0} e^{-u}.$$

Chern curvature: globally defined closed $(1, 1)$-form

$$\ddc \varphi = \frac{\sqrt{-1}}{2\pi} \partial \bar{\partial} \varphi_\alpha.$$
Conjecture (YTD conjecture)

\((X, L)\) admits a cscK metric if and only if \((X, L)\) is \(\text{Aut}(X, L)_0\)-uniformly K-stable for test configurations.

The only if direction of this Conjecture is known to be true.

Example:
If \(L = -K_X\) ample, then \(X\) is Fano and cscK=Kähler-Einstein (Tian, Berman, Chen-Donaldson-Sun, Datar-Székelyhidi, Berman-Boucksom-Jonsson, Hisamoto, L. -Tian-Wang, L., Liu-Xu-Zhuang, ...)

Compare: Donaldson-Uhlenbeck-Yau’s theorem: a holomorphic vector bundle admits a Hermitian-Einstein metric if and only if the vector bundle is slope (poly)stable.
Main results

Theorem (L. ’20)

Let G be a reductive subgroup of $\text{Aut}(X, L)_0$. If (X, L) is G-uniformly K-stable for models (or for filtrations), then (X, L) admits a cscK metric.

We have implications and conjecture they are all equivalent:

$\text{Aut}(X, L)_0$-uniformly K-stable for models \implies cscK \implies $\text{Aut}(X, L)_0$-uniformly K-stable for test configurations

Applications: proving the YTD conjecture for polarized spherical varieties (including polarized toric varieties):

Corollary (observed by Yuji Odaka)

A polarized spherical manifold (X, L) admits a cscK metric if and only if (X, L) is G-uniformly K-stable.

G a complex reductive group, $B \subset G$ a Borel subgroup. G/H spherical homogeneous if B has an open orbit. X is spherical: $X = \overline{G/H}$ is a G-equivariant compactification.
Toric case

Toric Kähler manifold: a $\mathbb{T} := (\mathbb{C}^*)^n$ action with an open dense orbit. Compact toric Kähler manifold \iff moment convex polytope Δ

$d\lambda$: Lebesgue measure; $d\sigma$: boundary (lattice normalized) measure.

For any piecewise linear concave rational function f on Δ, define:

$$M_{\text{NA}}^T(f) = -\int_{\partial \Delta} f d\sigma + \frac{\partial \Delta}{|\Delta|} \int_{\Delta} f d\lambda;$$

$$J_{\text{NA}}^T(f) = \inf \left\{ \max_{\Delta} f_\xi - \frac{1}{|\Delta|} \int_{\Delta} f_\xi d\lambda; \xi \in N_\mathbb{R} = \text{Lie}(\mathbb{S}^1)^n \right\}$$

where $f_\xi = f + \langle \cdot, \xi \rangle$. J_{NA}^T is some normalized L^1-norm.

\mathbb{T}-uniform K-stable: there exists $\gamma > 0$ such that:

$$M_{\text{NA}}^T(f) \geq \gamma \cdot J_{\text{NA}}^T(f).$$

Corollary (Hisamoto, based on Chen-Cheng, Donaldson, Zhou-Zhu, ...)

A toric X admits a cscK metric iff it is \mathbb{T}-uniformly K-stable.
A necessary condition: vanishing of Futaki invariant

If \(v \in \text{aut}(X, L) \) is a holomorphic \((1, 0)\) vector field with Hamiltonian function \(\theta_v: \iota_v \omega = \frac{\sqrt{-1}}{2\pi} \bar{\partial} \theta_v \).

Define \textit{Futaki invariant} (independent of \(\omega \in [\omega] \)):

\[
\text{Fut}(v) = \int_X \theta_v (S(\omega) - S) \omega^n \\
= \int_X (-\text{Ric}(\omega) + \Delta \theta_v) \wedge (\omega + \theta_v)^n + \frac{S}{n+1}(\omega + \theta_v)^{n+1}.
\]

\(\mathbb{G} \)-uniformly K-stable \(\Rightarrow \) K-semistable \(\Rightarrow \) Futaki invariant \(\equiv 0 \).

\textbf{Toric case:} \quad \text{Fut} = \left|\frac{\partial \Delta}{|\Delta|}\right| \text{cent}(\Delta, d\lambda) - \text{cent}(\partial \Delta, d\sigma).

\textbf{Toric Fano case:} \quad \text{Reflective polytope} \leftrightarrow \text{Toric Fano manifold}

\text{Wang-Zhu’s existence result: KE} \leftrightarrow \text{Fut} \equiv 0.
Space of smooth Kähler metrics:

$$\mathcal{H} = \{ \varphi = \varphi_0 + u; u \in C^\infty(X), \omega_0 + dd^c u = dd^c \varphi > 0 \}.$$

Monge-Ampère energy (Aubin-Yau):

$$E(\varphi) = \int_0^1 \int_X \varphi(dd^c \varphi)^n dt = \frac{1}{n+1} \sum_k \int_X u \omega_k^k \wedge \omega^{n-k}.$$

Finite energy metrics as Completion of \mathcal{H} (Cegrell, Guedj-Zeriahi)

$$\mathcal{E}^1 = \{ \varphi \in PSH(X, [\omega]); E(\varphi) := \inf \{ E(\tilde{\varphi}); \tilde{\varphi} \geq \varphi, \tilde{\varphi} \in \mathcal{H} \} > -\infty \}.$$

Strong topology on \mathcal{E}^1: $\varphi_m \to \varphi$ strongly if $\varphi_m \to \varphi$ in $L^1(\omega^n)$ and $E(\varphi_m) \to E(\varphi)$.

Variational approach and analytic criterion
Definition

Given $\varphi_1, \varphi_2 \in \mathcal{E}^1$, a geodesic segment joining φ_1, φ_2 is:

\[
\Phi = \sup\{\tilde{\Phi} \in \text{PSH}(X \times [s_1, s_2] \times S^1, p_1^* L); \tilde{\Phi}(\cdot, s_i) \leq \varphi_i, i = 1, 2\}.
\]

A geodesic ray emanating from φ_0 is a map $\Phi : \mathbb{R}_{\geq 0} \rightarrow \mathcal{E}^1$ s.t.

$\forall s_1, s_2 \in \mathbb{R}_{\geq 0}$, $\Phi|_{[s_1, s_2]}$ is the geodesic segment joining $\varphi(s_1)$ and $\varphi(s_2)$, and $\Phi(\cdot, 0) = \varphi_0$.

Geodesics originates from Mabuchi’s L^2-metric on \mathcal{H} and satisfies the Homogeneous Complex Monge-Ampère (HCMA) equation in pluripotential sense (Semmes, Donaldson):

\[
(\sqrt{-1} \partial \bar{\partial} \Phi)^{n+1} = 0.
\]

Fact: E linear along geodesics: $\sqrt{-1} \partial \bar{\partial} E = \int_X (\sqrt{-1} \partial \bar{\partial} \Phi)^{n+1} = 0$.

Variational approach and analytic criterion
Mabuchi functional (K-energy): Chen-Tian’s formula:

\[M(\varphi) = - \int_0^1 dt \int_X \dot{\varphi} \cdot (S(\varphi(t)) - S)(dd^c \varphi(t))^n \]

\[= H(\varphi) + E^{K_X}(\varphi) + S E(\varphi). \]

Decomposition: Entropy, twisted energy, Monge-Ampère energy

\[H(\varphi) = \int_X \log \frac{(dd^c \varphi)^n}{\Omega} (dd^c \varphi)^n. \]

The Euler-Lagrange equation of \(M \) is the cscK equation:

\[\frac{d}{dt} M(\varphi) = \int_X \dot{\varphi}(-\Delta (\log(dd^c \varphi)^n) + S)(dd^c \varphi)^n \]

\[= - \int_X \dot{\varphi}(S(\varphi) - S)(dd^c \varphi)^n. \]
CscK metrics are minimizers of Mabuchi functional

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

\(M \) is convex along geodesics in \(\mathcal{E}^1 \). It is linear if and only if the geodesic is generated by holomorphic vector fields.

Consequences of convexity:

Theorem (Berman-Berndtsson, Berman-Darvas-Lu)

CscK metrics obtain the minimum of \(M \) over \(\mathcal{E}^1 \). Moreover (smooth) cscK metrics are unique up to \(\text{Aut}(X, [\omega])_0 \).

Previous results: Chen-Tian, Donaldson and Mabuchi.
Variational criterion

\(\mathbb{G} = \mathbb{K}^C \subset \text{Aut}(X, [\omega])_0 \): a reductive Lie group, \(\mathbb{T} \) the center of \(\mathbb{G} \).

Definition (Tian, refined by Darvas-Rubinstein and Hisamoto)

\(\mathbb{M} \) is coercive (resp. \(\mathbb{G} \)-coercive) if there exists \(\gamma > 0 \) such that for any \(\varphi \in \mathcal{H} \) (resp. \(\varphi \in \mathcal{H}^K \)),

\[
\mathbb{M}(\varphi) \geq \gamma \cdot J(\varphi) \quad (\text{resp. } \geq \gamma \cdot \inf_{\sigma \in \mathbb{T}} J(\sigma^* \varphi))
\]

where \(J(\varphi) \) is a distance-like (or norm-like) functional.

We have hard analytic results:

Theorem (Chen-Cheng; Darvas-Rubinstein, Berman-Darvas-Lu)

Tian’s properness conjecture is true: there exists a cscK metric in \((X, [\omega]) \) if and only if \(\mathbb{M} \) is \(\text{Aut}(X, [\omega])_0 \)-coercive.

Hisamoto, L.: \(\text{Aut}(X, [\omega])_0 \) can be replaced by any connected reductive \(\mathbb{G} \) that contains a maximal torus of \(\text{Aut}(X, [\omega])_0 \).
For a geodesic ray Φ and a functional F defined over \mathcal{E}^1, set:

$$F'_{\infty}(\Phi) = \lim_{s \to +\infty} \frac{F(\varphi(s))}{s}.$$

Fact: The limits exist for all $F \in \{E, E^{K_X}, H, M, J, J_T\}$.

Based on convexity of M and compactness result of Berman-Boucksom-Eyssidieux-Guedj-Zeriahi: destabilizing sequence produces destabilizing a geodesic ray:

Theorem (Darvas-He, Darvas-Rubinstein, Berman-Boucksom-Jonsson; G-equivariant case: Hisamoto, L.)

M is not G-coercive (iff $(X, [\omega])$ has no $cscK$) iff there exists a geodesic ray Φ, such that

$$M'_{\infty}(\Phi) \leq 0, \quad J'_T(\Phi) = 1.$$

Difficulty to YTD: (algebraic) regularity of “optimal” destabilizing rays.
A test configuration (TC) \((\mathcal{X}, \mathcal{L})\) is a \(\mathbb{C}^*\)-equivariant degeneration of \((X, L)\):

1. \(\pi : \mathcal{X} \to \mathbb{C}\): a \(\mathbb{C}^*\)-equivariant family of projective varieties;
2. \(\mathcal{L} \to \mathcal{X}\): a \(\mathbb{C}^*\)-equivariant semiample holomorphic \(\mathbb{Q}\)-line bundle;
3. \(\eta : (\mathcal{X}, \mathcal{L}) \times_{\mathbb{C}} \mathbb{C}^* \cong (X, L) \times \mathbb{C}^*\).

Trivial test configuration: \((X_\mathbb{C}, L_\mathbb{C}) := (X, L) \times \mathbb{C}\).

\((\mathcal{X}, \mathcal{L})\) is **dominating** if there is a \(\mathbb{C}^*\)-equivariant birational morphism \(\rho : \mathcal{X} \to X \times \mathbb{C}\).

Under the isomorphism \(\eta\), psh metrics on \(\mathcal{L}|_{\pi^{-1}(\mathbb{C}^*)}\) are considered as **subgeodesic** rays on \((X, L)\).
For any TC \((\mathcal{X}, \mathcal{L})\), there are many smooth subgeodesic rays which extend to be a smooth psh metric on \(\mathcal{L}\).

Theorem (Phong-Sturm)

\[
\forall \text{ test configuration } (\mathcal{X}, \mathcal{L}), \exists \text{ a unique geodesic ray } \Phi = \Phi_{(\mathcal{X}, \mathcal{L})} \text{ emanating from } \varphi_0 \text{ s.t. } \Phi \text{ extends to a bounded psh metric on } \mathcal{L}.
\]

\(\Phi\) is obtained by solving the HCMA on a resolution \(\tilde{\mathcal{X}} \rightarrow \mathcal{X}\):

\[
(\mu^*(dd^c\tilde{\Phi}) + U)^{n+1} = 0; \quad U|_{\mathcal{X} \times S^1} = 0,
\]

where \(\tilde{\Phi}\) is any smooth positively curved Hermitian metric on \(\mathcal{L}\).

In general the solution \(\Phi := \tilde{\Phi} + U\) is at most \(C^{1,1}\) (Phong-Sturm, Chu-Tosatti-Weinkove).
Non-Archimedean functionals of TCs

For any TC \((\mathcal{X}, \mathcal{L})\), set:

\[
\begin{align*}
\mathbf{E}_{\mathcal{A}}^\mathcal{X}(\mathcal{X}, \mathcal{L}) & = \frac{\bar{\mathcal{L}} \cdot n+1}{n+1}; \\
\mathbf{J}_{\mathcal{A}}^\mathcal{X}(\mathcal{X}, \mathcal{L}) & = \bar{\mathcal{L}} \cdot \mathcal{L}_{\mathbb{P}^1} - \frac{\bar{\mathcal{L}} \cdot n+1}{n+1} \geq 0; \\
\mathbf{H}_{\mathcal{A}}^\mathcal{X}(\mathcal{X}, \mathcal{L}) & = \mathcal{K}^\log_{\mathcal{X}/\mathcal{X} \times \mathbb{P}^1} \cdot \bar{\mathcal{L}} \cdot n \geq 0; \\
(\mathbf{E}_{K_X}^\mathcal{X})_{\mathcal{A}}^\mathcal{X}(\mathcal{X}, \mathcal{L}) & = \mathcal{K}_X \cdot \bar{\mathcal{L}} \cdot n; \\
\mathbf{M}_{\mathcal{A}}^\mathcal{X}(\mathcal{X}, \mathcal{L}) & = \mathcal{K}^\log_{\mathcal{X}/\mathbb{P}^1} \cdot \bar{\mathcal{L}} \cdot n + \frac{S}{n+1} \bar{\mathcal{L}} \cdot n+1 \\
& = \mathbf{H}_{\mathcal{A}}^\mathcal{X} + (\mathbf{E}_{K_X}^\mathcal{X})_{\mathcal{A}}^\mathcal{X} + S \mathbf{E}_{\mathcal{A}}^\mathcal{X}.
\end{align*}
\]

\(\mathbf{M}_{\mathcal{A}}^\mathcal{X}(\mathcal{X}, \mathcal{L})\) generalizes the Futaki invariant in (1).

Similar non-Archimedean functional \((\mathbf{E}_{K_X}^\mathcal{X})_{\mathcal{A}}^\mathcal{X}\).
Slopes at infinity \equiv non-Archimedean functional

Theorem

Let Φ be the geodesic ray associated to a TC $(\mathcal{X}, \mathcal{L})$. Then

1. \textit{[Tian, Zhang, Phong-Sturm-Ross, Boucksom-Hisamoto-Jonsson]}
 For $F \in \{E, J, E^{K_X}\}$, $F'_{\infty}(\Phi) = F^{\text{NA}}(\mathcal{X}, \mathcal{L})$.

2. \textit{[Hisamoto]}
 For G-equivariant TC, $J'_{\infty}(\Phi) = J^{\text{NA}}_{T}(\mathcal{X}, \mathcal{L})$ where
 \[J^{\text{NA}}_{T}(\mathcal{X}, \mathcal{L}) = \inf_{\xi \in \mathbb{N}_R} J^{\text{NA}}(\mathcal{X}_\xi, \mathcal{L}_\xi). \]

3. \textit{[L., based on Tian, Boucksom-Hisamoto-Jonsson, Xia]}
 $H'_{\infty}(\Phi) = H^{\text{NA}}(\mathcal{X}, \mathcal{L})$.

Test configurations and G-uniform K-stability.
Definition (Hisamoto, generalizing Tian, Donaldson, Székelyhidi, Dervan, Boucksom-Hisamoto-Jonsson)

\((X, L)\) is \(G\)-uniformly K-stable if there exists \(\gamma > 0\) such that for any \(G\)-equivariant test configuration \((\mathcal{X}, \mathcal{L})\),

\[
M^{NA}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot J_T^{NA}(\mathcal{X}, \mathcal{L}).
\]

(2)

Proposition (Hisamoto for \(\text{Aut}(X, L)_0\), \(L\). for more general \(G\))

Assume that \((X, L)\) admits a cscK metric. If \(G\) contains a maximal torus of \(\text{Aut}(X, L)_0\), then \((X, L)\) is \(G\)-uniformly K-stable.
Combining the above discussions, the Yau-Tian-Donaldson conjecture now is reduced to two questions:

Q1: Can we approximate any destabilizing geodesic ray Φ by geodesic rays from test configurations?

Q2: Can we approximate the slopes F'_{∞} along any destabilizing geodesic ray by $F_{NA} = F'_{\infty}$ of TC's for $F \in \{E, E^{K_X}, J, H\}$?

More precisely, the YTD conjecture is reduced to the following

Conjecture: there exist TC’s $(\mathcal{X}_m, \mathcal{L}_m)$ such that

$$J_{T_{\mathcal{X}}(\mathcal{X}_m, \mathcal{L}_m)} \to J_{T_{\infty}}(\Phi), \quad \limsup_{m \to +\infty} M_{NA}(\mathcal{X}_m, \mathcal{L}_m) \leq M'_{\infty}(\Phi). \quad (3)$$
For any geodesic ray Φ, Berman-Boucksom-Jonsson constructed a sequence of test configurations $(X_m, L_m)_m$ such that $\Phi_m \geq \Phi$ for any $m \gg 1$. Their construction is based on Demailly’s approximation:

1. Consider the multiplier ideal sheaf (MIS) over $X \times \mathbb{C}$:

 \[I(m\Phi)(U) = \left\{ f \in O(U); \int_U |f|^2 e^{-m\Phi} < +\infty \right\}. \]

2. $\mu_m : X_m = Bl_{I(m\Phi)} X_\mathbb{C} \to X_\mathbb{C}$, $L_m = \mu_m^* L_\mathbb{C} - \frac{1}{m+m_0} E_m$. Using the Nadel vanishing and global generation property of MIS, (X_m, L_m) is a test configuration of (X, L).
Taking $\lim_{m \to +\infty} \Phi(x_m, \mathcal{L}_m)$:

Theorem (Berman-Boucksom-Jonsson)

For any geodesic ray Φ, there exists a unique “maximal” geodesic ray $\hat{\Phi}$ satisfying:

1. $\hat{\Phi} \geq \Phi$.
2. $\mathcal{J}(\lambda \hat{\Phi}) = \mathcal{J}(\lambda \Phi)$ for any $\lambda > 0$.

Maximal geodesic rays are exactly those that can be approximated by algebraic ones (i.e. geodesic rays associated to TC’s).

Theorem (Berman-Boucksom-Jonsson, L.)

\[\forall \text{ maximal } \Phi, \exists \text{ a sequence of TC's } (x_m, \mathcal{L}_m)_m \text{ s.t. } \]
\[F^{\infty}(\Phi) = \lim_{m \to +\infty} F^{\infty}(\Phi(x_m, \mathcal{L}_m)) \text{ for } F \in \{E, E^{K_x}, J, J_T\}. \]

Conjecture: The same holds for H, or equivalently for M.

Maximal geodesic rays and approximation by TC
Destabilizing geodesic rays are maximal

Theorem (L., '20)

A geodesic ray Φ satisfies $M'_{\infty}(\Phi) < +\infty$ is necessarily maximal.

The proof uses two key ingredients: equisingularity of multiplier approximation (via a valuative description) and Jensen’s inequality (motivated by Tian’s α-type estimate): for arbitrary $\alpha > 0$,

$$
C(\alpha) > \log \int_{X \times \mathbb{D}} e^{\alpha(\hat{\Phi} - \Phi)} \sqrt{-1} dt \wedge d\bar{t} \\
\geq \alpha \int_X (\hat{\varphi}(s) - \varphi(s))(dd^c \varphi(s))^n - H_\Omega(\varphi(s)) - s \\
\geq C \alpha \cdot (E(\hat{\varphi}(s)) - E(\varphi(s))) - H(\varphi(s)) - s.
$$

take slope $\implies E'_{\infty}(\hat{\Phi}) \geq E'_{\infty}(\Phi) \implies E_{\text{linear}} \hat{\Phi} = \Phi$ (Dinew’s comparison principle).
K-stability for models

In the definition of a test configuration \((\mathcal{X}, \mathcal{L})\), if we don’t require \(\mathcal{L}\) to be semiample, then we say that \((\mathcal{X}, \mathcal{L})\) is a model of \((X, L)\).

For any (big) model \((\mathcal{X}, \mathcal{L})\), one can still define:

\[
E^{\text{NA}}(\mathcal{X}, \mathcal{L}) = \frac{\langle \bar{\mathcal{L}} \cdot n+1 \rangle}{n+1} = \frac{\text{vol}(\bar{\mathcal{L}})}{n+1};
\]
\[
J^{\text{NA}}(\mathcal{X}, \mathcal{L}) = \langle \bar{\mathcal{L}} \rangle \cdot L_{\mathbb{P}^1} \cdot \frac{\langle \bar{\mathcal{L}} \cdot n+1 \rangle}{n+1};
\]
\[
M^{\text{NA}}(\mathcal{X}, \mathcal{L}) = K_{\mathcal{X}/\mathbb{P}^1}^{\text{log}} \cdot \langle \bar{\mathcal{L}} \cdot n \rangle + \frac{S}{n+1} \langle \bar{\mathcal{L}} \cdot n+1 \rangle.
\]

Volume/restricted volume studied by Tsuji, Boucksom-Favre-Jonsson, Ein-Lazarsfeld-Mustaţă-Nakamaye-Popa:

\[
K_{\bar{\mathcal{X}}} \cdot \langle \bar{\mathcal{L}} \cdot n \rangle = \frac{d}{dt} \bigg|_{t=0} \text{vol}(\bar{\mathcal{L}} + tK_{\bar{\mathcal{X}}}).
\]
Definition (L.)

\((X, L)\) is \(\mathbb{G}\)-uniformly K-stable for models if \(\exists \gamma > 0\) such that for any model \((X, L)\), \(M^{\text{NA}}(X, L) \geq \gamma \cdot J^{\text{NA}}(X, L)\).

Theorem (L. ’20)

For any maximal \(\Phi\), \(\exists\) sequence of models \((X_m, L_m)\) such that

\[
J^{\text{NA}}(X_m, L_m) \to J^{\prime \infty}(\Phi), \quad \limsup_{m \to +\infty} M^{\text{NA}}(X_m, L_m) \leq M^{\prime \infty}(\Phi).
\]

The proof uses Archimedean/non-Archimedean pluripotential theory

Corollary

If \((X, L)\) is \(\mathbb{G}\)-uniform K-stable for models, then there does not exist destabilizing geodesic ray \(\Phi\) (with \(M^{\prime \infty}(\Phi) \leq 0\) and \(J^{\prime \infty}(\Phi) = 1\)) and hence \((X, L)\) admits a cscK metric.
Fujita approximation (almost Zariski decomposition) studied by Fujita, Demailly-Ein-Lazarsfeld, Boucksom-Favre-Jonsson, Ein-Lazarsfeld-Mustatǎ-Nakamaye-Popa, ...:

\[\mu_m : \mathcal{X}_m \to \mathcal{X}, \quad \mathcal{L}_m = \mu^* \mathcal{L} - \frac{1}{m} \mathcal{E}_m \]

\(\mu_m \) is blow-up of base ideals or some asymptotic multiplier ideal sheaves with exceptional divisor \(\mathcal{E}_m \). \(\mathcal{L}_m \) is semiample satisfying

\[
\lim_{m \to +\infty} \frac{h^0(\mathcal{X}, m\mathcal{L})}{m^{\dim \mathcal{X}}/(\dim \mathcal{X})!} =: \text{vol}(\mathcal{X}, \mathcal{L}) = \lim_{m \to +\infty} \text{vol}(\mathcal{X}_m, \mathcal{L}_m).
\]

Theorem (Boucksom-Jonsson, L.)

For any model \((\mathcal{X}, \mathcal{L})\), there exists a sequence of TC’s \((\mathcal{X}_m, \mathcal{L}_m)\) s.t.

\[
F^{NA}(\mathcal{X}_m, \mathcal{L}_m) = F'\infty(\Phi_m) \to F^{NA}(\mathcal{X}, \mathcal{L}) = F'\infty(\Phi)
\]

for \(F \in \{E, E^{KX}, J, J_T\} \) where \(\Phi_m = \Phi(\mathcal{X}_m, \mathcal{L}_m) \).
We propose the following conjecture:

Conjecture (strengthened Fujita approximation \Rightarrow approximation of H_{NA}^B (conj. of Boucksom-Jonsson) \Rightarrow YTD)

\[
\forall \text{ big line bundle } \mathcal{L} \to \mathcal{X}, \exists \text{ birational morphisms } \mu_m : \mathcal{X}_m \to \mathcal{X} \text{ and decompositions } \mu_m^* \mathcal{L} = \mathcal{L}_m + \frac{1}{m} E_m \text{ with } \mathcal{L}_m \text{ semiample and } E_m \text{ effective, s.t.}
\]

1. \(\text{vol}(\mathcal{L}_m) \to \text{vol}(\mathcal{L}). \)
2. \(\text{The derivatives also converge:} \)

\[
\frac{d}{dt} \bigg|_{t=0} \text{vol}(\mathcal{L}_m + tK_{\mathcal{X}_m}) \to \frac{d}{dt} \bigg|_{t=0} \text{vol}(\mathcal{L} + tK_{\mathcal{X}}). \quad (4)
\]

True if \((X, L)\) is spherical (since \(\mathcal{X}\) is a Mori dream space), in particular true for toric manifolds.
Thanks for your attention!