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Background: Gromov-Hausdorff limits

(Mi , gi , Ji ): a sequence of Kähler-Einstein Fano manifolds:

Ric(ωi ) = ωi , ωi = gi (·, Ji ·) ∈ 2πc1(M, Ji ) > 0.

Gromov’s compactness: (Mi , gi ) sub-sequentially converges to a limit metric

space (X , d∞) in the Gromov-Hausdorff topology.

Question: How regular is the limit (X , d∞)?

Answer: X is homeomorphic to a normal projective variety such that

1 X is a Fano: −mKX is an ample line bundle for some m > 0 ∈ Z.

2 X has a weak Kähler-Einstein metric =⇒ X has Klt singularities.

Tian (proved dim 2 case and reduced it to a partial C 0-estimate conjecture)

Donaldson-Sun (proved the partial C 0-estimate conjecture)

Further question: What does the metric look like near the singularity of X?

Background and the conjecture



Metric tangent cones

Metric tangent cone is the first order approximation of the metric structure:

CxX :=
p−GH

lim
rk→0+

(
X , x ,

dX
rk

)
is a metric cone (Cheeger-Colding). The limit a priori could depend on {rk}.
General results:

1 (Cheeger-Colding-Tian) (CxX )sing has complex Hausdorff codimension at

least 2. (CxX )reg is Ricci-flat Kähler cone.

2 (Donaldson-Sun) CxX is homeomorphic to an affine variety with an

effective torus action (generated by the Reeb vector field) and is uniquely

determined by the metric structure on the GH limit X .

Conjecture (Donaldson-Sun)

CxX depends only on the algebraic structure of the germ x ∈ X.

If true, the object CxX is a canonically new algebraic object associated to the

Klt singularity. No metric structure needed!

The goal of this talk is to explain our work proving that this is indeed true.

Background and the conjecture



Overview I: Donaldson-Sun’s description of metric tangent cones

Define a map Dmetric : OX ,x → [0,∞]: for any f ∈ OX ,x ,

Dmetric(f ) = lim sup
r→0

maxz∈B(p,r) log |f (z)|
log r

.

Assume Dmetric(OX ,x) =: Γ = {λi}. Let Fi = {f ∈ OX ,x ;D(f ) ≥ λi}

RDmetric :=
⊕
λi∈Γ

Fi

Fi+1
.

Theorem (Donaldson-Sun, ’15)

1 Dmetric is a pseudovaluation, RDmetric is finitely generated and

W = Spec(RDmetric) is a normal affine variety.

2 The metric tangent cone CxX is the central fibre of a torus equivariant

degeneration of W , through affine varieties in CN under the torus action.

Rephrase Donaldson-Sun’s Conjecture: Dmetric is uniquely determined by the

algebraic structure of the germ x ∈ X .

Overview of main results



Examples of metric tangent cones

3-dimensional Ak singularities:

X = {z2
1 + z2

2 + z2
3 + zk+1

4 = 0} ⊂ C4.

X degenerates, via (z1, z2, z3, z4)→ (t2z1, t
2z2, t

2z3, t
αz4) for α > 4

k+1
, to

X ′ := C2/Z2 × C ∼= {z2
1 + z2

2 + z2
3 = 0} ⊂ C4

Metric tangent cones:

k 4
k+1

W CxX ξ0 on CxX

0, 1, 2 > 1 X X (k + 1, k + 1, k + 1, 2)

3 = 1 X X ′ (2, 2, 2, 1)

k ≥ 4 < 1 X ′ X ′ (2, 2, 2, 1)

(1)

The Ricci-flat Kähler cone metric on CxX : g = dr 2 + r 2gM2n−1 .

The holomorphic vector field ξ0 = r∂r − iJ(r∂r ) is called the Reeb vector field.

We say that (Z , ξ0) := (CxX , ξ0) is a Fano cone with the Reeb vector field ξ0.

Overview of main results



Overview II: Ricci-flat Kähler cone and K-stability

Definition (Collins-Székelyhidi, generalizing Fano case of Tian and Donaldson)

A Fano cone (Z , ξ0) is K-semistable (resp. K-polystable) if for any

T-equivariant degeneration Z to another Fano cone (Z0, ξ0), Fut(Z) ≥ 0 (and

= 0 iff Z is induced by a holomorphic vector field on Z).

Theorem (Collins-Székelyhidi, L.-Xu)

If a (Klt) Fano cone (Z , ξ0) admits a Ricci-flat Kähler cone metric, then (Z , ξ0)

is K-polystable.

This says that (Z , ξ0) := (CxX , ξ0) is K-polystable.

Theorem (L.-Xu ’17)

If a Fano cone W equivariantly degenerates to a K-polystable Fano cone, then

W is K-semistable.

This means that W is K-semistable and we say that Dmetric is a K-semistable

valuation.

Overview of main results



Overview III: Main results

Donaldson-Sun’s conjecture follows from the following main results, which are

proved using only tools from algebraic geometry.

Theorem (L.-Xu ’16-’17, (see below for notations))

For any Klt singularity, a K-semistable valuation is the unique minimizer of the

normalized volume functional among all quasi-monomial valuations.

This implies Dmetric and W are uniquely determined by x ∈ X .

Theorem (L.-Wang-Xu ’18)

Any K-semistable Fano cone W degenerates to a K-polystable Fano cone Z.

Moreover, such a Z is uniquely determined by W .

This implies Z := CxX is uniquely determined by W .

Overview of main results



Klt singularities I

Let (X , x) be a normal singularity such that mKX is locally generated over an

open set U by a nowhere vanishing holomorphic section s.

(X , x) is Klt if: ∫
Ureg

√
−1

mn2

(s ∧ s̄)1/m < +∞. (2)

How to check this? Choose a log resolution µ : Y → X and write:

µ∗(s ∧ s̄)
1
m = h(z)

∏
i

|zi |2ai dz ∧ dz̄ ,

where h(z) is a nowhere vanishing function. Then (2) is satisfied if and only if

ai > −1 for every i .

Key concepts Klt singularities



Klt singularities II

The Klt condition can be formulated algebraically: Write

KY = µ∗KX +
∑
i

aiEi

X is Klt if and only if A(ordEi ) := ai + 1 > 0 for all i . Examples include:

1 dimC X = 2. Klt=isolated quotient singularity C2/G .

2 dimC X = 3. partial classification ({terminal} (classified) ⊂ {canonical} ⊂
Klt)

3 Isolated quotient singularities and Q-Gorenstein toric singularities are Klt.

4 Fano cone singularity (X , ξ0): Klt singularity with an effective torus action

and an attractive point (and a distinguished Reeb vector field).

Key concepts Klt singularities



Regular Fano cone singularities

Assume S is a Fano manifold: −KS is ample. Assume K−1
S = rL with r ∈ Q>0

for a holomorphic line bundle L.

Contraction of zero section S , or extraction of S from the affine cone:

S ⊂ Y
µ−→ C(S , L) := SpecC

(
+∞⊕
k=0

H0(S , kL)

)
.

(C(S , L), ξ0) is a Fano cone singularity where ξ0 is the holomorphic vector field

corresponding to the Z-grading.

Examples:

S = CPn−1, r = 1
n

, L = H := OCPn−1 (1), X = Cn, ξ0 =
∑n

i=1 zi
∂
∂zi

.

S = {F (Z1, . . . ,Zn+1) = 0} ⊂ Pn with d < n + 1, r = 1
n+1−d

and

L = H|M , X = {F (z1, . . . , zn+1) = 0} ⊂ Cn+1.

Key concepts Klt singularities



Quasi-regular Fano cone singularities

More generally, S = (S ,∆) can be a Fano orbifold and have Klt singularities.

Example: X = {z2
1 + z2

2 + z2
3 + zk+1

4 = 0} are Fano cones (with

ξ0 = (k + 1, k + 1, k + 1, 2)) over the Fano orbifold:

(S ,∆) =

{
(P2, k

k+1
C) k even,

(P1 × P1, k−1
k+1

∆(P1)) k odd

(X , ξ0) admits a Ricci-flat Kähler cone metric if and only if 0 ≤ k ≤ 3

(Martelli-Sparks-Yau, L.-Sun, see (1))

Example: C2/Z2 × C ∼= {z2
1 + z2

2 + z2
3 = 0} = C((S ′,∆′), L′) with

(S ′,∆′) = (P(1, 1, 2), 1
2
D) = P2/Z2. Reeb vector field ξ0 = (2, 2, 2, 1).

A consequence of deep results from Minimal Model Program (MMP):

Any Klt singularity can degenerate to a Fano orbifold cone (associated to a plt

blow-up).

So the Fano cones can be considered as prototypes of Klt singularities.

Key concepts Fano cone singularities



General Fano cones

Example: Let σ ⊂ NR be a rational polyhedral cone. X := Xσ is the associated

toric variety. For any ξ0 ∈ int(σ), (X , ξ0) is a Fano cone singularity (assuming

Q-Gorenstein).

General Fano cone singularity x ∈ X := SpecC(A):

X : a normal Klt singularity with an effective torus T := (C∗)d action.

there is a unique closed point x ∈ X that is in the orbit closure of any

T -orbit.

a distinguished Reeb vector ξ0 ∈ t+R .

(Co-)characters: M = Hom(T ,C∗). N := Hom(C∗,T ).

Weight decomposition: A =
⊕

λ∈Γ Aλ, Γ ⊂ M

Reeb cone: σ := t+R = {ξ ∈ NR; 〈λ, ξ〉 > 0 for any λ ∈ Γ\{0}}

Moment cone: σ∨ = SpanR(Γ) ⊂ M.

In general, there is a combinatorial description using the theory of T -varieties

via divisorial polytopes (Altmann-Hausen, Ilten-Süss, ...).

Key concepts Fano cone singularities



Real Valuations

Assume (X , x) = (SpecC(R),m) where R is a local integral domain which is a

finitely generated C-algebra.

Definition

A real valuation on X with center x is a function v : R → R∪{+∞} satisfying:

1 v(f + g) ≥ min{v(f ), v(g)}, ∀f , g ∈ R;

2 v(f · g) = v(f ) + v(g), ∀f , g ∈ R;

3 v(0) = +∞, and v(a) = 1 for any a ∈ C∗;
4 v(f ) > 0 for any f ∈ m .

One should think of v as a measure of vanishing order of f around x ∈ X .

Denote by ValX ,x the space of all real valuations centered at x ∈ X . If

v ∈ ValX ,x , then λv ∈ ValX ,x for any λ > 0.

Key concepts Real valuations



Examples of valuations

1 Divisorial valuations. Let µ : Y → X be a birational morphism and E is a

Weil divisor on Y . Define: for any f ∈ Ox

ordE (f ) = ord(µ∗f ).

2 Monomial valuations on Cn. Fix ξ ∈ Rn
+, for any f ∈ C[z1, . . . , zn], define:

vξ(f ) = min

{∑
m

miξi ; f =
∑
m

amz
m, am 6= 0

}
.

3 Quasi-monomial valuations: monomial valuations on Y on some birational

morphism µ : Y → X . Quasi-monomial valuations include all divisorial

valuations and the following

Quasi-monomial valuation from torus actions: Assume X = SpecC(A) is a

Fano cone singularity with A =
⊕

λ∈Γ Aλ. For any ξ ∈ t+R ,

vξ(f ) = min

{
〈ξ, λ〉; f =

∑
λ

fλ, fλ 6= 0.

}

vξ is divisorial if and only if ξ ∈ t+Q .

Key concepts Real valuations



Metric tangent cones via valuations

General construction: For any v ∈ ValX ,x , Γ = v(R) is an ordered semigroup.

Γ-graded sequence of valuative ideals a• = {aλ;λ ∈ Γ}:

aλ(v) = {f ∈ R; v(f ) ≥ λ}, a>λ(v) = {f ∈ A; v(f ) > λ}.

Associated graded ring of v :

grvR =
⊕
λ∈Γ

aλ(v)/a>λ(v)

Suppose grvR is finite generated then W := SpecC(grvR) is an affine variety

with an effective torus action.

Recall: For metric tangent cones, Donaldson-Sun’s work implies:

There is a valuation v determined by the metric structure of X such that W is

well defined and degenerates to the metric tangent cone CxX .

Questions 1: How to characterize such v?

Question 2: How to characterize CxX in terms of v?

Key concepts Real valuations



Normalized volumes

Motivated by result of Martelli-Sparks-Yau from Sasaki-Einstein geometry:

Definition (L. ’15, the normalized volume)

v̂ol := v̂olX ,x : ValX ,x −→ R>0 ∪ {+∞}
v 7→ AX (v)n · vol(v).

AX (v): log disrepancy of v satisfying: AX (v) = AY (v) + ordv (KY/X )

X Klt ⇐⇒ AX (v) > 0 for any v ∈ ValX .

Example/Key Observation: For valuations induced by torus actions:

AX (vξ) =
LξΩ

Ω

where Ω is a (C∗)d -equivariant nowhere vanishing holomorphic n-form.

vol(v) = limm→+∞
dimC(A/am(v))

mn/n!
(Ein-Lazarsfeld-Smith).

Basic properties of normalized volume functional:

1 v̂ol(λv) = v̂ol(v) for any λ > 0.

2 v̂ol(v) ≥ C AX (v)
v(m)

≥ C · lct(m) > 0 (L. ’15).

Key concepts Normalized volumes



Minimizing normalized volumes

Conjecture (Proposed by L., Li-Xu)

Given any Klt singularity x ∈ X = Spec(R), there is a unique minimizer v up

to rescaling. Furthermore, v is quasi-monomial, with a finitely generated

associated graded ring such that (Z := Spec(grv (R)), ξv ) is a K-semistable

Fano cone singularity.

Existence of minimizer: H. Blum used de-Fernex-Ein-Mustaţă’s technique

of generic limits (for attacking ACC conjecture) to prove the existence.

Uniqueness:

Divisorival minimizers are unique (L.-Xu ’16)
On semistable Fano cone, quasi-monomial minimizers are unique (L.-Xu).

Regularity of minimizer:

True for valuations from Gromov-Hausdorff limits, wide open in general
The quasi-monomial part is implied by a conjecture of Jonsson-Mustaţă
(which is related to the openness conjecture).

Minimizing normalized volumes



Minimizers from K-semistable Fano cones

Theorem (L., L.-Liu, L.-Xu, ’15-’17)

A Fano cone (Z , ξ0) is K-semistable if and only if vξ0 is a minimizer of v̂ol.

This is a generalization of the minimization result by Martelli-Sparks-Yau who

considered valuations from torus actions.

Idea of Proof:

Reduce to the torus invariant valuations;

Derivative of normalized volume is the Futaki invariant;

The normalized volume is convex along “equivariant rays”.

Example: v̂ol(0,Cn/G) = nn

|G | , v̂ol(x , (X , d∞)) = nn · limr→0
vol(B(x,r)

vol(B(0,Cn))

Related development: valuative criterion of K-(semi)stability (L., Fujita) and

uniform K-stability (by Fujita, Blum-Jonsson)

Minimizing normalized volumes



Normalized volume, normalized multiplicities and volume of models

Theorem (Y. Liu, L.-Xu)

v̂ol(x ,X ) = inf
a

lct(a)nmult(a) = inf
Y/X

volx(−(KY + E)) = inf
S plt

v̂ol(ordS)

E = µ−1(x)red and volx is the local volume studied by Fulger:

volx(−(KY + E)) = lim
m→+∞

dimC(OX ,x/µ∗(OY (−m(KY + E)))

mn/n!
.

Important consequence: Minimizers v computes lct(a•(v)).

Example: A new interpretation of de-Fernex-Ein-Mustaţă’s inequality:

CPn−1 is K-semistable

⇐⇒ lct(a)nmult(a) ≥ nn for any m-primary ideal a

⇐⇒ Arithmetic Mean - Geometric Mean inequality.

Minimizing normalized volumes



Uniqueness of minimizers I: Toric invariant case

Assume (Z , ξ0) is a Fano cone singularity with Reeb cone σ and moment cone

σ∨. For any T -invariant quasi-monomial valuation v .

Connect vξ0 with v by a path {vt}t∈(0,1) of T -invariant quasi-monomial

valuations.

Use the tools of Newton-Okounkov to express vol(vt) as volumes of

varying convex bodies.

Reduce to the following convex geometric problem.

Let σ̃ ⊂ Rn be a strictly convex cone. Fix u0 ∈ int(σ̃∨). Consider the map:

{ξ ∈ σ̃; 〈u0, ξ〉 = 1} = H+
u0
3 ξ 7→ ∆ξ = {y ∈ σ̃∨; 〈y , ξ〉 ≤ 1}

Lemma (Gigena, 1978)

The function ξ 7→ vol(∆ξ) is proper and strictly convex on H+
u0

and hence has a

unique minimizer ξ0.

Toric Example: non-divisorial minimizers on the affine cone over P2]P2

(Martelli-Sparks-Yau, Futaki-Ono-Wang, H. Blum )

Uniqueness of minimizers



Uniqueness of minimizers II: divisorial minimizers

Theorem (L.-Xu)

A divisorial valuation ordS is a minimizer if and only if

1 There is a plt blow up µ : Y → X with S being the exceptional divisor, and

2 The log Fano pair (S ,DiffS(0)) is K-semistable.

Moreover, such a divisorial minimizer is unique if it exists.

Necessity of item 1 is also independently proved by H.Blum. The proof is

based the the fact that ordS computes lct(a•(ordS)) and the following key

result from MMP (used again and again in the following argument).

Theorem (Birkar-Casini-Hacon-McKernan)

Let X be a normal projective variety, A ⊂ OX an ideal sheaf and c > 0.

Assume ordE is a divisorial valuation which has center on X and satisfies:

lct(X , c ·A ) < 1 and AX (E )− c · ordE (A ) < 1.

Then E can be extracted as a prime divisor on a birational model over X

Uniqueness of minimizers



Uniqueness of minimizers II: divisorial minimizers

Idea of Proof of Uniquenss: Fix a divisorial (plt) minimizer S ⊂ Y → X .

1 Construct the degeneration X of X to C((S ,∆),−S |S)
⋃

Y by the

deformation to the normal cone (or using associated graded ring).

2 For any divisorial (plt) minimizer S ′ ⊂ Y ′ → X , equivariantly degenerate

ideals a•(ordS′).

3 Degenerate the model Y ′ → X , equivalently extract divisor S ′ × C over

X × C. To do this, use minimizing property to find an ideal A on X
satisfying Theorem 9.

4 Use uniqueness in the torus invariant case on the central fibre to conclude

S ′ ∼= S over the cone.

5 Contract the blown-up cone to conclude S ∼= S ′ over X . Algebraically,

ordS′(f ) = ordS′=S(in(f )) = ordS(f ).

Uniqueness of minimizers



Uniqueness III: higher rational rank case

We apply similar strategy to prove the uniqueness result for K-semistable

valuations v (i.e. v is quasimonomial, grv (R) is finitely generated and

Spec(grvR) is a K-semistable Fano cone). The essential and technical results

we proved are contained in the following:

Proposition (L.-Xu ’17)

For a quasi-monomial minimizer v , we can find divisors S1, . . . , Sr , s.t.

1 there is a model Y → X which precisely extracts S1, . . . , Sr over x,

2 v is a monomial valuation w.r.t. (Y ,E).

3 (Y ,E) is log canonical, and −KY − E is nef.

If moreover grv (R) is finitely generated, then X ′ = Spec(grvR) has Klt

singularities.

Uniqueness of minimizers



Theorem 5: Uniqueness of K-polystable degenerations

Assume (X , ξ0) degenerates to two K-polystable Fano cones X
(i)
0 , i = 1, 2.

X
(2)
0

X ′(2)

��
�O
�O
�O
�O

X
X (2)←−Y(2)

k
←−E(2)

koo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/

X (1)←Yk←Ek=Ek×C1

��
�O
�O
�O
�O

Yk ← Ek
oo

X ′0 X
(1)
0

X ′(1)
oo o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ o/ Yk,0 ← Ek

oo

(3)

Key arguments:

Approximate ξ0 by a sequence of divisorial valuations ordEk .

Show that Ek ×C can be extracted: Y (2)
k → X

(2). Fut(X (i)) = 0 is crucial:

v̂ol(Ek ) = v̂ol(vξ0
) + O(k−2).

X
(i)
0 is K-semistable and hence has the volume minimizing property.

The equivariant degeneration of the ideal sheaf a(ordEk ) on X (2) produces
A satisfying the condition of Theorem 9.

Degenerate the model Y(2)
k → X

(2) to complete the square.

Show that Fut(X ′(i)) = 0 and that X ′(i)0 are Fano cones.

Uniqueness of K-polystable degenerations



Supplements/Applications

Recent applications of the study of metric tangent cones/normalized volumes

1 Determine the metric tangent cones a priori without knowing the metric.
This is useful:

1 Prove the polynomial asymptotics of Kähler-Einstein metrics near special
(stable) isolated conical points (Hein-Sun).

2 New examples of slow convergence of singular Kähler-Einstein metrics to
metric tangent cones (Han-L.).

2 New (torus-equivariant) criterions for the K-semistability/K-polystability of

Fano varieties (L., L.-Liu, L.-Wang-Xu)

3 Bound the singularities of K-semistable Fano varieties (Liu) and

application to the construction of moduli (Liu-Xu, Spotti-Sun)

4 2-dimensional logarithmic normalized volume is equal to Langer’s local

orbifold Euler number (Borbon-Spotti, L.)
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Thanks for your attention!
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