Canonical Kähler Metrics and Stability of Algebraic Varieties

Chi Li

Department of Mathematics, Rutgers University

ICM, July 2022

1 Canonical Kähler metrics and Yau-Tian-Donaldson conjecture

- 2 Variational Problem: Analytic Story
- 3 K-stability: Algebraic Story

Analytic vs. Algebraic: Mixed Story

Kähler manifolds and Kähler metrics

X: *n*-dim compact complex manifold. $\{z_i\}$ holomorphic coordinates.

Kähler form (metric):
$$\omega = \sqrt{-1} \sum_{i,j=1} \omega_{i\overline{j}} dz^i \wedge d\overline{z}^j, \ (\omega_{i\overline{j}}) > 0$$
satisfies $d\omega = 0 \longrightarrow$ Kähler class $[\omega] \in H^2(X, \mathbb{R}).$

Fact (*dd^c*-Lemma): Fix a reference Kähler form ω_0 , any other Kähler form in [ω] can be written as

$$\omega = \omega_{\varphi} := \omega_0 + dd^c \varphi, \qquad \omega_{i\bar{j}} = (\omega_0)_{i\bar{j}} + \varphi_{i\bar{j}}$$

where $\varphi: X \to \mathbb{R}$ is called a Kähler potential and

$$dd^{c}\varphi = rac{\sqrt{-1}}{2\pi}\sum_{i,j} \varphi_{i\overline{j}}dz_{i}\wedge d\overline{z}_{j}.$$

Kähler metrics on projective manifolds

 $L \rightarrow X$ a holomorphic line bundle

Kodaira: *L* is ample if for $m \gg 1$, there exists an embedding:

$$\iota: X \hookrightarrow \mathbb{P}^N = \mathbb{P}(H^0(X, L^{\otimes m})^*), \ z \mapsto [s_0(z), \ldots, s_N(z)].$$

Restriction of Fubini-Study metric: on the locus of $s_j \neq 0$,

$$\omega = \frac{1}{m} dd^c \log\left(\frac{\sum_{i=0}^N |s_i|^2}{|s_j|^2}\right) > 0$$

represents the first Chern class $c_1(L) \in H^2(X, \mathbb{Z})$.

Curvature tensor:
$$R_{i\overline{j}k\overline{l}} = -\frac{\partial^2 \omega_{k\overline{l}}}{\partial z_i \partial \overline{z}_j} + \omega^{r\overline{q}} \frac{\partial \omega_{k\overline{q}}}{\partial z_i} \frac{\partial \omega_{r\overline{l}}}{\partial \overline{z}_j}.$$

Uniformization for constant holomorphic sectional curvature \iff

$$R_{i\bar{j}k\bar{l}} = \mu(\omega_{i\bar{j}}\omega_{k\bar{l}} + \omega_{i\bar{l}}\omega_{k\bar{j}})$$

	X	ω	μ
	$\mathbb{B}^n/\pi_1(X)$	$-dd^c\log(1- z ^2)$	-1
	$\mathbb{C}^n/\pi_1(X)$	$dd^{c} z ^{2}$	0
	\mathbb{P}^n	$dd^c \log(1+ z ^2)$	1
$\mathbb{B}^n = \{z \in \mathbb{C}^n; z < 1\}, \mathbb{P}^n = \mathbb{C}^n \cup \mathbb{P}^{n-1}.$			

Ricci Curvature and scalar curvature

Ricci:
$$Ric(\omega) = \frac{\sqrt{-1}}{2\pi} \sum_{i,j} R_{i\bar{j}} dz_i \wedge d\bar{z}_j \in c_1(X) := c_1(\det TX):$$

$$R_{i\bar{j}} := \sum_{i,j} \omega^{k\bar{l}} R_{i\bar{l}k\bar{j}} = -\frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log \det (\omega_{k\bar{l}}).$$

Scalar curvature:

$$S(\omega) = \sum_{i,j} \omega^{i\overline{j}} R_{i\overline{j}}.$$

The average scalar curvature \underline{S} is a topological constant:

$$\underline{S} = \frac{1}{\mathrm{V}} \int_X n \cdot c_1(X) \wedge [\omega]^{n-1}, \quad \mathrm{V} = \int_X [\omega]^n.$$

Canonical Kähler metrics and Yau-Tian-Donaldson conjecture

CscK equation is a 4-th order nonlinear PDE:

$$\underline{S} = S(\omega_{\varphi}) = -((\omega_0)_{i\bar{j}} + \varphi_{i\bar{j}})^{-1} \frac{\partial^2}{\partial z_i \partial \bar{z}_j} \log \det((\omega_0)_{k\bar{l}} + \varphi_{k\bar{l}}).$$

Obstructions to the existence of cscK in $[\omega]$:

• (Matsushima-Lichnerowicz) cscK \implies Aut(X, [ω]) is reductive (the complexification of the compact isometry group).

• (Calabi-Futaki invariant) a functional for holomorphic vector fields that vanishes if there exists a cscK metric in $[\omega]$.

(Uniform) Yau-Tian-Donaldson (YTD) conjecture

The main goal of this talk is to discuss the following conjecture:

Conjecture ((Uniform) YTD conjecture)

Let L be an ample line bundle over X. (X, L) admits a cscK metric if and only if (X, L) is uniformly K-stable.

A comparison:

holomorphic vector bundles	projective manifolds	
Hitchin-Kobayashi	Yau-Tian-Donaldson	
Hermitian-Einstein metrics	cscK metrics	
slope stability	(strengthened) K-stability	
coherent subsheaves	test configurations	
Donaldson-Uhlenbeck-Yau	open in general	

Theorem (L. '20)

If (X, L) is uniformly K-stable over models, then it admits a cscK metric, i.e. there exists cscK metric in $c_1(L)$.

These known implications are conjectured to be equivalent:

uniformly K-stable over models \Longrightarrow cscK \Longrightarrow

uniformly K-stable (over test configurations)

Corollary (YTD for spherical varieties, observed by Odaka)

A polarized spherical manifold (X, L) admits a cscK metric if and only if (X, L) is uniformly K-stable.

Spherical manifolds: compactification of certain homogeneous spaces of reductive Lie groups (including all toric manifolds).

Kähler-Einstein case: $c_1(X) = \lambda c_1(L)$

CscK equation reduces to a complex Monge-Ampère equation

$$\operatorname{Ric}(\omega) = \lambda \omega \iff (\omega_0 + dd^c \varphi)^n = e^{-\lambda \varphi} \Omega_0.$$

$$old \lambda = -1$$
 existence (Aubin, Yau)

- **2** $\lambda = 0$ existence (Yau)
- **3** $\lambda = 1$ there are obstructions.

• In this Fano case, the YTD conjecture has been confirmed and generalized to even singular Fano varieties:

Tian, Berman, Chen-Donaldson-Sun, Datar-Székelyhidi; Berman-Boucksom-Jonsson, L.-Tian-Wang, L., Liu-Xu-Zhuang; K.Zhang; ...

• Weighted Kähler-Ricci soliton case: Tian-Zhu, Berman-Witt-Nyström, Datar-Székelyhidi, Han-**L.**, Lahdili.

Space of Kähler metrics

Space of smooth Kähler potentials:

$$\mathcal{H} = \{ \varphi \in C^{\infty}(X, \mathbb{R}); \omega_{\varphi} = \omega_{0} + dd^{c}\varphi > 0 \}.$$

Space of Kähler forms $\overline{\mathcal{H}} = \{\omega_{\varphi}; \varphi \in \mathcal{H}\}$. Volume: $V = \int_{X} [\omega]^{n}$.

Monge-Ampère energy: $\textbf{E}:\mathcal{H}\rightarrow\mathbb{R}$ satisfies

$$\delta \mathbf{E} \cdot \delta \varphi = \frac{1}{V} \int_{X} \delta \varphi \cdot \omega_{\varphi}^{n}.$$

J-Norm of Kähler forms relative to ω_0 :

$$\begin{aligned} \mathsf{J}(\omega_{\varphi}) &= \frac{1}{\mathcal{V}} \int_{X} \varphi \omega_{0}^{n} - \mathsf{E}(\varphi) \\ &= \sum_{k=1}^{n} \frac{k}{n+1} \frac{1}{\mathcal{V}} \int_{X} \frac{\sqrt{-1}}{2\pi} \partial \varphi \wedge \bar{\partial} \varphi \wedge \omega_{0}^{k-1} \wedge \omega_{\varphi}^{n-k} \ge 0. \end{aligned}$$

Mabuchi functional and Chen-Tian's decomposition:

$$\delta \mathbf{M}(\omega_{\varphi}) \cdot \delta \varphi = -\frac{1}{V} \int_{X} \delta \varphi \cdot (S(\omega_{\varphi}) - \underline{S}) \omega_{\varphi}^{n}$$
$$\mathbf{M}(\omega_{\varphi}) = \mathbf{H}(\omega_{\varphi}) + \mathbf{E}^{K_{X}}(\varphi) + \underline{S} \mathbf{E}(\varphi).$$

Entropy and twisted MA-energy:

$$\begin{split} \mathbf{H}(\omega_{\varphi}) &= \frac{1}{\mathrm{V}} \int_{X} \log \frac{\omega_{\varphi}^{n}}{\omega_{0}^{n}} \omega_{\varphi}^{n} \\ \delta \mathbf{E}^{\mathcal{K}_{X}} \cdot \delta \varphi &= -\frac{1}{\mathrm{V}} \int_{X} \delta \varphi \cdot \mathbf{n} \cdot \operatorname{Ric}(\omega_{0}) \wedge \omega_{\varphi}^{n-1}. \end{split}$$

э

$$\begin{split} & \omega_0\text{-plurisubharmonic } (\omega_0\text{-psh}) \text{ potentials:} \\ & \mathcal{P}(\omega_0) = \{\varphi \in L^1(X); \varphi \text{ is u.s.c. and } \omega_0 + dd^c \varphi \geq 0\}. \end{split}$$

Finite energy potentials:

$$\mathcal{E}^1 \hspace{0.1 in }= \hspace{0.1 in } \{\varphi \in \mathcal{P}(\omega_0); \inf \{ \mathsf{E}(\tilde{\varphi}); \tilde{\varphi} \geq \varphi, \tilde{\varphi} \in \mathcal{H} \} > -\infty \} \, .$$

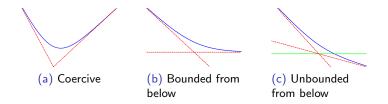
(Cegrell, Guedj-Zeriahi, Berman-Boucksom-Eyssidieux-Guedj-Zeriahi)

Geodesics in \mathcal{E}^1 (Mabuchi, Semmes, Donaldson, Chen, Darvas, ...) The geodesic connecting $\varphi_0, \varphi_1 \in \mathcal{E}^1$ via an envelope:

$$\Phi = \sup \left\{ \tilde{\Phi} \in \mathcal{P}(X \times [0,1] \times S^1, p_1^* \omega_0); \tilde{\Phi}(\cdot,i) \leq \varphi_i, i = 1,2 \right\}^*.$$

If $\Phi = {\{\Phi_s(\cdot)\}_{s \in [0,1]} \text{ is smooth, then it satisfies the homogeneous complex Monge-Ampère equation } (p_1^* \omega_0 + dd^c \Phi)^{n+1} = 0.$

Facts: CscK metrics are minimizers of **M**-functional.



Important results obtained by using pluripotential theory:

- All previous functionals can be defined on \mathcal{E}^1 .
- **M** is convex along geodesics (Berman-Berndtsson, Chen-Tian).

maximal torus $\mathbb{T} \cong (\mathbb{C}^*)^r = ((S^1)^r)^{\mathbb{C}} \subset \operatorname{Aut}(X, [\omega])_0$ (reductive).

We now have an important existence criterion:

Theorem (Chen-Cheng; Berman-Darvas-Lu $(\mathbb{T}$ -version: Hisamoto, L.))

There exists a cscK metric in $(X, [\omega])$ if and only if **M** is (\mathbb{T}) -coercive, meaning that: there exist constants $\gamma, C > 0$ such that for any $\varphi \in \mathcal{H}^{(S^1)^r}$

$$\mathbf{M}(\omega_{\varphi}) \geq \gamma \cdot \inf_{\sigma \in \mathbb{T}} \mathbf{J}(\sigma^* \omega_{\varphi}) - C.$$

In the Kähler-Einstein Fano case, the inequality is equivalent to a Moser-Trudinger type inequality and such type of results are due to Tian, Tian-Zhu, Phong-Song-Sturm-Weinkove, Darvas-Rubinstein. Geodesic ray $\Phi = {\Phi_s}_{s \in \mathbb{R}_{\geq 0}} \subset \mathcal{E}^1$: $\Phi|_{[s_1, s_2]}$ are geodesic segments for all $s_1, s_2 \in \mathbb{R}_{\geq 0}$. For the functional $\mathbf{F} \in {\mathbf{M}, \mathbf{J}_{\mathbb{T}}(\cdot) = \inf_{\sigma \in \mathbb{T}} \mathbf{J}(\sigma^* \cdot)}$, set

$${f F}'^\infty(\Phi) = \lim_{s
ightarrow +\infty} rac{{f F}(\Phi_s)}{s}.$$

Fact: The limits exist (based on convexity properties).

Theorem (Chen-Cheng; Darvas-Rubinstein, Berman-Boucksom-Jonsson $(\mathbb{T}$ -version: Hisamoto, **L**.))

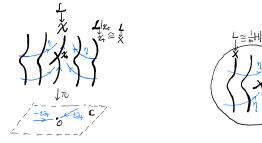
M is coercive if and only if $M^{\prime\infty}(\Phi) > 0$ for any geodesic ray Φ satisfying $J_{\mathbb{T}}^{\prime\infty}(\Phi) = 1$ (non-trivial).

Existence of cscK metrics \iff geodesic stability (Donaldson)

Test configurations (Tian, Donaldson)

A test configuration (TC) $(\mathcal{X}, \mathcal{L}; \eta)$ for (X, L) is the following data: • $\pi : \mathcal{X} \to \mathbb{C}$: a normal family of varieties with $\mathcal{X}_t \cong X$ for $t \neq 0$;

- $\mathcal{L} \to \mathcal{X}$: a π -ample \mathbb{Q} -line bundle with $\mathcal{L}|_{\mathcal{X}_t} \cong L$ for $t \neq 0$;
- A \mathbb{C}^* -action on $(\mathcal{X}, \mathcal{L})$ generated by a holomorphic vector field η such that π is \mathbb{C}^* -equivariant and $\pi_*\eta = -t\partial_t$.



Intrinsic view

Extrinsic view

Trivial test configuration: $(X \times \mathbb{C}, p_1^*L; -t\partial_t)$. Product test configuration: $(X \times \mathbb{C}, p_1^*L; \eta = v - t\partial_t)$.

Non-Archimedean pluripotential theory I

 $(X^{\text{NA}}, L^{\text{NA}})$ Berkovich analytification of (X, L) with respect to the trivial norm on \mathbb{C} .

 Val_X the space of real valuation is a dense subset $\subset X^{\operatorname{NA}}$.

• (S. Zhang, Boucksom-Favre-Jonsson) Correspondence:

test configurations \uparrow smooth non-Archimedean psh metrics on L^{NA} . $(\mathcal{X}, \mathcal{L}) \longrightarrow$ non-Archimedean potential function on X^{NA} : $\phi_{(\mathcal{X}, \mathcal{L})}(v) = G(v)(\mathcal{L} - p_1^*L), \quad \forall v \in Val_X.$ $G(v) \in Val_{X \times \mathbb{C}}$: Gauss extension G(v)(t) = 1 and $G(v)|_{\mathbb{C}(X)} = v$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

Algebraic (Non-Archimedean) functionals of TCs

Algebraic invariants defined using intersection products on the canonical compactification $\overline{\mathcal{L}} \to \overline{\mathcal{X}} = \mathcal{X} \cup_{X \times \mathbb{C}^*} (X \times (\mathbb{P}^1 \setminus \{0\}))$:

$$\begin{split} \mathbf{E}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) &= \frac{1}{\mathrm{V}} \frac{\bar{\mathcal{L}}^{\cdot n+1}}{n+1}; \\ \mathbf{J}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) &= \frac{1}{\mathrm{V}} \bar{\mathcal{L}} \cdot \mathcal{L}_{\mathbb{P}^{1}}^{\cdot n} - \frac{1}{\mathrm{V}} \frac{\bar{\mathcal{L}}^{\cdot n+1}}{n+1} \geq 0; \\ \mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) &= \frac{1}{\mathrm{V}} \mathcal{K}_{\bar{\mathcal{X}}/\mathbb{P}^{1}} \cdot \bar{\mathcal{L}}^{\cdot n} + \frac{S}{n+1} \bar{\mathcal{L}}^{\cdot n+1} \end{split}$$

Example (Tian): $\mathbf{M}^{NA}(\mathcal{X}, \mathcal{L})$ recovers Calabi-Futaki invariant for product test configurations

Uniform K-stability

We use a strengthened version of K-stability (Tian, Donaldson; Székelyhidi, Dervan, Boucksom-Hisamoto-Jonsson, Hisamoto).

Definition

(X, L) is (T)-uniformly-K-stable (over test configurations) if there exists $\gamma > 0$ such that for any T-equivariant TC $(\mathcal{X}, \mathcal{L})$,

 $\mathbf{M}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}) \geq \gamma \cdot \mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\mathcal{X}, \mathcal{L})$

where (with $\mathfrak t$ being the Lie algebra of $\mathbb T)$

$$\mathbf{J}^{\mathrm{NA}}_{\mathbb{T}}(\mathcal{X},\mathcal{L}) = \inf_{\xi \in \mathfrak{t}_{\mathbb{Q}}} \mathbf{J}^{\mathrm{NA}}(\mathcal{X},\mathcal{L};\eta+\xi).$$

Proposition (Berman-Darvas-Lu (T-version: Hisamoto, L.))

Assume that (X, L) admits a cscK metric. Then (X, L) is uniformly K-stable.

< □ > < □ > < □ > < □ >

X a Q-Fano variety if $-K_X$ is an ample Q-line bundle and X has mild (klt) singularities.

K-polystable (resp. stable): $\mathbf{M}^{NA}(\mathcal{X}, \mathcal{L}) \geq 0$ (resp. > 0) and = 0 only if $(\mathcal{X}, \mathcal{L})$ is a product (resp. trivial) test configuration.

Theorem (Liu-Xu-Zhuang)

For any (possibly singular) \mathbb{Q} -Fano variety X, K-polystability is equivalent to the uniform K-stability.

Theorem (L.-Tian-Wang, L.)

For any \mathbb{Q} -Fano variety X, the existence of KE metric is equivalent to uniform K-stability.

 \implies strong version of YTD conjecture: KE \iff K-polystability

Fano case: special test configurations

Definition(Tian): $(\mathcal{X}, \mathcal{L})$ is special if \mathcal{X}_0 is a \mathbb{Q} -Fano variety.

Theorem (**L.**-Xu '14, Tian's conjecture)

To test the K-(poly)stability of X, it is enough to test on special test configurations.

- Minimal Model Program: $\mathcal{X} \dashrightarrow \mathcal{X}_1 \dashrightarrow \cdots \dashrightarrow \mathcal{X}^s$.
- Change of polarization: $\mathcal{L}_{\lambda} = \frac{\mathcal{L} + \lambda K_{\chi}}{(1-\lambda)}, \quad \dot{\mathcal{L}} = \frac{\mathcal{L} + K_{\chi}}{(1-\lambda)^2}$
- Monotonicity formula:

$$\frac{d}{dt}\mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}_{\lambda}) = n(1-\lambda)^{-2}\mathcal{L}^{\cdot n-1} \cdot (\mathcal{K}_{\mathcal{X}}+\mathcal{L})^{2} \leq 0$$

by Zariski's lemma.

• (Boucksom-Hisamoto-Jonsson) each irreducible components of central fibre defines a valuation $v_i = \operatorname{ord}_{\mathcal{X}_{0,i}} |_{\mathbb{C}(X)} = q \cdot \operatorname{ord}_{E}$.

• (L.) For any special test configuration \mathcal{X} ,

$$\mathbf{M}^{\mathrm{NA}} =_{const.} A_X(E) - \frac{1}{\mathrm{V}} \int_0^{+\infty} \mathrm{vol}(\mu^*(-K_X) - \lambda E) d\lambda =: \beta(E).$$

 \rightarrow valuative criterion: X is K-stable if and only if $\beta(E) > 0$ for any prime divisor E over X (L., Fujita, Blum-Xu)

• Blum-Liu-Xu and Liu-Xu-Zhuang:

special test configurations \rightarrow special valuations \rightarrow log canonical places of complements (a concept invented by Shokurov)

 \longrightarrow application of deep boundedness results (Birkar, Hacon -McKernan -Xu) to study K-stability.

イロト 不得 トイヨト イヨト 二日

K-stability of Fano varieties: flourishing strong/deep results

- Effective ways to test K-stability, identification of K-polystable Fano threefolds (Abban-Zhuang, Cheltsov, Fujita, Araujo et al., ...).
- Algebraic construction of moduli space of K-stable log-Fano varieties (Blum-Xu et al., L.-Wang-Xu, Liu-Xu-Zhuang, ...) Explicit examples and crossing phenomenon (Odaka-Spotti-Sun, Ascher-DeVleming-Liu, ...)
- Weighted version of K-stability; Optimal degeneration of Fano varieties (Berman-Witt-Nyström, Tian-Zhang-Zhang-Zhu, Chen-Sun-Wang, Dervan-Székelyhidi, Hisamoto, Han-L., Blum-Liu-Xu-Zhuang)

Local stability theory for klt singularity (X, o)

Martelli-Sparks-Yau's work on Sasaki-Einstein metrics motivates a functional on $\operatorname{Val}_{X,x}$ the space of real valuations with centers x.

$$\widehat{\operatorname{vol}} : \operatorname{Val}_{X,x} \longrightarrow \mathbb{R}_{>0} \cup \{+\infty\}, \quad (\mathsf{L}.'15)$$

$$v \mapsto A_X(v)^n \cdot \operatorname{vol}(v).$$

 $A_X(v)$: log disrepancy. For any prime divisor $E \subset \tilde{X} \to X$,

 $A_X(\operatorname{ord}_E) := \operatorname{ord}_E(K_{\widetilde{X}/X}) + 1 > 0$ (klt condition).

$$\operatorname{vol}(v) = \lim_{m \to +\infty} \frac{\dim_{\mathbb{C}}(\mathcal{O}_{X,x} / \{f \in \mathcal{O}_{X,x}; v(f) \ge m\})}{m^n/n!}$$

Works of L. Xu, Blum, Liu, Zhuang:

Theorem

For any klt singularity, there exists a unique valuation $v_* \in \operatorname{Val}_{X,x}$ such that $\widehat{\operatorname{vol}}(v_*) = \inf_{v \in \operatorname{Val}_{X,x}} \widehat{\operatorname{vol}}(v) > 0$ and induces a degeneration of (X, x) to a K-semistable affine Fano cone.

Analytic vs. algebraic invariants of $(\mathcal{X}, \mathcal{L})$

Because $\mathcal{L}|_{\mathcal{X}\setminus\mathcal{X}_0} \cong p_1^*\mathcal{L}|_{X\times\mathbb{C}^*}$, any plurisubharmonic Hermitian metric on \mathcal{L} gives a ray $\tilde{\Phi} = \left\{\tilde{\Phi}_s; s = -\log|t|^2\right\} \subset \mathcal{P}(\omega_0)$.

Theorem (Phong-Sturm)

There exists a unique geodesic ray $\Phi = \Phi_{(\mathcal{X},\mathcal{L})}$ that corresponds to a bounded psh Hermitian metric on \mathcal{L} .

Analytic slopes = Non-Archimedean invariants:

Theorem

For any $\mathbf{F} \in {\{\mathbf{E}, \mathbf{J}, \mathbf{E}^{K_X}, \mathbf{J}_{\mathbb{T}}, \mathbf{H}\}}$, we have the identity:

$$\mathbf{F}^{\prime\infty}(\Phi) = \mathbf{F}^{\mathrm{NA}}(\mathcal{X}, \mathcal{L}). \tag{1}$$

Many works: Tian, Phong-Ross-Sturm, Boucksom-Hisamoto -Jonsson, Hisamoto, **L.**, Xia. How about a general geodesic ray Φ ?

Q1: Is Φ approximable by geodesic rays associated to TC's?

Q2: Is $\mathbf{F}^{\infty}(\Phi)$ approximable by \mathbf{F}^{NA} -invariants of TC's?

The YTD conjecture is reduced to

Conjecture: Given a destabilizing geodesic ray Φ , there exist test configurations $(\mathcal{X}_m, \mathcal{L}_m)$ s.t. as $m \to +\infty$,

Destabilizing geodesic rays are algebraically approximable

Darvas, Berman-Boucksom-Jonsson: geodesic rays in \mathcal{E}^1 in general not algebraically approximable. Surprisingly, non of them is destabilizing:

Theorem (**L.** '20)

If a geodesic ray Φ satisfies $\mathbf{M}^{\infty}(\Phi) < +\infty$, then there exist TC's $(\mathcal{X}_m, \mathcal{L}_m)$ whose associated geodesic rays Φ_m converge to Φ . Moreover, for $\mathbf{F} \in {\mathbf{E}, \mathbf{E}^{K_X}, \mathbf{J}_T}$, $\mathbf{F}^{NA}(\mathcal{X}_m, \mathcal{L}_m) \to \mathbf{F}^{\prime\infty}(\Phi)$.

These test configurations are constructed by blowing up multiplier ideals (Demailly-Ein-Lazarsfeld, Berman-Boucksom-Jonsson).

Recall $\mathbf{M} = \mathbf{H} + \mathbf{E}^{K_X} + \underline{S}\mathbf{E}$. Remaining conjecture:

Conjecture (Boucksom-Jonsson, regularization conjecture)

 $\mathbf{H}^{\prime\infty}(\Phi)$ is algebraically approximable.

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

K-stability over models

In the definition of TC $\pi : (\mathcal{X}, \mathcal{L}) \to \mathbb{C}$, if we don't require \mathcal{L} to be π -ample, then we call $(\mathcal{X}, \mathcal{L})$ a model of (X, L).

WLOG, we can assume $\bar{\mathcal{L}}$ is big (=ample+effective), and define:

$$\begin{split} \mathbf{E}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) &= \frac{1}{\mathrm{V}} \frac{\langle \bar{\mathcal{L}}^{\cdot n+1} \rangle}{n+1} = \frac{1}{\mathrm{V}} \frac{\mathrm{vol}(\bar{\mathcal{L}})}{n+1}; \\ \mathbf{J}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) &= \frac{1}{\mathrm{V}} \langle \bar{\mathcal{L}} \rangle \cdot \mathcal{L}_{\mathbb{P}^{1}}^{\cdot n} - \frac{1}{\mathrm{V}} \frac{\langle \bar{\mathcal{L}}^{\cdot n+1} \rangle}{n+1}; \\ \mathbf{M}^{\mathrm{NA}}(\mathcal{X},\mathcal{L}) &= \frac{1}{\mathrm{V}} \mathcal{K}_{\bar{\mathcal{X}}/\mathbb{P}^{1}} \cdot \langle \bar{\mathcal{L}}^{\cdot n} \rangle + \frac{S}{n+1} \langle \bar{\mathcal{L}}^{\cdot n+1} \rangle. \end{split}$$

Invariants of big line bundles: positive intersection products, volume, restricted volume=derivative of volume functional Works of T. Fujita, Tsuji, Boucksom-Favre-Jonsson, Ein-Lazarsfeld -Mustață-Nakamaye-Popa.

Non-Archimedean pluripotential theory II

• A model $(\mathcal{X}, \mathcal{L})$ determines a sequence of test configurations $(\mathcal{X}_m, \mathcal{L}_m) = (\operatorname{Bl}_{\operatorname{Bs}|m\mathcal{L}|}\mathcal{X}, \mu_m^*\mathcal{L} - \frac{1}{m}\mathcal{E}_m)$

• (Boucksom-Favre-Jonsson) any model defines a continuous non-Archimedean psh metric on $L^{\rm NA}$:

$$\phi_{(\mathcal{X},\mathcal{L})} = \lim_{m \to +\infty} \phi_{(\mathcal{X}_m,\mathcal{L}_m)}.$$

• (Boucksom-Favre-Jonsson, L.) $\phi_{(\mathcal{X},\mathcal{L})}$ satisfies the non -Archimedean Monge-Ampère equation:

$$\mathrm{MA}^{\mathrm{NA}}(\phi_{(\mathcal{X},\mathcal{L})}) = \sum_{i} \langle \mathcal{L}^{\cdot n} \rangle \cdot \mathcal{X}_{0,i} \ \delta_{\mathsf{v}_{i}}.$$

(Generalization of Chambert-Loir's formula)

Theorem (**L**. '20)

For any destabilizing geodesic ray Φ , \exists models $(\mathcal{X}_m, \mathcal{L}_m)$ s.t.

$$\begin{split} & \boldsymbol{\mathsf{J}}_{\mathbb{T}}^{\mathrm{NA}}(\mathcal{X}_m,\mathcal{L}_m) \to \boldsymbol{\mathsf{J}}_{\mathbb{T}}'^{\infty}(\Phi), \\ & \boldsymbol{\mathsf{M}}^{\mathrm{NA}}(\mathcal{X}_m,\mathcal{L}_m) \to \boldsymbol{\mathsf{M}}^{\mathrm{NA}}(\Phi_{\mathrm{NA}}) \leq \boldsymbol{\mathsf{M}}'^{\infty}(\Phi). \end{split}$$

Boucksom-Favre-Jonsson and Berman-Boucksom-Jonsson:

 $\begin{array}{cccc} \text{test configurations} & \longleftrightarrow & \text{smooth NA psh metrics} \\ & & & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$

Both the original uniform YTD conjecture and Boucksom-Jonsson's regularization conjecture are implied by:

Conjecture (strengthened Fujita approximation theorem)

Given a big line bundle $\overline{\mathcal{L}} \to \overline{\mathcal{X}}$, \exists birational morphisms $\mu_m : \overline{\mathcal{X}}_m \to \overline{\mathcal{X}}$ and decompositions $\mu_m^* \overline{\mathcal{L}} = \overline{\mathcal{L}}_m + E_m$ with $\overline{\mathcal{L}}_m$ ample and E_m effective, s.t.

- $\mathcal{\bar{L}}_{m}^{:n+1} \to \operatorname{vol}(\mathcal{\bar{L}})$ (conclusion of Fujita's theorem);
- **2** The next Riemann-Roch coefficients also converge:

$$\bar{\mathcal{L}}_{m}^{\cdot n} \cdot K_{\bar{\mathcal{X}}_{m}} \to \frac{1}{n+1} \left. \frac{d}{dt} \right|_{t=0} \operatorname{vol}(\bar{\mathcal{L}} + tK_{\bar{\mathcal{X}}}).$$
(2)

True if $\overline{\mathcal{L}}$ admits a birational Zariski decomposition, in particular if (X, L) is spherical ($\overline{\mathcal{X}}$ is then a Mori dream space).

Thanks for your attention!

Analytic vs. Algebraic: Mixed Story