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Abstract. We survey some recent developments in the study of canonical Kähler met-
rics on algebraic varieties and their relation with stability in algebraic geometry.
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The study of canonical Kähler metrics on algebraic varieties is a very active program
in complex geometry. It is a common playground of several fields: differential geometry,
partial differential equations, pluripotential theory, birational algebraic geometry and
non-Archimedean analysis. We will try to give the reader a tour of this vast program,
emphasizing recent developments and highlighting interactions of different concepts and
techniques. This article consists of three parts. In the first part, we discuss important
classes of canonical Kähler metrics, and explain a well-established variational formalism
for studying their existence. In the second part, we discuss algebraic aspects by reviewing
recent developments in the study of K-stability with the help of deep tools from algebraic
geometry and non-Archimedean analysis. In the third part, we discuss how the previous
two parts are connected with each other. In particular we will discuss the Yau-Tian-
Donaldson (YTD) conjecture for canonical Kähler metrics in the first part.

1. Canonical Kähler metrics on algebraic varieties

1.1. Constant scalar curvature Kähler metrics. Let X be an n-dimensional projec-
tive manifold equipped with an ample line bundle L. By Kodaira’s theorem, we have an
embedding ιm : X → PN by using a complete linear system |mL| for m� 1. If we denote
by hFS the standard Fubini-Study metric on the hyperplane bundle over PN with Chern

curvature ωFS = −ddc log hFS, then h0 = ι∗mh
1/m
FS is a smooth Hermitian metric on L whose

Chern curvature ω0 = 1
m
ι∗mωFS = −ddc log h0 is a Kähler form in c1(L) ∈ H2(X,R). In

this paper we will use the convention ddc =
√
−1

2π
∂∂̄.

We will also use singular Hermitian metrics. An upper semicontinuous function ϕ ∈
L1(ωn) is called a ω0-psh potential if ψ + ϕ is a plurisubharmonic function for any local
potential ψ of ω0 (i.e. ω0 = ddcψ locally). hϕ := h0e

−ϕ is then called a psh Hermitian
metric on L. Denote by PSH(ω0) the space of ω0-psh functions. By a ∂∂̄-lemma, any
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closed positive (1, 1)-current in c1(L) is of the form ωϕ := ω0 + ddcϕ = −ddc log hϕ with
ϕ ∈ PSH(ω0). Moreover ωϕ2 = ωϕ1 if and only if ϕ2 − ϕ1 is a constant. Define the space
of smooth strictly ω0-psh potentials (also called Kähler potentials):

H := H(ω0) = {ϕ ∈ C∞(X);ωϕ = ω0 + ddcϕ > 0}. (1.1)

Fix any ϕ ∈ H, if ωϕ =
√
−1
∑

i,j(ωϕ)ij̄dzi ∧ dz̄j under a holomorphic coordinate chart,

its Ricci curvature form Ric(ωϕ) =
√
−1

2π

∑
i,j Rij̄dzi ∧ dz̄j has the coefficients given by:

Rij̄ := Ric(ωϕ)ij̄ = −∂
2 log det((ωϕ)kl̄)

∂zi∂z̄j
.

Ric(ωϕ) is a real closed (1, 1)-form which represents the cohomology class c1(−KX) =:
c1(X). Here −KX = ∧nT (1,0)X is the anti-canonical line bundle of X. The scalar curva-
ture of ωϕ is given by the contraction:

S(ωϕ) = ωij̄ϕ (Ric(ωϕ))ij̄ =
n ·Ric(ωϕ) ∧ ωn−1

ϕ

ωnϕ
.

ωϕ is called a constant scalar curvature Kähler (cscK) metric if S(ωϕ) is the constant S
which is the average scalar curvature and is determined by cohomology calsses:

S =
n〈c1(X) · c1(L)·n−1, [X]〉

V
with V = 〈c1(L)·n, [X]〉. (1.2)

The Kähler potential of a cscK metric is a solution to a 4-th order nonlinear PDE.
In general, there are obstructions to the existence of cscK metrics. For example, the
Matsushima-Lichnerowicz theorem states that if (X,L) admits a cscK metric then the
automorphism group Aut(X,L) must be reductive. Our goal is to discuss the Yau-Tian-
Donaldson conjecture which would provide a sufficient and necessary algebraic criterion
for the existence of cscK metrics.

1.2. Kähler-Einstein metrics and weighted Kähler-Ricci soliton. Kähler-Einstein
metrics form an important class of cscK metrics. ωϕ is called Kähler-Einstein (KE) if
Ric(ωϕ) = λωϕ for a real constant λ. An immediate necessary condition for the existence
of KE metric is that the cohomology class c1(X) ∈ H2(X,R) is either negative, numer-
ically trivial or positive. The existence for the first two cases was understood in 70’s:
there always exists a Kähler-Einstein metric if c1(X) is negative (by the work of Aubin
and Yau), or if c1(X) is numerically trivial (by the work of Yau).

Now we assume that X is a Fano manifold. In other words, −KX is an ample line
bundle and we set L = −KX . Any ϕ ∈ H corresponds to a volume form:

Ωϕ := |s∗|2hϕ(
√
−1)n

2

s ∧ s̄ = Ω0e
−ϕ with s = dz1 ∧ · · · ∧ dzn, s∗ = ∂z1 ∧ · · · ∧ ∂zn .

The KE equation in this case is reduced to a complex Monge-Ampère equation for ϕ:

(ω + ddcϕ)n = e−ϕΩ0.

We also consider an interesting generalization of Kähler-Einstein metrics on Fano mani-
folds with torus actions. Assume that T ∼= (C∗)r is an algebraic torus and T ∼= (S1)r ⊂ T
is a compact real subtorus. We will use the following notation:

NZ = Homalg(C∗,T), NQ = NZ ⊗Z Q, NR = NZ ⊗Z R. (1.3)
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Assume that T acts faithfully on X. Then there is an induced T-action on −KX . Each
ξ ∈ NR corresponds to a holomorphic vector field Vξ. Assume that T acts faithfully on
X. Then there is an induced T-action on −KX . Denote by HT the set of T -invariant
Kähler potentials. For any ϕ ∈ HT , the T -action becomes Hamiltonian with respect to
ωϕ. Denote by mϕ : X → N∗R

∼= Rr the corresponding moment map, and let P be the
image of mϕ. By a theorem of Atiyah-Guillemin-Sternberg, P is a convex polytope which
depends only on the Kähler class c1(L). Let g : P → R be a smooth positive function.
The g-soliton equation for ϕ ∈ H(−KX)T is:

g(mϕ)(ω0 + ddcϕ)n = e−ϕΩ0.

The equivalent tensorial equation is given by Ric(ωϕ) = ωϕ + ddc log g(mϕ).

Example 1.1. If g(y) = e−〈y,ξ〉, then the above equation becomes the standard Kähler-
Ricci soliton equation Ric(ωϕ) = ωϕ + LVξωϕ where L denotes the Lie derivative.

1.3. Kähler-Einstein metrics on log Fano pairs. Singular algebraic varieties and
log pairs are important objects in algebraic geometry, and appear naturally for studying
limits of smooth varieties. It is thus natural to study canonical Kähler metric on general
log pairs. We recall a definition from birational algebraic geometry. Let X be a normal
projective variety and D be an Q-Weil divisor. Assume that KX + D is Q-Cartier.
Let µ : Y → X be a resolution of singularities of (X,D) with simple normal crossing
exceptional divisors

∑
iEi. We then have an identity:

KY = µ∗(KX +D) +
∑
i

aiEi. (1.4)

Here A(X,D)(Ei) := ai + 1 is called the log discrepancy of Ei. The pair (X,D) has klt
singularities if A(X,D)(Ei) > 0 for any Ei. We will always assume that (X,D) has klt
singularities.

If KX + D is ample or numerically trivial, Yau and Aubin’s existence result had been
generalized to the singular and log case in [32], partly based on Ko lodziej’s pluripotential
estimates. There were also many related works by Yau, Tian, H.Tsuji, Z. Zhang and
many others.

Now we assume that −(KX+D) is ample and call (X,D) a log Fano pair. Then one can
consider Kähler-Einstein equation or more generally g-soliton equation on (X,D). First
note that there is a globally defined volume form as in the smooth case: choose a local

trivializing section s of m(KX +D) with the dual s∗ and define Ω0 = |s∗|2/mh0
(
√
−1

mn2

s ∧
s̄)1/m. Assume that T acts on X faithfully and preserves the divisor D. With the notation
from before, we say that ϕ is the potential for a g-weighted soliton or just g-soliton on
(X,D) if ϕ is a bounded ω0-psh function that satisfies the equation:

g(mϕ)(ω + ddcϕ)n = e−ϕΩ0 (1.5)

For any bounded ϕ ∈ PSH(ω0), the g-weighted Monge-Ampère measure on the left-hand-
side of (1.5) is well-defined by the work of Berman-Witt-Nyström [10] and also by Han-Li
[37], generalizing the definition of Bedford-Taylor (when g = 1). It is known that any
bounded solution ϕ, if it exists, is orbifold smooth over the orbifold locus of (X,D).
Moreover p is a regular point of supp(D) such that D = (1 − β){z1 = 0} locally for a
holomorphic function z1 (with β ∈ (0, 1]), then the associated Kähler metric is modeled
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by Cβ × Cn−1 where Cβ = (C, dr2 + β2r2dθ2) is the 2-dimensional flat cone with cone
angle 2πβ.

1.4. Ricci-flat Kähler cone metrics. The class of Ricci-flat Kähler cone metrics is
closely related to KE/g-soliton metrics, and is interesting in both complex geometry and
mathematical physics (see [57]).

Let Y = Spec(R) be an (n + 1)-dimensional affine variety with a singularity o ∈ Y .

Assume that an algebraic torus T̂ ∼= (C∗)r+1 acts faithfully on Y , with o being the

only fixed point. Define N̂Q, N̂R similar to (1.3). The T̂-action corresponds to a weight
decomposition of the coordinate ring R =

⊕
α∈Zr+1 Rα. The Reeb cone can be defined as:

N̂+
R =

{
ξ ∈ N̂R; 〈α, ξ〉 > 0 for all α ∈ Zr+1 \ {0} with Rα 6= 0

}
.

Any ξ̂ ∈ N̂+
R is called a Reeb vector and corresponds to an expanding holomorphic vec-

tor field Vξ̂. Assume furthermore that Y is Q-Gorenstein and there is a T̂-equivariant

non-vanishing section s ∈ |mKY |, which induces a T̂-equivariant volume form dVY =

(
√
−1

m(n+1)2

s ∧ s̄)1/m on Y . We call the data (Y, ξ̂) with ξ̂ ∈ N̂+
R a polarized Fano cone.

Let T̂ ∼= (S1)r+1 be a compact real subtorus of T̂. A T̂ -invariant function r : Y → R≥0

is called a radius function for ξ̂ ∈ N̂+
R if ω̂ = ddcr2 is a Kähler cone metric on Y ∗ = Y \{o}

and 1
2
(r∂r −

√
−1J(r∂r)) = Vξ̂. Here J is a complex structure on Y ∗ and ω̂ is called a

Kähler cone metric if G := 1
2
ω̂(·, J ·) on Y ∗ is isometric to dr2 + r2GS where S = {r = 1}

and GS = G|S. In the literature of CR geometry, the induced structure on S by a Kähler
cone metric is called a Sasaki structure. ω̂ = ddcr2 is called Ricci-flat if Ric(ω̂) = 0. In
this case, the radius function satisfies an equation (up to rescaling):

(ddcr2)n+1 = dVY .

If ξ̂ ∈ N̂Q, then ω̂ is called quasi-regular, and Vξ̂ generates a C∗-subgroup 〈ξ̂〉 of T̂. The

GIT quotient X = Y //〈ξ̂〉 admits an orbifold structure encoded by a log Fano pair (X,D).

A straightforward calculation shows that a quasi-regular (Y, ξ̂) admits a Ricci-flat Kähler
cone metric if and only if (X,D) admits a Kähler-Einstein metric.

In general there are many irregular Ricci-flat Kähler cone metrics, i.e. with ξ̂ ∈ N̂R\N̂Q.
Recent works by Apostolov-Calderbank-Jubert-Lahdili establish an equivalence between
Ricci-flat Kähler cone metrics and special g-soliton metrics. More precisely, fix any χ̂ ∈
N̂+

Q and consider the quotient (X,D) = Y //〈χ̂〉 as above. It is shown in [2] (see also [47])

that the Ricci-flat Kähler cone metric on (Y, ξ̂) is equivalent to the g-soliton metric on

(X,D) with g(y) = (n + 1 + 〈y, ξ〉)−n−2 where ξ (or equivalently Vξ) is induced by ξ̂ on
X.

1.5. Analytic criteria for the existence. We now review a well-understood criterion
for the existence of above canonical Kähler metrics. The general idea is to view corre-
sponding equations as Euler-Lagrange equations of appropriate energy functionals and
then use a variational approach to prove that the existence of solutions is equivalent to
the coercivity of the energy functionals. First we have the following functionals defined
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for any ϕ ∈ H (see (1.1)).

E(ϕ) =
1

(n+ 1)V

n∑
k=0

∫
X

ϕωkϕ ∧ ωn−k0 , Λ(ϕ) =
1

V

∫
X

ϕωn0 (1.6)

J(ϕ) = Λ(ϕ)− E(ϕ), Eχ(ϕ) =
1

V

n−1∑
k=0

∫
X

ϕχ ∧ ωkϕ ∧ ωn−1−k. (1.7)

Here V is defined in (1.2) and χ is any closed real (1, 1)-form.
The following functionals are important for studying the cscK problem.

H(ϕ) =
1

V

∫
X

log
ωnϕ
Ω0

ωnϕ, M(ϕ) = H(ϕ) + E−Ric(ω0)(ϕ) + S · E(ϕ). (1.8)

H(ϕ) is usually called the entropy of the measure ωnϕ. One can verify that any critical
point of M is the potential of a cscK metric.

For Kähler-Einstein (KE) metrics on Fano manifolds, we have more functionals:

L(ϕ) = − log
( 1

V

∫
X

e−ϕΩ0

)
, D(ϕ) = −E(ϕ) + L(ϕ). (1.9)

A critical point of D is a KE potential. These functionals can be generalized to the
settings of g-weighted solitons and Ricci-flat Kähler cone metrics (see [47] for references).

To apply the variational approach, one first needs a ‘completion’ of H. Such completion
was defined by Guedj-Zeriahi extending the local study of Cegrell. Following [7], one way
to introduce this is to first define the E functional for any ϕ ∈ PSH(ω0):

E(ϕ) = inf{E(ϕ̃); ϕ̃ ≥ ϕ, ϕ̃ ∈ H(ω0)}, (1.10)

Then define the set of finite energy potentials as:

E1 := E1(ω0) = {ϕ ∈ PSH(ω0); E(ϕ) > −∞}. (1.11)

After the work [6], E1 can be endowed with a strong topology which is the coarsest
refinement of the weak topology (i.e. the L1-topology) that makes E continuous. The
above energy functionals can be extended to E1, and they satisfy important regularization
properties:

Theorem 1.2 ([6, 8]). For any ϕ ∈ E1, there exist {ϕk}k∈N ⊂ H such that F(ϕk)→ F(ϕ)
for F ∈ {E,Λ,E−Ric,H}.

We would like to emphasize the result for F = H, which was proved in [8]. The idea
of proof there is to first regularize the measure ωnϕ with converging entropy and then use
Yau’s solution to complex Monge-Ampère equations with prescribed volume forms. Later
we will encounter a same idea later in the non-Archimedean setting.

Another key concept is the geodesic between two finite energy potentials. For ϕi,∈
E1, i = 0, 1, the geodesic connecting them is the following p∗1ω0-psh function on X ×
[0, 1]× S1 where p1 is the projection to the first factor (see [7, 26]).

Φ = sup
{

Ψ; Ψ is S1-invariant and p∗1ω0-psh, lim
s→i

Ψ(·, s) ≤ ϕ(i), i = 0, 1
}
. (1.12)

The concept of geodesic originates from Mabuchi’s L2-Riemannian metric on H. Accord-
ing to the work of Semmes and Donaldson, if ϕi ∈ H, i = 0, 1, then the geodesic Φ is a



CANONICAL KÄHLER METRICS AND STABILITY OF ALGEBRAIC VARIETIES 6

solution to the Dirichlet problem of homogeneous complex Monge-Ampère equation:

(p∗1ω0 + ddcΦ)n+1 = 0, Φ(·, i) = ϕi, i = 0, 1. (1.13)

Since Φ is S1-invariant, we can consider Φ as a family of ω0-psh functions {ϕ(s)}s∈[0,1].

Theorem 1.3 ([5, 8]). Let Φ = {ϕ(s)}s∈[0,1] be a geodesic segment in E1. (1) s 7→ E(ϕ(s))
is affine; (2) s 7→M(ϕ(s)) is convex.

Theorem 1.3 is very important in the variational approach. If a geodesic is smooth,
the statements follow from straight-forward calculations. However there are examples
(first due to Lempert-Vivas) showing that the solution to (1.13) in general does not have
sufficient regularity. So the proofs of above results are much more involved.

In this paper T̃ will always denote a maximal torus of the linear algebraic group
Aut(X,L) and T̃ is a maximal real subtorus of T̃. In the following result, we use the
translation invariance F(ϕ + c) = F(ϕ) for F ∈ {M,J} and hence F(ωϕ) := F(ϕ) is
well-defined.

Theorem 1.4 ([23, 27, 9]). There exists a T̃ -invariant cscK metric in c1(L) if and only

if M is reduced coercive, which means that there exist γ, C > 0 such that for any ϕ ∈ HT̃ ,

M(ωϕ) ≥ γ · inf
σ∈T̃

J(σ∗ωϕ)− C. (1.14)

This type of result goes back to Tian’s pioneering work in [64] which proves that if X
is a Fano manifold with a discrete automorphism group, then the existence of Kähler-
Einstein metric is equivalent to the properness of the M-functional, and is also equivalent
to the properness of the D functional. Tian’s work has since been refined and general-
ized for other canonical metrics. For the necessity direction (from existence to reduced
coercivity), there is now a general principle due to Darvas-Rubinstein ([27]) that can be
applied for all previously mentioned canonical Kähler metrics. The sufficient direction
(from reduced coercivity to existence) for Kähler-Einstein metrics is re-proved in [6] using
pluripotential theory, which works equally well in the setting of log Fano pairs. See [10, 37]
for the extension to the g-soliton case. The existence result for smooth cscK metrics is
accomplished recently by Chen-Cheng’s new estimates ([23]). The use of maximal torus
appears in [44, 45], refining an earlier formulation of Hisamoto [39]. There is also an

existence criterion when T̃ is replaced by any connected reductive subgroup of Aut(X,L)
that contains a maximal torus.

2. Stability of algebraic varieties and non-Archimedean geometry

2.1. K-stability and non-Archimedean geometry. The concept of K-stability, as
first introduced by Tian and Donaldson, is motivated by results from geometric analy-
sis. On the other hand, the recent development shows that various tools from algebraic
geometry are crucial in un-locking many of its mysteries.

Definition 2.1. A test configuration for a polarized manifold (X,L) consists of (X ,L)
that satisfies: (i) π : X → C is a flat projective morphism from a normal variety X ,
and L is a π-semiample Q-line bundle. (ii) There is a C∗-action on (X ,L) such that π is
C∗-equivariant. (iii) There is a C∗-equivariant isomorphism (X ,L)×CC∗ ∼= (X×C∗, p∗1L).
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Test configuration (X ,L) is called a product test configuration if there is a C∗-equivariant
isomorphism (X ,L) ∼= (X × C, p∗1L) where the C∗-action on the right-hand-side is the
product action of a C∗-action on (X,L) with the standard multiplication on C.

Two test configurations (Xi,Li), i = 1, 2 are called equivalent if there exists a test
configuration (X ′,L′) with C∗-equivariant birational morphisms ρi : X ′ → Xi satisfying
ρ∗1L1 = L′ = ρ∗2L2. For any test configuration (X ,L), by taking fibre product one can
always find an equivalent test configuration (X ′,L′) such that X ′ dominates X × C.

For any test configuration (X ,L) there is a canonical compactification over P1 denoted
by (X ,L) which is obtained by adding a trivial fibre over {∞} = P1 \ C.

The notion of test configuration is a way to formulate the degeneration of (X,L). In
fact any test configuration is induced by a one-parameter subgroup of PGL(N + 1,C) for
a Kodaira embedding X → PN .

We will continue our discussion in a framework of non-Archimedean geometry as pro-
posed by Boucksom-Jonsson. Let XNA denote the Berkovich analytification of X with
respect to the trivial absolute value on C (see [18] for references). As a set, XNA is a
topological space consisting of real valuations on subvarieties of X, and contains a dense
subset Xdiv

Q consisting of divisorial valuations on X. Any test configuration (X ,L) defines

a function on XNA in the following way. First, up to equivalence we can assume that there
is a birational morphism ρ : X → XC := X × C. Write L = ρ∗p∗1L + E where E is a
Q-divisor supported on X0. For any v ∈ XNA denote by G(v) the C∗-invariant semivalu-
ation on XC that satisfies G(v)|C(X) = v and G(v)(t) = 1 where t is the coordinate of C.
One then defines:

φ(X ,L)(v) = G(v)(E), for any v ∈ XNA. (2.1)

The set of such functions on XNA obtained from test configurations is denoted by HNA

which is considered as the set of smooth non-Archimedean psh potentials on the ana-
lytification of L. The following functionals, defined on the space of test configurations,
correspond to the Archimedean (i.e. complex analytic) functionals in (1.6)-(1.7).

ENA(X ,L) =
L·n+1

(n+ 1)V
, ΛNA(X ,L) =

1

V
L·n · ρ∗LP1 , (2.2)

JNA(X ,L) = ΛNA(X ,L)− ENA(X ,L), (EKX )NA(X ,L) =
1

V
KX · L

·n
, (2.3)

HNA =
1

V
K log

X/XP1
· L·n, MNA(X ,L) = HNA + (EKX )NA + S · ENA (2.4)

where we assume that X dominates XP1 = X × P1 by ρ, and LP1 = p∗1L, K log

X/XP1
= KX +

X red
0 −(ρ∗(KX×P1+X×{0})). These functionals were defined before the introduction of the

non-Archimedean framework. For example, the ENA functional appeared in Mumford’s
study of Chow stability of projective varieties.

Assume that X0 =
∑

i biFi where Fi are irreducible components. Set vi = b−1
i ordFi◦p∗1 ∈

Xdiv
Q and let δvi be the Dirac measure supported at {vi}. Chambert-Loir defined the

following non-Archimedean Monge-Ampère measure using the intersection theory.

MANA(φ(X ,L)) =
∑
i

bi(L·n · Fi)δvi . (2.5)
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Mixed non-Archimedean Monge-Ampère measures are similarly defined. It then turns
out that the functionals from (2.2)-(2.3) can be obtained by using the same formula as in
(1.6)-(1.7) but with the ordinary integrals replaced by corresponding non-Archimedean
ones, while the HNA has the following expression after [19]:

HNA(X ,L) =

∫
XNA

AX(v)MANA(φ(X ,L))(v). (2.6)

Here AX is a functional defined on XNA (see [41]) that generalizes the log discrepancy
functional on Xdiv

Q . We can now recall the notion of K-stability:

Definition 2.2. (X,L) is

{
K-semistable
K-stable
K-polystable

if any non-trivial test configuration (X ,L) for

(X,L) satisfies:

{
MNA(X ,L) ≥ 0
MNA(X ,L) > 0
MNA(X ,L) ≥ 0 and = 0 only if (X ,L) is a product test configuration.

This is like a Hilbert-Mumford’s numerical criterion in the Geometric Invariant Theory.
1 The recent development of K-stability involves a strengthened notion called reduced
uniform K-stability, which matches the reduced coercivity in (1.14) (see [19, 29, 39]).

Recall that T̃ denotes a maximal torus of Aut(X,L), and ÑQ is defined similar to (1.3).

Definition 2.3. (X,L) is

{
uniformly K-stable
reduced uniformly K-stable

if there exists γ > 0 such that

any test configuration (X ,L) satisfies:

{
MNA(X ,L) ≥ γ · JNA(X ,L)
MNA(X ,L) ≥ γ · infξ∈ÑQ

JNA(Xξ,Lξ).

Here the twist (Xξ,Lξ) is introduced by Hisamoto [39]. One way to define it as a test
configuration is by resolving the composition of birational morphisms (X ,L) 99K (XC =

X ×C, LC = p∗1L)
σξ→ (XC, LC) where σξ is the C∗-action generated by ξ. Alternatively it

can be defined in a more general setting of filtrations (see example 2.8).

2.2. Non-Archimedean pluripotential theory. We discuss how non-Archimedean pluripo-
tential theory as developed by Boucksom-Jonsson can be applied to study K-stability.
Corresponding to a regularization result in the complex analytic case, an u.s.c. function
φ : XNA → R ∪ {+∞} is called a non-Archimedean psh potential if it is a decreasing
limit of a sequence from HNA. Denote the space of such functions by PSHNA. Boucksom-
Jonsson introduced the following non-Archimedean version of the finite energy space.
First corresponding to (1.10), for any φ ∈ PSHNA, define:

ENA(φ) = inf{ENA(φ̃); φ̃ ≥ φ, φ̃ ∈ HNA}.
Then, corresponding to (1.11), define the space of non-Archimedean finite energy poten-
tials:

(E1)NA = {φ ∈ PSHNA; ENA(φ) > −∞}.
1In the classical formulation, Tian’s CM weight, or equivalently the Donaldson-Futaki invariant is used

to define the K-stability. However, to fit our discussion in the non-Archimedean framework, we use the
equivalent formulation via the MNA functional.
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This space is again equipped with a strong topology which makes ENA continuous. Boucksom-
Jonsson in [22] showed that non-Archimedean Monge-Ampère measure MANA(φ) is well-
defined for any φ ∈ (E1)NA such that if {φk}k∈N ⊂ HNA converges to φ strongly, then
MANA(φk) converges to MANA(φ) weakly.

A large class of potentials come from filtrations (see [19]). Set Rm = H0(X,mL).

Definition 2.4. A filtration is the data F = {FλRm ⊆ Rm;λ ∈ R,m ∈ N} that satisfies
the following four conditions:
(i) FλRm ⊆ Fλ

′
Rm, if λ ≥ λ′;

(ii) FλRm =
⋂
λ′<λFλ

′
Rm;

(iii) FλRm · Fλ
′
Rm′ ⊆ Fλ+λ′Rm+m′ , for λ, λ′ ∈ R and m,m′ ∈ N;

(iv) There exist e−, e+ ∈ Z such that Fme−Rm = Rm and Fme+Rm = 0 for m ∈ Z≥0.

F is finitely generated if its extended Rees algebra R(F) is finitely generated where

R(F) =
⊕
λ∈R

⊕
m∈N

t−λFλRm.

In this case F induces a degeneration of X into X0 = Proj
(⊕

m,λFλRm/F>λRm

)
.

For a general F , {FλR`;λ ∈ R} generates a filtration F̌ (`) on R(`) :=
⊕

m∈NRm`, which

induces a non-Archimedean psh potential φ̌(`) ∈ HNA. Define φF = (lim sup`→+∞ φ̌
(`))∗

where (·)∗ denotes the upper semicontinuous regularization.

Example 2.5. Filtration F is a Z-filtration if FλRm = F dλeRm. By [19, 69, 63], there is
a one-to-one correspondence between test configurations equipped with relatively ample
Q-polarizations and finitely generated Z-filtrations. Any test configuration (X ,L) defines
such a filtration:

FλRm = {s ∈ Rm; t−dλes ∈ H0(X ,mL)}. (2.7)

Conversely, if F is a finitely generated Z-filtration, then (X := ProjC[t](R(F̌ (`))), 1
`
OX (1))

is a test configuration for ` sufficiently divisible.

Example 2.6. In the Definition 2.1 of test configurations, if we do not require L to be
π-semiample, then we call (X ,L) a model (of (X × C, p∗1L)). The same definition in
(2.7) defines a filtration also denoted by F(X ,L). However in general the filtration is not

finitely generated anymore. Fix any model (X ,L) such that L is big over X (we call such
(X ,L) a big model). In [46] we obtained the following formula for the non-Archimedean
Monge-Ampère measure of φ = φ(X ,L) := φF(X ,L) which generalizes (2.5):

MANA(φ) =
∑
i

bi
(〈
L·n
〉
· Ei
)
δvi . (2.8)

Here for any divisor D, we use the notion of positive intersection product introduced in
[17]:

〈L·n+1〉 = vol(L) = lim
m→+∞

h0(X ,mL)
mn+1

(n+1)!

and 〈L·n〉 ·D =
1

n+ 1

d

dt

∣∣∣
t=0

vol(L+ tD),

Example 2.7. Any v ∈ Xdiv
Q defines a filtration: for any λ ∈ R and m ∈ Z≥0, define:

FλvRm = {s ∈ Rm; v(s) ≥ λ}. (2.9)

Boucksom-Jonsson proved in [21] that MANA(φFv) = V · δv.
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Example 2.8. Assume a torus T̃ ∼= (C∗)r-acts on (X,L). Then we have a weight de-
composition Rm =

⊕
α∈Zr Rm,α. For any ξ ∈ ÑR, we can define the ξ-twist of a given

filtration: Fλξ Rm = Fλ−〈α,ξ〉Rm,α. On the other hand, there is an induced ÑR-action

on (XNA)T̃ which sends (ξ, v) to vξ ∈ (XNA)T̃ determined by the following condition: if

f ∈ C(X)α which means f ◦ t−1 = tα · f for any t ∈ T̃, then vξ(f) = 〈α, ξ〉 + v(f). We
then have the following formula MANA(φFξ) = (−ξ)∗MANA(φF) (see [44, 45]).

Generalizing the case of test configurations, Boucksom-Jonsson showed that the non-
Archimedean functionals from (2.2)-(2.4) are well defined for all φ ∈ (E1)NA by using
integrals over XNA mentioned before (for example, for HNA use (2.6)).

Example 2.9. For any filtration F , it is known that φF ∈ (E1)NA. Following [19], define

vol(F (t)) = lim
m→+∞

dimCFmtRm

mn/n!
.

Then ENA is an ‘expected vanishing order’ with respect to F (see [21]):

ENA(φF) =
1

V

∫
R
t(−dvol(F (t))). (2.10)

Similar to Theorem 1.2, we also have important regularization properties:

Theorem 2.10 ([22]). For any φ ∈ (E1)NA, there exist {φk}k∈N ⊂ HNA (i.e. φk = φ(Xk,Lk)

for a test configuration (Xk,Lk)) such that φk → φ in the strong topology and FNA(φk)→
FNA(φ) for F ∈ {E,Λ,EKX}.

Boucksom-Jonsson conjectured that the same conclusion should also hold for HNA. This
conjecture is still open in general and it is important in the non-Archimedean approach
to the YTD conjecture. We have made progress in this direction.

Theorem 2.11 ([45, 46]). (1) For any φ ∈ (E1)NA, there exist models {(Xk,Lk)}k∈N such
that φk = φ(Xk,Lk) → φ in the strong topology and HNA(φk)→ HNA(φ).
(2) For any big model (X ,L), we have the following formula that generalizes (2.4):

MNA(X ,L) =
1

V

〈
L·n
〉
·KX/P1 +

S

(n+ 1)V

〈
L·n+1〉

.

The idea for proving the first statement is similar to the Archimedean setting in [8].
First we regularize the measure MANA(φ) with converging entropy. In fact we find a
way to regularize it by using measures supported at finitely many points in Xdiv

Q . Then
we use the solution of non-Archimedean Monge-Ampère equations obtained in [18] to
get the wanted potentials which are known to be associated to models. However, in the
non-Archimedean case, there is not yet a characterization of measures associated to test
configurations which prevents us from regularizing via test configurations. The second
statement in Theorem 2.11 follows from the formula (2.8), and it prompts us to propose
the following algebro-geometric conjecture which would strengthen the classical Fujita
approximation theorem.

Conjecture 2.12. Let X be a smooth (n+1)-dimensional smooth projective variety. Let
L be a big line bundle over X . Then there exist birational morphisms µk : X k → X and
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decompositions µ∗kL = Lk +Ek in N1(X )Q with Lk semiample and Ek effective such that

lim
k→+∞

L·n+1

k = vol(L), lim
k→+∞

L·nk ·KXk =
1

n+ 1

d

dt
vol(L+ tKX )

∣∣∣
t=0

=: 〈L·n〉 ·KX .

It is easy to show that this conjecture is true if L admits a birational Zariski decompo-
sition. The author verified this conjecture for certain examples of big line bundles due to
Nakamaya which do not admit such decompositions. Y. Odaka observed that when (X ,L)
is a big model of a polarized spherical manifold (for example a polarized toric manifold),
X is a Mori dream space which implies that L admits a Zariski decomposition and hence
the above conjecture holds true.

2.3. Stability of Fano varieties. In this section, we assume that X is a Q-Fano variety
(i.e. −KX is an ample Q-line bundle and X has at worst klt singularities). Corresponding
to (1.9), we have a non-Archimedean D functional. For general test configurations it
first appeared in Berman’s work [4] and was reformulated in [19] using non-Archimedean
potentials:

LNA(X ,L) = inf
v∈Xdiv

Q

(AX(v) + φ(X ,L)(v)), DNA(X ,L) = −ENA(X ,L) + LNA(X ,L).

The notion of Ding-stability and uniform Ding-stability are defined if MNA is replaced
by DNA in Definition 2.2 and 2.3. In general we have the inequality: MNA(X ,L) ≥
DNA(X ,L). For Fano varieties, special test configurations play important roles. A test
configuration (X ,L) is called special if the central fibre X0 is a Q-Fano variety and L =
−KX/P1 . For special test configurations, we have DNA = MNA = −ENA =: FutX0(ξ),
the last quantity being the Futaki invariant on X0 for the holomorphic vector field ξ that
generates the C∗-action. The importance of special test configurations was first pointed
out in Tian’s work [64] motivated by compactness results from metric geometry. The
following results show their importance from the point of view of algebraic geometry:

Theorem 2.13 ([34, 51, 44], see also [7]). For any Q-Fano variety, K-stability is equiva-
lent to Ding-stability, and they are equivalent to K-stability or Ding-stability over special
test configurations. Moreover, the same conclusion holds true if stability is replaced by
semi-stability, polystability, or reduced uniform stability.

The proofs of these results depend on a careful process of Minimal Model Program first
used in [51] to transform any given test configuration into a special one. Moreover crucial
calculations show that the relevant invariants such as MNA or DNA decrease along the
MMP process. Theorem 2.13 leads directly to a valuative criterion for K-stability. To
state it we first define for any v ∈ Xdiv

Q an invariant (see Example 2.9):

SL(v) :=
1

V

∫ +∞

0

vol(F (t)
v )dt =

1

V

∫
R
t(−dvol(F (t)

v )) = ENA(φFv). (2.11)

Let T̃ be a maximal torus of Aut(X) and (Xdiv
Q )T̃ be the set of T̃-invariant divisorial

valuations. Define the following invariant ((ξ, v) 7→ vξ is the action appeared in Example
2.8)

δ(X) = inf
v∈Xdiv

Q

AX(v)

SX(v)
, δT̃(X) = inf

v∈(Xdiv
Q )T̃

sup
ξ∈ÑR

AX(vξ)

SX(vξ)
.
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Theorem 2.14. (1) ([43, 34]) X is K-semistable if δ(X) ≥ 1.
(2) ([34, 35]) X is uniformly K-stable if and only if δ(X) > 1.
(3) ([15, 43, 34]) X is K-stable if and only if AX(v) > S(v) for any non-trivial v ∈

Xdiv
Q .

(4) ([44]) X is reduced uniformly K-stable if and only if δT̃(X) > 1.

To get these, it was pointed out in [19] that for a special test configuration (X ,L), the
valuation ordX0 of the function field C(X × C) restricts to become a divisorial valuation

v ∈ Xdiv
Q . A crucial observation is then made in [43]: Fλ(X ,L)Rm = Fλ+mA(v)

v Rm (see (2.9)).

This implies vol(F (t)
(X ,L)) = vol(F (t+A(v)

v ), which together with (2.10) leads to: 2

MNA(X ,L) = DNA(X ,L) = A(v)− ENA(Fv) = A(v)− S(v). (2.12)

This together with Theorem 2.13 gives the sufficient condition for the K-(semi)stability.
The criterion for uniform K-stability follows from similar argument and K. Fujita’s in-
equality: 1

n
S(v) ≤ JNA(Fv) ≤ nS(v) ([35]). For reduced uniform stability, another iden-

tity AX(vξ)− S(vξ) = AX(v)− S(v) + FutX(ξ) proved in [44] is needed.
As we will see in section 3.2, a main reason for introducing the (reduced) uniform K-

stability is that it is much easier to use in making connection with the (reduced) coercivity
in the complex analytic setting. We now have the following fundamental result:

Theorem 2.15 ([56]). Let X be a Q-Fano variety. X is K-stable if and only if X is
uniformly K-stable. More generally, X is reduced uniformly stable if and only X is K-
polystable. Moreover these statements hold true for any log Fano pair.

This is achieved by several works. First, according to a work of Blum-Liu-Xu ([13]),
divisorial valuations on X associated to special test configurations are log canonical places
of complements. By deep boundedness of Birkar and Haccon-McKernan-Xu, it was also
shown that there exists a quasi-monomial valuation (i.e. a monomial valuation on a
smooth birational model) that achieves the infimum defining δ(X) (or more generally
for δT̃(X)). Then the main problem becomes proving a finite generation property for
the minimizing valuation, which is achieved by using deep techniques from birational
algebraic geometry in [56]. In fact in the past several years, the algebraic study of K-
stability for Fano varieties has flourished and there are many important results which
answer fundamental questions in this subject. We highlight two such achievements:
(1) Algebraic construction of projective moduli space of K-polystable Fano varieties. This
is achieved in a collection of works, settling different issues in the construction including
boundedness, separatedness, properness and projectivity. Moreover concrete examples of
compact moduli spaces have been identified. We refer to [71, 56] for extensive discussions
on related topics.
(2) Fujita-Odaka [36] introduced quantizations of the δ(X) invariant: for each m ∈ N,

δm(X) = inf
{

lct(X,D);D is of m-basis type
}

where D is of m-basis type if D = 1
mNm

∑Nm
i=1{si = 0} where{si} is a basis of H0(X,mL).

Blum-Jonsson [12] proved limm→+∞ δm(X) = δ(X). This provides a practical tool to

2The original argument in [43] also explicitly relates the filtration F(X ,L) to a filtration of the section

ring of X0 induced by the C∗-action.
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verify uniform stability of Fano varieties. Ahmadinezhad-Zhuang [1] further introduced
new techniques for estimating the δm and δ invariant which lead to many new examples of
K-stable Fano varieties. All of these culminate in the recent determination of deformation
types of smooth Fano threefolds that contain K-polystable ones (see [3]).

In another direction, Han-Li [38] establishes a valuative criterion for g-weighted sta-
bility, corresponding to the study of g-solitons. A key idea in such an extension is using
a fibration technique for a polynomial weight (as motivated by the theory of equivariant
de Rham cohomology) and then using the Stone-Weierstrass approximation to deal with
the general g. Moreover there is a notion of stability for Fano cones introduced earlier by
Collins-Székelyhidi associated to Ricci-flat Kähler cone metrics. It is shown recently that
this stability of Fano cones is in fact equivalent to a particular g-weighted stability of log
Fano quotients (see [2, 47]).

The techniques developed in the study of (weighted) K-stability of Fano varieties have
also been applied to treat an optimal degeneration problem that is motivated by the
Hamilton-Tian conjecture in differential geometry (see [74] for background of this conjec-
ture). This is formulated as a minimization problem for valuations in [37] which defines
(cf. (2.12) and (2.11)), for any valuation v ∈ XNA,

β̃(v) = AX(v) + log
( 1

V

∫ +∞

0

e−t(−dvol(F (t)
v ))

)
.

Very roughly speaking, the β̃ functional is an anti-derivative of certain weighted Futaki
invariant. This functional is a variant of invariants that appeared in previous works of
Tian-Zhang-Zhang-Zhu, Dervan-Székelyhidi and Hisamoto (see [74] for more details). The
results from [38, 54, 14] together prove the following algebraic version of Hamilton-Tian
conjecture:

Theorem 2.16. For any Q-Fano variety, there exists a unique quasi-monomial valuation
v∗ that minimizes β̃, whose associated filtration Fv∗ is finitely generated and induces a
degeneration of X to a Q-Fano variety X0 together with a vector field Vξ. Moreover X0

degenerates uniquely to an e−〈·,ξ〉-weighted polystable Q-Fano variety (cf. Example 1.1).

Combined with previous works, the uniqueness part in particular confirm a conjecture of
Chen-Sun-Wang about the algebraic uniqueness of limits under normalized Kähler-Ricci
flows on Fano manifolds (see [62]).

2.4. Normalized volume and local stability theory of klt singularities. A similar
minimization problem for valuations was actually studied earlier in the local setting, which
motivates the formulation and the proof of Theorem 2.16. Let (X, x) be a klt singularity.
Denote by ValX,x the space of real valuations that have center x. The normalized volume
functional is introduced in [42]: for any v ∈ ValX,x,

v̂ol(v) :=

{
AX(v)n · vol(v), if AX(v) < +∞
+∞, otherwise.

(2.13)

Here AX(v) is again the log discrepancy functional and vol(v) is defined as:

vol(v) = lim
p→+∞

dimC(OX,x/ap(v))

pn/n!
where ap(v) = {f ∈ OX,x; v(f) ≥ p}.
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The expression in (2.13) is inspired by the work of Martelli-Sparks-Yau [57] on a volume
minimization property of Reeb vector fields associated to Ricci-flat Kähler cone metrics.

In [42] we started to consider the minimization of v̂ol over ValX,x and define the invariant

v̂ol(X, x) = infv∈ValX,x v̂ol(v). We proved that the invariant v̂ol(X, x) is strictly positive
and further conjectured the existence, uniqueness of minimizing valuations which should
have finite generated associated graded rings. For a concrete example, it was shown by the

author and Y. Liu that for an isolated quotient singularity X = Cn/Γ, v̂ol(Cn/Γ, 0) = nn

|Γ|
and the exceptional divisor of the standard blowup obtains the infimum.

This minimization problem was proposed to attack a conjecture of Donaldson-Sun,
which states that the metric tangent cone at any point on a Gromov-Hausdorff limit
of Kähler-Einstein manifolds depends only on the algebraic structure (see [62]). This
conjecture has been confirmed in a series of following-up papers [53, 52, 54]. Algebraically
we have the following results regarding this minimization problem.

Theorem 2.17. (1) There exists a valuation that achieves the infimum in defining v̂ol(X, x).
Moreover this minimizing valuation is quasi-monomial and unique up to rescaling.
(2) A divisorial valuation v∗ is the minimizer if and only if it is the exceptional divisor of
a plt blowup and also the associated log Fano pair is K-semistable.

The first statement is a combination of works by Harold Blum, Chenyang Xu and
Ziquan Zhuang ([11, 70, 72]). The second statement was proved in Li-Xu [53] (see also
[11]) by extending the global argument from [51] to the local case, and it shows a close
relationship between the local and global theory. In fact, it is in proving the affine cone
case of this statement when valuative criterion for K-(semi)stability was first discovered in
[43]. A similar statement is true for more general quasi-monomial minimizing valuations
([52]). However the finite generation conjecture from [42] is still open in general, and
seems to require deeper boundedness property of Fano varieties. 3

We also like to mention that Yuchen Liu obtained a surprising local-to-global compar-
ison inequality by generalizing an estimate of K. Fujita:

Theorem 2.18 ([55]). For any closed point x on a K-semistable Q-Fano variety X, we
have:

(−KX)·n ≤ (n+ 1)n

nn
v̂ol(X, x). (2.14)

For example, if x ∈ X is a regular point, (2.14) recovers Fujita’s beautiful inequality:
(−KX)·n ≤ (n + 1)n for any K-semistable X ([33]). The inequality (2.14) has applica-
tions in controlling singularities on the varieties that correspond to boundary points of

moduli spaces. In order for this to be effective, good estimates of v̂ol(X, x) for klt sin-
gularities need to be developed. In particular, it is still interesting to understand better

the v̂ol invariants and associated minimizers for 3-dimensional klt singularities. For more
discussion on related topics, we refer to the survey [48].

3Recently this conjecture has been confirmed in a preprint of Xu-Zhuang: Stable degenerations of
singularities, arXiv:2205.10915.
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3. Archimedean (complex analytic) theory vs. non-Archimedean theory

3.1. Correspondence between Archimedean and non-Archimedean objects. In
this section, we explain results to show a general philosophy that non-Archimedean objects
usually encode the information of corresponding Archimedean objects ‘at infinity’.

Let (X ,L) be a test configuration and h̃ be a smooth psh metric on L. Via the
isomorphism (X ,L) ×C C∗ ∼= X × C∗, we get a path Φ̃ = {ϕ̃(s)}s∈R of smooth ω0-psh
potentials where s = − log |t|2. With these notation, we have the following important
result:

Theorem 3.1 ([64, 65, 60, 20]). The slope at infinity of a functional F ∈ {E,Λ, I,J,M}
is given by the corresponding non-Archimedean functional:

F′∞(Φ̃) := lim
s→+∞

F(ϕ̃(s))

s
= FNA(X ,L) = FNA(φ(X ,L)).

There is a more canonical analytic object associated to a test configuration. Recall
that by a geodesic ray Φ = {ϕ(s)}s∈[0,+∞) we mean that Φ|[s1,s2] is a geodesic connecting
ϕ(s1), ϕ(s2) for any s1, s2 ∈ [0,∞) (see (1.12)).

Theorem 3.2 ([59]). For any test configuration (X ,L) for (X,L), there exists a geodesic
ray Φ(X ,L) emanating from any given smooth potential ϕ0.

On the other hand, recall that there is a non-Archimedean potential associated to (X ,L)
(see (2.1)). Berman-Boucksom-Jonsson proved that there is a direct relation between
geodesic rays and non-Archimedean potentials. First they showed that any geodesic ray
Φ defines a non-Archimedean potential (cf. (2.1)):

ΦNA(v) := −G(v)(Φ), for any v ∈ Xdiv
Q

where G(v)(Φ) is the generic Lelong number of Φ considered as a singular quasi-psh
potential on a birational model where the center of the valuation G(v) is a prime divisor.

Theorem 3.3 ([7]). (1) The map Φ 7→ ΦNA has the image contained in (E1)NA. Con-
versely, for any φ ∈ (E1)NA, there exists a geodesic ray denoted by γ(φ) that satisfies
γ(φ)NA = φ.

(2) For any geodesic ray Φ, Φ̂ = γ(ΦNA) satisfies Φ̂NA = ΦNA ∈ (E1)NA and Φ̂ ≥ Φ.
(3) For Φ = γ(φ) with φ ∈ (E1)NA, E′∞(Φ) = ENA(φ), and there exists a sequence of
test configurations (Xm,Lm) such that Φ is the decreasing limit of Φ(Xm,Lm) (see Theorem
3.2).

Berman-Boucksom-Jonsson proved ΦNA ∈ PSHNA by blowing up multiplier ideal sheaves
{J (mΦ)}m∈N and using their global generation properties to construct test configurations
{(Xm,Lm)} such that φ(Xm,Lm) decreases to ΦNA. Because of the second statement, any
geodesic ray γ(φ) with φ ∈ (E1)NA is called maximal in [7]. By the last statement, maximal
geodesic rays can be approximated by (geodesic rays associated to) test configurations.
Moreover when φ = φ(X ,L) ∈ HNA, γ(φ) coincides with the geodesic ray from Theorem
3.2. Further useful properties of maximal geodesic rays are known (cf. Theorem 3.1):

Theorem 3.4 ([45]). Let Φ be a maximal geodesic ray.
(1) We have the identity (E−Ric(ω0))′∞(Φ) = (EKX )NA(ΦNA).



CANONICAL KÄHLER METRICS AND STABILITY OF ALGEBRAIC VARIETIES 16

(2) H′∞(Φ) ≥ HNA(ΦNA). Moreover if Φ = Φ(X ,L) is associated to a test configuration,
then H′∞(Φ) = HNA(ΦNA).

It is natural to conjecture that H′∞(Φ) = HNA(ΦNA) always holds for any maximal
geodesic ray Φ. This is implied by the algebraic Conjecture 2.12 according to [46, 45].

As pointed out in [7], by a construction of Darvas, there are abundant non-maximal
geodesic rays. In fact analogous local examples have been used by the author to disprove a
conjecture of Demailly on Monge-Ampère mass of psh singularities. It is thus a surprising
fact that maximal geodesic rays are the only ones of interest in the cscK problem.

Theorem 3.5 ([45]). If a geodesic ray Φ satisfies M′∞(Φ) < +∞, then Φ is maximal.

Note that M′∞(Φ) = lims→+∞
M(ϕ(s))

s
exists by Theorem 1.3. This result resolves a

difficulty raised in Boucksom’s ICM talk [16], and implies that destabilizing geodesic rays
can always be approximated by test configurations, thus giving a very strong evidence for
the validity of Yau-Tian-Donaldson Conjecture 3.6. The proof of Theorem 3.5 starts with

an equi-singular property
∫
X×{|t|<1} e

−α(Φ̂−Φ) < +∞ for any α > 0, and then uses Jensen’s

inequality together with a comparison principle for the E functional to get a contradiction
with the finite slope assumption if Φ̂ = γ(ΦNA) 6= Φ.

3.2. Yau-Tian-Donaldson conjecture for general polarized manifolds. The Yau-
Tian-Donaldson (YTD) conjecture says that the existence of canonical Kähler metrics on
projective manifolds should be equivalent to certain K-stability condition. For a general
polarization it is believed that one needs to use a strengthened definition of K-stability
such as Definition 2.3. In particular, we have the following version.

Conjecture 3.6 (YTD conjecture). A polarized manifold (X,L) admits a cscK metric if
and only if (X,L) is reduced uniformly K-stable.

The implication from existence to stability is known, and follows from Theorem 1.4 and
Theorem 3.1. The other direction is still open in general. However, based on the results
discussed thus far, we can explain the proof of a weak version.

Theorem 3.7 ([45]). If (X,L) is uniformly stable over models, i.e. there exists γ > 0
such that MNA(X ,L) ≥ γ ·JNA(X ,L) for any model (X ,L), then it admits a cscK metric.

Summary of proof. Step 1: By Theorem 1.4, we need to show that M is coercive. Assume
that the coercivity fails. Then there exists a geodesic ray Φ = {ϕ(s)}s∈[0,∞) satisfying:

M′∞(Φ) ≤ 0, J′∞(Φ) = 1, sup(ϕ(s)) = 0.

Such a destabilizing geodesic ray Φ was constructed in [7, 27] from a destabilizing sequence.
In this construction, both the convexity of M from Theorem 1.3 and a compactness result
for potentials with uniform entropy bounds from [6] play crucial roles.
Step 2: By Theorem 3.5, Φ is maximal. Set φ = ΦNA. By using Theorem 3.3.(iii) and
Theorem 3.4.(1), we derive the identities:

E′∞(Φ) = ENA(φ), (E−Ric(ω0))′∞(Φ) = (EKX )NA(φ), J′∞(Φ) = JNA(φ)

Moreover by Theorem 3.4.(2), H′∞(Φ) ≥ HNA(φ) so that M′∞(Φ) ≥MNA(φ).
Step 3: By Theorem 2.11, there exist models (Xm,Lm) such that φm = φ(Xm,Lm) converges
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to φ in the strong topology and

lim
m→+∞

MNA(φm) = MNA(φ), lim
m→+∞

JNA(φm) = JNA(φ).

Step 4: We can complete the proof by getting a contradiction to the stability assumption:

0 ≥M′∞(Φ) ≥MNA(φ) = lim
m→+∞

MNA(φm) ≥stability lim
m→+∞

JNA(φm) = JNA(φ) = 1.

�

There is a version of Theorem 3.7 in [45] when Aut(X,L) is continuous. Moreover it
is shown in [46] that Conjecture 2.12 implies Conjecture 3.6. As mentioned earlier, if
(X,L) is any polarized spherical manifold, conjecture 2.12 is true and hence in this case
the YTD conjecture 3.6 is proved. Based on this fact, Delcroix ([28]) obtained further
refined existence results in this case.

We should mention that Sean Paul (see [58]) has works that give a beautiful interpre-
tation of the coercivity of M-functional using a new notion of stability for pairs. However
it is not clear how K-stability discussed here can directly imply his stability notion.

3.3. YTD conjecture for Fano varieties.

3.3.1. Non-Archimedean approach. Our proof of Theorem 3.7 is in fact modeled on a non-
Archimedean approach to the uniform YTD conjecture proposed by Berman-Boucksom-
Jonsson in [7]. They carried it out sucessfully for smooth Fano manifolds with discrete
automorphism groups. The main advantage in the Fano case is that DNA satisfies a
regularization property and can be used in place of MNA to complete the argument.
Recently their work has been extended to the most general setting of log Fano pairs.

Theorem 3.8 ([49, 50, 44]). A log Fano pair (X,D) admits a Kähler-Einstein metric if
and only if it is reduced uniformly stable for all special test configurations.

Note that this combined with Theorem 2.15 also proves the K-polystable version of the
YTD conjecture. Theorem 3.8 can be used to get examples of Kähler-Einstein metrics on
Fano varieties with large symmetry groups (see for example [40]). The proof of Theorem
3.8 is much more technical than [7] because we need to overcome the difficulties caused
by singularities. The first key idea is to use an approximation approach initiated in [49].
Consider the log resolution µ : X ′ → X as in section 1.3 and re-organize (1.4) as:

−KX′ −Dε =
1

1 + ε
(µ∗(−KX −D) + εH) =: Lε.

where H = µ∗(−KX − D) −
∑

k θkEk is ample by choosing appropriate {θk} and Dε =∑
k(−ak + ε

1+ε
)θkEk with 0 ≤ ε � 1. In [49] we considered the simple case when ak ∈

(−1, 0] for all k. In this case for 0 < ε� 1, (X ′, Dε) is a smooth log Fano pair. A crucial
calculation using the valuative criterion from Theorem 2.14 shows that (semi)stability of
(X,D) implies the uniform stability of (X ′, Dε) for ε > 0. Moreover we can prove a version
of YTD conjecture for (X ′, Dε) and deduce that it admits a Kähler-Einstein metric. Next
we take a limit as ε → 0 to get a Kähler-Einstein metric on (X,D) itself. The proof of
this convergence depends on technical uniform potential and geometric estimates.

In [50], we dealt with the general case when Dε is not necessarily effective. A key
difficulty for the argument in [7] to work on singular varieties is that it is not clear how
to use multiplier ideal sheaves to approximate a destabilizing geodesic ray Φ when X is
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singular. To circumvent this difficulty, we first need to perturb Φ to become a singular
quasi-psh potential Φε on (X ′×C, p′∗1 Lε). Since X ′ is smooth, we know how to approximate
Φε by test configurations for (X ′, Lε) thanks to [7]. However due to the ineffectiveness
of Dε, the remaining arguments depend more heavily on non-Archimedean analysis and
some key observation on convergence of slopes. In [45] we further derived the valuative
criterion for reduced uniform stability and understood how the torus action induces an
action on the space of non-Archimedean potentials in order to incorporate group actions
in the argument. Note that the non-Archimedean approach a priori does not prove the
statement in Theorem 3.8 involving special test configurations. Fortunately Theorem 2.13
fills this gap.

By using the fibration and approximation techniques mentioned earlier, Theorem 3.8
has been extended to the case of g-soliton on log Fano pairs in [37]. As explained in [2, 47]
this can be used prove the YTD conjecture for Ricci-flat Kähler cone metrics thanks to
its equivalence to particular g-solitons (see section 1.4). This generalizes the result of
Collins-Székelyhidi on YTD conjecture for Fano cones with isolated singularities ([25]).

3.3.2. Other approaches. For completeness, we briefly mention other approaches to the
YTD conjecture on Fano manifolds. The classical way to solve the Kähler-Einstein equa-
tion is through various continuity methods. Traditionally one uses Aubin’s continuity
method involving twisted KE metrics. A more recent method uses KE metrics with
edge cone singularities as proposed by Donaldson. Finally there is a Kähler-Ricci flow
approach. Tian’s early works showed that the most difficult part in proving the YTD
conjecture by continuity methods is to establish the algebraicity of limit objects in the
Gromov-Hausdorff topology, and he had essentially reduced this difficulty to proving
some partial C0-estimates. The partial C0-estimates were later proved in different set-
tings, starting with Donaldson-Sun’s work in the Kähler-Einstein case, which leads to
the solution of the YTD conjecture for smooth Fano manifolds in [24, 66]. Moreover the
partial C0-estimates has applications in constructing moduli spaces of smoothable Kähler-
Einstein varieties and proving quasi-projectivity of the moduli spaces of KE manifolds,
and these applications preclude the algebraic approach mentioned earlier (see [68]). We
refer to [31, 67] for surveys on related topics in this approach.

Very recently, yet another quantization approach is carried out by Kewei Zhang based
partly on an earlier work of Rubinstein-Tian-Zhang. Zhang considered an analytic invari-
ant of Moser-Trudinger type, namely

δA(X) = sup

{
c; sup
ϕ∈H

∫
X

e−c(ϕ−E(ϕ)) < +∞
}
.

It is easy to show that the coercivity of D-functional is equivalent to δA(X) > 1. The
authors of [61] introduces a quantization δAm(X) by using a quantization of E on the
space of Bergman metrics, and further proves δAm(X) = δm(X). Using some deep re-
sults in complex geometry including Tian’s work on Bergman kernels and Berndtsson’s
subharmonicity theorem, it is proved in [73] that limm→+∞ δ

A
m(X) = δA(X). Combining

these discussion with the algebraic convergence result of Blum-Jonsson and the valuative
criterion of uniform stability of Fujita discussed earlier, Zhang gets δA(X) = δ(X) and
completes the proof of uniform version of YTD conjecture for smooth Fano manifolds. It
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would be interesting to extend this approach to the more general case (i.e. Fano varieties
with continuous automorphism groups).

We finish by remarking that it is of interest to apply the ideas and methods from
the above two approaches to study the YTD conjecture for general polarizations. For
the approach involving partial C0-estimates, the geometry is complicated by collapsing
phenomenon in the Gromov-Hausdorff convergence with only scalar curvature bounds,
which is very difficult to study with current techniques. For the quantization approach,
there were some attempts by Mabuchi in several works. But the precise picture seems
again unclear.
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[41] M. Jonsson, M. Mustaţă, Valuations and asymptotic invariants for sequences of ideals. Ann. Inst.

Fourier 62 (2012), no.6, 2145-2209.
[42] C. Li, Minimizing normalized volume of valuations. Math. Z. 289 (2018) no. 1-2, 491-513.
[43] C. Li, K-semistability is equivariant volume minimization. Duke Math. J. 166, number 16 (2017),

3147-3218.
[44] C. Li, G-uniform stability and Kähler-Einstein metrics on Fano varieties, 2019, arXiv:1907.09399v3.

http://arxiv.org/abs/1805.11160
http://arxiv.org/abs/1801.08229
http://arxiv.org/abs/2009.06463
http://arxiv.org/abs/2006.00903
http://arxiv.org/abs/2009.01010
http://arxiv.org/abs/1610.07998
http://arxiv.org/abs/1907.09399
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Math., 310, Birkhäuser, Springer, Cham, 2017.
[66] G. Tian, K-stability and Kähler-Einstein metrics. Comm. Pure Appl. Math. 68 (7) (2015), 1085–

1156.
[67] G. Tian, Kähler-Einstein metrics on Fano manifolds. Jpn. J. Math. 10 (2015), no. 1, 1-41.
[68] X. Wang, GIT stability, K-stability and the moduli space of Fano varieties. In Moduli of K-stable

varieties, pp. 153-181, Springer IndAM Series 31, Springer, Cham, 2019.
[69] D. Witt Nyström, Test configuration and Okounkov bodies. Compos. Math. 148 (2012), no. 6, 1736–

1756.
[70] C. Xu, A minimizing valuation is quasi-monomial. Ann. of Math. 191 (2020), no. 3, 1003-1030.
[71] C. Xu, K-stability of Fano varieties: an algebro-geometric approach, 2020, arXiv:2011.10477.
[72] C. Xu, and Z. Zhuang, Uniqueness of the minimizer of the normalized volume function. To appear

in Camb. J. Math. (2020), arXiv:2005.08303.
[73] K. Zhang, A quantization proof of the uniform Yau-Tian-Donaldson conjecture, 2021,

arXiv:2102.02438v2.

http://arxiv.org/abs/2001.01366
http://arxiv.org/abs/2102.09457
http://arxiv.org/abs/2107.02088
http://arxiv.org/abs/2012.09405
http://arxiv.org/abs/2008.08829
http://arxiv.org/abs/2011.10477
http://arxiv.org/abs/2102.02438
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