MATH 350

Spring 2023 FINAL EXAM

NAME:

ID:

THERE ARE NINE (9) PROBLEMS. THEY HAVE THE INDICATED VALUE. SHOW YOUR WORK

NO CALCULATORS NO CELLS ETC.

ON YOUR DESK: ONLY test, pen, pencil, eraser.

1	15pts
2	20pts
3	25pts
4	25pts
5	15pts
6	25pts
7	25pts
8	30pts
9	20pts
Total	200pts

!!! WRITE YOUR NAME, STUDENT ID. BELOW **!!!**

NAME :

ID:

1(15 pts) For each of the following subsets of \mathbb{R}^3 , determine whether it is a vector subspace of \mathbb{R}^3 . Explain your reason.

- (1) $\{(a, b, c); a^2 + b^2 = c^2\}.$ (2) $\{(a, b, c); a + b = c\}.$ (3) $\{(a, b, c); \sin(a + b + c) = 0\}.$

2(20pts) Let $T: P_2(\mathbf{R}) \to P_2(\mathbf{R})$ be a linear transformation that satisfies

$$T(1+x) = 1-x, \quad T(1-x) = 1+x, \quad T(2+x^2) = 2x - x^2.$$

Find the matrix representation of T with respect to the standard basis $\beta = \{1, x, x^2\}.$

3(25pts) Consider the following subset S of $P_3(\mathbf{R})$.

$$S = \{1 + x, 1 - x^2, x + x^2 + x^3, x^3\}$$

- (1) Calculate the dimension of the subspace Span(S).
 (2) Is the polynomial 1 + 4x + 3x² + x³ contained in Span(S)? If it is, write it as a linear combination of S.

4(25 pts) Consider the following linear transformation:

$$T: \mathbf{R}^3 \to \mathbf{R}^3, \quad T(a, b, c) = (c, b, a).$$

Determine whether T is diagonalizable. If it is, find a basis β such that $[T]_\beta$ is diagonal.

5(15pts) Let r_1, r_2, r_3 be row vectors in \mathbb{R}^3 . Find the value of k that satisfies the following equation:

$$\det \begin{pmatrix} 3r_1 + r_2 \\ r_3 \\ r_1 + 2r_2 \end{pmatrix} = k \cdot \det \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix}.$$

(Hint: use the properties of determinant under row operations and the fact that it is linear for each row **when** other rows are fixed)

6(25pts) Consider the following square matrix.

$$A = \left(\begin{array}{rrrr} 0 & 0 & 0 & 5\\ 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 2\\ 0 & 0 & 1 & 0 \end{array}\right)$$

- (1) Calculate the characteristic polynomial $f(t) = \det(A tI)$ of A. (2) Calculate the result of $A^4 2A^2$ (hint: use Cayley-Hamilton theorem).

7(25pts) Let A be a square matrix with characteristic polynomial equal to $(t-2)^9$. Assume that the dot diagram of A is the following:

- (1) Write down the Jordan canonical form of A. (2) Calculate dim $N((A 2I)^2)$ and dim $R((A 2I)^2)$.

8(30 pts) Consider the linear transformation:

$$T: P_2(\mathbf{R}) \to P_2(\mathbf{R}), \quad T(f(x)) = f''(x) + f'(x) + f(x).$$

- (1) Find all eigenvalues of ${\cal T}$ and corresponding dot diagrams.
- (2) Find a basis γ of $P_2(\mathbf{R})$ such that $[T]_{\gamma}$ is a Jordan canonical form.

9(20pts) Let $S: V \to W$ and $T: W \to U$ be linear transformations. Prove or disprove (i.e. find a counter-example to) each of the following statements for the composition $T \circ S: V \to U$.

- (1) If T is onto, then $\operatorname{rank}(T \circ S) = \operatorname{rank}(S)$.
- (2) If T is one-to-one, then $\operatorname{rank}(T \circ S) = \operatorname{rank}(S)$.

Extra page

Extra page

12