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Relations between singularities and Coxeter groups is a classical area of singularity theory going
back to the fundamental works by Arnold [1] and Brieskorn [6]. Recently it was observed that these
relations can be extended to include symmetric simple function singularities on the one hand and
certain Shephard–Todd groups on the other [11–13]. In this paper we are making a further natural
step in this direction by relating symmetries of the function singularities X9 to a number of Popov’s
complex crystallographic groups [16]. Appearance of complex affine reflection groups in equivariant
monodromy of parabolic function singularities with symmetry is the first appearance of such groups
in any singularity context (see also [14]).

The structure of the paper is as follows.
Section 1 introduces the crystallographic groups which will be related to the function singulari-

ties. In addition, in Subsection 1.2 we describe a way to construct a complex affine reflection group
from a semi-definite Hermitian form of corank 1.

Section 2 lists finite order automorphisms of the X9 functions. It also shows how the rank 2
kernel of the X9 Hermitian intersection form is shared by various character subspaces Hχ of the
symmetry action on the middle vanishing homology.

Section 3 is devoted to the proof of the main result of the paper that all the complex affine
reflection groups arising from the equivariant monodromy of the symmetric X9 singularities on the
appropriate Hχ via the construction of Subsection 1.2 are actually crystallographic.

1. AFFINE REFLECTION GROUPS

1.1. The complex crystallographic groups. An affine reflection in C
n is an affine unitary

transformation identical on a hyperplane. The hyperplane is called the mirror of the reflection.
A group generated by such reflections and having a compact fundamental domain is called complex
crystallographic. These groups were classified by V.L. Popov in [16].

For a complex crystallographic group W , we denote by L ⊂ Un its linear part, that is, the image
of W under the natural map W → Un. The group L is a Shephard–Todd group. Let T be the
maximal translation subgroup of W . Then W is an extension of L by T . Unlike the real case, W
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Fig. 1. Dynkin diagrams of the Shephard–Todd groups. All roots are unit.

may not be a semi-direct product of its linear and translation parts. However, all the groups we
will need in our current singularity context are such products.

We will now describe the five groups to be involved. Mirrors of L will be identified by their
normals, which we will call roots.

The linear parts of the groups we will need are the Shephard–Todd groups L = G(4, 1, 2),
G(6, 2, 2), G3(6), G8, G26 (see [17, 16]). Their Dynkin diagrams are given in Fig. 1. The vertex set
of a diagram represents a set of generating reflections. Each vertex is a unit root and is marked
with the order of the reflection, order 2 omitted. An edge a → b is equipped with the Hermitian
product 〈a, b〉. As usual, ω = e2πi/3. The edge orientation is omitted if the product is real, and
there is no edge at all if the roots are orthogonal. All the diagrams were constructed using the roots
from Table 2 of [16] (see also [9]). The rank of the group G(6, 2, 2) is 2. The rank of any other
group is equal to the number of vertices in its diagram.

In the notation of [16], the crystallographic groups W with the above linear parts that will be
related to function singularities in this paper are [G(4, 1, 2)]2 , [G(6, 2, 2)]2 , [K3(6)], [K8] and [K26]1.
The lattice T is spanned by the L-orbit of any root of L of order 2 in the first two cases, of any root
in the next two, and of any root of order 3 in the last case.

All the crystallographic groups have the conjugate versions, with i and ω replaced by their
conjugates. However, the conjugations yield the same groups.

1.2. Affine groups defined by corank 1 Hermitian forms. The relation between the
crystallographic groups and function singularities that we are going to establish is based on the
following construction of a complex reflection group from a corank 1 Hermitian form (cf. [5]).

Let q̃ be a corank 1 semi-definite Hermitian form on ˜V = C
n+1. Choose a basis e0, e1, . . . , en

in ˜V so that e0 is in the kernel K of the form. The span of the ej>0 will be denoted by V , and v

will stand for the V -component of ṽ ∈ ˜V : ṽ = v0e0 + v. In all the matrix expressions below, with a
slight abuse of notation, elements v ∈ V will be treated as columns of their coordinates vj>0. For
example, q̃(ṽ , w̃) = vT Qw, where Q = (q̃(ei, ej))i,j>0 is the matrix of the restriction q = q̃|V .

We consider the space ˜V ∗ dual to ˜V as K∗ ⊕ V . For coordinates on it we choose α0, α1, . . . , αn,
so that a linear functional α̃ on ˜V is written as

α̃(ṽ) = v0α0 + vT Qα = v0α0 + q(v, α).

Take a pseudo-reflection on ˜V (that is, a transformation given by the same formula as a reflection
if the form q̃ were non-degenerate) with a root ũ /∈ K and the eigenvalue λ:

A : ṽ 	→ ṽ − (1 − λ)q̃(ṽ , ũ)ũ/q̃(ũ, ũ) =
(

v0 + γq(v, u)u0

)

e0 +
(

v + γq(v, u)u
)

,

where γ = (λ − 1)/q(u, u). For the dual transformation A∗, we have

(A∗α̃)ṽ = α̃(A−1ṽ) = v0α0 + vT Qα + γvT Q(u0α0 + uT Qα)u = v0α0 + vT Q(α + γα̃(ũ)u).
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46 V. GORYUNOV

Therefore, the dual transformation sends each of the hyperplanes α0 = const into itself, and on
such a hyperplane it acts as

α 	→ α + γα̃(ũ)u = α − (1 − λ)
α0u0 + q(α, u)

q(u, u)
u, (1)

where q is the Hermitian form on V conjugate to q: it has the matrix Q = QT in the basis ej>0. If
α0 
= 0, then this is an affine reflection on the hyperplane Γ = {α0 = const} � V , with the root u,
mirror α̃(ũ) = α0u0 + q(α, u) = 0 and eigenvalue λ. For u0 = 0, the transformation is linear.

2. SMOOTHABLE SYMMETRIES OF X9

Now we introduce the function singularities we will be dealing with.
Let f be a holomorphic function-germ on (Cn, 0), with an isolated singularity at the origin.

Consider a diffeomorphism-germ g of (Cn, 0) sending the hypersurface f = 0 into itself. It multi-
plies f by a function c not vanishing at the origin. In what follows we assume g is of a finite order,
so c is a constant, a root of unity.

Let O(g, c) be the space of all holomorphic function-germs on (Cn, 0) multiplied by c under the
action of g. The group Rg of biholomorphism-germs of (Cn, 0) commuting with g acts on O(g, c).
The corresponding equivalence is a geometric equivalence in the sense of Damon [10]. Therefore,
the base of an Rg-miniversal deformation of f in O(g, c) is smooth and such a deformation can be
constructed in the standard way [10, 4].

Definition 2.1. An automorphism g of a hypersurface f = 0 is called smoothable if an Rg-ver-
sal deformation of the function f contains members with smooth zero sets.

If g is such an automorphism, then the zero level M of a generic member of an Rg-versal
deformation is a g-invariant Milnor fibre of f . Hence, g acts on the homology of M and provides
the splitting

Hn−1(M, C) =
⊕

χHχ, χorder(g) = 1, (2)

of the middle homology, in which g acts on an individual summand as a multiplication by the
character χ. The equivariant monodromy group, that is, the monodromy within an Rg-versal de-
formation of f , preserves the splitting. The monodromy action on the Hχ will be our source of
complex crystallographic groups, upon the application of the construction of Subsection 1.2.

We restrict our attention to the classification of smoothable automorphisms of curves of the X9

family

x4 + ax2y2 + y4 = 0, a2 
= 4. (3)

The classification is up to holomorphic changes of the coordinates. Since our actual major aim is
to obtain the homology splitting (2), we will not distinguish between automorphisms generating
the same cyclic groups. Moreover, we prefer to have a Hermitian intersection form on the middle
homology rather than skew-Hermitian. Because of that, we stabilise equation (3) by adding z2 to
the left-hand side. Respectively, g starts acting on z by the multiplication by one of the two possible
square roots of c. We call this action stabilised. The ambiguity in choosing a root affects only the
character assignment in (2) but not the direct summands themselves. Since only the summands
are crucial for us, we give just one of the choices in our classification. In particular, we set g act
trivially on z if the function is g-invariant.

Theorem 2.1. The complete list of stabilised smoothable automorphisms of all X9 curves is
given in the table.
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Symmetric X9 singularities

f g : x, y, z 	→ |g| Versal monomials Kernel χ Affine group Notation

x4 + y4 + z2 ix,−y, z 4 1, y2, x2y ±i [G(4, 1, 2)]2 X9|Z4

ix, y, z 4 1, y, y2 ±i [K8] A
(4)
3

ωx, iωy, ωz 12 x ±i − X9/Z12

x4 + xy3 + z2 ix, iωy, z 12 1 −ω,−ω − X9|Z12

−x,−ωy, z 6 1, x2 ω, ω [K3(6)] B
(6,3)
2

x, ωy, z 3 1, x, x2, x3 ω, ω [K26]1 C
(2,3)
4

ωx, ωy,−ωz 6 x, y2, x2y −ω,−ω [G(6, 2, 2)]2 X9/Z6

ε9x, ε4
9y, ε2

9z 9 y ω, ω − X9/Z9

x3y + xy3 + z2 ε8x,−ε8y, z 8 1 ±i − X9|Z8

x4 + ax2y2 + y4 + z2 ix,−iy, z 4 1, xy, x2y2 1 − (X9|Z4)′

−x, y, z 2 1, y, y2, x2, x2y, x2y2 −1 − K4,2

ωx,−ωy, ωz 6 x, x2y2 −1 − (X9/Z6)′

ix, iy, z 4 1, x2y2 −1 − (X9|Z4)′′

−x,−y, z 2 1, x2, xy, y2, x2y2 1 − (X9|Z2)′′

ωx, ωy, ωz 3 x, y, x2y2 1 − X9/Z3

In the table

• εr = e2πi/r;
• the versal monomials are those that we add with arbitrary coefficients to f to obtain an
Rg-miniversal deformation;

• the kernel χ are the values of the character for which the restrictions of the Hermitian inter-
section form from H2(M, C) to the Hχ are degenerate (see Proposition 2.1 below);

• the affine groups are the complex crystallographic groups that will be constructed in Section 3
from the monodromy on the Hχ on which the intersection form has corank 1;

• similar to [7, 11], if the discriminant of a symmetric function singularity coincides with that
of a Weyl group, the group enters the notation, the superscripts indicating the orders of the
Picard–Lefschetz operators (see Section 3);

• the K4,2 is the unimodular boundary function singularity of [2, 3];
• in all the other cases, the notation shows the symmetry group of the singularity, with the

vertical line telling that the function is invariant under the action and the slash indicating
that it is equivariant (cf. [13, 12]).

About the proof of Theorem 2.1. The classification process is based on the consideration
how the automorphism permutes the four branches of the curve (3). The smoothability is heavily
restricted by an obvious observation that, once a smoothable diffeomorphism of the plane has been
diagonalised, it multiplies the function f by the same factor by which it multiplies one of the
monomials 1, x and y (otherwise the zero level of any symmetric perturbation of f would have a
critical point at the origin). The rest of the classification is rather straightforward. �

For the application of the construction of Subsection 1.2, it is crucial to know how the rank 2
kernel of the X9 Hermitian intersection form is shared by the character subspaces.
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Proposition 2.1. The kernel values of the character χ for the symmetric X9 singularities are
those given in the table.

Proof. We distinguish between invariant and equivariant cases, that is, when 1 either is or is
not among the versal monomials.

(a) In the invariant cases, the kernel characters are the eigenvalues of the action of g on the
residue forms dx dy dz/df and q4(x, y)dx dy dz/df , where q4(x, y) is a degree 4 monomial defining a
non-trivial element in the local algebra of f . The span of the two forms is dual to the kernel of the
intersection form on the homology.

(b) We do the equivariant functions case-by-case, using mainly the fact that the cycles in the
kernel of the intersection form are invariant under any monodromy.

X9/Z3. The monodromy α = e2πit, 0 ≤ t ≤ 1, in the family f(x, y, z) + αx = 0 coincides with
the transformation g; hence all the kernel of the X9 intersection form is in Hχ=1.

X9/Z9. The top-dimensional strata of the discriminant of X9/Z3 are 3A1 only. Three ordinary
Morse 2-cycles e, ge and g2e vanishing simultaneously provide an element

e + χ−1ge + χ−2g2e ∈ Hχ, χ3 = 1. (4)

This implies that the ranks of all the three Hχ are the same, 3. On the other hand, the automorphism
of X9/Z3 is the cube of that of X9/Z9. Hence the kernel characters of X9/Z9 are cubic roots of
unity. Since the kernel character set must be sent into itself by the complex conjugation, we see
that for X9/Z9 the kernel of the X9 form is spanned by the one-dimensional spaces Hω and Hω.

X9/Z12. Take M = {x4 + y4 + z2 − x = 0} as a symmetric Milnor fibre. It retracts to the
Z12-orbit of the 2-cell σ = {(x, y, z) : 0 ≤ x ≤ 1, y ≥ 0, z ∈ R} ⊂ M ∩ R

3. The linear combination

11
∑

j=0

χ−jgjσ, χ12 = 1, χ3 
= 1, (5)

spans Hχ. On the other hand, the quasi-homogeneous monodromy in the family

x4 + y4 + z2 − e2πitx = 0, 0 ≤ t ≤ 1,

is g4. Hence the kernel characters satisfy χ4 = 1. With χ = 1 prohibited, this gives χ = ±i.

(X9/Z6)′. The square of the X9/Z12 automorphism is the inverse of that of (X9/Z6)′. So, the
above implies that the kernel of the X9 form is now the rank 2 space Hχ=−1.

X9/Z6. The deformation f(x, y, z)+αx2y gives an adjacency of X9/Z6 to the singularity D6/Z6

of [13, 12], all of whose Hχ, χ3 = −1, are of rank 2. The multiplicity of the X9/Z6 discriminant
is 4, one higher than that of D6/Z6, the increase due to the 3A1 stratum. This implies that the
dimension of each of the three character spaces of X9/Z6 is 3. Since the ranks of the intersection
forms on them are at least 2, the characters −ω and −ω are kernel. �

Questions 2.1. (a) A bit more careful calculations show that, for all symmetric X9 singulari-
ties, the rank of a character subspace with a degenerate intersection form is equal to the dimension
of the base of an equivariant miniversal deformation, that is, to the number of the versal monomials.
The same is true for the J10 symmetries of [14]. Why is this so?

(b) It would be also good to understand why the kernel of the intersection form does not split
exactly when the symmetric singularity has a module.
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3. RELATING SYMMETRIC X9 SINGULARITIES
AND CRYSTALLOGRAPHIC GROUPS

We call a symmetric X9 singularity interesting if the monodromy group on one of its character
subspaces gives rise to an affine complex reflection group (not necessarily crystallographic) via the
construction of Subsection 1.2. Necessary conditions for this are as follows:

• the rank 2 kernel of the X9 Hermitian intersection form splits between two character subspaces;

• each of the two subspaces must be of rank at least 2;

• the multiplicity of the discriminant of a symmetric singularity must be at least 2, since an affine
reflection group has at least two generators which must be coming from the Picard–Lefschetz
operators.

According to the table, the first condition eliminates all moduli cases. The last condition
eliminates four further singularities with one-dimensional bases of miniversal deformations. This
leaves exactly five interesting symmetries, those to which the table assigns affine groups.

In Fig. 2 the discriminants of three interesting X9 singularities are shown. The degeneration
types to which the top strata correspond are indicated. The X9/Z6 discriminant is that of B3 with
an additional smooth component. The ordering α, β, γ of the deformation parameters is by the
increase of their quasi-homogeneous weight in the deformations using the versal monomials of the
table. The equation of the X9|Z4 discriminant is

γ(β2 − 4γ)
(

(β − α2/4)2 − 4γ
)

= 0.

Two discriminants missing from Fig. 2 are those of the singularities A
(4)
3 and C

(2,3)
4 . The first of

them is the standard A3 swallowtail, with the top stratum A3. The second is the standard C4

discriminant with the smooth and singular components 3A1 and A2, respectively.
The main result of this paper is

Theorem 3.1. Consider an interesting symmetric X9 singularity. Let χ be one of its kernel
characters and Γ the hyperplane in H∗

χ formed by all linear functionals taking a fixed non-zero value
on a fixed element of the kernel of the Hermitian intersection form on Hχ. Then the equivariant
monodromy group of the singularity acting on Γ is the complex crystallographic group given in the
table.

α

α

α

β

β
β

γ
γ

X9/Z6

X9|Z4

B
(6,3)
2

A3

A3

2A1

3A1

3A1

4A1

A5

2A2

Fig. 2. Discriminants of the symmetric X9 singularities.
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Proof. By the methods developed in [11–13], it is possible to construct, for each Hχ of the
theorem, distinguished sets of vanishing χ-cycles whose Dynkin diagrams are those of Fig. 3. The
sets are bases of the Hχ, except for the X9/Z6 case which has one relation.

We use the following conventions in the diagrams. The vertices are elements of a distinguished
set of χ-cycles. A χ-cycle vanishing at a kAν stratum has the self-intersection number −k(ν + 1),
which is written at the vertex. The order of the corresponding Picard–Lefschetz operator is ν + 1
(written inside the vertex, order 2 omitted). Simple, double and triple edges indicate that the
relations between the pairs of the operators are aba = bab, (ab)2 = (ba)2 and (ab)3 = (ba)3,
respectively. The marking and orientation of the edges are similar to those in Fig. 1.

The idea behind the cycle construction is as follows. Consider the quotient set M ′ = M/Zm

of a symmetric Milnor fibre by the group generated by the automorphism g. This set is stratified
according to the stationary subgroups of the points. Let M ′′ ⊂ M ′ be the union of all strata whose
dimension is less than dim M ′. When the deformation parameter approaches its discriminantal
value, it is easy to define geometrically a relative vanishing cycle in (M ′,M ′′). Let σ ⊂ M ′ be
this cycle and σ0, σ1, . . . , σm−1 its inverse images in M ordered so that g(σj) = σ(j+1) mod m. Then
∑m−1

j=0 χ−jσj ∈ Hχ is the χ-cycle we are looking for. The cycles (4) and (5) are examples of the
construction.

Each tree diagram of Fig. 3 serves both kernel values of the character since vanishing χ-cycles
are defined up to multiplication by powers of χ and change of orientation.

A vanishing χ-cycle defines the Picard–Lefschetz operator on Hχ. This is a pseudo-reflection
with the cycle as its root. Thus we are ready to apply the construction of Subsection 1.2. To
introduce the notations used in it, we denote by e′0, e1, e2, . . . the vertices in each tree diagram
going from left to right, and in the X9/Z6 diagram starting from the top left and going clockwise
(in this case e3 = −χe1 + χe2). For all the singularities, a generator of the kernel of the Hermitian
intersection form can be taken in the form e0 = e′0 + a, where a is a linear combination of the ej>0.
The vector a will be called the truncated kernel vector. It is an analog of the negative of the maximal
root of a Weyl group.

Now drop the vertex e′0 from each tree diagram of Fig. 3, change the sign of the intersection
form and divide all the roots by appropriate positive numbers to make all of them unit. The result
will be exactly the diagrams of Fig. 1 of the linear parts L of the affine groups assigned to the
singularities by the table (for χ = −ω in the X9/Z6 case, the additional complex conjugation is
required). Therefore, the Picard–Lefschetz operators corresponding to the χ-cycles ej>0 define the
Shephard–Todd group L on the hyperplane Γ ⊂ H∗

χ.
The translation vector of the transformation (1) is proportional to its root, as it should be in an

affine reflection. Thus, Theorem 3.1 will be proven if it turns out that, in all the cases, the truncated
kernel vector a is a root of a reflection from L of the order specified at the end of Subsection 1.1.

X9/Z6X9|Z4 B
(6,3)
2

A
(4)
3

C
(2,3)
4

χ = ω,−ω

3

3

333

3

3

3

3
444

4
4 6

6

4/(i−1)4/(i−1)

4/(i−1)

−3

−3−3 −3−4−4−4

−4−4 −6

−6 −6

−6

−6−6−8

−3χ

−3(1+χ) 3/(ω−1)3/(ω−1)

Fig. 3. Dynkin diagrams of the symmetric X9 singularities in three variables.
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And, indeed, we have

X9|Z4 : a ∼ (2, 1) = A2
1e2,

A
(4)
3 : a = (−1 − i, i) = −A1A

−1
2 e1,

B
(6,3)
2 : a = e1,

C
(2,3)
4 : a ∼ (ω − 1, 2, 1) = −A−1

1 A2A3A2e1,

X9/Z6 : a = −2e1 − e2 =

{

A1e3, χ = −ω,

A−1
1 e3, χ = −ω,

where the vector a or its multiple are written in the basis ej>0 and the Aj are the linear re-
flections defined by the roots ej and having the eigenvalues −1, ω, i. This yields the result re-
quired. �

Remarks 3.1. (a) The eigenvalue of the Picard–Lefschetz operator corresponding to a multiple
Morse degeneration is −1. The eigenvalues of all the other operators in the X9|Z4 and X9/Z6

singularities are −χ. They are χ in the A
(4)
3 and C

(2,3)
4 cases. Finally, for the B

(6,3)
2 singularity, the

operators of orders 3 and 6 have the eigenvalues χ and −χ, respectively. This follows from easy
quasi-homogeneous considerations similar to those in [11–13].

(b) The standard order of vanishing cycles in the distinguished set used to construct the X9/Z6

diagram is e2, e
′
0, e1, e3. As usual, for a tree diagram the order may be made arbitrary.

(c) The three crystallographic groups corresponding to the three symmetric X9 singularities
with the Weyl groups in the notations are representations of the corresponding generalised braid
groups.

We should also notice that the fact that the equivariant monodromies of Theorem 3.1 are at
most factor groups of the crystallographic groups in question already follows from the description of
the discriminants of our singularities and the information about the orders of the Picard–Lefschetz
operators. Indeed, consider first the four string diagrams of Fig. 3 omitting their edge orientations
and all the labellings. Applying Zariski’s method to calculate the fundamental groups of the com-
plements to our discriminants, we see that the reduced diagrams are exactly the diagrams of the
relations between the generators of these groups. If we now restore the orders of the vertices, then
we come to the diagrammatic presentations of the corresponding crystallographic groups obtained
in [15]. To obtain similar coincidence with [15] for X9/Z6, we use the interpretation of the triple
intersection of the discriminant: the lower right triangle of the Dynkin diagram corresponds to the

X9/Z6X9|Z4 B
(6,3)
2

A
(4)
3

C
(2,3)
4

0

0 0

0

0

0
i

3

3

3

4 6

4/(i−1)4/(i−1)

4/(i−1)

iii

−4i

ωωω

ω ω

2(ω−ω) 6(ω−ω)

ω−ω ω−ω ω−ω

ω−1 ω−1

−3ω 3(1−ω)

3(1−ω)

3(ω−ω)ω

4i4i4i

Fig. 4. Dynkin diagrams of the symmetric X9 singularities in two variables, χ = i, ω.
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circular relations abc = bca = cab in the fundamental group (see [8, 15]). Finally, the additional
relations in [15] are the orders of the classical monodromy in our cases.

Question 3.1. The relation between the discriminant of an interesting symmetric parabolic
function and the orbit space of the related crystallographic group should be investigated. In particu-
lar, it would be interesting to find out why function singularities with non-isomorphic discriminants
may give rise to the same crystallographic groups. At the moment, there are two examples of such
a duplication: symmetric J10 singularities with the discriminants G2 and C3 (see [14]) correspond
to the same affine groups, [K3(6)] and [K8], as respectively the singularities B

(6,3)
2 and A

(4)
3 of this

paper.
The skew-Hermitian versions of the five affine reflection groups are given by the Dynkin diagrams

of the two-variable symmetric X9 singularities of Fig. 4. The diagrams are drawn for χ = i and
χ = ω for the two-variable automorphisms of the table of orders 4 and 3 or 6, respectively. For
χ = −i, ω, all the numbers must be conjugated. Inside the vertices are the eigenvalues of the
Picard–Lefschetz operators. The empty vertices correspond to the kA1 degenerations; hence all the
eigenvalues for them are 1 and the Picard–Lefschetz operators are a 	→ a − 〈a, e〉e/k. The three
cycles forming the lower right triangle of the X9/Z6 diagram are linearly dependent.
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