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I aim to discuss some properties of the group Sym(6)
(S6) in terms of the “geometry” of 6 points.

But first I will do this for the symmetric group on
four points.

1. Sym(4)

We begin with the geometry of points and edges in
the complete graph on 4 points, which we represent
as follows.
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We extend this by considering perfect matchings
(pairs of disjoint edges).
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We have points, sets of points, sets of sets of points.
We go one step farther and consider factorizations,
which are disjoint sets of perfect matchings which
cover the edges.

This gives us the following.
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Here Sym(4) acts on everything. This gives us
maps from Sym(4) to itself, Sym(6), Sym(3), and
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Sym(1). The image of Sym(4) in Sym(6) is transi-
tive so this is not one of the “standard” copies of
Sym(4) that fixes two points.

The map to Sym(3) is an exceptional homomor-
phism which captures something very special about
Sym(4).

Another geometry has the points and matchings
as its points, and the edges and factorizations as its
lines. This becomes the following

P
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3—(21)—3
L
7

This is the Fano plane, a projective plane of order
7. The classical projective planes are built from 3-
dimensional vector spaces by viewing 1-dimensional
subspaces as points and 2-dimensional subspaces as
lines.

The Fano plane is built from the field of order two,
F2.

This geometry has as its automorphism group GL(3, 2);
normally this should be PGL(3, 2), factoring out scalar
matrices, but here there is nothing to factor out.
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If we keep the four original points in view this be-
comes the following.

We see the action of Sym(4) on four points, on the
three points of a line, on the six lines which meet
the four points, and on the unique line disjoint from
them.

But the full group of symmetries has order 168 =
7 · 24, with Sym(4) appearing as the stabilizer of a
line.

These four points are also what is called a hyper-
oval: a set of points meeting each line in zero or two
points. Here the hyperovals are the complements of
the lines, so the automorphism group of the geometry
acts transitively on them.

Another point of view begins with linear algebra
and the permutation representation of Sym(4) in
four dimensions, acting by permuting a basis. This
preserves the usual inner product

(u, v) =
∑

uivi
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But it fixes the vector v = (1, 1, 1, 1) and hence acts
also on the 3-dimensional orthogonal complement

v⊥ :
∑

ui = 0

If we again work over the field F2 then (u, u) is
the parity of u and v⊥ = E is the subspace of even
parity vectors. Thus

E = {u | (u, u) = 0}
On E the bilinear form (u, v) becomes symplectic:

(u.u) = 0; but also degenerate: E⊥ = 〈v〉.
So we pass to E/〈v〉 and now Sym(4) is acting on a

2-dimensional space with a symplectic inner product.
In this action, Sym(4) permutes the three non-zero

vectors. These are

(1100)|(0011) (1010)|(0101) (1001)|(0110)

In other words - the three perfect matchings, again.
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2. Sym(6)

Now we do the same thing with Sym(6).
First we look at the linear algebra.
Sym(6) acts on V (6, 2) = F6

2 by permuting the
standard basis and preserves the bilinear form

(u, v) =
∑

uivi

fixing the vector v = (1, 1, 1, 1, 1, 1) and thus acting
also on

E = v⊥

and

E/〈v〉
which is now a 4-dimensional space with a non-degenerate
symplectic form. Thus we have

Sym(6)→ Sp(4, 2)

It turns out that this is an isomorphism so now we
have the exceptional isomorphism

Sym(6) ' Sp(4, 2)

Now we turn to the combinatorics, looking at ver-
tices, edges, matchings, and factorizations.

This time we arrive at the following.
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• Each edge lies in 3 matchings and each match-
ing contains 3 edges so there are 15 of each.
• Each matching lies in 2 factorizations: namely,

a given matching can be extended to a hexagon
containing a particular edge in two ways, and
then everything is determined. So the remain-
ing numbers can be filled in.

This is very symmetrical.
In particular, it gives another action of Sym(6) on

6 points, the factorizations, which we may number
I–V I rather than 1–6. This action is very different
from the original action. If you take a transposition
(12) fixing 4 points then it must act without fixed
points on the factorizations (since it fixes at least
one edge in each factor), and thus give something
like (III)(IIIIV )(V V I). If we identify I–V I with
1–6 then we are sending (12) to (12)(34)(56): chang-
ing the shape. This is an outer automorphism of
Sym(6).

As before, we can build a projective plane by group-
ing the points and matchings as points, and the edges
and factorizations as lines.

We get the following data.

P

21
5—(105)—5

L

21

This is now the projective plane over the field F4

with 4 elements, with 21 points and lines. Now the
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original 6 points form a hyperoval, which is disjoint
from 6 lines.

This field is obtained from F2 the way C is obtained
from R: by adding a root to an irreducible quadratic
polynomial.

F4 = F2[j] j2 + j = 1

Just as in C we have complex conjugation, replacing
i by −i, in F4 we have the symmetry σ(a + bj) =
a + b(j + 1).

The automorphism group of the geometry is called
PΓL(3, 4):

GL(2, 4)→ PGL(2, 4)→ PGL(2, 4) · 〈σ〉

Now Sym(6) acts on the points of the hyperoval, on
the lines meeting the hyperoval (edges), the points
off the hyperoval (matchings), and the lines disjoint
from it (factorizations).

Furthermore there is a dual plane in which the lines
are points and the points are line. The six lines dis-
joint from the hyperoval are a hyperoval in the dual
plane. Thus the symmetry in the Sym(6) geometry
reflects duality in P (2, 4).

There are 168 hyperovals in P (2, 4) and they are
permuted transitively by PΓL(3, 4). But there is a
subgroup PSL(3, 4) of index 6, with quotient Sym(3).
This subgroup has three orbits on ovals, each of order
56, and then the quotient Sym(3) permutes these
three orbits.
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We can get a new geometry on 22 points by adding
a special point ∗ to the 21 lines, and taking the
56 hyperovals as the lines which do not contain ∗.
Then whenever you remove a point, the lines through
it give a projective geometry on the remaining 21
points. So we wind up with a transitive group on 22
points with PSL(3, 4) as point stabilizer. This is one
of Mathieu’s sporadic groups.

You can also put the 22 points, 77 blocks, and one
more point b together to get the Higman-Sims graph
on 100 points, whose automorphism group has an-
other sporadic group, the Higman-Sims group, as a
subgroup of index 2. Namely: the base point is ad-
jacent to the 22 points, each of them is adjacent to
the 21 blocks containing it, and disjoint blocks have
edges between them.

To see that the automorphism group is transitive
it suffices to check that if we take the special point ∗
as base point in place of b, it looks the same.

The neighbors of ∗ are the lines of P (2, 4) and the
base point b, which becomes the “special point.” The
lines are the points of the dual plane and the original
points are the lines of the dual plane. The hyperovals
are connected to the lines disjoint from them, so they
are again an orbit of hyperovals in the dual plane.

3. The Hoffman-Singleton graph

Another graph constructed from the Sym(6) geom-
etry is the Hoffman-Singleton graph.
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Here we start with the 6 points P and the 6 dual
points F , and with two basepoints bP and bF adja-
cent to P and F respectively. The remaining points
will be P × F .

We join P and F naturally to P × F , and then
we need edges between pairs (p, f ) and (p′, f ′); we
require p 6= p′, f 6= f ′, and the (p, p′) ∈ (f, f ′).

Each (p, f ) has five neighbors of this type, and two
neighbors in P ∪ F . So every point has 7 neighbors
except the basepoints. We join the basepoints as well
and now the graph is regular of degree 7. It has a
transitive automorphism group with Sym(7) as the
stabilizer of a point. It is a Moore graph:

• Diameter 2.
• Triangle-free
• Unique geodesics.

Another example of a Moore graph is the pentagon.
Moore graphs are analyzed using eigenvalue tech-

niques.
Namely we consider the incidence matrix A and

we notice it satisfies the quadratic equation

A2 + A = (k − 1)I + J

where J is the all-1 matrix and k is the degree. Now
J is rank 1 and has eigenvalues (n, 0, . . . , 0) so A has
eigenvalue k with k2 + 1 = n and

λ± = (−1 +
√

4k − 3)/2
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The multiplicities m± satisfy

m+ + m− = n− 1 = k2

k + m+λ+ + m−λ− = 0

from which one can deduce

(m+ −m−)
√

4k − 3 = k2 − 2k

It follows thatm+ 6= m− for k 6= 2 and thus
√

4k − 3
is an integer dividing k2 − 2k, hence also dividing

16k2 − 32k = (4k)2 − 8(4k) ≡ 32 − 8 · 3 = −15

and
√

4k − 3 = 1, 3, 5, 15 (or
√

5: pentagon).
Thus k = 1, 3, 7, or 57. The case k = 7 is the

Hoffman-Singleton graph, the case k = 3 is the Pe-
tersen graph representing the action of Sym(5) on
pairs, and the case k = 57 is a complete mystery,
but probably does not exist.

This concludes our discussion of the geometry of 6
points.
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