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Permutation Groups are Automorphism Groups

(G,Ω)↔ Aut(Ω)

Same group iff interdefinable

Examples

Imprimitive Equivalence Relation
k -closed k -ary

ρG right regular Left G-action
k -homogeneous k -homogeneous

Right side: k -ary + orbits determined by isomorphism types
Left side: Orbits determined by k -orbits
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The Petersen Graph

Aut(Γ) = Sym(5) acting on 2-sets.
Graph structure: disjoint pairs

2-closed
Not 2-homogeneous
3-homogeneous.
Independent triples: Type (1) common neighbor; Type (2) no
common neighbor
I.e. (1) no point in common; (2) unique point in common.
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Some Binary (Homogeneous) Permutation
Groups

(Sym(n),Nat)
(O−2 (q),Nat)
1-skeleton of the icosahedron
Sym(6) on 3-sets

Remark (Fourier)
The natural action of an anisotropic orthogonal group is
binary.

Conjecture

A primitive binary homogeneous group is Sym(n) or AO(V )
(V anisotropic) acting naturally, or the regular action of Cp.
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Some Binary (Homogeneous) Permutation
Groups

(Sym(n),Nat)
(O−2 (q),Nat)
1-skeleton of the icosahedron
Sym(6) on 3-sets

Remark (Fourier)
The natural action of an anisotropic orthogonal group is
binary.

Proof.
All isometries are linear

Conjecture

A primitive binary homogeneous group is Sym(n) or AO(V )
(V anisotropic) acting naturally, or the regular action of Cp.
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Some Binary (Homogeneous) Permutation
Groups

(Sym(n),Nat)
(O−2 (q),Nat)
1-skeleton of the icosahedron
Sym(6) on 3-sets

Remark (Fourier)
The natural action of an anisotropic orthogonal group is
binary.

The last two examples—the icosahedron and Sym(6) on
3-sets—are metrically homogeneous graphs (Cameron
1980). The edge relation on 3-sets is: |u ∩ v | = 2.

Conjecture

A primitive binary homogeneous group is Sym(n) or AO(V )
(V anisotropic) acting naturally, or the regular action of Cp.
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Relational Complexity

Remark
Every permutation group on n points is
(n − 1)-homogeneous.

ρ(G,Ω) = min degree of homogeneity

Examples

(GLn,Nat): n + 1 (or n, over F2);
(Sym n, k -sets): bln2 kc+ 2;
(Aut n, k -sets): n − 3 typically, with exceptions for k ≤ 2 or

n = 2k + 2;
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Wreath products

(Sym(n) o Sym(d),nd )

Proposition (Saracino)

For n ≥ 2[log2 d ]+2,

ρ(nd ) = 2[log2 d ] + 2
For n ≤ 2blog2 dc+2,

ρ(nd ) = 2blog4 αn2n/2+1dc+ ε

with ε = 0 or 1 unless n = d = 3,

and αn =

{
1 n even
(4/3

√
2) n odd.
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Two Propositions

Proposition

The relational complexity of Aut(n) on k-sets (2k ≤ n) is
n − 3 with the following exceptions.

k = 1 : n − 1
k = 2 : max(n − 2,3)

k ≥ 3,n = 2k + 2 : n − 2

Proposition

Let (G,Ω) be binary, primitive, and affine. Then G is the
natural action of AO(V ) with V anisotropic, or the regular
action of Cp.
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A critical ρ-orbit

(X1, . . . ,Xρ) ∼ρ−1 (Y1, . . . ,Yρ)

(X1, . . . ,Xρ) 6∼ (Y1, . . . ,Yρ)

Let us suppose ρ > ρ(Sym(n), k -sets) = bln2 kc+ 2. Then

X ξ = Y for some ξ ∈ Sym(n), necessarily odd.
In particular:

X separates points;
X i = (X1, . . . , X̂i , . . . ,Xρ) does not separate points.

Show
ρ ≤ n − 3 with specific exceptions
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The non-separation graph

X separates points;
X i = (X1, . . . , X̂i , . . . ,Xρ) does not separate points.

(ui , vi) not separated by Xj (j 6= i)
ρ distinct edges: Graph Γ.

Lemma
Γ is acyclic.

Proof.
Xi separates ei = (ui , vi).
Xi does not separate pairs in the same connected
component of Γ\ei .
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ρ(Aut(n), k -sets)

If Γ has γ components and ρ edges, then ρ = n − γ.
So we claim: usually γ ≥ 3.

Lemma
If there are two components, and k ≥ 3, then both
components have order at most k + 1.

Proof.

Component C1 C2
Order > k + 1 the rest
Vertex leaf u leaf v
Edge edge (u,u′) edge (v , v ′)

Separator X X ′

X ′ must meet C2 and C1. . . . But then X ′ contains C1, a
contradiction.
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ρ(Aut(n), k -sets)

If Γ has γ components and ρ edges, then ρ = n − γ.
So we claim: usually γ ≥ 3.

Lemma
If there are two components, and k ≥ 3, then both
components have order at most k + 1.

Proof.

Component C1 C2
Order > k + 1 k − 1
Vertex leaf u leaf v
Edge edge (u,u′) edge (v , v ′)

Separator X X ′

X cannot contain C1 \ {u}; so X is {u} ∪ C2.
Hence |C2| = k − 1 > 1

X ′ must meet C2 and C1. . . . But
then X ′ contains C1, a contradiction.
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ρ(Aut(n), k -sets)

If Γ has γ components and ρ edges, then ρ = n − γ.
So we claim: usually γ ≥ 3.

Lemma
If there are two components, and k ≥ 3, then both
components have order at most k + 1.

Proof.

Component C1 C2
Order > k + 1 k − 1
Vertex leaf u leaf v
Edge edge (u,u′) edge (v , v ′)

Separator X X ′

|C2| > 1 . . . Hence the edge (v , v ′) exists and X ′ must meet
C2 and C1.

. . . But then X ′ contains C1, a contradiction.
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Exceptional cases, ρ = n − 2

The previous lemma points toward the case

n = 2k + 2

with the non-separation graph Γ consisting of two trees of
order k + 1.

Lemma
If Γ has two components, each of order k + 1, then the trees
are stars and the separators Xi are

C` \ {u}

with u varying over leaves.

Proof.

If X separates the edge (u, v) in the component C, then X is
a k -subset of C.
Hence u or v is a leaf. . . . Everything follows.

Corollary
In the exceptional case with n = 2k + 2, we have ρ ≥ n − 2.

Proof.

Use X as described, and Y = X ξ with ξ an odd
permutation.
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Affine Induction

Affine groups: AG acting on A:
A acts by translation—G by automorphisms.

Induction

� Every transitive action is a quotient of a binary action.

But we have some useful subquotients . . .
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Affine Induction

Lemma
Let AG be affine and binary, H /G, and V ≤ A
H-irreducible. Then VNG(V ) is binary.

Proof.
If v̄ ∼2 w̄ then we may suppose v1 = w1 = 0 and some
vi 6= 0. Then

v̄ ∼AG w̄ =⇒ v̄ ∼G w̄
=⇒ v̄ ∼NG(V ) w̄

since
V ∩ V g = V or (0)
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Generation

Lemma
Let AG be binary and affine. Then G is generated by
involutions.

Lemma
. . . g ∈ G, a ∈ A. Then ∃t ∈ I(G)

xg = x t for x ∈ CA(g2) ∪ {a}
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Generation, cont.

Lemma

xg = x t for x ∈ CA(g2) ∪ {a}

Proof.

X = CA(g2) ∪ {a,ag} Order X with a < ag .

f1(x) =

{
x x ≥ xg

−x x < xg f2(x) =

{
xg−1

x ≥ xg

−xg x < xg

Binarity: f1(x)h = f2(x)

(g or g−1, except for (−a,ag) 7→ (−ag ,a) via +a− ag .)
0h = 0; h ∈ G; and xh = xg on CA(g2) ∪ {a} . . .
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Recognition

Lemma

Suppose A = F+, G ≤ F# · Aut(F/Fp) is primitive and
binary. Then

F = Fp, G ≤ 〈±1〉 ≤ F×; or
G = K · 〈σ〉, o(σ) = 2, K = ker NF/F0 .

Proof.

G is generated by involutions.
Case 1. G ≤ F#: Then G ≤ 〈±1〉.
Case 2. Ḡ ⊆ Aut(F/Fp) nontrivial.
Ḡ = 〈σ〉, order 2, G ≤ K 〈σ〉.
G = (G ∩ K )〈t〉 with t = aσ.
To show: K ≤ G.
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G = K0〈t〉, t = aσ.
k ∈ K0, k 6= ±1.

uσ = (ac)u

ut = cu

(0,u, (1 + k)u) ∼2 (0,u, (1 + k−1)u)

(0,u, (1 + k)u) ∼ (0,u, (1 + k−1)u)

ug = u, (ku)g = k−1u
g = c′t

(kc′u)t = k−1u

k−1c′−1
(cu) = k−1u

c′ = c ∈ G
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Characteristic 2

1 F2G = 1
2 FG 6= 1
3 FG cyclic
4 G = FG〈t〉
5 A is FG-irreducible
6 F = CEnd(A)(FG)

7 Recognition
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Lemma
G has elementary abelian Sylow 2-subgroups

Application:
[Bender] If FG = 1 then G =

∏
PSL2, J1,Ree

L /G simple
V ≤ A L-irreducible

Lemma (Main Lemma)

NG(V ) contains all involutions commuting with L.

G = L.
Then one uses the internal structure of L.
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Sylow 2-subgroups

Lemma

In characteristic 2, G has no element of order 4.
In odd characteristic, G has no element of order p.

Characteristic 2:

o(g) = 4 :

ug = u + v vg = v + w wg = w

ug2
= u + w (u + v)g2

= u + v + w

(0,u, v ,u + v) ∼2 (0,u, v ,u + v + w)

But (0,u, v ,u + v) 6∼ (0,u, v ,u + v + w).
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Lemma
H /G.
V H-irreducible.
h ∈ H, h2 nontrivial on V .
t ∈ G an involution commuting with h.
Then t ∈ N(V ).

Proof.

(0, v + v t , v + vh, v t + vh) ∼2 (0, v + v t , v + vh, v + vht )
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The Main Lemma

Lemma
H /G.
V H-irreducible.
h ∈ H, h2 nontrivial on V .
t ∈ G an involution commuting with h.
Then t ∈ N(V ).

Proof.

(0, v + v t , v + vh, v t + vh) ∼2 (0, v + v t , v + vh, v + vht )

v t − v ∼ vht − vh by h

And t (or 1) does the rest.
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The Main Lemma

Lemma
H /G.
V H-irreducible.
h ∈ H, h2 nontrivial on V .
t ∈ G an involution commuting with h.
Then t ∈ N(V ).

Proof.

(0, v + v t , v + vh, v t + vh) ∼2 (0, v + v t , v + vh, v + vht )

(0, v + v t , v + vh, v t + vh) ∼ (0, v + v t , v + vh, v + vht )

v + vh 7→ v + vh vh − v 7→ vht − v t

V 7→ V V 7→ V t
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Review

Even Characteristic:

1 F2G = 1
2 FG 6= 1 (Main Lemma, Syl2)
3 FG cyclic, G = FG〈t〉
4 A is FG-irreducible (VNG(V ))
5 F = CEnd(A)(FG), Recognition

Odd characteristic:
Complete reducibility . . . ; Kill E(G) . . . ;
Eigenspace decomposition relative to elementary abelian
2-subgroups . . .

About the Main Lemma:
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Homogeneous Graphs: Kn ⊗ Kn

K5 ⊗ K5 = E(K5,5) = Sym(5) o Sym(2)

Failure of homogeneity in Sym(n) o Sym(2) (ρ = 4)
[Sheehan 1974, Gardiner 1976]

n = 4: affine and primitive, ρ = 4.
Main Lemma Fails for n = 4 (not binary).
But for n = 3 this is binary! —AO−2 (3)
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Problems

Non-affine case
Reduce to simple socle with maximal subgroup as point
stabiliizer
Treat geometrically meaningful maximal subgroups
Explore with GAP

Replace binary by k -homogeneous in a qualitative
theory.
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