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Examples
Imprimitive Equivalence Relation
k-closed k-ary
pg right regular Left G-action

k-homogeneous k-homogeneous

Right side: k-ary + orbits determined by isomorphism types
Left side: Orbits determined by k-orbits
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Aut(') = Sym(5) acting on 2-sets.
Graph structure: disjoint pairs
2-closed

Not 2-homogeneous
3-homogeneous.

Independent triples: Type (1) common neighbor; Type (2) no
common neighbor

l.e. (1) no point in common; (2) unique point in common.
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@ 1-skeleton of the icosahedron
Complexty @ Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is
binary.
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Remark (Fourier)
The natural action of an anisotropic orthogonal group is

binary.

All isometries are linear O l
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Some Binary (Homogeneous) Permutation

Groups

@ (Sym(n), Nat)
® (05 (q), Nat)
@ 1-skeleton of the icosahedron
@ Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is
binary.

The last two examples—the icosahedron and Sym(6) on
3-sets—are metrically homogeneous graphs (Cameron
1980). The edge relation on 3-sets is: [uNv| = 2.



Some Binary (Homogeneous) Permutation

Groups
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Complexity of
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Cj"egf‘)rv ° (02_(CI), Nat)

" @ 1-skeleton of the icosahedron
Relational

Complexity @ Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is
binary.

A primitive binary homogeneous group is Sym(n) or AO(V)
(V anisotropic) acting naturally, or the regular action of Cp.
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e Every permutation group on n points is
(n— 1)-homogeneous.

Relational
Complexity

p(G, Q) = min degree of homogeneity

Examples
(GLp, Nat): n+1 (or n, over Fo);
(Symn, k-sets): |Ing k| +2;

(Aut n, k-sets): n — 3 typically, with exceptions for k < 2 or
n=2k+2;
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Proposition (Saracino)

Relational
Complexity

For n> 2[log, d]+2,
p(n) = 2[log, ] + 2
Forn < 2|log, d|+2,
p(n?) = 2|log, an2"241d| + €
withe =0 or1 unless n=d = 3,

and 1 n even
an =
"7 1(4/3v2) nodd.




Two Propositions
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Gregory The relational complexity of Aut(n) on k-sets 2k < n) is
n — 3 with the following exceptions.

Relationgl
Complexity k _ 1 : . 1
k=2: max(n — 2,3)
k>3.n=2k+2: n—2

Proposition

Let (G, Q) be binary, primitive, and affine. Then G is the
natural action of AO(V) with V anisotropic, or the regular
action of Cp.
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A critical p-orbit
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Aut(n) on
k-sets

Let us suppose p > p(Sym(n), k-sets) = |Ing k| + 2.



A critical p-orbit
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X))~ (Yase V)
S AT R A

Aut(n) on
k-sets

Let us suppose p > p(Sym(n), k-sets) = |Inp k| + 2. Then
X¢ =Y for some ¢ € Sym(n), necessarily odd.
In particular:
@ X separates points;
o X =(Xq,..., )A(,-, ..., X,) does not separate points.
Show
p < n— 3 with specific exceptions
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The non-separation graph

The Relational
Complexity of

Permutati i .
a eérr'(‘)‘:];"’” oX separates pomts,

Gregory o X'=(Xq,..., )A(,-, ..., X,) does not separate points.

Cherlin

(uj, vi) not separated by X; (j # /)
p distinct edges: Graph .

I is acyclic. l

Aut(n) on
k-sets

X; separates e; = (u;, v)).
X; does not separate pairs in the same connected
component of '\ e;. O
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If there are two components, and k > 3, then both
components have order at most k + 1.
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p(Aut(n), k-sets)

e oiatona If I has v components and p edges, then p = n — 7.

et So we claim: usually v > 8.

Group
Lemma

If there are two components, and k > 3, then both
components have order at most k + 1.

Gregory
Cherlin

Aut(n) on
k-sets

Component Cy Co
Order > Kk+1 the rest
Vertex leaf u leaf v

Edge edge (u,uv’) edge (v,V')
Separator X X'
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ELERCEl  If [ has v components and p edges, then p = n— ~.

Complexity of
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Lemma

If there are two components, and k > 3, then both
components have order at most k + 1.

Aut(n) on
k-sets
Proof.
Component Cy Co
Order >Kk+1 k—1
Vertex leaf u leaf v
Edge edge (u,u’) edge (v,V')
Separator X X'

X cannot contain Cq \ {u}; so Xis {u} U Cs.
Hence |Co] = k—1 > 1
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ELERCEl  If [ has v components and p edges, then p = n— ~.
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Lemma

If there are two components, and k > 3, then both
components have order at most k + 1.

Aut(n) on
k-sets
Proof.
Component Cy Co
Order >k+1 k—1
Vertex leaf u leaf v
Edge edge (u,u’) edge (v,V')
Separator X X'

|Co| > 1 ...Hence the edge (v, V') exists and X’ must meet
C> and (.
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ELERCEl  If [ has v components and p edges, then p = n— ~.

Complexity of

Permutati im:
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Lemma

If there are two components, and k > 3, then both
components have order at most k + 1.

Aut(n) on
k-sets
Proof.
Component Cy Co
Order >k+1 k—1
Vertex leaf u leaf v
Edge edge (u,u’) edge (v,V')
Separator X X'

X' must meet C> and Cy. ...But then X’ contains C, a
contradiction.




Exceptional cases, p=n—2

lidieed  The previous lemma points toward the case
omplexity of

a Permutation

Group n=2k+2
pabeid with the non-separation graph I' consisting of two trees of
order k + 1.
Lemma
Aut(n) on
k-sets IfT has two components, each of order k + 1, then the trees
are stars and the separators X; are
Ce\ {u}

with u varying over leaves.
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Group IfT has two components, each of order k + 1, then the trees
Gregory are stars and the separators X; are

Cherlin
Ce\ {u}
Aut(n) on

Kk-sets with u varying over leaves.

Proof.

If X separates the edge (u, v) in the component C, then X is
a k-subset of C.
Hence u or v is a leaf. ... Everything follows. O

<




Exceptional cases, p=n—2

The Relational
Complexity of Lemma
a Permutation

Group IfT has two components, each of order k + 1, then the trees
Gregory are stars and the separators X; are

Cherlin
Ce\ {u}
Aut(n) on

Kk-sets with u varying over leaves.

Proof.

If X separates the edge (u, v) in the component C, then X is
a k-subset of C.
Hence u or v is a leaf. ... Everything follows. O

<

In the exceptional case with n = 2k + 2, we have p > n — 2.
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Affine Induction

The Relational

Complexity of

a Permutation
Group

Affine groups: AG acting on A:
A acts by translation—G by automorphisms.

Induction
Binary
Primitive
Affine Groups @ Every transitive action is a quotient of a binary action.

But we have some useful subquotients . ..
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Affine Induction

The Relational
2 Pormutaton _
a Permutation Lemma

Group Let AG be affine and binary, H< G, and V < A

Gregory

Cherlin H-irreducible. Then VNg(V) is binary.
Proof.
If v ~» w then we may suppose vi = wy = 0 and some
Binary vi #0. Then

Primitive
Affine Groups

v ~AG W =— Vv ~G w
— VNNG(V) w
since
VN V9= Vor(0)
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Let AG be binary and affine. Then G is generated by
involutions.

Binary
Primitive
Affine Groups

...g€ G,ac A. Then 3t € I(G)

x9 = x'for x € Cx(g?) U {a}
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Generation, cont.

The Relational
Complexity of
a Permutation

Group

Gratin x9 = x'for x € Ca(g?) U{a}

X = Ca(g?) U {a, a9} Order X with a < &9.

Binary
Primitive
Affine Groups —1
x x=x9 x9 " x> x9
fi(x) = fo(x) =
—Xx x<x9 —x9 x < x9

Binarity: f;(x)" = f(x)

(gor g™, except for (—a, &%) — (—a?, a) via +a— ad.)
0" =0; he G;and x" = x9 on Cx(g?) U {a} ... O

v
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Sregary binary. Then

@ F=Fp G< (1) <F*;or
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Recognition
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Complexity of

Lemma
a Permutation

ST Suppose A =TF*, G < F# - Aut(F/Fp) is primitive and
it  binary. Then

@ F=Fp G< (1) <F*;or

e G=K- <0>, 0(0’) =2, K= kerN]F/]FO.

Binary
Primitive
Affine Groups

Proof.

G is generated by involutions.
Case 1. G < F#: Then G < (+1).
Case 2. G C Aut(F/F,) nontrivial.
G = (0), order 2, G < K(0).

G = (GNK)(t) with t = ao.

To show: K < G.
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Binary
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Affine Groups
(0,u, (1 +K)u) ~2 (0,u,(1 +k~")u)
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Recognition

The Relational
Complexity of

a Permutation G = K0<t>’ t= ao.

Group

k ¢ Ko, k 7é +1.
u’ = (ac)u
ut =cu
e (0,u, (1 + K)u) ~2 (0,u, (1 + kK~ "yu)
ine Groups
(0, u, (1 + k)U) ~ (07 u, (1 + k_1)U)

ud =u, (ku)? =k 'u
g=_cCt



Recognition

The Relational G= K0<t>’ t=ao.

Complexity of

aPeérrrz)L:Jtstion k c KOa k 75 :|:1 .
u’ = (ac)u
ut =cu

. (0,u, (1 + K)u) ~2 (0,u, (1 + k~")u)

inary

e Groups (0,u,(1 + K)u) ~ (0,u, (1 + Kk~ ")u)

w9 =u, (ku)9 =k 'u

g=_ct

(kdu)t =k~ 'u
k¢ (eu) =k u
c=ce@G



Characteristic 2

The Relational

Complexity of

a Permutation
Group

Q@ RG=1
Q FG+#1
© FGcyclic
Binary QO G= FG<t>

Primitive

Affine Groups e Ais FG-irreducible
O F = Cgu(a)(FG)
@ Recognition
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@ Ais FG-irreducible

V FG-irreducible.
Primitive VNg(V) binary.

Binary

Affine Groups

Ng(V) is generated by involutions.
Ng(V)=G
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Binary
Primitive
Affine Groups

G has elementary abelian Sylow 2-subgroups l

Application:
[Bender] If FG = 1 then G = [[ PSLp, Ji, Ree

L < G simple
V < A L-irreducible

Lemma (Main Lemma)
Ng(V) contains all involutions commuting with L.

G=L.
Then one uses the internal structure of L.



Sylow 2-subgroups
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Gregory

cherin @ In characteristic 2, G has no element of order 4.
@ In odd characteristic, G has no element of order p.

Characteristic 2:
Binary
Binary
AzirrTgl\(laeroups O(g) = 4 :
uw=u+v VIi=v+w wd =w
2 2
i =u+w (U+v)9 =u+v+w

(0,u,v,u+v)~z (0,u,v,u+v+w)

But (0,u,v,u+v) «£ (0,u,v,u+v+w).
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h € H, h? nontrivial on V.

t € G an involution commuting with h.
Thent e N(V).
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The Main Lemma

Lemma

H<«G.
V H-irreducible.

h € H, h? nontrivial on V.

t € G an involution commuting with h.
Thent € N(V).

Proof.

0, v+ v v+ v vl vy~ (0, v+ v v+ v v+ v

vi— v~ vyl by h

And f (or 1) does the rest.
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Eep H<G.
e V H-irreducible.

h € H, h? nontrivial on V.

t € G an involution commuting with h.
Thent e N(V).

Binary
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Affine Groups

Proof.

0, v+ v v+ v vl vy~ (0, v+ v v+ v v+ v
O, v+ Vv v+ v vie vy~ (0,v+ v v+ v v v




The Main Lemma

The Relational
Complexity of Lemma
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Group H«G.
Gregory V' H-irreducible.

h € H, h? nontrivial on V.
t € G an involution commuting with h.
Thent € N(V).

Binary
Primitive
Affine Groups

Proof.

0, v+ Vv v+ v vl vy s (0, v+ v v+ v v+ v
O, v+ Vv v+ v v v ~ (0, v+ vi v+ v v v
v+ vl v vl v — v vt — i

V=V V= V!

v
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Review

The Relational
Complexity of
a Permutation

Group Even Characteristic:
Q FLG=1
@ FG # 1 (Main Lemma, Syl,)
© FGcyclic, G = FG(t)

©Q Ais FG-irreducible (VNg(V))
Primitve @ I = Cgu(a)(FG), Recognition

Affine Groups

Odd characteristic:

Complete reducibility .. .; Kill E(G) ...;

Eigenspace decomposition relative to elementary abelian
2-subgroups ...

About the Main Lemma:



Homogeneous Graphs: K, ® K,

The Relational

& Parmutajon Ks © Ks = E(Ks5) = Sym(5) : Sym(2)

Group

\|\_‘|II

Huwmu'

H\I | ™
Binary N ,‘jﬁ -

Primitive |
U . D g

Affine Groups - =

[}
7
1]

Failure of homogeneity in Sym(n):Sym(2) (p = 4)
[Sheehan 1974, Gardiner 1976]

n = 4: affine and primitive, p = 4.
Main Lemma Fails for n = 4 (not binary).
But for n = 3 this is binary! —AO, (3)



Problems
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Complexity of

a Permutation
Group

@ Non-affine case
@ Reduce to simple socle with maximal subgroup as point

stabiliizer
o Treat geometrically meaningful maximal subgroups
Binary o Explore with GAP
Affine Groups
@ Replace binary by k-homogeneous in a qualitative

theory.
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