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Theorem

In a connected group of finite Morley rank,
the centralizer of any element is infinite.

Co-conspirators: Borovik, Burdges
Unindicted: Altınel

FMR – p. 2/36



I. Introduction

Groups of finite Morley rank
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Groups of finite Morley rank

• The algebraicity conjecture

• The four types

• Two test problems
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Morley rank (dimension)

Algebraic groups: dimension
Finite groups: cardinality
(Link: Lang-Weil, |X| ≈ qdim(X).)

Algebraicity Conjecture
A simple group of finite Morley rank is algebraic.

Free groups: stable, definably simple
(Sela; Feighn, Bestvina)
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Morley rank

Axioms and Basic Properties
1. rk (X) (dimension); deg(X) (multiplicity)
2. K < H:

[H : K] = ∞ =⇒ rk (K) < rk (H)
[H : K] < ∞ =⇒ deg(K) < deg(H).

3. rk (G/H) = rk (G) − rk (H).
4. d(X) = d(〈X〉)
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Morley rank

Axioms and Basic Properties
1. rk (X) (dimension); deg(X) (multiplicity)
2. K < H:

[H : K] = ∞ =⇒ rk (K) < rk (H)
[H : K] < ∞ =⇒ deg(K) < deg(H).

3. rk (G/H) = rk (G) − rk (H).
4. d(X) = d(〈X〉)

5. “connected subgroup”: H◦

6. (strongly) generic: rk (G \ X) < rk (G)
N.B.: G connected, rk (X) = rk (G) =⇒ X generic.
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Morley rank

Axioms and Basic Properties
1. rk (X) (dimension); deg(X) (multiplicity)
2. K < H:

[H : K] = ∞ =⇒ rk (K) < rk (H)
[H : K] < ∞ =⇒ deg(K) < deg(H).

3. rk (G/H) = rk (G) − rk (H).
4. d(X) = d(〈X〉)

5. “connected subgroup”: H◦

6. (strongly) generic: rk (G \ X) < rk (G)
N.B.: G connected, rk (X) = rk (G) =⇒ X generic.

7. Saturation: a set of bounded cardinality is finite
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p-Sylow◦ subgroups in matrix groups

Characteristic p:
unipotent – [bounded exponent, definable]

Model: Strictly upper triangular matrices.

Other characteristics :
semisimple – [divisible abelian]

Model: Diagonal matrices with entries suitable roots of unity.
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The four types

2-Sylow◦ structure in groups of FMR
S = U ∗ T :

2-Unipotent × 2-torus
with finite intersection

Types

T
U

6= 1 = 1

6= 1 Mixed Odd
= 1 Even Degenerate

Even: U Odd: T Mixed: U ∗ T Degenerate: 1
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Results, by Type

Theorem A simple group of finite Morley rank of even or
mixed type is algebraic.

Reference: Atlınel, Borovik, Cherlin, book in preparation.

Methods: Finite group theory (2nd and 3rd generations),
and the model theory of fields of finite Morley rank (Wagner)

Theorem A simple group of degenerate type contains no
involutions.

Methods: Black box group theory, genericity arguments.

Odd type: Borovik, Burdges, Jaligot, ongoing . . .
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Poizat’s pet problem

Problem Show that in a connected group of finite Morley
rank, if the equation xn = 1 holds generically, then it holds
everywhere.

In an algebraic group this is trivial, because of the existence
of a topology on the group (the Zariski topology) for which
(1) multiplication is continuous and (2) generic sets are
dense.

Until quite recently only the following cases were known:

• If the group is solvable, then the equation holds
everywhere and the group is nilpotent.

• The result holds for n = 2 (trivially) and n = 3 (easily).

In particular the case n = 4 was very much open.
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Centralizers

Problem Show that in a connected group of finite Morley
rank, any element has an infinite centralizer.

This may be viewed as a special case of Poizat’s Pet.
Lemma If G is a connected group of finite Morley rank and
a ∈ G an element with finite centralizer, of order n, then the
equation

xn = 1

holds generically in G.

Proof. As a ∈ C(a), the order n is finite.
There is a definable bijection between the right coset space
C(a)\G and the conjugacy class aG = {ag : g ∈ G}.
Hence rk (aG) = rk (G) and a generic element of G has
order n (which is sharper than the claim).
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II. On Generic Equations
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• The Theorem

• Its proof: The two ingredients
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The theorem

Theorem Let G be a connected group of finite Morley rank
satisfying a generic equation

xn = 1

Then a Sylow 2-subgroup U of G is connected, definable, of
bounded exponent, and normal in G, and the quotient G/U
satisfies the generic equation

xno = 1

where no is the odd part of n.

Corollary Let G be a connected group of finite Morley
rank. Then C(a) is infinite for a ∈ G.
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The corollary

Corollary Let G be a connected group of finite Morley
rank. Then C(a) is infinite for a ∈ G.

Proof. Otherwise, aG is generic in G, and we get a generic
equation

xn = 1 (n the order of a)

The theorem applies: a Sylow 2-subgroup U of G is normal.
In Ḡ = G/U āḠ remains generic, so CḠ(ā) is finite.
In consequence we may replace G by Ḡ and suppose

There are no involutions in G

The generic sets aG and (a−1)G intersect, and ax = a−1 for
some x ∈ G. Then d(〈x〉) contains an involution:
contradiction.
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Proof of the theorem

Outline

1. U is unipotent (= connected, definable, bounded
exponent)

2. U is normal

3. G/U satisfies the generic equation xno = 1.

The third step is immediate.
We mention that the structure of G is actually a little clearer
than this:

G = U · CG(U)

so that really the even and the odd parts separate out
independently.
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Preparation: Notation

Objective: Isolate the key ingredients needed from the
general theory

First, shift the notation: U stands for a Sylow◦ 2-subgroup,
not a Sylow 2-subgroup, that is we build connectedness into
the notation.
The steps are unchanged:

1. U is unipotent (= connected, definable, bounded
exponent)

2. U is normal

Then G/U is a group of degenerate type and hence by one
of the major recent results in the field, contains no
involutions.
Hence U is indeed a Sylow subgroup and we are on track.
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The two ingredients

• Degenerate type: elimination of involutions.

• Tori: torsion and genericity

Definition A definable divisible abelian group which is the
definable closure of its torsion subgroup is a decent torus
Model: Multiplicative group of an algebraically closed field,
or more generally the group of diagonal matrices over such
a field, which is a product of several copies of this group.
Proposition Let G be a group of finite Morley rank and T a
decent torus in G, and T̂ = C◦(T ). Then the conjugates of T̂
are generically disjoint and generically cover G.

Example: T = diagonal matrices, T̂ = T , and a generic
matrix is diagonalizable (indeed, with distinct eigenvalues).
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Remarks

1. These ingredients (degenerate type, tori) are general
results independent of any classification results.

2. The theory of maximal tori is classical in Lie group theory
and algebraic group theory, and motivates a significant
chapter of the theory of Carter subgroups in finite solvable
groups (self-normalizing nilpotent subgroups).

3. A p-torus is a divisible abelian p-group.
The definable closure of a p-torus is a decent torus. It is
difficult to work directly with p-tori in a model theoretic
context as they are not definable.
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U is unipotent

G satisfies xn = 1 generically, and U is a Sylow◦ 2-subgroup.
The key to the entire analysis is the following.
Lemma G contains no p-torus for any p.
Taking p = 2, we get Step 1 of the proof:

U is unipotent

(Recall the four types.)

Our lemma is much stronger than this and also dominates
the analysis in Step 2, and in the strengthening of Step 2
we alluded to at the outset.
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Killing p-tori

Now it is time to connect our second ingredient:
Proposition Let G be a group of finite Morley rank and T a
decent torus in G, and T̂ = C◦(T ). Then the conjugates of T̂
are generically disjoint and generically cover G.
with our main lemma

Lemma G contains no p-torus for any p.
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Killing p-tori

Proposition Let G be a group of finite Morley rank and T a
decent torus in G, and T̂ = C◦(T ). Then the conjugates of T̂
are generically disjoint and generically cover G.

Lemma G contains no p-torus for any p.

Proof. Let T be a nontrivial decent torus, T̂ = C◦(T ), and
XT = T̂ \ (

⋃

g/∈N(T̂ ) T̂ g).

Distinct conjugates of XT are pairwise disjoint, and
generically cover G. The generic equation xn = 1, passes
(generically) to XT , and to T̂ .
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Killing p-tori

Proposition Let G be a group of finite Morley rank and T a
decent torus in G, and T̂ = C◦(T ). Then the conjugates of T̂
are generically disjoint and generically cover G.

Lemma G contains no p-torus for any p.

Proof. Let T be a nontrivial decent torus, T̂ = C◦(T ), and
XT = T̂ \ (

⋃

g/∈N(T̂ ) T̂ g).

Distinct conjugates of XT are pairwise disjoint, and
generically cover G. The generic equation xn = 1, passes
(generically) to XT , and to T̂ .
T̂ is covered by cosets of T , and some coset kT generically
satisfies the same equation.
Then T = k−1(kT ) is generically of order n; but the torsion
of fixed order in T is finite!
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The two (or three) ingredients

• Degenerate type: there are no involutions.

• Decent tori: control the generic element

Both of these theorems have emerged in the past year.
We have not gone into what happens after U is unipotent.
One possibility is to haul out the big guns:

• Classification of simple groups of even type.

But the 200-page argument implicit in this can be reduced
to half a page using the “no p-tori” condition!

The treatment of degenerate type is startlingly direct . . .
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III. Degenerate Type Groups
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The theorem

Theorem Let G be a connected group of degenerate type.
Then G contains no involutions.

Outline We work in a minimal counterexample G.

1. G may be taken to be simple.

2. If for a generic pair of conjugate involutions, d(ij)
contains no involution, we reach a contradiction.

3. If for a generic pair of conjugate involutions, d(ij)
contains an involution, we reach a contradiction.

Methods used:

• Covariant maps

• Genericity
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Covariant maps

Definition Let G be a group and H a subgroup. A function
ζ : G → H is covariant if

ζ(hg) = hζ(g)

for h ∈ H and g ∈ G.

Lemma Let G be connected and ζ : G → H definable and
covariant. Then H is connected.
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Covariant maps

Definition Let G be a group and H a subgroup. A function
ζ : G → H is covariant if ζ(hg) = hζ(g) for h ∈ H and g ∈ G.

Lemma Let G be connected and ζ : G → H definable and
covariant. Then H is connected.

Proof. Let Fh = ζ−1(h) be the fiber above h and fh = rk (Fh).
Fh′h = h′Fh by covariance, so fh = f is constant.
Hence for any definable subset X of H, we have

rk (ζ−1(X)) = rk (X) + f

Any subset of H of maximal rank pulls back to subset of G
of maximal rank, so

deg(G) ≥ deg(H)

Our claim follows.
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Minimization

Lemma Let G be a connected group of finite Morley rank
of degenerate type, containing an involution, and of minimal
Morley rank. Then G/Z(G) is a simple group of degenerate
type containing an involution.
Here the difficulty lies in showing that G/Z(G) contains an
involution. We can reduce to the case in which Z(G) is a
2-group. If G/Z(G) contains no involution, then one defines

ζ : G → Z(G)

as follows.
For g ∈ G, d(g) splits canonically as A × Zg with A a
2-divisible subgroup and Zg = d(g) ∩ Z(G) a cyclic 2-group.
The projection π2 : d(g) → Zg is definable. Set ζ(g) = π2(g).
Covariance is routine, and Z(G) is disconnected (finite)—a
contradiction.
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Preparation: Dihedral groups

The finite case
A group generated by two involutions i, j is dihedral: setting
a = ij, the group is

〈a〉 · 〈i〉

or in other words a cyclic group with an element of order
two inverting it.
If a has odd order then i and j are conjugate in this group,
and if a has even order then 〈a〉 contains a unique involution
k commuting with both, and the noncentral involutions fall
into two conjugacy classes represented by i and ik.
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Preparation: Dihedral groups

The finite case 〈i, j〉 = 〈a〉 · 〈i〉
Odd order: i ∼ j under 〈a〉
Even order: k ∈ 〈a〉, i, j ∈ C(k), j ∼ ik.

Finite Morley rank
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Preparation: Dihedral groups

The finite case 〈i, j〉 = 〈a〉 · 〈i〉
Odd order: i ∼ j under 〈a〉
Even order: k ∈ 〈a〉, i, j ∈ C(k), j ∼ ik.

Finite Morley rank
The group definably generated by two involutions i, j is
generalized dihedral: setting a = ij, the group is

d(a) · 〈i〉

with d(a) inverted by 〈i〉.
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Preparation: Dihedral groups

The finite case 〈i, j〉 = 〈a〉 · 〈i〉
Odd order: i ∼ j under 〈a〉
Even order: k ∈ 〈a〉, i, j ∈ C(k), j ∼ ik.

Finite Morley rank
d(i, j) = d(a) · 〈i〉
The group d(a) has the form

A × C (A divisible, C finite cyclic)

In degenerate type the divisible group A contains no
involutions and thus d(a) contains at most one involution,
and the dichotomy holding in the finite case applies here as
well.
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Black box methods

G is minimal among connected groups of degenerate type
with involutions, and is simple. Fix an involution i and let
C = iG.
The first of two cases to take up is:

d(ij) contains no involution, generically
Here i is fixed and j varies over C.
We reach a contradiction by manufacturing a generically
defined covariant map

ζ : G → C(i)

The domain is only a generic subset of G but this produces
a contradiction as before.
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Black box methods

G is minimal among connected groups of degenerate type
with involutions, and is simple. Fix an involution i and let
C = iG.
The first of two cases to take up is:

d(ij) contains no involution, generically
We reach a contradiction by manufacturing a generically
defined covariant map ζ : G → C(i).

Definition: ζ(g) ∈ gd(i · ig) ∩ C(i).

• ζ(g) = gx, x ∈ d(i · ig), igx = i,

• Unique: otherwise d(ij) meets C(i); but d(ij) is inverted
by i.

FMR – p. 28/36



Phase 3

Outline We work in a minimal counterexample G.

X G may be taken to be simple.

X If for a generic pair of conjugate involutions, d(ij)
contains no involution, we reach a contradiction.

(. . . ) Genericity Arguments

(3) If for a generic pair of conjugate involutions, d(ij)
contains an involution, we reach a contradiction.
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Genericity, I

G is minimal among connected groups of degenerate type
with involutions, and is simple.
Lemma Let t be a 2-element. Then for a generic element g
of G, the Sylow 2-subgroup of d(g) is generated by a
conjugate of t.

Proof. Let X = tC◦(t). For x ∈ X one finds
d(x) = A × 〈t〉 (A = d(x) ∩ C◦(t))

The coset xA = tA contains a unique 2-element, t.
The conjugates of X are pairwise disjoint:
Consider X ∩ Xg with g /∈ C(t). For x ∈ X we can recover t
from x by examining the structure of d(x); for x ∈ X ∩ Xg

this shows that t = tg, a contradiction.
Now by a rank computation

⋃

XG is generic in G and our
claim follows.
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Genericity, II

Lemma Let t be a 2-element. Then for a generic element g
of G, the Sylow 2-subgroup of d(g) is generated by a
conjugate of t.
Corollary A Sylow 2-subgroup of G is elementary abelian.

Proof. By considering the order of the Sylow 2-subgroup of
a generic element of G, one sees that all 2-elements of G
have the same order, which must be 2.
Corollary For i, j involutions of G, if d(ij) contains an
involution k then i and j are not conjugate in C(k).

Proof. We have j conjugate to ik under d(ij) and hence
inside C(k). If i is conjugate to j in C(k) then i is conjugate
to ik in C(k), and there is a 2-element acting nontrivially on
〈i, k〉 which contradicts the previous corollary.
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End of the proof

G a minimal counterexample. C = iG.
U a Sylow 2-subgroup

Suppose for generic j ∈ C the group d(ij) contains an
involution k. (Unique)

For i, j in C generic and independent over U there are pairs
(u, v) of elements u, v ∈ U such that

(i, k) is conjugate to (u, v) in G.
The pairs (i, j) and (j, i) have the same U -type, the same k.
Therefore the pairs in U conjugate to (i, k) or (j, k) are the
same.

Hence the pairs (i, k) and (j, k) are conjugate.
This means that i is conjugate to j in C(k), and contradicts
our previous claim.
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IV. Coda
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Generosity

Definition Let G be a group of finite Morley rank.
A Carter subgroup of G is a connected almost
self-normalizing nilpotent subgroup H of G.

Theorem (Frécon-Jaligot) Every group of finite Morley
rank contains a Carter subgroup.

Definition A Carter subgroup H of G is generous if
⋃

HG

is generic in G.
Theorem (Jaligot, Spring 2005) Any two generous
Carter subgroups of G are conjugate.
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The Generosity Conjecture

Conjecture Every group of finite Morley rank has a
generous Carter subgroup.

The following special case would be very useful in practice.
Conjecture For every connected group G of finite Morley
rank, a generic element of G belongs to a connected
nilpotent subgroup.
This would essentially generalize the theory of decent tori
to arbitrary groups of finite Morley rank.
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Summary

The classification program for groups of finite Morley
rank has spun off a more intrinsic structural theory

Centralizers of decent tori control the generic element

Still open, and fundamental: the Generosity
Conjecture—Nilpotent subgroups control the generic
element.
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