Countable Universal Graphs with Forbidden Subgraphs

A problem in model theoretic combinatorics

Hattingen, July 2003

Gregory Cherlin

Does there exist a universal countable C-free graph?

Examples

Non-Examples

- 1. Rado graph (no C) 1. C_4 -free
- 3. P_n -free [KMP '88] 3. C_n -free [CS]
- 4. Bowtie-free [FK]
- 2. K_n -free (Fraïssé) 2. $K_{m,n}$ -free [KP '84]

 - 4. C-free (2-connected, incomplete) [FK]
 - 5. T-free, bushy tree [CS]
 - 6. Bridge-free [GK]

Positive Cases

Few Varied approaches: Structure theory, amalgamation, more Frequently associated with: \aleph_0 -categorical theories

Negative Cases

Uniform approach, essentially model-theoretic: acl

Thesis

 \aleph_0 -categoricity is the right "dividing line"

Context

C: Finite collection of finite, connected graphs

Countable C-free graphs

Universal one?

Main Problems

- I. Single constraint: *explicit list* of "good" ones
- II. General case: Decidability

Undecidability?

Generalize: Finite relational structures.

Coding: Graphs with a 2-coloring of the vertices

IIA. Is the generalized problem undecidable?

IIB. Can the 2-colored graphs be coded by graphs?

Decidability?

There are two types of "good" contraint; pathlike constraints, and sets of constraints closed under homomorphism.

Is this the whole story?

Known positive cases

- 1. A path $P_n \in C$;
- 2. Augmented path $P_n^+ \in \mathcal{C}$;
- 3. Fat paths $K_n + K_3$, $K_3 + K_3 + P_n$, $K_m + P_n$ (more?)
- 4. Any class closed under homomorphism
- 5. . . . or an extension of a known class by such a class

Example

 $\ensuremath{\mathcal{C}}$ a finite collection of cycles

Then there is a universal C-free graph if and only if C consists of all the *odd cycles* up to some length 2N + 1.

7

The Model-Theoretic Point of View

- $\mathcal{G}_{\mathcal{C}}$: C-free graphs
- $\mathcal{E}_{\mathcal{C}}$: existentially complete \mathcal{C} -free graphs

Bad example

- \mathcal{C} : all cycles;
- $\mathcal{E}_{\mathcal{C}}$: Trees with all vertex degrees infinite

Not an elementary class.

Theorem

For C a finite set of connected graphs, the class \mathcal{E}_{C} is elementary. and its theory is complete.

Corollary Tfae:

1. There is a universal countable C-free graph;

- 2. There is a saturated countable graph in $\mathcal{E}_{\mathcal{C}}$;
- 3. The theory of $\mathcal{E}_{\mathcal{C}}$ is small $(|S_n| \leq \aleph_0 \text{ all } n)$.

Observation

Most commonly we have the extremes: either $|S_n| = 2^{\aleph_0}$ for some n, or S_n is finite for all n.

Exception

Tallgren's augmented paths, with \mathbb{Z} -components (and no additional edges).

Variant: When is $\mathcal{E}_{\mathcal{C}} \rtimes_0$ -categorical?

Thesis. This is the natural question

 $I^*. |C| = 1$

II*. Decidability

acl in $\mathcal{E}_{\mathcal{C}}$

acl(A): Union of the finite A-definable sets

Theorem Tfae:

- 1. $\mathcal{E}_{\mathcal{C}}$ is \aleph_0 -categorical;
- 2. $\mathcal{E}_{\mathcal{C}}$ is *locally finite*: for A finite, acl(A) is finite.

Growth rate problem:

$$g(n) = \max(|acl(A)| : |A| = n)$$

"Counterexample":

A "sequence" of equivalence classes (successor relation \rightarrow , equivalence relation \sim) S_2 is infinite, *acl* is trivial.

(Why is this not a counterexample?Hint: the language involved is irrelevant.)

Finiteness Lemma

If A is algebraically closed and finite, and $k = \max(|C| : C \in C)$, then the type of A is determined by its k-quantifier existential type.

Applications

- 1. If C is closed under homomorphism, then acl(A) = A for all A; hence \mathcal{E}_{C} is \aleph_{0} -categorical.
- 2. If $\mathcal{E}_{\mathcal{C}}$ is \aleph_0 -categorical, and \mathcal{C}' is closed under homomorphism, then $\mathcal{E}_{\mathcal{C}\cup\mathcal{C}'}$ is \aleph_0 -categorical; and $g_{\mathcal{C}\cup\mathcal{C}'} \leq g_{\mathcal{C}}$.
- 3. Unarity

If C consists of "solid" graphs then acl is unary: $acl(A) = \bigcup_{a \in A} acl(a)$.

4. Bowtie *B*: $|acl(a)| \le 4$ (a computation) and hence \mathcal{E}_B is \aleph_0 -categorical. **Conjecture.** If \mathcal{E}_C is \aleph_0 -categorical, then C is a string of complete graphs.

Conjecture. If \mathcal{E}_C is small, then *C* is a nearstring of complete graphs.

Homomorphisms

 $h: G_1 \rightarrow G_2$ edge preserving.

Hence if h(u) = h(v) then $u \not\sim v$.

 \mathcal{C} is closed under homomorphisms if: $C \in \mathcal{C}$, $C \twoheadrightarrow C'$ implies $\exists C'' \in \mathcal{C} \ C'' \hookrightarrow C'$.

Theorem Tfae:

- 1. $A \neq acl(A)$;
- 2. There is $C \twoheadrightarrow C' \subseteq G$ with $C \in C$, so that $C \hookrightarrow \bigoplus_A C'_i$.

Proof $(1 \Rightarrow 2)$:

 $G_1 \oplus_A G_2$, $G_1 \simeq G_2 \simeq G$;

 $C \hookrightarrow G_1 \oplus_A G_2 \twoheadrightarrow G_1$; image C'.

Corollary: Closure under homomorphism implies: acl(A) = A; hence \aleph_0 -categoricity.

Example: Cycles

 C_{2n} collapses to K_2 —not interesting.

 C_{2n+1} generates C_{2m+1} for $1 \le m \le n$.

Trivial algebraic closure, nontrivial theory.

Why is the amalgamation method harder here?

—It involves an explict calculation of the type structure.

Unarity, growth rates, and other details

Explicit computation of acl

 $A\subseteq H\subseteq G$

cl(A; H): A together with the union of all *minimal bases* B for H over A:

H free over $A \cup B$, and B minimal.

Lemma $cl(A; H) \subseteq acl(A)$

Proof: Δ -system lemma

 \mathcal{F} : {(A, H) : $H \hookrightarrow C \in \mathcal{C}$, properly}.

Theorem

- 1. $\mathcal{F} cl$ generates acl;
- 2. $\mathcal{F} cl$ is locally finite

Problem: length of the iteration.

Theorem

- 1. $\mathcal{F} cl$ generates acl;
- 2. $\mathcal{F} cl$ is locally finite

Proof:

- 2. $\mathcal{F} cl(A)$ is a definable subset of acl(A)
- 1. As before, $h : C \hookrightarrow G_1 \oplus XG_2$; $H = h(C) \cap G_2$.

For applications: Refine \mathcal{F} ; Study the length of \mathcal{F} -cl chains.

If C is solid, then \mathcal{F} -closure is generated by unary closures cl(a; H).

Reason: this is where the transition from G_1 to G_2 takes place.

Open problems:

- Coding and decidability General relational systems and graphs.
- Sets of 2-connected graphs
 Unify Füredi-Komjáth (2-connected graphs) and Cherlin-Shi (sets of cycles)
- Trees
 Done: bushy trees, bridges, generalized stars
- 4. Short solid graphs Beyond bowties: $K_m + K_n \ (m, n \ge 4); \ K_3 + K_2 + K_3.$
- 5. Growth rates $g_{P_k}(1) = k$? (Known bound: k^{3k})

Rado '64, Universal graphs. Acta Arith. 9. Pach '81, Planar graphs.

European J. Combina. 2.

Komjáth-Pach '84, Bipartite. Mathematika 31. Komjáth-Mekler-Pach '88 Paths.

Israel J. Math. 64.

Komjáth-Pach '91, Disconnected cases.

Discrete Math. 95.

Cherlin-Komjáth '94, Cycles. JGT 18

Cherlin-Shi '96, Set of cycles. JGT 21.

Goldstern-Kojman '96, Bridges.

Acta Math. Hungar. 73.

Cherlin-Shi '97, Sums of complete graphs. JGT 24.

Füredi-Komjáth '97, 2-connected. JGT 25. Füredi-Komjáth '97, Some trees.

Combinatorica 17.

Cherlin-Shi-Tallgren '97, Bushy trees.

JGT 26.

Komjáth, Bowtie. Discrete Mathematics. Cherlin-Shelah-Shi '99.

Advances in Applied Mathematics 22.